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Riemannschen Standpunkt ad absurdum zu führen

1 Introduction 1.1 The Plasticine Ball Argument Hermann Weyl's Work is dicult to classify as physics, mathematics, philosophy or history of sciences. Perhaps because of his wide audience, perhaps also because of his aesthetic preferences, Weyl likes to use analogies and metaphors in order to provide insights about the most dicult and abstract problems of the 20 th century science.

One of these analogies attracted my attention. This gives its name to what I call the Plasticine Ball Argument (I will abbreviate this as the pba in the following). Weyl uses this argument to think about the relationships between the metric and the material content of space-time. One can nd an entire family of Weyl's texts that develop this argument 2 . Weyl wants to legitimate, at the same time, the rise of dierential geometry in the domain of physics, the adoption of a dynamical metric and the refusal of at and xed spaces (such as Newton's or Minkowski's). For these three reasons he poses the principle of total determination of the metric by matter. This is a radical version of what Einstein was soon to call Mach's principle. The rst version of the pba takes the form of an Eleatic aporia. Weyl shows that a too radical principle of determination of the metric by matter could lead to the impossibility of thinking about any kind of motion, or at least any kind of deformation.

Slightly rephrasing Weyl: with such a principle, we would no longer understand how it is possible to squeeze a ball of plasticine in order to change its form.

Weyl's argument that leads to this aporia, and the way he answers it have some striking formal similarities with Einstein's famous hole argument 3 . Nevertheless, the two arguments dier by their functions as well as by the manner in which the cosmic matter is distributed in the respective thought experiments. Einstein considers a hole, that is a place empty of matter, which is surrounded by a cosmos that is not necessarily empty. On the contrary, Weyl considers a ball of plasticine, which is surrounded by a cosmos that is not necessarily full of matter.

Since Einstein gave it a name, Mach's principle has never ceased to be the focus of an abundant literature. It is dicult to determine how much this principle is fullled in general relativity, and to evaluate its contribution to the philosophy of space-time. This diculty is due not only to the intrinsic mathematical and conceptual complexity of general relativity but also to the usually vague characterization of Mach's principle itself -at least Mach's and Einstein's formulations -. Barbour and Pster enumerated more than twenty meanings to the expression Mach's principle 4 . The present article does not tend to review this delicate question 5 or to add another meaning again.

12 and Einstein's general relativity let us enter a new stage of the understanding of the foundations of the notion of space; only afterwards did he develop a conceptual and epistemological theory in order to legitimate these new truths. However neither Kant nor Weyl considered that their respective epistemologies were derived from or were based on the scientic theories they had to account for. This would have 6 [START_REF] Einstein | Die Grundlage der allgemeinen Relativitätstheorie[END_REF].

7 See [START_REF] Norton | General Covariance and the Foundations of General Relativity: Eight Decades of Dispute[END_REF] for a good overview of the foundational debates on general relativity, during the rst 80 years of existence of this theory. 8 Among the bibliographical references given by Weyl for his chapter IV, we nd Kretschmann's article Über den physikalischen Sinn der Relativitätspostulate. Therefore, Weyl had probably been inuenced by Kretschmann's famous argument, according to which the general covariance principle had no physical meaning by itself, since every physical theory can be expressed in a covariant form by a tensorial reinterpretation. See also [START_REF] Norton | General Covariance and the Foundations of General Relativity: Eight Decades of Dispute[END_REF]. 9 [START_REF] Weyl | Zeit, Materie[END_REF]p. 181], [START_REF] Weyl | Zeit[END_REF]26,p. 192], [START_REF] Weyl | Space, Time, Matter[END_REF]p. 226]:

A new physical factor appears only when it is assumed that the metrical structure of the world is not given a priori, but that the above quadratic form is related to matter by generally invariant laws. Only this fact justies us in assigning the name general theory of relativity to our reasoning; we are not simply giving it to a theory which has merely borrowed the mathematical form of relativity.

10 For example, in 1924, see [START_REF] Weyl | Massenträgheit und Kosmos. Ein Dialog[END_REF]p. 197].

11 The expression appeared rst in [START_REF] Einstein | Prinzipielles zur allgemeinen Relativitätstheorie[END_REF]. Cf.

[BP95, p. 10]. Weyl does not explicitly refer to Mach within paragraph 12 of Raum-Zeit-Materie. Mach appears however in the bibliographical references of chapter IV, in [START_REF] Weyl | Zeit, Materie[END_REF] p. 291, bibliographical note 2]. Weyl in [START_REF] Weyl | Massenträgheit und Kosmos. Ein Dialog[END_REF]p. 198] acknowledged that Mach was the father of the principle of determination of inertia by cosmic matter.

12 In particular the famous text: [START_REF] Riemann | Über die Hypothesen, welche der Geometrie zu Grunde liegen[END_REF]. been a vicious circle, since the sought-after epistemological justications are supposed to hold a priori. That is why Weyl, as well as Kant, thought that the respective scientic theories had been simple opportunities to reveal certain a priori epistemological elements. Weyl is peculiarly lucid and subtle when he thinks about the relationships between theory of knowledge, as aiming at a priori claims, and the factual development of positive science 13 . Thus Weyl asks: what did Einstein's theory teach us (or conrm) about the nature of space and the way one can know it scientically? How can we epistemologically justify that the correct notion of space is the one that was nally used by Einstein, after having been announced by Riemann? In order to answer this question, one must deal with two issues that give the global structure of Weyl's thought on space in the period 1917-1923: 1. The rst issue -according to the logical order-consists in justifying that the space-time metric is of the Pythagorean type. This means that it has the same properties, in the innitesimal realm, as the (pseudo-)Euclidean metric. This is the technical meaning of what Weyl calls the problem of space 14 , 2. The second issue consists in justifying the claim that the space-time metric, away from the innitesimal realm, is a metric the curvature of which is everywhere intrinsically indeterminate.

More precisely, the determination of the nite metrical relations is only possible a posteriori, when geometry is articulated with physics. The metric is determined by the manner matter and forces are spatially distributed.

1.3 Marking out of the corpus. Why is the argument so recurring and polymorphic?

This article will address the second of the issues mentioned above. As early as the rst edition of Raum-Zeit-Materie, Weyl wants to justify epistemologically the variable and dynamic character of Einstein's metric and its link with matter. It is in this context that he elaborates his pba 15 . It is repeated with notable changes in the third edition of the same work 16 ; then, with more changes, in the fourth edition 17 . The argument disappears from the fth edition, but regularly reappears later in others of Weyl's texts, in always changing forms: in Massenträgheit und Kosmos 18 , in both (German and English) editions of Philosophie der Mathematik und Naturwissenschaft 19 and in Mind and Nature 20 . The pba does not appear in Mathematische Analyse des Raumproblems, but many typical questions can be found there which give rise to the formulation of this argument in 13 See Weyl's texts quoted in [START_REF] Michel | La fonction de l'histoire dans la pensée mathématique et physique d'Hermann Weyl[END_REF].

14 See the bibliography of [START_REF] Bernard | Les tapuscrits barcelonais sur le problème de l'espace de Weyl[END_REF] for the list of Weyl's works on the problem of space -in its technical meaning -and a historical discussion. Secondary reading on this subject is abundant, see [START_REF] Coleman | Mathematician, Physicist, Philosopher. 4.11 The Laws of Motion and Mach's Principle[END_REF], [START_REF] Scholz | Hermann Weyl's Analysis of the "Problem of Space" and the Origin of Gauge[END_REF], [START_REF] Laugwitz | Über eine Vermutung von Hermann Weyl zum Raumproblem[END_REF], [START_REF] Bernard | Becker-Blaschke Problem of Space[END_REF], [START_REF] Bernard | Riemann's and Helmholtz-Lie's Problems of Space From Weyl's Relativistic Perspective[END_REF], [START_REF] Weyl | French-German commented edition of Weyl's text, including discussions about Weyl's original French tapuscripts from Barcelona. Two volumes[END_REF]vol. 2].

15 [START_REF] Weyl | Zeit, Materie[END_REF]p. 90].

16 [START_REF] Weyl | Zeit[END_REF]p. 90]]. 17 [START_REF] Weyl | Zeit, Materie[END_REF]p. 90].

18 [START_REF] Weyl | Massenträgheit und Kosmos. Ein Dialog[END_REF]p. 198].

19 [START_REF] Weyl | Philosophy of Mathematics and Natural Science. From an article of 1927[END_REF]105].

20 [START_REF] Weyl | Mind and Nature[END_REF]p. 129].

the rst texts 21 . Both in Raum-Zeit-Materie and in Philosophy of Mathematics and Natural Science the chapter containing the pba is amongst the most modied one in the dierent editions 22 . In the literature on Weyl we can nd references to or analyses of some of these texts 23 , but, to my knowledge, no systematic studies of the entire collection of the occurences of the pba..

Considering this inventory, with the pba, we are in front of a thematic which entertained Weyl's thinking about space during many years, and which develops in ever changing forms in a whole range of texts, as a musical variation of the same theme. Why is this thought experiment so present, and why is it so polymorphic in Weyl's texts?

We already have partly answered this question. Weyl relies on this thought experiment to have an imaginative and conceptual support on which he can base his thought, in order to address the second fundamental epistemological problem enunciated above 24 . Weyl rst wants to see how adopting a dynamic metric with variable curvature can be justied, while not abandoning the thesis of space as a homogeneous form of appearances. Consequently the shifts of this argument, from work to work and from edition to edition, partly reect the evolution of Weyl's thinking on this key issue.

But there is a second reason for this variability of the text. Indeed, to elaborate his thought experiment, Weyl is led to express precisely the way in which the metric properties of space-time are determined or at least correlated with the spatiotemporal distribution of matter. Therefore, even if it was not the determining of the metric by matter which was the problem for Weyl, when he began to elaborate his pba, some technical problems that he met led him to position himself more and more subtly on Mach's principle. But clarifying this principle is not just a technical problem which would replace the anterior philosophical problem which generated the argument. The critique of Mach's principle also has a philosophical dimension, which led Weyl to modify his position on the ontology of physics. In the version of Raum, Zeit, Materie of the pba, Weyl supported a form of materialism, inasmuch as all physical phenomena including gravity which provides its foundation to spatiotemporal geometry were to be reducible to the relationships between material elements 25 . In later versions of the argument, the critique of Mach's principle led Weyl to become anti-materialistic and argue in favour of a dynamical ether, partly autonomous from elds of matter, thus following an intellectual path close to Einstein's 26 .

These two reasons for the variations of the pba provide the two major objectives of the present article. Firstly we are going to use these variations as a means to underscore the decisive stages of the evolution of Weyl's philosophy of space at that time. Then by studying the technical problems across which Weyl stumbled in the rst version of the argument, and by showing how the later

versions brought an answer, we will be able to explain which role Weyl played towards clarifying 21 [START_REF] Weyl | Mathematische Analyse des Raumproblems[END_REF]. We nd there the problem of the tension between the homogeneity of space, as a form of appearance, and the heterogeneity of the metric ; and the solution consisting in moving the metric simultaneously with matter.

22 I will specify in this article the most important changes in Raum-Zeit-Materie that I personally noticed. Concerning Philosophy of Mathematics and Natural Science, I received the information from Carlos Lobo.

23 Namely: [CK01, p. 266-267],[Cof79, p. 290], [Giopu], [START_REF] Giovanelli | Erich Kretschmann as a Proto-Logical-Empiricist: Adventures and Misadventures of the Point-Coincidence Argument[END_REF]p. 130], [START_REF] Scholz | The changing faces of the Problem of Space in the work of Hermann Weyl[END_REF].

24 See the end of section 1.2 25 The notion of matter which is present in the rst four editions of Raum-Zeit-Materie do not form a discrete set of particles, but a eld. Weyl was then taking up the programme of Gustave Mie which consisted in bringing out the notion of matter from the notion of eld.

26 See for example [START_REF] Einstein | Äther und Relativitätstheorie[END_REF].

Mach's principle 27 .

Then, in the course of the article, we will pursue these two themes of thought simultaneously, going through and commenting on the dierent versions of the pba, following the order in which they were published. The natural evolution of Weyl's thought, from text to text, will progressively lead us from the problem of the non-homogeneity of the metric to the problem of the validity of Mach's principle and the existence of an ether, the transition being very gradual.
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Preliminary: the homogeneity of space, and the exclusion of the metric from space.

