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Abstract 

Sarcomas are a heterogeneous group of malignancies with mesenchymal lineage 

differentiation. The discovery of neurotrophic tyrosine receptor kinase (NTRK) gene 

fusions as tissue-agnostic oncogenic drivers has led to new personalized therapies 

for a subset of patients with sarcoma in the form of tropomyosin receptor kinase 

(TRK) inhibitors. NTRK gene rearrangements and fusion transcripts can be detected 

with different molecular pathology techniques, while TRK protein expression can be 

demonstrated with immunohistochemistry. The rarity and diagnostic complexity of 

NTRK gene fusions raises a number of questions and challenges for clinicians. To 

address these challenges, the World Sarcoma Network convened two meetings of 

expert adult oncologists and pathologists, and subsequently developed this article to 

provide practical guidance on the management of patients with sarcoma harboring 

NTRK gene fusions. We propose a diagnostic strategy that considers disease stage 

and histologic and molecular subtypes to facilitate routine testing for TRK expression 

and subsequent testing for NTRK gene fusions. 

 

Keywords: entrectinib; larotrectinib; neurotrophic tyrosine receptor kinase; sarcoma; 

tropomyosin receptor kinase 
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Highlights 

• NTRK gene fusions are oncogenic drivers in a variety of tumor types including 

adult and pediatric sarcomas 

• TRK inhibitors provide effective treatment options for patients with sarcomas 

harboring NTRK gene fusions 

• Integrating NTRK testing into the management of patients with sarcoma is 

challenging due to the rarity of this biomarker 

• Massive parallel RNA sequencing provides the optimal NTRK fusion test and 

immunohistochemistry is a valuable screening tool  

• We propose a diagnostic strategy that considers histologic and molecular 

subtypes to facilitate routine NTRK fusion testing 
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Introduction 

Sarcomas are a heterogeneous group of malignancies that exhibit mesenchymal 

lineage differentiation. They arise in either soft tissue (~80%) or bone (~20%) and 

comprise ~70 malignant subtypes (per World Health Organization classification), 

each with distinct underlying biology and clinical behavior [1]. Sarcomas account for 

approximately 1% of all adult cancers and 20% of all pediatric solid tumors [2]. 

Complete resection (with or without radiation and/or chemotherapy) forms the 

mainstay of curative management for most subtypes in the localized setting. For 

patients diagnosed with locally advanced or metastatic disease, or those with disease 

recurrence following surgery, treatment options include systemic therapy and 

potential local approaches such as radiation, isolated limb perfusion, surgery, and 

ablation techniques [3]. The median overall survival of patients with advanced soft 

tissue sarcomas is approximately 20 months, with most patients deriving only 

transient benefit from palliative chemotherapy [4, 5]. Therefore, there is a clear unmet 

need for more effective systemic therapies for patients with advanced/metastatic 

sarcomas. 

As our understanding of the molecular basis of tumorigenesis has improved 

with advances in diagnostic technology, precision oncology approaches to the 

treatment of sarcomas have emerged. A classic example of this is mutational profiling 

of KIT, PDGFRA, and other genes to predict sensitivity of gastrointestinal stromal 

tumors (GISTs) to imatinib and other KIT/PDGFRA tyrosine kinase inhibitors [6-11]. 

More recently, the discovery of neurotrophic tyrosine receptor kinase (NTRK) gene 

fusions as pan-tumor oncogenic drivers has provided new precision medicine-based 

treatment options for a subset of patients with sarcoma [12]. The rarity and diagnostic 
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complexity of this particular biomarker raises a number of questions and challenges 

for clinicians.  