To understand the reasons why Weyl rst formulated his pba, we must keep in mind a problem which is at the core of all of Weyl's philosophy of space. That is the problematic tension between the homogeneity of space and the non-homogeneity of the metric. I have dealt with the theme before 28 , so I will only mention here the elements that are useful in order to understand the pba.

The issue of the non-homogeneity of the relativistic metric

Geometricians from the beginning of the twentieth century were the inheritors of two crucial developments of the nineteenth century: on the one hand dierential geometry, and all the associated analytical tools in connection with it allowing the study of spaces with randomly variable curvature and, on the other hand, the discovery of the founding unifying function of the notion of group towards geometry (Helmholtz, Klein and Lie in particular). But these two legacies are not easily reconciled, inasmuch as Riemannian manifolds and the other related innitesimal geometries generally have a trivial isometry group. This is why Weyl just as Klein, Poincaré or Cartan, considered the tension between the notion of homogeneous space and dierential geometry, as a -even for some thecentral epistemological question on space raised by the nineteenth century 29 . If space is dened by the possibility of den- ing a group of displacements, must the rich innite universe of Riemannian manifolds be drastically limited so as to keep only a few homogeneous geometries? Instead cannot the notions of homogeneity and group be transformed in order to become compatible with the perspective of dierential geometry?

Weyl's specicity within this group of authors is due to the precise signication that he gives to the homogeneity requisite and his reasons for putting it forwards. In the Erlangen tradition which is not necessarily the one followed by Weyl, the homogeneity of the spaces considered is justied from within mathematical practice, by the unied treatment of a vast part of the geometry practices of the 29 See the general introduction of the current volume, [START_REF] Poincaré | La science et l'hypothèse. Bibliothèque de philosophie scientique[END_REF], [START_REF] Chorlay | Passer au global : le cas d'élie Cartan, 1922-1930[END_REF], [START_REF] Cartan | La théorie des groupes et les recherches récentes en géométrie diérentielle[END_REF].

the application of the group theory techniques 30 , homogeneity is not originally dened by the notion of group nor justied within a mere mathematical discourse. Instead homogeneity is given as an essential property of space, in the name of a philosophical tradition. Finally in the context of general relativity, the problem of the tension between the homogeneity of space and the non-homogeneity of the Riemannian metrics eventually takes the form: how can a non-homogeneous spatiotemporal metric be accepted in physics, when space as such is by nature homogeneous? 33

However, this question does not only address the theory of general relativity, but also any physical 30 For the shift from the notion of homogeneity to the notion of congruence then to the notion of group of congruences, see [START_REF] Weyl | Space, Time, Matter[END_REF][11][12][13][14][15] or [START_REF] Weyl | Mathematische Analyse des Raumproblems[END_REF]. For the use of the theory of groups to found the notion of metric in a context of dierential geometry, See [START_REF] Weyl | Space, Time, Matter[END_REF]18], [START_REF] Eckes | invariants et géométries dans l'÷uvre de Weyl[END_REF] or the texts in relation to the problem of space, in its technical meaning (cf. Note 14).

31 [START_REF] Weyl | Space, Time, Matter[END_REF]p. 11]:

Space is a form of appearances Form der Erscheinungen , and, by being so, is necessarily homogeneous.

It would appear from this that out of the rich abundance of possible geometries included in Riemann's conception, only the three special cases mentioned come into consideration from the outset, and that all the others must be rejected without further examination as being of no account: parturiunt montes, nascetur ridiculus mus! Riemann held a dierent opinion, as is evidenced by the concluding remarks of his essay 2.2 Solution: the metric is excluded from the intrinsic properties of space

In the rst edition of Raum-Zeit-Materie 34 , Weyl provides part of solution to the problem expressed in the previous section. In the context of an innitesimal geometry in Riemann's manner the homogeneity of space must be expressed by the fact that a portion of matter can be moved from a region S of the spatial manifold towards any other region S , while keeping all its properties invariant. Matter must be represented by a eld, in which material qualities 35 , like mass or electric charge, are distributed:

To simplify this examination of the underlying principles we assume that the material content can be described fully by scalar phase quantities skalaren Zustandsgröÿen such as mass-density, density of charge, and so forth. We x our attention on a denite moment of time 36 .

Thus the simplication oered by Weyl is twofold: 1) reducing matter to a few scalar properties he then keeps only one of them and 2) eliminating the time factor. The text that follows actually considers two dierent distributions of matter (which I will express as ρ before and ρ after ), but each of them is considered as static, at its point of equilibrium; we do not consider the transitional stage.

This eventually led Weyl to represent matter at rst with a simple scalar function which depends only on position:

ρ before : f (x 1 x 2 x 3 ); the coordinates x 1 x 2 x 3 vary so that they take all the values corresponding to the region S of space where matter initially is. The change of position to which we want to subject matter is expressed in our system of coordinates by a transformation:

x i = φ i (x 1 x 2 x 3 ).
Thus the region S towards which we move the body is represented, always in the same coordinate system, by the set of x i (corresponding to x i of S). The movement of matter is technically expressed by the fact that the eld ρ is pulled forward 37 on space by the transformation φ. in coordinates:

ρ after : f (x 1 x 2 x 3 ).

Here we must understand that the letter f represents the same mathematical function as above. In other terms, the distribution of mater after the displacement must be expressed (still in the same coordinate system) by the function (f • φ).

By this process, we have moved matter, keeping all its intrinsic qualities unchanged. But, Weyl goes on, in order to assert that space is homogeneous, the metric properties of the material body that was moved must have been kept. These metric properties before the moving, were given by a metric eld dened on S 38 :

3 (i,k=1) g before ik (x 1 x 2 x 3 )dx i dx k ,
Since our space is supposed to be Riemannian, there is no reason to think that the values g before ik (x 1 x 2 x 3 ) of the metric at the point S are initially the same as in S. This is why, Weyl concludes, if the metric was xed a priori once and for all, then space homogeneity could not be preserved, since we would have:

g after ik (x 1 x 2 x 3 ) = g before ik (x 1 x 2 x 3 ) = g before ik (x 1 x 2 x 3 ).
Any body moved in space would generally be metrically deformed.

However, Weyl continues, space homogeneity can be preserved if we say that metric is dynamic and determined by matter. Indeed according to this supposition, after moving our body, metric will change so as to conform with the moving of matter. Once the equilibrium between matter and the metric has been reestablished, the body shall have recovered its metric properties. So we will have:

g after ik (x 1 x 2 x 3 ) = g before ik (x 1 x 2 x 3 ) ( = g before ik (x 1 x 2 x 3 )).
To justify this equality, Weyl plays with the twofold active/passive interpretation of φ, as per a process also at work in Einstein's hole argument 39 . Once the body has been moved (transformation φ actively interpreted as a pulling forward of ρ on the manifold), Weyl changes the coordinates. The 38 Weyl insists on the fact that, in order to determine the visual shape of a portion of matter, one must not only know the metric coecients for the portion S of space-time where the matter is, but also for all the space-time points through which the light rays which, emitted from S, will reach the observer. The body of the latter is represented by a point-eye set on a point outside S. point P previously had the coordinates: (x 1 x 2 x 3 ). It will now have the new coordinates: (x 1 x 2 x 3 ), that P had in the rst coordinate system before the displacement. Thus Weyl now uses φ -1 as a passive transformation. The intrinsic properties of matter, after the displacement, and in the new coordinate system will be expressed again by the function f = f • φ • φ -1 . So, if the metric functions g ik are perfectly determined by the function f which represents matter, the conclusion shall be that metric will be moved exactly in the same way as matter. More precisely: it will have taken exactly the same values, in the new coordinate system, as it had before matter was moved, in the rst system of coordinates. Thus the displaced body has kept its metric properties and the space homogeneity is preserved! 

φ * g(φ * x, φ * y) = g( x, y);
and the pulling forward of a vector x at P x ∈ T P (M ) is in turn dened by φ * x = Dφ |P ( x) (it is a vector of T φ(P ) (M )). Thus, in this rewriting, the metric invariance that Weyl is aiming for is directly encoded in the fact that the law of the determination of the metric by matter is generally covariant.

Weyl in view of the technical solution that we have reported, concludes: The beginning of the text shows that the solution suggested by Weyl consists in excluding the metric from the intrinsic properties of space. It is rather part of the content of space, in the same manner as matter 44 . So when he refers to Riemann's-Einstein's dynamic metric, Weyl is careful not to call it space Raum . At least, space, when it is endowed with Einstein's metric, has already ceased to be space in itself, space with only its intrinsic properties, but is already space as being informed by matter. Therefore, its onto-epistemological status has changed:

[• • • ] Space in itself
These metric relations are not the outcome of space being a form of phenomena Form der Erscheinungen , but of the physical behaviour of measuring rods and light rays as determined by the gravitational eld 45 .

The context of this quotation clearly shows that Weyl, here, does not aim at making the notion of space as a form of appearances obsolete, but at taking out the metric determinations. Thus, space(time) the homogeneity of which Weyl can keep on ascertaining, and which can still continue to act as form of appearances, is eventually reduced to the naked spatiotemporal manifold, i.e. deprived of any metric. That the spatiotemporal manifold, with regard to its only topological and dierential properties, is homogeneous, is of course correct from a mathematical perspective 46 . However, this solution, in spite of often appearing in the literature of that time, and in spite of the fact that it eectively captures an important aspect of general relativity, is insucient, from both mathematical and epistemological perspectives. We will not develop here what is the nature of these diculties 47 .

Let us just mention here that Weyl will qualify this thesis when he further develops his philosophy of space and his innitesimal geometry or contact geometry Nahegeometrie . He will then specify that the innitesimal metric properties are indeed part of the essence of space, and can be a priori characterised, in contrast with the fortuitous variations of metric relations in a nite space-time region which alone has the status of an a posteriori determined physical eld.

The second a priori notion of space which we have just characterised, which is metric and innitesimal, does not replace the global and topological notion which we have characterised above (the naked manifold). Instead, both notions are at work in the foundational discourse of general relativity, or of any physical theory based on an innitesimal geometry. In Weyl's work, the concomitance of these two a priori notions of space is expressed as follows. Weyl retains the idea that the naked spatiotemporal manifold plays the role of a (globally) homogeneous space, used as an individuation principle, but he adds the idea that the innitesimal metric structures, identical everywhere, are part of the essence of space Wesen des Raumes . By integrating both ideas, the space of general relativity will appear not as form-less, but as multi-form, its changing form being illustrated by Weyl with the image of a snail shell which is built at the same time as the matter that lls it, and adapts to it 48 . It is that type of image that must be kept in mind as a basis for thinking 44 A question will remain whether matter could even totally emerge from matter itself. 46 Any ndimensional manifold that is (arcwise) connected and of class C p for p = 0, 1, • • • , ∞ is not only homogeneous, but even maximally isotropic. Given any two points P, P of M , and given {v1, • • • , vn-1}, {v 1 , • • • , v n-1 } two families of linearly independent vectors respectively taken in TP (M ) and in T P (M ). Then there is a dieomorphism of class C p which sends P to P , and sends the innitesimal straight line < v1 > to < v 1 >, sends the innitesimal plane < v1, v2 > to < v 1 , v 2 >, • • • , and nally sends the innitesimal hyperplane < v1, about the pba. Even though an innitesimal structure can still be characterised a priori, as being part of the essence of space, the exact form of the metric in a nite region remains intrinsically indeterminate, waiting to be completely informed (shaped) by matter.

• • • , vn-1 > to < v 1 , • • • , v n-1 >.
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The pba in Raum-Zeit-Materie

The pba as an Eleatic aporia

We are now technically armed to enter the pba. We shall start from the rst text in the series, from a chronological perspective, namely the rst edition of Raum-Zeit-Materie. The other versions shall then be considered in contrast with the rst one.

In our section 2.2, we have shown how Weyl, to preserve the homogeneity of space, was led to presuppose that matter determines the metric. We can identify the idea later known as one of the many forms of Mach's principle 49 . However it is introduced by Weyl in his own manner and without any reference to Mach. The totally Machian idea that inertia is determined by the masses of the cosmos is not claried. The principle of equivalence and the generalized principle of relativity which will be closely related to Mach's principle in Einstein's thought, are absent too 50 . Weyl is more directly interested in the link between the metric and matter. 52 I refer to the paragraphs numbering in the fourth edition.

sense described above, then it is the very possibility of some sort of transformation of matter which seems to be hampered, so that Weyl is led to state:

Riemann's point of view seems to be reduced to the absurd by the simple fact that I can shape a plasticine ball in my hands, and give it any irregular shape, totally dierent from the initial spherical shape 53 .

The plasticine ball represents any portion of matter, and the kneading represents any physical force able to move elements of matter in relation to others, in order to produce a deformation. Thus, what has become dicult to consider here is the very possibility that portions of matter may modify their reciprocal distances in the course of time. That is why I think that the diculty on which

Weyl stumbles can be reformulated as an aporia of the Zeno's paradoxes type. It is the very ability to understand the possibility for any change which seems compromised in such a framework.

Reformulation of the pba as an aporia of the Eleatic type

Given a physical theory based on the following assumptions:

1. Space is a Riemannian manifold, the metrical relations of which are not a priori xed.

2. Matter which occupies this space is intrinsically characterised by one (or several) scalar eld(s) ρ dened on the manifold.

3. Matter completely determines the metric. It means that a system of coordinates being xed, if ρ(x) is determined for any x, then the g µν (x) must also be determined for any x. In other words, there are n 2 functions F µν such as g µν = F µν (ρ), where we must understand that g µν (x) is not necessarily only dependent of ρ(x) but of the data of the entire eld ρ.

Then, the value of the metric eld associated with any point cannot evolve in time, a point of the manifold being identied by the element of matter that lls it. All the distances between the elements of matter are therefore invariant.

Thus, as in Zeno's paradoxes, we come to the conclusion that any change in the universe is impossible.

To paraphrase Weyl: we can no longer even understand how it is possible to knead a plasticine ball to change its shape. argumentative refutation seems pointless. Like Diogenes the Cynic, we can dismiss such a standpoint with the simple gesture which shows in an immediate intuition the possibility of motion, for instance walking 55 . It is somehow Weyl's starting point. He shows the absurdity to which his own standpoint was leading with the simple gesture consisting in kneading a plasticine ball. Luckily Weyl does not stop there but tries to identify where exactly the error lies which led to this unsustainable situation.

A paradox meaning a manifestly wrong proposition but deduced from a plausible argument can only be useful for knowledge if it is analysed so that the aw can be isolated and deconstructed. Showing that it is false is not enough, as Aristotle himself eventually admitted 56 .

How, starting from Weyl's text, have we elaborated our aporia? In order to interpret the assumption 2. above, we had to make two relevant choices concerning the text:

2 bis) we have established that the function ρ operating in the hypothesis 2) was a scalar in the formal sense, i.e. a variable represented by a number that is independent from the location of this element in space, and from the choice of the coordinate system.

2 ter) We have assumed (this is not explicit in the text) that the functions ρ were constants.

In spite of the formal analogies between Weyl's pba and Einstein's hole argument, we can notice that they follow clearly dierent intellectual paths. For Einstein the problem was to reach a physical theory in which the metric coecients are perfectly determined by matter. The problem met by Einstein consisted in the fact that, whatever the equation of type: G µν = T µν , chosen as the fundamental law 57 , a total determining of the metric coecients in a coordinate system where the factors T µν are known is impossible. Einstein only shows it in the case of the existence of regions absolutely empty of matter (holes). In these empty regions, the factors T µν are absolutely cancelled out and therefore do no more vary during the application of a dieomorphism on the manifold, while g µν continues to covary according to its tensorial nature.

In Weyl's text, the problem is not reaching a theory in which metric is totally determined by matter. On the contrary this is an accepted assumption, posited to try to solve Weyl's own issue (cf. section 2). It only becomes an issue because of its unexpected consequences, leading to negating the very possibility of any movement.

Covariance problem in the formulation of the pba Before trying to nd a solution to this aporia, let us notice that the way in which the problem is set down is open to doubt, because it seems incoherent at the level of the properties of covariance.

Let us show that this nevertheless does not invalidate the problem set down by Weyl.

Weyl supposes that a specic scalar eld ρ, representing matter, would totally determine the metric eld g µν . But this hypothesis seems absurd, since a scalar eld and a metric eld (that is a eld of tensors with two covariant indices) do not have the same covariance properties. Starting from two such elds, we can nd, at least in some cases, a change of coordinates (in modern language 55 Diogenes Laercius, Lives, Doctrines and Sentences of Famous Philosophers, VI, Chap. 2 [Diogenes].

56 After the passage evoked previously Aristotle eventually admitted that even if the Eleatic opinion of the immobility and unity of the world is obviously false, dedicating eorts to refute Parmenides and Melissus may be physically instructive. It is of course also the case for Zeno. 57 T µν is the energy-momentum tensor and G µν a tensor only dependant of the metric eld and its derivatives, which would still need to be determined. See [START_REF] Norton | Einstein, the Hole Argument and the Reality of Space. In: Measurement, realism, and objectivity[END_REF]. a dieomorphism) which leaves the eld ρ invariant, while modifying the values of g µν . By contrast, the Einstein equations G µν = T µν seem to be free from this covariance problem, both sides of those equations being of the same tensorial nature. Therefore, with Einstein, one needed to consider the very specic case of a hole, in order to nd an application which modies g without modifying T .

In general relativity, the distribution of matter is represented by the energy-momentum tensor T µν . Yet, in very simple situations, this tensor is reduced to one or two scalars. Indeed if we consider the approximation of a perfect uid 58 then, in a system of coordinates that is comoving with the uid, the tensor T µν is reduced to two scalars: ρ the density of matter at rest, and p the hydrostatic pressure:

T µν :     ρ 0 0 0 0 p 0 0 0 0 p 0 0 0 0 p    
if we choose the signature + --for the metric and take c = 1. This tensor is absolutely invariant for a purely spatial transformation of the coordinates, i.e. as long as we remain in a system of co-mobile coordinates. In this simplied case, the tensor T µν is indeed eventually reduced to two scalars. But, the fully covariant denition remains:

T µν = (ρ + p) u α u β -p.g αβ .
This equation is coherent at the covariance level, but requires to show explicitly the metric 59 . Weyl species that generally the most natural form for the energy-momentum tensor is the mixed tensorial density T µ ν 60 which in that case has the value:

T µ ν = -det(g) (ρ + p) u α u β -p.δ β α
and that includes the metric, even in the absence of pressure.

Schwarzschild's pioneering works 61 use that type of simple matter characterisation. The simpli- cation made by Weyl, when he says that matter is reduced to a few scalars, is therefore not at all incongruous. We can actually use Schwarzschild's solution to interpret the pba.

Let us consider a general-relativistic space-time (M, g µν , T µν ), which fulllls the Eintein equations without the cosmological term. Matter is supposed to be concentrated in a region S, the remaining of space being empty. This matter is admittedly an incompressible perfect uid at rest which, in an adequate system of coordinates (co-mobile with the uid), admits a spherical symmetry. Finally, we suppose that, in that same system of coordinates, the metric admits also a spherical symmetry and tends towards the Minkowski at metric at innity. Then, Schwarzschild's metric (interior and exterior) is required 62 . The form of our sphere of matter is therefore well determined. Let 62 Here, we leave aside the issues arising at the boundary, when joining the two solutions. us now suppose that the elements of matter have been moved so that matter, after equilibrium is reestablished, can still be characterised as a perfect uid at rest with the same mass and the same uniform density. Finally, let us suppose that the spherical symmetry is resumed. According to general relativity, the metric must resume the form imposed by Schwarzschild in the system of coordinates adapted to the new location of the ball at rest. It is a simple and precise interpretation of Weyl's thought experiment, which can also be used as a very simple model for the moving of a spherical body with a uniform density in a at cosmic environment.

Is the variability of matter properties sucient to get out of the aporia?

Weyl's strategy to get out of the aporia in Raum-Zeit-Materie consists in abandoning 2 ter). He keeps the idea that matter keeps intrinsic pre-metric properties ρ, which in turn completely determine metric (hypothesis 3). But these properties do not need to be constant. Here are the reasons why a plasticine can however be deformed: So that the form that was squeezed may seem spherical to an observer from any perspective, we should need, among other things, a deformation of the internal atomic structure of the plasticine dierent from the one I can actually produce with my hand 63 .

Thus the type of physical change that we can induce on a plasticine ball, by kneading it, would be of another nature than a simple pulling forward of its intrinsic properties on the spatial manifold.

In kneading the plasticine ball, we will fundamentally change its intrinsic properties, which in turn allows the modication of its metric properties. So the variability of the magnitudes ρ allows restoring the possibility of motion.

Weyl's assertion teaches us that the properties ρ in his general formulation of the RME principle are not physical magnitudes which would be fundamental constants of matter, absolutely invariant like the charge or mass density of the electron for instance. Rather, they are magnitudes capable to take dierent contingent values in the course of time for the same element of matter; as is the case for energymomentum density which appears in the Einstein equations.

However, to get out of this aporia, we have been compelled to adopt a physical theory of a very specic type, in which no motion is possible without modifying the intrinsic properties (the ρ) of matter. Something like pure motion has become impossible. We can nevertheless still imagine that the form of the ball can be modied without the intrinsic qualities ρ of its matter being aected. It is indeed possible if we modify the properties ρ of matter outside the S region corresponding to the ball. let us remember that the expression of the RME principle is non-local. The problem then takes a cosmological turn. This is why in the 4 th edition of Raum-Zeit-Materie, Weyl adds a phrase to the precedent sentence:

[to restore the spherical form, we would need to consider] a deformation of the internal atomic structure of the plasticine, or a rearrangement of all the cosmos masses 63 [START_REF] Weyl | Zeit, Materie[END_REF]p. 90].

(Here I emphasize the added part of the sentence).

I will however add that the use of cosmology, introduced by Weyl in the 4 th edition, is dubious. Indeed let us suppose that we kneaded our plasticine without changing its internal properties ρ. If its form has changed, Weyl's text suggests, it is because we have modied the properties of matter outside the region lled with the ball. However, we could modify the eld of matter only in the immediate environment of the ball. The need to place ourselves at a cosmological level does not seem very relevant. Besides, if the immediate environment of the ball is empty or nearly empty, it is represented by ρ=0, and we cannot really see how the change of shape of the ball could be ascribed to it. Finally, last diculty, let us recall that the pba appeared in the context of a philosophical challenge specic to Weyl: saving the homogeneity of space understood as the possibility of moving a material content without modifying its nature. When the material content that is moved is nite, such a move can mean: keeping the properties of the ball, including the metric properties, while changing its metric relations with the other bodies of the cosmos. This has a clear physical sense.

But if the matter that is to be moved is the cosmic matter as a whole, and that all the cosmic metric relations are kept by such a motion, it then seems that motion can only have a purely ideal meaning 64 .

To summarise, Weyl only gets out of his aporia by allowing a variability of the magnitudes ρ, or inside or in the cosmic environment of the plasticine ball. However, the text leaves in abeyance several fundamental problems, which will come up again in later texts. We are going to discuss the two main ones.

Why is Weyl so focused on nding a physical interpretation for dieomorphisms?

A reader familiar with modern literature on the covariance principle and Einstein's hole argument may look back on Weyl's text suspiciously. let us recall that, indeed, Einstein, after elaborating his hole argument, had been temporarily led to reject all the generally covariant formulations of gravitation. It is generally accepted that Einstein had made a conceptual error while elaborating his argument: he had wrongly thought that a system of coordinates had, per se, a physical meaning. In fact it is per se only a mathematical artefact, as long as it is not linked with physical entities (matter and metric elds). So, two ordered pairs (g µν (x), T µν (x)) and (g µν (x ), T µν (x )) representing a eld of matter and a metric eld, related by a simple active dieomorphism (using a modern language), would in fact only be two mathematical representations of the same physical situation 65 .

A reader who is aware of these developments may be surprised at the apparent naivety with which Weyl tries at all costs to give a physical signicance to the operation of pulling forward the matter and the metric eld on the manifold. Why does he not conclude, with a spirit close to Einstein's, that the spatiotemporal manifold has lost all objectivity and, therefore, the operation consisting in pulling forward simultaneously the metric and matter on the manifold has no physical 64 Giving some sense to such a moving of matter would require setting the problem in a really dynamic framework, without only considering the initial state and the nal equilibrium state. In Massenträgheit und Kosmos, Weyl will be able to give sense to such a global movement with his Boats<Lake Analogy. See further section 4.7. signicance but is only the expression of a mathematical latitude in representing the same physical situation?

Bluntly accepting it would lead to a form of ideality of spatial (or spatiotemporal) manifold.