To address these issues, the World Sarcoma Network, a think tank gathering 

national and international sarcoma groups for the past 10 years, convened two 

consensus meetings of expert adult oncologists and pathologists to discuss 

diagnostic challenges and propose a diagnostic strategy in this area. We 

subsequently developed this article to provide practical guidance on how to optimally 

integrate the NTRK gene fusion biomarker into the clinical management of patients 

with sarcoma. 
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NTRK gene fusions 

The NTRK genes NTRK1 (chromosome 1q23.1), NTRK2 (chromosome 9q21.33), 

and NTRK3 (chromosome 15q25.3) are typically involved in normal neuronal 

development and encode the tropomyosin receptor kinase (TRK) proteins, 

traditionally known as TRKA, TRKB, and TRKC, respectively [12, 13]. Wild-type TRK 

proteins are activated through oligomerization mediated by the binding of 

neurotrophin ligands [14]. Subsequent downstream signaling contributes to central 

nervous system (CNS) development and regulation of appetite, body weight, 

memory, mood, movement, pain, and proprioception [15-20]. 

NTRK gene fusions have been identified in a diverse range of adult and 

pediatric tumor types [12]. These fusions result from inter- or intra-chromosomal 

rearrangements leading to juxtaposition of the 3’ region of an NTRK gene (encoding 

the full kinase domain) with the 5’ region of a partner gene (encoding an 

oligomerization or other protein-association domain), ultimately producing a 

constitutively active TRK fusion protein [21]. Fusions involving NTRK gene 5’ regions 

have also been reported, although the pathogenicity of these is unclear [22]. In 

addition to fusions, NTRK gene point mutations and amplifications have been 

identified in a variety of different cancer types; however, roles for these aberrations in 

tumorigenesis have not been established [22].  

While rare in most common tumor types (e.g. lung and colorectal cancers), 

NTRK gene fusions are reported to be recurrent in a subset of rare tumor types (e.g. 

secretory carcinoma of the salivary gland, secretory carcinoma of the breast, 

congenital mesoblastic nephroma, pediatric melanoma, and infantile fibrosarcoma) 

[21, 23, 24]. One of the first discovered and most well characterized fusions, ETV6-
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NTRK3, resulting from a t(12;15)(p13;q25) translocation, is present in >90% of 

infantile fibrosarcomas [25, 26]. By contrast, NTRK fusions have been identified in 

other adult and pediatric sarcomas at a frequency of <1% [23, 27, 28]. Recent 

studies investigating NTRK fusions among mesenchymal neoplasms have identified 

a number of emerging new soft tissue tumor entities displaying various phenotypes, 

which resemble lipofibromatosis, fibrosarcoma, and malignant peripheral nerve 

sheath tumors (Table 1). A significant number of these NTRK fusion-positive tumors 

show co-expression of S100 protein and CD34, while the rest have a non-specific 

immunophenotype [27, 29-32]. The published literature on NTRK gene fusion 

frequency in sarcomas is limited and more data are needed. 
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Targeted therapy for TRK fusion cancers 

NTRK gene fusions (but not other NTRK alterations) appear to be primary oncogenic 

drivers in the tumors that harbor them. The encoded fusion proteins feature 

constitutive tyrosine kinase activity that may be targeted clinically with a number of 

agents that are either approved or in development [12, 33].  

Larotrectinib 

Larotrectinib is a first-in-class, ATP-competitive, small-molecule inhibitor of TRK. It is 

highly potent, with IC50 values in the range of 6.5–10.6 nM, and highly selective for 

TRKA, B, and C, with binding affinities over 100-fold greater than for a panel of other 

kinases [24, 34, 35]. Larotrectinib is approved by the US Food and Drug 

Administration (FDA) and European Medicines Agency (EMA) for use in adult and 

pediatric patients with solid tumors harboring an NTRK gene fusion who have 

disease that is locally advanced or metastatic, or where surgery is likely to result in 

severe morbidity, and who have no satisfactory treatment options [36, 37]. Patients 

with a known resistance mutation are not indicated for larotrectinib treatment. 