It would not be a physical reality, but a mere mathematical artefact used to label spatial points.

Only matter and metric would have a physical reality, but not the manifold. That form of ideality had been considered by certain forms of neo-Kantism of the time 66 . Why does Weyl, in spite of his idealism, stop before reaching that position? This question can only give rise to speculation.

He was perhaps looking for a form of idealism closer to the original Kantian form, which makes space a form of our intuition and not a mere analytical mathematical artefact. It seems that Weyl construes the idea of space as a form of intuition involving the possibility of a real motion (not only a mathematical transformation) taking a body from one point to another real point, without modifying its properties.

It is clear that, when Weyl speaks of moving elements of matter from a region S towards a region S , he has in mind much more than a mere transformation of the mathematical representation of a physical situation otherwise left unchanged. In fact, in order to give form to his thought experiment, Weyl takes as his model the idea of an electrically charged body in equilibrium with an electrical eld; moreover, he considers that the moving of matter that is considered generates a temporary physical perturbation.

We are tempted to ask Weyl: how, in a physical theory based on a dynamical geometry, could we physically identify, in the course of time, a point of the manifold? We can a priori see only two solutions:

• Either we consider a simplied framework in which metric is static, and the system of coordinates is chosen relatively to that metric. This solution can indeed allow for physically identifying points, for instance to give sense to the moving of a test-particle in a static eld.

But we must assume that the displacement of the body (the test-particle) does not perturb the fundamental metric. Such a solution is therefore inapplicable in the pba case.

• Or we attach the coordinates to elements of matter taken as physical markers of the position. It is therefore a system of coordinates which is co-mobile towards a specic material background.

In that case, moving the plasticine ball means: leading its constitutive points to coinciding with new elements from the material background. In that case we only fall into the pba aporia if we suppose that the material background has a negligible inuence on the determination of the metric, compared with the ball that has been moved. It is in this cosmological fault of the pba aporia that Weyl rushes when he adds the sentence element quoted above. 66 In particular, Cassirer, in the line of the Marbourgh school, criticises Kant's philosophy of space, in so far as it is too strongly connected to perception data, leading to an exclusive focus on Euclidean geometry. See [START_REF] Cassirer | Substance and Function[END_REF] chapitre III, particularly p 106] and [Cas23, chap. V]. According to Cassirer, the a priori notion of space which must be incorporated to science needs rather to be based on the driving forces of mathematical analysis and numerical symbols. 20

On the impossibility of a primitive separation of matter and metric

Another diculty emerges as early as the rst version of the pba: the impossibility to radically dierentiate, in the formulation of the RME principle, matter from the metric.

Several features of Weyl's text seem to conrm that Weyl just as Einstein in his rst formulation of Mach's principle was initially driven by the idea of a total emergence of the metric from matter (ontological anteriority of matter). This provides reasons for researching a manner to characterise matter totally independently from any metric consideration, the metric being supposed to then emerge from this originally non-metric matter. This is suggested by the fact that Weyl formulates the RME principle in a very radical manner, according to which matter is to completely determine metric. This idea is still reinforced when Weyl concludes, at the end of the passage on thepba , that space-time, prior to any considering of matter and forces, is absolutely deprived of any form.

However it is on this formless space that the eld of matter is originally dened. Moreover by making the qualities of the matter, ρ, mere scalars, Weyl seems to be trying to suppress any dependence of matter towards a prior metric structure.

Yet, this supposed total anteriority of matter on the metric is at the core of the problems met by Weyl in his aporia. We have seen that, even assuming that the quantities ρ characterising matter are variable, we can only get out of the aporia by adopting a specic type of physical theory in which a pure motion, leaving matter properties untouched, has become impossible. Besides that, we spontaneously wonder what kind of variability of the properties ρ is concerned. We are led to think that the dierent possible values of the ρs for the same elements of matter refer to dierent manners, for matter, to distribute spatially. This is clear if we have in mind the nature of the energymomentum tensor in general relativity, which is a specication of the general idea of matter ρ which is at work in the Weyl's RME principle. It is also clear in Weyl's text, since he refers to (matter or charge) density as the prototype of what must be understood by the functions ρ describing matter. However the idea of density clearly has a metric meaning, and not only a topological one. If we did not presuppose a metric, it seems that we could not provide meaning to the simple rest-mass density scalar. The properties ρ seem to be modes of matter spatialisation, presupposing a metric. This questions the very possibility to distinguish, within matter properties, between pre-metric qualities, supposed to be primitive, and metric properties, supposed to be derived.

It seems therefore that we are forced to abandon the ontological anteriority of matter upon metric in order to get out of the pba aporia. Weyl does not reach that conclusion in Raum-Zeit-Materie.

In the rst edition he informs the reader, in a footnote, that things will get clearer as regards the pba, in chapter IV in which general relativity will be developed 67 . However, Weyl does not explicitly come back to it, and, moreover, his footnote is deleted from the third edition onwards. It is only in Massenträgheit und Kosmos that Weyl will develop all the consequences of his aporia. 67 [START_REF] Weyl | Zeit, Materie[END_REF]p. 88]: Genaueres hierüber in Kap. IV..

4

The pba in Massenträgheit und Kosmos

A new issue

In the Massenträgheit und Kosmos article published in March 1924, we nd numerous elements from Raum-Zeit-Materie which we have discussed. These elements are numerous enough for us to consider that it is indeed the same argument, the plasticine ball one, which comes back in an altered form.

These common elements are: the metaphor of the plasticine ball itself 68 , the issue of the relations between the metric and matter, as well as many technical notions and considerations.

However the issue which motivates the argument is now dierent. The idea of space as the form of appearances, the homogeneity 69 requisite that goes with it and the tension triggered by this homogeneity towards adopting variable curvature metrics do not appear anymore. Instead, the pba is motivated by a questioning on the legitimacy of the principle of determination of inertia and metric by matter. What was only part of the argumentation in Raum-Zeit-Materie, vaguely expressed, has now become the very core of the questioning. The problematic is now closer to Einstein's, focus on the legitimacy of Mach's principle, the reference to Mach being newly introduced by Weyl p. 197.

We will begin this section by discussing the dialogue form of this text, and the function of the characters. Then we shall proceed with analysing the pba in the rst part of the dialogue. Finally we will address the cosmological aspect of the debate which corresponds to the second part of the dialogue. 68 [START_REF] Weyl | Massenträgheit und Kosmos. Ein Dialog[END_REF]p. 198]: Plastelinmasse . 69 The notion of homogeneity appears punctually in Massenträgheit und Kosmos; however it is not the homogeneity as an a priori property required from space per se, but, instead, the (local or global) homogeneity of some congurations of matter, considered as particular cases, or the metric homogeneity of some specic solutions to the Einstein equations, particularly the de Sitter's one. Homogeneity has become the exception rather than the a priori rule. 70 [START_REF] Weyl | Massenträgheit und Kosmos. Ein Dialog[END_REF]p. 197]. There is an implicit reference to the famous biblical sentence And I tell you that you are Peter (Céphas=Rock), and on this rock I will build my church. 71 Saul of Tarsus was the Jewish name of the man later known as the Apostle Paul or Saint Paul in the New Testament. It is said that he was initially a Pharisee, violent towards Christians, before converting and joining Jesus Christ. He changed his name from Saul to Paul to mark this conversion. There is a German phrase change from It is dicult to precisely follow the manner in which Weyl wants to use the episode of Paul's conversion to illustrate, apparently, his own intellectual journey. The limit of the image used by Weyl comes from the fact that the intellectual journey of Paul in Massenträgheit und Kosmos, is in fact a double conversion then reconversion movement. By detaching himself from the old religion, Newton's and the belief in absolute space, Paul has temporarily joined the new Einstein's-Mach's Church. Then, he has discovered the error of this point of view and renounced Mach's principle, thus becoming an apostate, this time from the perspective of the new religion.

As we will develop below, this reconversion is not however a mere return to the former belief (Newton's). Paul will believe again that space cannot be reduced to matter, that it does not simply emerge from it. Nevertheless, this space with an autonomous existence will no longer be an absolute space with xed properties, as for Newton, but a dynamical ether, interacting with matter, without any ontological hierarchy between them. Paul does not consider this reconversion as just leaving the general relativity Church, but, instead as a deviation from the orthodox interpretation of the theory this is 1923 , based on Mach's principle. From this point of view the word heresy is rather well-suited.

We can note that Einstein followed an intellectual path very similar to Weyl's, at rst subscribing without any restriction to Mach's principle, before retracting 72 . So he could also very well be the person represented by Paul in the dialogue 73 .

Typology of the principles of determination of the metric by matter, rejection of Mach's principle

Weyl and his relativist contemporaries starting with Einstein had met many diculties in applying Mach's principle in general relativity. This is highlighted by the technical diculties met by Weyl while developing his rst versions of the pba. (and not the covariance one) must be at the core of our understanding of general relativity 74 .

While 12 of Raum-Zeit-Materie only contained a radical and vaguely expressed version of Mach's principle ( RME principle above), the dialogue from 1924 includes a series of more or less important variations of Mach's principle and of related principles. The function of this plurality is to successively isolate the diculties that make Mach's principle inapplicable in general relativity, or more widely in any eld theory that adopts a dynamic metric. Weyl starts from the following principle which he classically attributes to Mach:

(M ) the inertia of a body comes to existence Zustande kommt due to the interactions of all the universe masses.

Weyl species that Mach's principle is a particular case of an absolutely general principle, which he calls causality principle :

(C ) all the [physical] events are causally univocally determined by matter, that is by charge, mass and the state of motion of matter constitutive elements.

Considering the way Weyl uses this principle, the name is rather ill-chosen. For it is not a question of opposing causality to causeless phenomena. Instead the debate is about knowing whether we can relate the ultimate causes of physical phenomena to pure relations between elements of matter, or whether we are led to adopt an immaterial physical entity like Newton's absolute space or ether such as it appears at the end of the nineteenth century, deprived of any material consistency. The principle (C ) opts for the rst alternative, and should therefore be called a materialism.

So, Weyl turns Mach's principle into a restricted version of a principle which concerns the ontology of physics (the word ontology is however not used by Weyl). The point is to postulate that all physical events -starting with inertia-would come to existence Zustande Kommen from masses and their interaction. It is therefore a reductionist principle which, if it turned to be true, would lead to a materialistic ontology for physics, in which matter (and its interactions) would be the only primitive entity. The formulation (C ) develops the idea, subjacent to (M ), of an ontological reduction in the terms of a univocal causal determination. Paul will then develop some arguments which lead to abandon (M ) and a fortiori (C ).

At rst we note that the principle (M ), contrary to the one at work in Raum-Zeit-Materie, does not directly refer to the metric notion, but only to the notions of inertia and mass. In this it is close to Mach's original thought. However, Weyl demonstrates that, here, the metric is an inevitable element of thought. In fact, let us suppose that we attribute to cosmic masses the causal origin of an inertial phenomenon, for instance the attening of the Earth at the poles. The simple presence (in the sense of the determination of the positions) of cosmic masses could not be sucient to be used as the causal origin to the phenomenon. We would have to say that it is the motion of the Earth relatively to the big cosmic masses, which is the cause of its attening 75 75 Thus, since at the time one consensually believed in the static nature of the cosmos, Newton's bucket experiment was explained by Mach by the fact that the bucket is in motion (rotating) relatively to the referential dened by the whole of cosmic masses, supposed to be static relative to each other.

(A) [Independently from the metric eld], the concept of the relative motion of several bodies separate from one another is as untenable as the absolute motion of a single one.

To understand this radical armation, we must clarify the meaning of the word separate getrennter . Separate bodies are bodies that are located in topologically disjoint regions. What can allow us to assert that two such distant bodies are in motion relative to each other? Observation will not suce. While we commonly say that we can see xed stars turn around us, in reality what we see turning is the stellar compass Sternenkompaÿ , that is the beam of all the light rays which reach our eyes from the stars. But we cannot make any inference from the rotation of the stellar compass (relatively to us) to the rotation of the stars themselves, without making hypotheses relative to a metric eld which occupies the intermediate region between the stars and us, and which determines light trajectories as geodesic. Mach did not consider the necessity to take the metric into account, because in his time everybody believed in the static nature of the cosmos and in the rigid Euclidean body which could ideally extend all over the cosmos. Thus, Mach's criticism of Newton's absolute space mainly targeted its ontological independence towards matter, but the Euclideanity of the metric was hardly questioned 76 .

With general relativity, remarks Weyl, we become aware of the contingency of the hypothesis of the indenitely extended rigid Euclidean body. Just as inertial phenomena, metric phenomena are physical and can vary contingently. Thus, to give sense to (M ), we need to break free from any metric hypothesis in dening matter. Just as in 12 of Raum-Zeit-Materie, we are led to characterise matter only through its intrinsic features (charge, mass) and its distribution (in a purely topological sense) within space-time. It is in that context that we must understand Weyl's assertion (A). The notion of motion even relative motion between two separate bodies, loses all its meaning if we overlook the metric as medium. That is what the bred plasticine ball argument (I will abbreviate this as the fpba in the following) will show.

Before going into this argument in detail, let us remark that its conclusion is strikingly akin to Weyl's discourse in the introduction to Mathematische Analyse des Raumproblems. Indeed, Weyl has just shown to us that one cannot inquire into the relationships between matter and inertia without involving a third intermediate element: the metric. Similarly, in the Mathematische Analyse des Raumproblems, Weyl had exposed the impossibility to correctly conceive the problem of space only on the basis of the space/content (=matter) duality favoured by Kant. Instead, one must consider the triplet space/matter/metric 77 . So, the metric must be introduced as a third irreducible element, between matter and space, in both the innitesimal sphere which is addressed in Mathematische Analyse des Raumproblems and the nite sphere which is addressed in the texts about Mach's principle.

The Fibred Plasticine Ball Argument

The bred plasticine ball argument (the fpba) is a variant of the pba which, to our knowledge, appears in Massenträgheit und Kosmos: Local or global, Weyl's hypothesis is in any case sucient for him to develop his argument:

[One can] continuously deform the plasticine so that, not only one br, but all the bres become straight and vertical. If the vertical axis represents the axis of times, it is construed as follows: each body remains in its place in space.

The technical background is quite clear. Let us take any system of coordinates compatible with our foliation. It will transform each line in our family into a vertical line of R 4 , that is a set of the form:

{(t, a, b, c)|t ∈ R} in which (a, b, c) ∈ R 3 is a xed triplet, the coordinate t representing time, the three others representing space. Thus, by choosing coordinates co-mobile with matter particles, we have simultaneously put at rest all matter, this notion of rest being understood only in a topological (pre-metric) sense.

So, the fpba shows us that, as long as we do not provide ourselves with a metric, the very dierence between rest and motion is only illusory since a motion dened only in a topological way, on the spatiotemporal manifold, can be destroyed by a mere change of coordinates. This justies the armation (A) above. We can instantiate this idea on the concrete example of a matter reduced to a perfect uid without pressure (dust), represented by the twofold covariant tensor T µν = ρu µ u ν . In this particular case 80 , the tensor T µν has no metric feature, since it is denable as a simple tensor on the naked manifold. It shows therefore that dierentiating between matter at rest and matter in motion is impossible only on the basis of this tensor. Whatever the initial value of this tensor, 78 When a metric is attributed to space-time, we shall expect the world-lines to be timelike.

79 [START_REF] Kerszberg | Le principe de Weyl et l'invention d'une cosmologie non-statique[END_REF]. 80 This case constrasts with the tensorial density T µν which always depends on the metric (or at least its determinant), and with tensors of more complex matter (with pressure, etc.) which we shall consider later.

one can ensure that the four-velocity eld is identically (1, 0, 0, 0) (matter at rest) by shifting to co-mobile coordinates. Then, the value of the tensor T µν is everywhere

T µν :     ρ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0     .
The fpba shows us that Mach's principle, in some radical form, is not only contradicted by experience, it is even absurd; moreover, in contrast with Raum-Zeit-Materie, Weyl explicitly says so 81 . The bred plasticine argument forbids us to dierentiate motion and rest, when we originally refuse to provide ourselves with the metric, in conformity with the full interpretation of (M ). We can therefore attribute to matter only static properties such as charge or mass 82 . The belief that the metric could be univocally derived from such static properties is what Weyl (Paul) qualies as absurd. This qualication conrms backwards our interpretation of the § 12 of Raum-Zeit-Materie as developing an aporia of the Eleatic type 83 .

In summary: the fpba shows that, at a simple topological level, motion cannot be dierentiated from rest. But Mach's principle, in its strongest versions, requires that the metric be entirely determined by the eld of matter, the latter being described at a purely topological level, as the simple data of world-lines of matter and/or scalar elds. Such a principle can only lead to immobility (this time, immobility in its full sense, that is metrical). It is an absurd requirement for a physical theory. It seems to us that the too radical forms of Mach's principle which are denounced here encompass in particular the RME principle in 12 of Raum-Zeit-Materie. It is doubtless partly the numerous diculties met by Weyl with the rst versions of the pba which led him to reach this conclusion.

The existence of the inertial-gravitational ether

Weyl (Paul) then unfolds the philosophical consequences of the radical impossibility to give sense to Mach's principle. A metric must be originally given, at the same ontological level as matter itself. It is on this metric eld that the inertial motion shall be based (which is identied to gravitational or perhaps gravitational-electromagnetic motion 84 ). Only then shall we be able to physically dierentiate rest and movement. To designate this eld, Weyl either uses Einstein's word ether, or speaks of a guide eld Führungsfeld .

Since without ether, motion cannot have any signicance, Weyl challenges the materialistic 81 [START_REF] Weyl | Massenträgheit und Kosmos. Ein Dialog[END_REF]p. 198,2 nd column]: Da dies oenbar ist absurd . See also earlier in the text [START_REF] Weyl | Massenträgheit und Kosmos. Ein Dialog[END_REF]p. 197, right hand column], in which Weyl (Paul) says that he understands a priori that the principle (M ) is inapplicable. I insist here on the phrase a priori.

82 See the formulation of the principle (C ) above, in which the properties considered in order to characterise matter were motion, charge and mass. If, according to the fpba, motion disappeared, there would only be mass and charge left, construed as simple scalars, as in 12 of Raum-Zeit-Materie. 83 Section 3.1.

84 The reader is referred to the literature on the evolution of Weyl's belief in his theory of unication of gravitation with electromagnetism (1918). See [START_REF] Afriat | How Weyl Stumbled Across Electricity While Pursuing Mathematical Justice[END_REF]. interpretation (in the sense of the principle (C ) above) of general relativity, which de-substantiates space and alleges that space can emerge from pure relations between material elements:

The theory of relativity, well construed, does not attempt to eradicate absolute motion in favour of relative movement, but it destroys the concept of kinematic motion and replaces it with dynamic motion. 85 General relativity has thus not replaced absolute motion -i.e. relative to space-, with a motion only relative to matter. Instead, it has kept absolute motion but has fundamentally changed its nature.

We have shifted from kinematic motion (Newton) to dynamic motion (Einstein) 86 . In fact, the notion of space on which this absolute motion is based, ether, has no longer the same status as Newton's absolute space had. It does not have a rigid structure xed a priori from all eternity. Instead, the ether has dynamic metric properties interacting with the eld of matter. In this dynamic coupling of matter and ether, none of the two partners can entirely be deducted from the other one. Matter and ether are co-original. Finally, we must accept to abandon Mach's principle (M ) 87 , and adopt a weaker principle for the relationships between matter and the metric, which subsumes Einstein's equivalence principle:

(G) the guide (ether) is a eld of physical state (like the electromagnetic eld) which interacts with matter. Gravitation belongs to the guide and not the force; and it is only in that way that we have an in-depth understanding of the equality between the inertial mass and the weight mass. 86 [START_REF] Weyl | Massenträgheit und Kosmos. Ein Dialog[END_REF]p. 199].

87 See our note 72 about the similar rejection found in Einstein's thought .

88 [START_REF] Weyl | Massenträgheit und Kosmos. Ein Dialog[END_REF]p. 199, left hand column].

89 This late arrival of cosmology in the debate had already been noticed in Raum-Zeit-Materie. See our note 41.

90 [START_REF] Weyl | Massenträgheit und Kosmos. Ein Dialog[END_REF]].

Newton's bucket experiment 91 . Paul then accepts to re-examine Mach's principle not on the basis of an a priori thought but in criticizing more precisely the way in which Einstein and his immediate successors tried to realise it, within general relativity, and more specically in the 1917 cosmological article.

The idea of a determination of the metric -therefore of inertia-by masses is expressed in general relativity by the Einstein equations. They are partial dierential equations which pose the proportionality between Einstein's tensor

G µν = R µν - 1 2 g µν .R (+Λ.g µν ) ,
which has a metric signicance, and the energy-momentum tensor T µν which represents matter. If knowing T µν is enough to univocally determine the metric, then, according to Einstein, we shall be allowed to assert that Mach's principle is indeed theoretically veried 92 . These are second order equations in regard with the metric, Einstein's tensor expressing a form of spatiotemporal curvature of the metric. More specically G µν is a determined function of the metric and its rst and second derivatives. Therefore, an innite number of non-isometric g µν may correspond to a single Einstein tensor G µν . In particular, there are an innite number of Einsteinian metrics which are the solutions of the Einstein vacuum equations G µν = 0.

Because of the nature of these equations, we can approach the issue of the determination of the metric by matter in the form of a Cauchy problem. Typically we start from a spacelike hypersurface, on which, besides the matter T µν , we set as initial conditions the metric and its rst derivatives 93 . The Einstein equations being of the second order we then may expect to develop one single solution (up to an isometry) for the couple (g µν , T µν ) at least on a neighbourhood of the ]. We will discuss later the apparent circularity of the process, the metric seeming necessary in order to interpret the tensor Tµν .

93 Typically, along the lines of Choquet-Bruhat and Geroch, the rst derivatives are not given but, instead, a second order tensor giving the external curvature of the initial hypersurface within the manifold which is to be generated. To obtain global results, we must add hypotheses such as the global hyperbolic character of the manifold . See [START_REF] Choquet | Global aspects of the Cauchy problem in general relativity[END_REF]. The problem becomes more complicated, sometimes with no solution or no unicity, if the correct regularity conditions are not posed, if the initial conditions are ill-dened or if hypotheses similar to global hyperbolicity are not available (which has everything to do with Weyl's principle in cosmology).

In the 1920s, we do not know whether results, at least partial, similar to the ones obtained by Choquet, were already available. The most ancient reference given by Choquet is: initially given must evolve, in view of the (metric) distribution of matter on the initial hypersurface.

Rather than expecting a metric to entirely emerge from a purely non-metric eld of matter, we simply expect the (metric) distribution of matter at a specic time to determine the metric (and the distribution of matter) for any ulterior time.

The works discussed by Weyl in Massenträgheit und Kosmos, whether they are Einstein's, Thirring's or Schwarzschild's, do not pose the Cauchy problem in general relativity in all its generality but are limited to the static case. It means that they assume a distribution of matter T µν and a metric g µν that are invariant in relation to the time coordinate. In this simplied framework, the Einstein equations correlate a form of spatial curvature of the metric to the properties of matter (like its density ρ) and possibly its pressure p) as do the Poisson equations for classic static gravitation.

Let us suppose that we know the values of these properties of matter, and we are trying to determine the metric on a domain D of the spatial manifold. The Einstein equations, as well as Poisson's, enable us to univocally determine a solution only if we give ourselves the boundary conditions, i.e. the values of g µν on the spatial boundary of the domain ∂D. Taking an innite domain does not make a dierence since we shall always need to know the values at spatial innity to univocally solve the equations. The Einstein equations, in this case, lead us to a Dirichlet problem instead of a Cauchy problem.

4.6.2

Return to the idea that T µν makes sense only in an already metrical context

Einstein tried to solve his equations without having to impose any boundary conditions for the metric. Having such a goal, was he under the range of Weyl's a priori argument which doomed some formulations of Mach's principle to being absurd? Einstein asserts that, if his project was realised, then the metric would be entirely determined by the tensor T µν . It seems that we must suppose the tensor T µν to be deprived of metric properties, before the solving of the el equations.

Can this idea be given any sense?

It is clear that the tensor T µν , once the equations have been solved and a metric has been determined, takes a clearly metric signication, since it encompasses in particular the denitely metrical notions of density and momentum. In contrast, before the correlation with the metric, the tensor T µν admits no denite interpretation. It may be one of the reasons why Weyl prefers mixed tensorial density T µ ν , which explicitly involves the determinant of the metric. It is also why, in the Cauchy problem, the tensor T µν is immediately correlated to the metric on the initial hypersurface.