Larotrectinib has demonstrated robust efficacy in a combined analysis of three 

phase I/II trials in adults and children with TRK fusion cancers, irrespective of age or 

tumor type [38]. In an integrated dataset of 159 patients, investigator-assessed 

objective response rate (ORR) was 79% (95% confidence interval [CI] 72–85%) and 

median duration of response was 35.2 months (median follow-up 12.9 months). The 

median time to response was 1.8 months [39]. Objective responses and durable 

disease control were also observed in the subsets of patients with primary CNS 

tumors or non-CNS solid tumors with brain metastases [40, 41]. Larotrectinib-related 

adverse events of Grade 3–4 occurred in 13% of patients, and dose reductions and 
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treatment discontinuations due to treatment-related adverse events occurred in 8% 

and 2% of patients, respectively [39]. Long-term follow-up is ongoing. The favorable 

safety profile of larotrectinib, together with robust clinical efficacy, translated into 

rapid, sustained, and clinically meaningful improvements in quality of life in the 

majority of patients [42]. 

Among the 17 different tumor types represented in the larotrectinib dataset, 

the most common (47%) were sarcomas [39]. Of 71 patients with a sarcoma, two 

(3%) had an osteosarcoma and a dedifferentiated chondrosarcoma, four (6%) had a 

GIST, 29 (41%) had infantile fibrosarcoma, and 36 (51%) had other soft tissue 

tumors, including adult fibrosarcoma, inflammatory myofibroblastic tumor, infantile 

myofibromatosis, lipofibromatosis, malignant peripheral nerve sheath tumor, 

myopericytoma, spindle cell sarcoma, high-grade endometrial stromal tumor, and 

synovial sarcoma [43]. The histologic subtypes of these patients were captured as 

reported by the investigators; however, due to the very rare nature of the subtypes 

reported and the varied nomenclature used in sarcoma pathology, a central 

pathology review and efficacy analysis by sarcoma subtype is warranted. 

Furthermore, data on other driver alterations in these patients would be informative. 

The ORR with larotrectinib in adult and pediatric patients with sarcoma 

harboring an NTRK fusion was 74% (95% CI 52–90) and 94% (95% CI 82–99), 

respectively. Objective responses were observed in patients with soft tissue 

sarcomas, GISTs, and infantile fibrosarcoma. Of two patients with a bone sarcoma, 

one had a partial response and one had stable disease. At a median follow-up of 

15.6, 13.0, and 14.1 months, median duration of response, progression-free survival, 

and overall survival were not estimable (NE; range 1.6+ to 44.2+), 28.3 (95% CI 
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16.8–NE), and 44.4 (95% CI 44.4–NE) months, respectively (Table 2). Grade 3–4 

adverse events related to larotrectinib were reported in 13% of patients [43].  

Entrectinib 

Entrectinib is a multi-targeted, pan-TRK, ROS1, and ALK inhibitor. It has low to sub-

nanomolar enzymatic activity against TRKA, TRKB, TRKC, ROS1, and ALK (IC50s of 

1.7, 0.1, 0.1, 0.2, and 1.6 nM, respectively) [44]. Entrectinib is FDA-approved for use 

in adult and pediatric patients ≥12 years of age with solid tumors harboring an NTRK 

gene fusion who have disease that is metastatic or where surgery is likely to result in 

severe morbidity, and who have progressed following treatment or have no 

satisfactory alternative therapy. Patients with a known resistance mutation are not 

indicated for entrectinib treatment. Entrectinib is also FDA-approved for patients with 

metastatic non-small cell lung cancer (NSCLC) harboring a ROS1 gene fusion [45]. 

Entrectinib demonstrated tumor-agnostic efficacy in an integrated analysis of 

54 patients with TRK fusion cancers in one of three phase I/II trials. Independently 

assessed ORR was 57% (95% CI 43–71%) and median duration of response was 

10.4 months (median follow-up 12.9 months). Clinically meaningful and durable 

intracranial responses were seen in patients with brain metastases. Adverse events 

with entrectinib were mainly Grade 1 or 2 and the proportion of patients with dose 

reductions and treatment discontinuations due to a treatment-related adverse event 

was 27% and 4%, respectively [46]. 