This leads Ehlers 95 to assert that T µν can in no case correctly describe the state of the eld of matter, until it has been correlated to a metric.

However, following Einstein, we can try to see whether the values of the T µν may be determined before a determined metric has been given. In the simplest cases, as in the hypothesis of a matter 95 In [BP95, p. 93], Ehlers notes that the energy-momentum tensor, until it is coupled with a metric, does not properly describe the eld of matter, and to this day, no physical theory can describe the eld of matter before a metric is given. Thus he agrees that Mach's principle, if it stipulated that matter in itself [i.e. prior to any metric consideration] determines the metric would be neither true nor false but even pure nonsense. He mentions that reduced to a perfect uid without pressure, we saw that the tensor T µν could be dened independently from the metric 96 . It is doubtless these simple cases that Einstein had in mind when he formulated Mach's principle by the request for a determining of the metric eld by the tensor T µν .

Nevertheless, in the most general cases (when the matter-energy comprises a pressure factor, or an electromagnetic eld, etc.), the metric appears on both sides of the Einstein equations. It is actively involved in the general form given to the tensor T µν . In that case, the metric seems both determined (by the integration of G µν ) and determining (as an ingredient to give sense to T µν or to T µ ν = -det(g)T µ ν ). Therefore in the most general Cauchy problem, we cannot rstly calculate the tensor T µν (outside the initial hypersurface), and then determine g µν . Instead both elds are simultaneously cocalculated, except in a few cases which were studied later 97 .

So the initial data of the Cauchy problem for general relativity usually include information on the metric and its rst derivatives. The T µν alone is insucient 98 . We can illustrate it with a simple case. In the numerical space of coordinates, we note S the set x 2 1 + x 2 2 + x 2 3 = 1. We then consider the following initial distribution of matter:

T µν (x 1 x 2 x 3 ) = ρδ µ 0 δ ν 0 if (x 1 , x 2 , x 3 ) ∈ S, T µν (x 1 x 2 x 3 ) = 0 otherwise,
(δ is the Kronecker symbol, ρ a xed positive constant). This represents a cosmos with a dierentiated region, where lies a perfect uid without pressure with a constant density (a cloud of dust), the rest being void. Even so, can we say that our tensor has univocally determined a distribution of matter? According to the metric that is correlated to that T µν , , the matter that is described may 96 See p. 26 above.

97 [START_REF] Stachel | Specifying Sources in General Relativity[END_REF] showed that, when we limit ourselves to a eld of matter with restricted properties, then we can nd dynamic variables describing sources, independently from any metric data. In these particular cases, the tensor Tµν has the properties of a simple tensorial eld that can be dened on the naked manifold. Stachel illustrates it with three cases:

• a scalar eld without a mass,

• an incoherent matter ([dust]),

• an incoherent radiation.

We can then calculate the Tµν outside the initial Cauchy surface (by solving the conservation equations), before solving the Einstein equations to have gµν . Imposing from the start the conservation equations, enables then to obtain the conditions to the integration of the Einstein equations, whatever the metric ultimately retained. In that sense, we can calculate the dynamic of the sources before knowing the space-time geometry. In these particular cases, the metric only appears on one side of the Einstein equations, contrary to the general case. However, this does not invalidate the fact that a given eld Tµν , even of one of these very simple types, shall take totally dierent physical signications according to the specic metric to which it is correlated. Moreover, Stachel shows that this early calculation of Tµν on the whole manifold does not generate any extra restriction on gµν , which still fully depends on the initial conditions that can be freely chosen. 98 Afriat and Caccese in [Afr, p. 16-17] argue that we can sometimes attain a notion of matter without using any metric. After having considered various types of metric tensor, they conclude: Generally, then, the reliance of matter on the metric seems to depend on the kind of matter; in particular on how rich, structured and complicated it is. The simplest matter absent matter can do without the metric; the more frills it acquires, the more it will need the metric.

Of course, these armations do not raise any problem if we replace everywhere the word matter by tensor Tµν . However what is precisely debatable is the possibility that the tensor Tµν alone, before being coupled with a metric, represents a well determined state of matter. So, for example, even if the tensor Tµν = ρ.uµuν (dust) does not depend on gµν , it will represent a very dierent state of the matter, depending on the metric to which it is correlated on a considered hypersurface. be a small sphere which can attain a stable state, or, if it is given a large enough radius, a black hole 99 , or again a body without a spherical symmetry, if the metric adopted does not itself have this symmetry.

The circularity exposed does not however immediately invalidates Einstein's idea. Here we only reproach him with the unfortunate slogan the T µν determines the g µν which can work to describe eld equations only in the elementary cases where the T µν does not explicitly contain the metric.

Even here, we do not know all the properties of matter from the beginning, but only some global properties, independant of the precise determination of the metric, such as the scalar elds ρ and p100 . So, from the perspective of dierentiating between what is a starting data, and what is deduced, the usual separation of the Einstein equations in two terms, G µν and T µν is misleading. Both terms of the Einstein equations need dismantling. The starting data -i.e. before solving the eld equationsare actually limited to some general hypotheses on the nature of the matter involved, and to the data of the scalar elds (ρ, p • • • ) which describe some of its properties, independently of the precise metrical distribution. The g µν (and its derivatives), which is involved in both the term G µν and the term T µν , is then only obtained by integrating the equations. This is conrmed by the study of the texts of Einstein's contemporaries 101 . Finally, in general, the only necessary metric data, to solve the Einstein equations, are the initial or boundary conditions. Einstein is therefore right to be concerned with it. To solve the Einstein equations as a Cauchy problem, we cannot do in general without the metric data on the Cauchy hypersurface representing the initial time. Let us call it the initial metric. It correlates to the tensor T µν in order to give it a full sense. Is it sucient to invalidate the fact that these equations can realise Mach's principle? Several specialists of Mach's principle of the second 99 Let us remember that in fact the Schwarzchild radius of a massive body is proportional to its mass, while the geometrical radius of the object grows much more slowly based on the mass (if geometry was Euclidean, this radius would of course grow as 3 √ m)). Therefore, the initial density being xed, a ball of matter will become a black hole as soon as its radius is large enough. The hypothesis of a constant density then loses its coherence.

half of the twentieth century, of whom J.W. Wheeler 102 is an illustrious representative, argued that the existence and unicity of a solution to the Einstein equations, for given Cauchy data, is enough to express Mach's principle, in spite of the inevitably metric status of these initial data. It is perhaps possible to support the fact that the initial metric does not represent an autonomous entity, in the manner of Newton's absolute space, but would be reducible to the set of all the metric relations in concreto between the elements which constitute the eld of matter.

In any case, this position was not Einstein's. He thought that no one could legitimately pretend that Mach's principle is actually realised in relativistic cosmology, as long as we need to use initial conditions or boundary conditions on the metric, to solve the equations. • The spectral galaxy redshift suggests an expansion of the universe 106 . 104 In [Wey24, p. 201], Weyl remarks that the hypothesis of a static universe, like in [START_REF] Einstein | Kosmologische Betrachtungen zur allgemeinen Relativitätstheorie[END_REF], is equivalent to deter- mining the state of the metric in the past:

The diculty that arises from the spatial horizon is evidently resolved by [the choice of a] closed space ; but it remains nevertheless, since it is located everywhere in the universe continuum which can deform [• • • ] in the same manner as a mollusc. The restriction to static conditions is indeed opaque and debatable.

Weyl then develop an analogy with electromagnetism, and asks how Coulomb's equations, in the static case, derive from Maxwell's equations. Then he concludes:

The formation of this eld F inevitably results from the variable electromagnetic eld laws, if we add the hypothesis that space was deprived of a eld at the beginning of the sequence. • This universe solves the dark night sky paradox and avoids repeating the images of galaxies, eon after eon, as we are compelled to do in Einstein's model 108 . There is only one way to describe the void (i.e. by the vanishing of the energy-momentum tensor), while there is an innity of ways to position a given metric structure on a manifold by means of dieomorphic pulling forward 113 . Let us suppose that the metric structure tends towards the structure we have chosen (for us: the Minkowski one), where matter tends to vanish. We are 108 [START_REF] Weyl | Massenträgheit und Kosmos. Ein Dialog[END_REF]p. 202 embarrassed for we do not know which concrete realisation of this structure we must choose, within the innite class obtained by the pulling forward on the manifold. So that it seems absurd to Peter that a determined metric may be associated to a void region of the universe.

Weyl/Paul answers by denying that the dierent manners to position the metric on the void region respond to situations that are physically dierent:

A dierence [between two ways to position de Sitter's metric on a void region of the spatiotemporal manifold] would exist only if the four-dimensional world were a subsisting environment, in which, in some manner, traces of the material processes were discernible.

And it is only then that one could acknowledge as distinct the possibilities of realisation that you have mentioned. But this subsisting environment will be completely rejected by the theory of relativity, probably with your applause 114 .

In this text, Weyl does not just assert that the naked spatiotemporal manifold, with neither matter nor metric, is deprived of a form. He goes as far as to say that it has no physical existence.

The dierent realisations (obtained by dieomorphic pulling forward) of a single metric does not represent dierent physical situations, but rather dierent representations of a single physical state. This position is quite dierent from the one he had in 12 of Raum-Zeit-Materie in which Weyl seemed to be desirous, at all cost, to give a physical signicance to the system of coordinates. In reality, it is not a total reversal on Weyl's part. For, in the next lines of the text, we are told that the system of coordinates (or the manifold which it enables to describe) may acquire a physical signicance if we connect it to the trajectories of some determined elements of matter.

For a better perception, let us develop the analogy to its end. Let us suppose that our starting point is a region of the universe, R 0 , void of matter, where the metric takes a form:

g µν (t, x, y, z) = η µν = diag(+1, -1, -1, -1)

which we consider as characteristic of the naked ether. This state is compared with the plane surface of a lake where water is at rest. The specic form g µν = η µν is dependent on the fact that we have chosen an adapted natural system of coordinates (t, x, y, z) (which Weyl calls, in his analogy, a specic numbering of the molecules of water which compose the surface of the lake). This system of coordinates is naturally related to a congruence of geodesic timelike world-lines, which we can imagine as being traversed by small free-falling label-particles of negligible mass. This congruence is given by the lines:

L x,y,z {(t, x, y, z) t ∈ R}
The coordinate t which parameterises each of these geodesic lines corresponds to the proper time measured along it. The simultaneity hypersurfaces are orthogonal to these geodesic lines, and are provided with an Euclidean distance. The spatial distance between two label-particles do not evolve with t. In other words, the value of the distance between (t, x, y, z, t) and (t, x , y , z ) is: orientation. This is a merely subjective matter which is based on a choice of coordinates. But as soon as the two regions are connected by an intermediate region, the geodesic lines can be extended from one of the regions towards the other one, and the orientation acquires a physical signicance.

-(x -x ) 2 -(y -y ) 2 -(z -z
This enlightens more eectively the position, surprising at rst sight, that Weyl had adopted in Raum-Zeit-Materie about the physical signicance of a change of coordinates.

5

The pba in later texts problem could not be found as long as we had not understood that the inertial structure itself was a physical eld, a real thing which not only exerts eects on matter, but undergoes eects from it.

Here, as in the very rst version of the pba, Weyl suggests that Riemann is a precursor of that idea, which Einstein would have only developed though in a decisive manner nearly 70 years later, by introducing the principle of equivalence between inertia and gravitation.

Weyl does not dwell on the autonomous physical reality granted to the ether as much as in the previous text. This derives however from the fpba: this metric eld, the existence of which was intuited by Riemann, and which Einstein's theory rightly identied with the inertial gravitational eld, could in no way be a pure emergence of the eld of matter, as it is dened on the naked spatiotemporal manifold. It must be granted a particularly autonomous existence.

In the 1949 version of our paragraph, Weyl then takes up the analogy of the lake and boats. The content of the analogy is not dierent from the version of Massenträgheit und Kosmos. However, the function given to the argument is much more important. In the 1924 version, it seemed that this analogy only had a technical function, insuring that the ether had the potential to recover its rest shape 117 , away from any matter, without falling into an aporia due to the indetermination of the orientation of the metric of the ether. In Philosophy of Mathematics and Natural Science,

Weyl sees in the analogy of the lake and boats an illustration of the essential dierence between the Newtonian and the relativistic points of view, concerning the relations between gravity and inertia. In the Newtonian physics, there was a rigid structure, xed once for all, inertia. When bodies gravitationally interacted, they left the tracks of the inertial structure, and returned to them as soon as they were far enough so that gravitation could be ignored again. In contrast, in general relativity there is no structure of ether at rest, xed once for all from the start. Instead, one knows how to qualitatively characterise which metric structure the ether must adopt in the absence of any matter. But the new orientation taken by this structure will depend on the dynamical history followed by the ether in its relation to matter, in the intermediate region connecting the two regions void of any gravitating matter.

In Mind and Nature

The pba appears again in Mind and Nature in 1934118 . The context is dierent again. The general purpose of this article is to show that the subjects, by their body actions and passions, and by their conscious minds, are inevitable constitutive elements of physical science. This is how he concludes the end of chapter IV:

I dare hope that we will have made the following point intelligible: how and up to what point the structure of our scientic knowledge is conditioned by the circumstance that the world, which is the purpose of all our scientic research, is not something that exists per se, but only exists and occurs from the encounter between the subject and the object.

To reach that conclusion, Weyl, in the dierent sections of the article, gradually moves up in the hierarchy of the knowledge related to the world. He moves from the perception data to the primitive physical concepts (Locke, Descartes) in which the sole sensory qualities are questioned with regard to their objectivity. Finally, he comes to the questioning of the objectivity of space and time. Now the subject has no direct relation with the physical properties of the object. Instead he is necessarily led to reach objectivity through symbolic representation.

In chapter IV, Weyl decides to illustrate that with the particular case of the relativity of space and time. The problem which he reaches, after a detour through the correspondence between Leibniz and Clarke, is the same one as in Philosophy of Mathematics and Natural Science, namely the antinomy between kinematics and dynamics 119 .

To explain how general relativity solved this problem, every system of coordinates must rstly be deprived of any objectivity:

We are led to see the concept of coordinates in an essentially more fundamental manner.

Coordinates are no longer measured, but are nothing more than arbitrary numberings of the universe [i.e. of space-time]; they are only symbols used to label and dierentiate the universe points from one another 120 .

Thus Weyl enunciates more neatly than in the previous texts the absence of physical objectivity of the naked spatiotemporal manifold (without the metric or any other structure), or systems of coordinates that represent it. But this assertion will be qualied further in the text in a passage in which the spatiotemporal manifold is illustrated by a pba:

The sole relations [that can be expressed on the naked manifold] which have an objective signication are the ones that are preserved by any deformation of the plasticine. The intersection of two world-lines is, for instance, of that kind.

We see that Weyl uses the plasticine to encode the naked manifold, as in the two previous occurrences (fpba versions), even though he is less explicit here concerning the bration as such.

The pure subjectivity of coordinates, mentioned above, is now qualied. The topological invariants keep a form of objectivity.

Thus, assuming that space-time is numerically locally represented by an open set of R 4 , we can

give as examples of non-objective properties of the naked manifold:

• The individual identity of a point.

• The fact for a world-line of being straight or curved, vertical or not However, two lines that intersect in a system of coordinates, will continue to do so in any other system. These are the only kinds of objective data actually encoded by the manifold. This argument was also put forward by Einstein as early as 1916 121 .

In a second stage, Weyl introduces the metric structure on the manifold. It is a eld which has a physical signicance, which is broken down in two component elds. On the one hand, we have the inertial structure, which determines the trajectories of the bodies not subjected to any inuence other than gravity. On the other hand, we have the causal structure, which corresponds to the data of the light cones (one for every point) and which determines which events of the universe can be causally linked to which ones, and in which order. This breaking down of the metric did not appear in the texts in which the pba appeared previously. They however were long established by Weyl 122 .

Weyl then shows that the inertial and causal structures respectively replace Newton's absolute space and time, to account for the gap between the total kinematic homogeneity of space-time, and its dynamical non-homogeneity. Physical realities were indeed responsible for this gap. However, they were not immutable and xed entities, but dynamical elds interacting with matter. These developments clarify the original idea, present in the rst edition of Raum-Zeit-Materie, stating that the variable coecients of the metric are not properties inherent to space, but the correlate of a physical reality which determines the behaviour of rulers and clocks 123 .

The elements that are really new in this text 124 are present in the conclusion of Chapter IV.

The subject, because of its singular place in the world, and because of its consciousness appears as a necessary mediation in order to root the knowledge of the physical world in something absolutely

given. The singularity of the subject is expressed by the contingent form given to the plasticine (the system of coordinates). This singularity is then neutralised, to reach objectivity, through the principle of relativity. This neutralisation is somehow an impoverishment. The same subject, in the same conditions, and facing the same objective situation, will be led to feel the same conscious experiment of moving forms expanding in time and space. But this space and time experience goes much further than the sole objective spatiotemporal structure, which is indeed only a poor formal skeleton.

Finally, the objective inertial and causal structures are only measured by means of sending test bodies and light rays in free fall. But, even though minimally, this necessarily disturbs the structure to be measured. Therefore, the system of coordinates (the plasticine pattern) is not the only way the subject takes part in the determining of spatiotemporal forms. It is also an entity which can only know the metric structure by operating on it, and therefore by disturbing it. This consideration prepares, in Weyl's text, the evaluation of the position of the observing subject in quantum mechanics.

121 This is what the Einsteinian literature has called the point-coincidence argument since Stachel's suggestion, see [START_REF] Norton | The Hole Argument[END_REF].

122 See [Wey15, p.17-19] in which the inertial and causal structures respectively correspond to the projective and conformal structures.

123 [START_REF] Weyl | Space, Time, Matter[END_REF]p. 125]. See above p. 13

124 They are in great number in comparison with the text discussed previously .

Summary and Conclusion

We have shown that the pba, by its richness, its recurrence and its polymorphic character in Weyl's work, is a very valuable material. The text corpus which includes the dierent versions of the argument shows the long evolution of a complex and audacious thought on space, with several reversals. They are a consequence of Weyl's confrontation with physical reality, with his contemporaries' thought and with the diculties inherent to his own philosophical standpoints.

The original problem which led to the emergence of the argument consists in justifying the adoption of a metric with variable coecients. This problem, which has been at the core of geometry since the middle of the nineteenth century, and which Einstein's theory has made even more pressing, is addressed by Weyl under the very specic angle of his idealism: how could we adopt a nonhomogeneous metric, while space, as a form of our intuition, is necessarily homogeneous?

According to Weyl, in Raum-Zeit-Materie, adopting a dynamical metric solves this tension. In fact, if we pose a principle of determination of the metric by matter, then a material body may be displaced in space while keeping its properties -metric properties included-. This comes to no longer considering the metric as a property inherent to space, but like a property emerging from its content.

This argument, however, leads Weyl into a series of technical and philosophical diculties.

Firstly his solution, by excluding the metric of the essential properties of space, is too radical.

The innitesimal metric structure does not emerge contingently from matter, but is part of the essence of space, and should be justied a priori. On that issue, Weyl will rectify his standpoint when developing his innitesimal geometry, the problem of space in its technical sense and the epistemological discourse which goes with it.

Secondly, the principle of determination of the metric by matter is dicult to formulate coherently. At each step, we may fall into an aporia. For if matter is characterised by a simple scalar eld, and if it totally determines the metric, we may come to a theory in which every deformation, and thereby any change, have become impossible. It is the argument which is illustrated by the thought experiment of the plasticine ball, and that I have interpreted as an Eleatic aporia, negating the possibility of change. The modications made in Raum-Zeit-Materie, one edition after the other, shows the diculties met by Weyl in order to avoid this aporia. Is it possible to accept a theory in which any displacement generates a modication of the eld of matter? Is it acceptable to hide behind a cosmological argument, the plasticine ball only recovering its shape after a cosmological rearrangement? How is it possible to give sense to the idea of a density of matter, and to the idea of a change of the eld ρ of matter, while supposedly standing at a pre-metric level?

In Massenträgheit und Kosmos , Weyl's stance towards Mach's principle changes radically. This principle, which was accepted in Raum-Zeit-Materie, under Riemann's patronage, as an assumption used to solve a philosophical problem, becomes problematic itself and the subject of a critical investigation. It is as if the diculties anticipated by Weyl, while developing his pba, had gradually gnawed at his belief in the pertinence of this principle. Perhaps Einstein's own disappointment towards this principle also played a part in Weyl's reversal.

In this new text, Weyl oers a truly spatiotemporal version of his argument, using a fourdimensional and bred plasticine. If matter is characterised only by a simple congruence of trajectories, it is still possible for a simple dieomorphism to rectify all the trajectories, that is put matter at rest. Then, the absurdity of claiming to dene the motion of matter prior to any metric -in order to be able, then, to dene the metric -becomes blatant. Therefore, Weyl provides another signication to Einstein's failure. If, in general relativity, Einstein could not realise Mach's principle, it is not a contingent fact, related to the lessons of experience. Rather, it was an inevitable fact since an a priori investigation on the signication of the most radical version of Mach's principle reveals its absurdity, or, at the very least, brings it back to an Eleatic negation of motion. This why a simple thought experiment, like the pba, is sucient.

Weyl, in the second part of the dialogue, still engages in a criticism specically targeting Einstein's attempt at realising Mach's principle in the context of relativistic cosmology. Mach's principle must be expressed through the Einstein equations which correlate Einstein metric tensor G µν with the energy-momentum tensor T µν . By slightly departing from Weyl's text we have been able to highlight that T µν itself generally depends on the metric. As such, in opposition to Einstein's assertions, even if Mach's principle could be realised in general relativity, it could not be in the form the T µν is sucient to determine the metric (which entails a circularity). The only coherent starting point, for a total determination of the metric, should be the T µν modulo its correlation with a metric. This retrospectively justies the form taken by Mach's principle in Weyl's work, as early as the rst edition of Raum-Zeit-Materie, as referring to a notion of matter determined by scalar elds. However, once the problem is rightly posed, the Einstein equations being equations with second order partial derivatives, it cannot be solved without giving some initial (Cauchy or Dirichlet) conditions. This expresses a form of unsurpassable autonomy of the metric in relation to matter.

Weyl shows that all cosmological subterfuge imagined by Einstein to break free from these conditions is illusory. Equilibrium or symmetry hypotheses always hide metric determinations. And how could it be otherwise since Mach's principle which Einstein is researching, when it is correctly formulated, falls within the range of Weyl's a priori demonstration: in no case could a metric univocally emerge from a purely topological notion of matter.

Weyl then draws the consequences for the ontology of physics. In order to re-establish the possibility of motion, hence the elaboration of physics, one must accept the existence, alongside matter, of a metric eld, the ether, which is partly autonomous. This metric eld does not have immutable properties, like Newton's absolute space, but is in dynamical interaction with matter.

Due to its partial autonomy, when we move away from any matter, the ether will go back to its rest state, which is specic to it. Several possibilities being open regarding the metric properties of this state, a choice must be made which shall be a true physical hypothesis of a cosmological nature, to be evaluated in connection with the observational data. Weyl, through his character Paul, then says that he is in favour of choosing the de Sitter metric (this is 1923), because it has good topological properties and seems compatible with the observations. Weyl then returns to a question left pending since Raum-Zeit-Materie: can a spatiotemporal dieomorphism which acts upon the metric have a physical meaning, or does it only express a simple mathematical license in expressing a single physical reality? Because of the modern point of view, in relation to covariance in general relativity and to the Einstein hole argument, we would tend to choose the second option. Weyl oers a more nuanced vision. His analogy of the surface of the lake enables him to give a physical sense to a global dieomorphism. Two regions of spacetime, distant from all matter, will be isometric, but the metric can be expressed with a dierent orientation, following the disturbance generated by a mass lling the intermediate region.

In Philosophy of Mathematics and Natural Science, Weyl endorses the conclusions of Massenträgheit und Kosmos; he reconstructs the history of the principle of determination of the metric by matter, making Huygens and Mach the initiators of the contradictory version (because it is too strong) of the principle, and Riemann and Einstein the moderators who gradually succeeded in expressing a coherent version of it. Finally in Mind and Nature, Weyl places the pba in the global context of the subject/object inter-relations in the construction of physical knowledge.