Among 13 patients with sarcoma in the overall entrectinib clinical trial dataset, 

six subtypes were identified: cervix adenosarcoma, dedifferentiated chondrosarcoma, 

endometrial stromal sarcoma, follicular dendritic cell sarcoma, GIST, and malignant 

peripheral nerve sheath tumor. Of note, there were no patients with infantile 
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fibrosarcoma enrolled in these trials. The ORR for the sarcoma subset was 46%. 

Median duration of response, progression-free survival, and overall survival were 

10.3 (95% CI 4.6–15.0), 11.0 (95% CI 6.5–15.7), and 16.8 (95% CI 10.6–20.9) 

months, respectively (Table 2) [47]. 
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Methods of NTRK gene fusion testing 

NTRK gene rearrangements and fusion transcripts can be detected with different 

molecular pathology techniques such as fluorescence in situ hybridization (FISH), 

reverse transcription polymerase chain reaction (RT-PCR) and massive parallel 

sequencing (MPS), while TRK protein expression can be demonstrated by 

immunohistochemistry (IHC) (Table 3) [48, 49]. 

Fluorescence in situ hybridization 

FISH employs fluorescently labelled DNA probes that anneal to specific regions 

within or flanking a gene(s) of interest. To detect a particular NTRK gene fusion, co-

localization of FISH probes to each gene component of the fusion can be 

demonstrated [27]. In practice, however, it is more feasible to use break-apart FISH 

probes that flank each of the three NTRK genes and demonstrate rearrangement 

without identifying the fusion partner gene [27, 34]. The efficient break-apart 

approach avoids the need to develop an unrealistically large number of FISH probe 

sets for uncommon fusions, and also detects novel fusions with as yet 

uncharacterized fusion partners. FISH is available in many clinical laboratories, has a 

short turnaround time and is relatively inexpensive; however, specific expertise is 

required to interpret test results, particularly in paraffin sections where nuclear slicing 

can result in artefacts. A false negative rate of up to 30% has been reported with 

FISH in pediatric sarcomas [50]. Furthermore, FISH does not distinguish between in-

frame and out-of-frame fusion events. 

Immunohistochemistry 

IHC typically employs an antibody that binds to antigens common to the C-terminal 

domain of all three TRK proteins (pan-TRK IHC) to detect elevated TRK protein 



16 

expression (Table 4). This method relies on the fact that most normal cells express 

low levels of TRK while tumor cells harboring an NTRK gene fusion typically display 

elevated TRK protein levels. Nevertheless, TRKA, TRKB, and TRKC expression can 

be observed by IHC in some normal cells: neurons, myenteric plexus, endothelial 

cells, and podocytes. In adult tissue, expression is restricted to smooth muscle, 

testes, and neuronal components. These components can be used as internal 

(endothelial cells, myenteric plexus) or external (podocytes in renal tissue) positive 

IHC controls. IHC represents a useful indirect readout for NTRK gene 

rearrangements. However, variable rates of sensitivity (75–88%) and specificity (81–

96%) have been reported [51, 52], which may be explained by the use of different 

antibodies, different IHC detection protocols, and poor or excessive tissue fixation. 

Any of these variables can impact IHC staining and intensity. The overall positive and 

negative predictive values in one IHC study have been reported to be 11.2% and 

99.8%, respectively (using pan-TRK antibody clone EPR17341) [51]. Moreover, 

sensitivity has been shown to vary according to the NTRK gene involved, with lower 

sensitivity reported for NTRK3 (55–79%) compared with NTRK1 (88–96%) and 

NTRK2 (89–100%) [51, 52]. A TRK IHC signal should be considered as positive 

when staining of ≥1% of tumor cells is observed [53]. Furthermore, the subcellular 

pattern of pan-TRK IHC staining may indicate the nature of the underlying gene 

fusion, with nuclear staining suggestive of NTRK3 fusions and moderate to strong, 

diffuse cytoplasmic staining suggestive of NTRK1/NTRK2 fusions [49, 53, 54]. 

One benefit of IHC over molecular analyses is that it provides evidence of the 

expression of the protein target of TRK inhibitors. Of six patients with primary 

resistance to larotrectinib among the initial 55 patients treated in clinical trials, three 

had tumor material available for central analysis and in all three cases, pan-TRK IHC 
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did not demonstrate elevated TRK protein expression, indicating that the 

rearrangements detected by molecular testing did not yield chimeric proteins with an 

intact TRK C-terminus in these cases. One additional patient harbored an NTRK3 

kinase domain mutation that conferred resistance [38]. 

IHC is widely available in clinical laboratories, allows a rapid turnaround time 

and is far less expensive than FISH. Although more data on sensitivity and specificity 

are needed, pan-TRK IHC is considered to have a false-negative rate of ~10% [52]. 

In a study of seven patients with soft tissue spindle cell tumors and NTRK3 

rearrangement detected by both IHC and FISH, rearrangements were only confirmed 

by RNA sequencing in three cases [30]. Therefore, sarcomas with a high probability 

of harboring an NTRK fusion but with negative pan-TRK IHC staining should be 

considered for confirmatory testing with a genomic method (FISH or MPS). IHC may 

prove to be a valuable screening tool to highlight NTRK rearrangements, with the 

exception of CNS and neuroendocrine tumors where IHC is not a reliable screening 

tool because of endogenous elevated TRK expression. Furthermore, many sarcomas 

with myogenic or neural differentiation may display focal TRK expression [53]. Thus, 

in these tumors only diffuse staining should be considered positive. Strong TRK IHC 

staining can also be found in cases with NTRK gene amplification, supporting the 

requirement to confirm the presence of NTRK rearrangements with an orthogonal 

molecular method (Figure 1) [30]. 

Reverse transcription polymerase chain reaction 

RT-PCR uses primers flanking the breakpoint region in the transcript encoded by the 

fused genes, with the 3’ primer annealing to an NTRK gene and the more 5’ primer 

annealing to the relevant fusion partner gene. When present in the tumor, the 
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targeted portion of the fusion transcript will be amplified yielding a positive RT-PCR 

result. RT-PCR is a widely established technique and is rapid and inexpensive. 

Multiplex RT-PCR can be performed using primer sets specific to a number of known 

NTRK fusion genes in a single assay. However, this method does not detect NTRK 

gene fusions with unknown partner genes; thus, a negative RT-PCR result cannot 

exclude the presence of a fusion. Therefore, RT-PCR is only recommended in 

settings where a specific type of fusion is expected following histologic-based triage, 

for instance ETV6-NTRK3 in infantile fibrosarcoma, or as a complementary method 

for gene rearrangements detected by FISH. 

Massive parallel sequencing 

MPS allows for the simultaneous detection of fusions between NTRK1–3 and any 

number of fusion partner genes, depending upon the particular assay used. Targeted 

MPS with a panel of primers that hybridize to select regions in predefined genes is 

the preferred method. DNA-based MPS assays are not the best approach for 

identifying all NTRK fusions, especially those involving the NTRK2 and NTRK3 genes 

because of their large introns. Targeted RNA MPS allows for more systematic 

detection of NTRK fusion transcripts. Adequately designed targeted RNA MPS 

panels allow for the detection of novel NTRK gene fusion partners and there are a 

number of commercially available assays which cover all three NTRK genes. 

However, it should be noted that different commercial panels have shown some 

remarkable differences in detection rate [55]. MPS is not routinely conducted in all 

clinical laboratories, has a relatively long turnaround time and is quite expensive, 

particularly if only a limited number of tests are required. However, various groups 

are continuing to develop RNA MPS platforms that can detect in parallel the multitude 

of fusion genes observed in sarcomas. 
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In addition to functional NTRK fusion transcripts, RNA-based MPS assays may 

identify non-oncogenic aberrant NTRK rearrangements (incidental genomic 

alterations) that do not yield constitutively active fusion proteins. Clinicians should be 

aware of this possibility and understand how to interpret complex MPS data reports. 

If expression of the fusion protein is in doubt, IHC may be a useful confirmatory tool. 

Similarly, NTRK point mutations occur more often than gene fusions and may also be 

identified by MPS assays; however, these mutations are not considered predictive of 

treatment response [56]. 
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Testing for NTRK gene fusions in sarcomas 

Given the robust efficacy and favorable safety profiles of TRK inhibitors 

demonstrated in patients with TRK fusion sarcomas, testing for NTRK gene fusions 

should be incorporated into the clinical management of patients with sarcoma, with 

prioritization in specific stages and subtypes, as discussed below. The rarity of these 

oncogenic drivers presents a number of challenges, including the cost of testing, 

limited resources, limited tumor tissue, and the complexities of integrating a new 

molecular test into the current diagnostic workup. However, the overall benefit of 

molecular testing in the diagnosis and clinical management of patients with sarcoma 

has been demonstrated in large multicenter studies, similar to what has been shown 

for lung cancer [57, 58]. While sequence-based testing methods (RNA MPS or RT-

PCR) are recommended for the detection of productive NTRK gene rearrangements, 

IHC with a validated antibody against TRK proteins (most easily with a pan-TRK 

antibody) may be used as a fast and less expensive pre-screening tool. Furthermore, 

selecting histotypes negative for pathognomonic genetic alterations (other 

translocations, kinase mutations, MDM2/CDK4 amplification) could allow exclusion of 

~45% of all sarcomas from NTRK gene fusion testing, given the mutual exclusivity of 

such driver alterations [59, 60]. 

NTRK fusion testing may be prioritized in disease settings where TRK inhibitor 

therapy is most relevant, also considering that some of the recently reported NTRK-

rearranged entities tend to behave indolently. The majority of sarcoma patients are 

diagnosed while still localized and these tumors are amenable to curative surgical 

resection without the need for systemic therapy. Therefore, NTRK fusion testing in 

primary, resectable sarcomas may not be necessary (except when used for definitive 

diagnosis, such as in the case of putative infantile fibrosarcomas). Nevertheless, for 
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patients at high risk of relapse, NTRK gene fusion testing might provide clinically 

actionable information for later in the disease course. Testing for NTRK gene fusions 

should be performed in patients with locally advanced, unresectable tumors or in 

those with metastatic disease failing conventional therapies.  

Sarcomas with a high NTRK fusion frequency (priority 1) 

Given potential cost and resource limitations of universal testing, we propose a three-

tiered diagnostic algorithm for the prioritization of NTRK gene fusion testing, 

according to the likelihood of finding a fusion (Figure 2). The highest priority for NTRK 

fusion testing is given to the histologic subtypes that commonly or non-infrequently 

harbor NTRK gene fusions, such as infantile fibrosarcomas [61] and ALK and ROS1 

fusion-negative inflammatory myofibroblastic tumors [62]. These entities should be 

tested upfront for NTRK fusions in all situations [53] and the test should ideally be 

ordered by the pathologist following central pathologic diagnosis. In fact, NTRK 

fusion testing is often conducted as part of the diagnostic process for suspected 

infantile fibrosarcomas. For histologic subtypes with a high pre-test probability of 

harboring an NTRK fusion, we recommend the use of FISH, IHC, or MPS. A negative 

FISH result should be confirmed by MPS. For a positive FISH result, confirmation 

that the fusion is in-frame by MPS or RT-PCR should be considered in parallel to 

treatment. MPS confirmation of a negative IHC result is recommended for cases with 

typical histology. For cases with positive IHC results, treatment may be considered 

concurrently with confirmatory MPS. 

Sarcomas with a low NTRK fusion frequency (priority 2) 

NTRK gene fusions are thought essentially to be mutually exclusive to other primary 

oncogenic drivers [59]. In a study of patients with various tumor types, 31% of NTRK 
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fusion-negative cases harbored activating MAPK pathway alterations compared with 

only 1.5% (n = 1) of NTRK fusion-positive cases [60]. In another study, among 103 

sarcomas tested for recurrent kinase fusions in one study, one sample had an 

NTRK1 gene fusion but no other concurrent fusions [63]. Therefore, for sarcoma 

subtypes where NTRK gene fusions are rare, NTRK fusion screening should only be 

routinely done in cases already known to lack canonical oncogene alterations, such 

as wild-type GISTs and sarcomas with complex genomics. Sarcomas with recurrent 

gene fusions, GISTs with KIT, PDGFR, SDH, NF1, or BRAF alterations, and 

liposarcomas with MDM2 or CDK4 amplification may be excluded from routine NTRK 

fusion testing. Of this subset, however, tumors that do not show specific lineage 

differentiation (i.e. positive only for vimentin) may be enriched in molecular alterations 

including NTRK fusions. 

Sarcomas with canonical oncogene alterations (priority 3) 

Very infrequent situations of NTRK gene fusions co-occurring with other driver 

alterations in untreated tumors have been reported; however, the NTRK fusion 

appears to exert oncogenic dominance in these rare cases [59, 60]. Therefore, NTRK 

fusion testing in tumors with canonical pathognomonic alterations may be valuable in 

a research context in order to provide data on frequency and clinical significance of 

co-occurring NTRK gene fusions. While NTRK gene fusions have been identified in a 

range of sarcoma subtypes (Table 1), comprehensive data on NTRK fusion 

frequency in different sarcoma subtypes are lacking. Therefore, the majority of soft 

tissue and bone sarcomas should continue to be studied until there are sufficient 

data to guide future diagnostic approaches. Comprehensive data about NTRK gene 

fusion frequency in different sarcoma subtypes and correlation with morphological 

features would better inform the optimal approach to NTRK gene fusion screening in 
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sarcomas and should be collected. In this regard, a prospective registry and 

retrospective collection of TRK fusion sarcoma cases would be valuable and a study 

is planned in Spain and France where all soft tissue sarcomas will be prospectively 

screened with pan-TRK IHC, with positive cases then confirmed by MPS. 
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Clinical management of TRK fusion sarcomas 

The labeled indications for larotrectinib (FDA and EMA) and entrectinib (FDA) include 

patients for whom surgery is likely to result in severe morbidity, or who have no 

satisfactory alternative therapy. Therefore, the advantages and disadvantages of 

TRK inhibitors compared with other available therapies should be discussed by the 

patient and the treating physician. 

In addition to the overall efficacy of TRK inhibitors described earlier (Table 2), 

efficacy of neoadjuvant larotrectinib therapy has also been demonstrated, in 

situations where surgery would otherwise result in life-changing operations (e.g. 

amputation). Five children with locally advanced TRK fusion sarcomas (three with 

infantile fibrosarcomas and two with other soft tissue sarcomas) achieved a partial 

response to neoadjuvant larotrectinib and underwent resection after a median of six 

treatment cycles. Resections were R0 (negative resection margins with no tumor at 

the inked resection margin) in three patients, R1 (microscopic residual tumor at the 

resection margin) in one patient and R2 (incomplete resection with macroscopic 

residual tumor) in one patient. Three patients achieved complete or near-complete 

pathological responses and at last follow-up remained disease-free 7–15 months 

after surgery [64]. While these data are encouraging, the question of if and when to 

discontinue TRK inhibitor therapy following a complete response still remains. 

For patients with metastatic disease requiring systemic therapy, treatment with 

larotrectinib or entrectinib is approved after failure of standard therapies and may be 

valuable after standard first-line treatment given the rapid, durable responses and 

tolerability observed. In clinical trials of larotrectinib and entrectinib, responses were 

typically observed at the time of the first protocol-mandated tumor assessment, and 
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pseudo-progression is uncommon with these therapies; therefore, it may be possible 

to quickly evaluate treatment response. However, it should be noted that no data 

exist for larotrectinib or entrectinib compared or combined with standard systemic 

cytotoxic therapies. Furthermore, the long-term safety profile of TRK inhibitors 

remains unknown and requires further study. 

NTRK gene fusions have been shown to persist in tumors over time [60], 

suggesting that they remain the dominant oncogenic driver over the course of 

different treatments. This provides the rationale for a sequential TRK inhibitor 

treatment approach in patients with TRK fusion cancer, similar to current practice in 

oncogene-addicted (e.g. EGFR, ALK) NSCLC. The next-generation TRK inhibitors 

selitrectinib and repotrectinib have shown encouraging activity in patients who had 

progressed on larotrectinib or entrectinib due to acquired resistance mutations in the 

TRK kinase domain, including patients with sarcoma [65-67]. 
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Summary 

The emergence of NTRK gene fusions as clinically actionable biomarkers marks a 

new era in precision oncology, with the tumor-agnostic approvals of larotrectinib and 

entrectinib representing milestones in drug development. TRK inhibitors provide new 

personalized treatment options with the potential to extend survival and improve 

quality of life in some patients with sarcoma harboring NTRK gene fusions. 

Integrating NTRK fusion testing into the current diagnostic workup of patients with 

sarcoma is particularly challenging due to the rarity of this biomarker. Here, we 

propose a diagnostic strategy to address this that considers disease stage and 

histologic and molecular subtypes to facilitate routine testing for TRK expression and 

subsequent testing for NTRK gene fusions.  

Routine genome-wide MPS in sarcomas may not currently be cost-effective 

due to the small number of additional genomic alterations to be tested. However, IHC 

provides a valuable pre-screening tool and focused MPS panels, such as those that 

detect NTRK gene fusions and other key gene fusions in parallel, are particularly 

relevant for sarcomas. Further research is necessary to fully establish the sensitivity 

and specificity of pan-TRK IHC. Furthermore, multinational comparative studies are 

encouraged to increase the reproducibility of MPS assays. Finally, prospective 

studies will be essential to determine the frequency of NTRK gene fusions in different 

sarcoma subtypes and correlation with morphological, biological, and clinical features 

in order to better inform the optimal approach to NTRK gene fusion screening. 
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Figure 1. Examples of positive TRK IHC staining. (A) ETV6-NTRK3 fusion infantile 

fibrosarcoma stained by hematoxylin and eosin and (B) pan-TRK IHC with A7H6R 

clone (Cell Signaling Technology) and ultraView detection. (C) Focal staining in a 

leiomyosarcoma without NTRK gene alterations. (D) Intense staining in a 

leiomyosarcoma with NTRK1 copy number gain. 

 
IHC, immunohistochemistry; NTRK, neurotrophic tyrosine receptor kinase receptor; TRK, tropomyosin receptor 
kinase.   
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Figure 2. Recommended algorithm for NTRK gene fusion testing in sarcomas. 

 
†For patients at high risk of relapse, NTRK gene fusion testing might provide clinically actionable information for 

later in the disease course. 

‡If histology is typical then confirmation by MPS is recommended.  

§Treatment may be considered concurrently with confirmatory MPS.  

||Consider parallel validation by MPS or RT-PCR to confirm that fusion is in-frame. 

¶Avoid IHC screening in cases with myogenic and neural differentiation due to the high rate of false positivity. 

FISH, fluorescence in situ hybridization; GIST, gastrointestinal stromal tumor; IFS, infantile fibrosarcoma; IHC, 

immunohistochemistry; IMT, inflammatory myofibroblastic tumor; LPS, liposarcoma; MPS, massive parallel 

sequencing; NTRK, neurotrophic tyrosine receptor kinase; RT-PCR, reverse transcription polymerase chain 

reaction; TRK, tropomyosin receptor kinase. 