Ultimately, we can see how a single argument, the pba, was repeated in Weyl's work with substantial modications which not only reect the evolution of the technical apparatus and the precision in the expression of Mach's principle, but also the evolution of the philosophical problems which guided Weyl's thought, and led him to re-use the same argument to very dierent purposes. The study of the corpus, in its evolving continuity, shows that Weyl's reversals concerning his philosophical positions are not the consequences of an unstable nature or a deeply volatile temperament of the German mathematician. Instead, these changes result from the time needed by Weyl to clarify and solve the diculties which appeared as early as the rst edition of Raum-Zeit-Materie. Weyl's philosophy is not a frozen system, constructed prior to science, but it is constructed with a time consuming reection, on the more and more complex scientic theories of his time. Therefore, if Weyl's philosophy may at times seem very unstable, in the light of the great lasting secular systems of the tradition, it is the result of an interaction with science which develops rapidly in that lively era of the beginning of the twentieth century.

  Weyl chooses Riemann instead of Einstein as a symbolic gure of the idea of a metric determined by matter. This attribution is justied by a small passage of Riemann's Habilitation text which is enough, according to Weyl, to make him a prophet of general relativity 51 . Whatever the relevance of this attribution to Riemann, in any case it is signicant. It shows that the conceptual framework to which Weyl belongs is indeed broad. The point is not to look for the bases of an individual physical theory (Einstein's), but to work on a philosophical issue which more generally addresses all physical theories of elds based on an innitesimal dynamic metric. To meet both the current conventions and the specicity of Weyl's point of view, let us attribute the idea to the triplet Riemann-Mach-Einstein (RME): RME Principle : the values of the metric relations are perfectly determined by the distribution of matter and of its intrinsic qualities ρ (charge, mass• • • ) The strategy of 12 52 of Raum-Zeit-Materie to preserve the homogeneity of space is problematic because it is too simplistic. In addition to the philosophical problems evoked at the end of the previous section, concerning the foundations of the innitesimal metric structures, Weyl stumbles on another diculty linked to his exaggeratedly strong interpretation of this principle. It will lead him to an aporia. While the intrinsic properties of matter are automatically kept in the course of time, and are expressed by scalar elds ρ, and if metric is perfectly determined by matter in the 49 See our note 11. 50 This point partly follows from the Raum-Zeit-Materie structure. The text which we have explained is taken from 12, therefore from chapter II, while general relativity is mentioned only in chapter IV. See what we have said p. 5 about Weyl's standpoint towards the generalised covariance principle. 51 See our comments in [Ber18, p. 3].
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  Weyl uses himself this approximation in [Wey10, p. 205]. 59 [Wey10, p. 205; 262-263]. 60 [Wey10, p. 229]. 61 [Sch16a; Sch16b].

  65[IS06, p. 1243], [Nor99, p. 804-805],[START_REF] Norton | General Covariance and the Foundations of General Relativity: Eight Decades of Dispute[END_REF], [Nor87, p. 170-171;177],[START_REF] Stachel | Einstein's Search for General Covariance[END_REF].

4. 2

 2 The dialogue form of Massenträgheit und Kosmos. Who are Paulus and Petrus?In the dialogue, both characters, Paul <Paulus> and Peter <Petrus>, meet to resume a discussion, that was interrupted in 1915, on the foundations of general relativity. We are led to think that Paul impersonates Weyl as the one who leads the dialogue and takes it to its conclusion. Moreover, the intellectual stages through which Paul tells us he went remind us of the ones Weyl actually experienced. Paul introduces himself as somebody who initially strongly believed in Mach's principle, in its most radical aspect, similar to the RME principle in 12 of Raum-Zeit-Materie, before retracting. Now, he no longer believes in the validity of Mach's principle, and the dialogue unfolds as Paul explains to Peter the reasons for his change of mind. Paul says that if the belief in Mach's principle forms the stone base on which the relativity Church lies 70 , then he has become an apostate, a heretic. He has changed from Saul to Paul 71 .

88 4. 6

 886 Cosmological consequences of the pba 4.6.1 Preliminary to the discussion: the Einstein equations and the Cauchy problem In the second part of Massenträgheit und Kosmos the protagonists of the dialogue give a cosmological dimension to the problem posed 89 , coming still closer to the problem as it was formulated by Mach and Einstein. In fact, even though he does not see any fault in the a priori argument which demonstrates the absurdity of Mach's principle, Peter cannot be convinced because: [it seems that] Einstein has already done what you refute [, realise Mach's principle],in the work in which he has generalized his original gravity laws, by [introducing the] cosmological term. In view of this fact, any proof of its impossibility is therefore invalid. The fact that general relativity is on the right track to express Mach's principle will be supported further down in the text, by Thirring's work. The latter demonstrated that, according to general relativity, a massive and hollow sphere, rotating about itself, exerts, on a mass inside it, an eect comparable to the centrifugal force 90 . Thus, general relativity seems to conrm Mach's answer to 85 [Wey24, p. 199, right hand column].
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  The dicult problem of the existence and unicity (up to a dieomorphism) of the solutions to the Einstein equations, with several types of initial conditions, and regularity hypotheses, has been subject since the 1950s to major progress thanks to Choquet's work. See [CB52; CB69]. She has shown the existence and unicity (up to a dieomorphism) of a local solution to the Einstein equations, within the neighbourhood of a spacelike hypersurface on which the Cauchy boundary conditions were given. The existence and unicity results are valid for the Einstein equations without sources but also with sources like perfect uids or electromagnetic elds. See [CBG69, p. 331].

  [START_REF] Darmois | Les équations de la gravitation einsteinienne[END_REF]. Einstein's and Weyl's convictions on the possibility to correctly pose the Cauchy problem for the Einstein equations, could be based on the similarity of these equations with the Laplace and Poisson equations, for which the results of existence and unicity were well known, and on some successful attempts to the univocal determining of a metric in a few specic cases (in the rst place those considered by Scwarzschild). For a presentation by Weyl of the theorem of existence and unicity of the solution to a system of partial dierential equations, see [Wey15, Appendix 3, 2nd part].

  s principle require to eliminate boundary conditions?

4. 7

 7 Weyl's Boats-Lake Analogy Let us conclude our discussion of Massenträgheit und Kosmos with a precise study of the passage in which Weyl develops the following analogy: matter is to the ether what boats are to the surface of a lake. This analogy is important for us inasmuch as it shows an evolution of Weyl's position on some issues of the pba of Raum-Zeit-Materie:Your objection being based on the principle of continuity I can doubtless weaken it in the best manner, intuitively, with an analogy in which I compare the ether with the surface of a lake, and matter with boats that plough it. The dierent possibilities that you have mentioned lie here in the fact that what can be materially realised in an innity of dierent manners is the same form of the surface of the lake, the same qualitative state; the material state is in fact considered as determined only when it has been established in which point of the lake basin each particle of water is. Here, the arbitrary marking (for instance, by numbering) which helps dierentiating the identical individual particles of water corresponds to the setting of a system of coordinates in the Ether, [that is], to the relations to a medium. If the water is at rest in the evening, when all the boats are in port, then the qualitative state is exactly the same as in the morning before the boats plough it: the surface of the lake is a homogeneous smooth plane. But the material state hidden behind it may have completely shifted. It is impossible (as it happened for the guide-eld before Einstein) to recompose the actual position of all the particles of the water in the lake that were stirred by the boats, starting from a rest position xed once and for all and from an elongation caused by the boats 109 . This analogy is developed by Weyl/Paul in reply to an objection raised by Peter 110 . The latter wonders how it is possible to attribute a metric the Minkowski one for instance 111 to a portion of the universe void of matter. He then develops an argument against that type of possibility, which is a reminiscence of Einstein's hole argument 112 .

) 2 ,

 2 independently from t. We can then graphically represent the congruence of the L x,y,z by vertical lines, and the simultaneity surfaces by horizontal lines (we delete two spatial dimensions in order 114[START_REF] Weyl | Massenträgheit und Kosmos. Ein Dialog[END_REF] p. 203, left hand column].Weyl's analogy of the lake and boats. In a region R 0 (here in yellow), void of matter, a congruence of geodesic lines L x,y,z have been selected (represented in blue) which materialise the Minkowskian structure of space-time in that region. That is: these geodesic lines, to which negligible label-particles are associated, remain at a constant spatial distance in the course of time. The simultaneity hypersurfaces (represented here by green horizontal lines) are provided with a constant Euclidean structure in the course of time.Then, these geodesic lines enter the region R 1 (not coloured) where a mass responsible for a non-null curvature lies (we did not represent the world-lines of the elements of matter). The geodesic lines L x,y,z start to diverge from one another. When these geodesic lines reach the region R 2 (in orange) void of matter again, they are no longer adapted to reveal the recovered Minkowskian structure. According to Weyl's analogy: the position of the particles of water was disturbed by the passing of the boats. To reveal the recovered Minkowskian structure, we must change geodesic congruences, and take the L x ,y ,z (represented in red). So, even if the absolute orientation of the Minkowskian structure of a void region of the universe has no sense, by considering the intermediate region, we could give a sense to the relative change of orientation of the metric of a region in relation to the metric of another region.

  

  For Weyl, because space is ideal, being only a form of appearances, it is necessarily homogeneous 31 . The homogeneity of space, which follows from its ideality, is dened this way: Space [• • • ] is a form of appearances Form der Erscheinungen . Precisely the same content, identically the same thing, still remaining what it is, can equally well be at some place in space other than that at which it is actually. The new portion of space S then occupied by it is equal to that portion S which it actually occupied. S and S are said to be congruent.[• • • ] 32Thus space is dened by Weyl as something the proprieties of which are, by denition, indepen-

dent from matter (i.e. independent from sensory properties, physical properties and forces induced by matter) which lls it. Space does not yet belong to the domain of physics. It is a form the properties of which can entirely be characterised a priori, precisely because this form and its intrinsic characteristics are given to us prior to any matter which later lls it. In particular, the (topological, projective, ane, conformal, metric) properties intrinsic to space, if any, must be characterizable by a mathematical theory which precedes the study of the forces and the way in which matter occupies space-time. Therefore the phrase physical space has no more meaning for Weyl than for Poincaré, for instance.

  [• • • ] Only now that Einstein has removed the scales from our eyes by the magic light of his theory of gravitation do we see what these words actually mean.

	32 [Wey10, p. 11], [Wey19, p. 10]. See also [Wey15, p. 1], in which the opposition between form and matter becomes
	of a more psychological nature, inasmuch as matter refers to the sensory content of perception, and it is connected
	to Kant.
	33 In the specic case of general relativity, we have [Wey15, p. 44]:

According to Einstein, the metric structure of the universe is not homogeneous. How is this possible, given that space and time are forms of appearances? theory based on dierential geometry, i.e. on a variable curvature metric. This is why Weyl just like Poincaré addresses this problem to Riemann.

  Weyl writes this34 See[START_REF] Weyl | Zeit, Materie[END_REF] and the corresponding parts in the three editions of Raum-Zeit-Materie that follow.35 In Raum-Zeit-Materie, Weyl does not refer to material qualities. He only refers to the material das Materiale .However in other texts of the same time, such as [Wey23, introduction], Weyl calls the material content qualitative and describes the homogeneity of space by the fact of being able to move these qualities towards any point.36[START_REF] Weyl | Zeit, Materie[END_REF] p. 88]. The fact that Weyl choses as an exemple the density of electric charge Elektrizitätsdichte is meaningful. Perhaps he has already in mind his own theory (to be published in 1918) in which the metric eld is the carrier of the gravitational and electromagnetic interactions, simultaneously. So, if something like a principle of metric determination by matter is to be considered in such a conceptual framework, it cannot take the form mass determines the metric any longer but, instead, mass and electric charge determine the metric.

37 The pull-forward (pull-back) terminology is posterior to Weyl. See

[IS06, p. 1243

]. Besides Weyl does not mention here the fact that a region S cannot be moved towards any region S . Instead, as shown by the process used, one must take a region S dieomorphic to the rst one. For instance a simply connected region cannot be transformed into an annular region. Weyl is explicit about it further on in the text

[START_REF] Weyl | Space, Time, Matter[END_REF] p. 98

].

  Weyl's argument can be transcribed in a more modern mathematical language which avoids the coordinate systems just as Stachel and Iftime did for Einstein's hole argument 40 . Such a rewriting may hide some of the problems met by Weyl and Einstein, but it can also clarify some aspects of the problem. To outline the problem briey: it is supposed that matter is represented by a function ρ before : M → R which associates its density to any point of the manifold M . A moving in the manifold is simply a dieomorphism φ : M → M . Moving matter by means of φ amounts to producing a new distribution ρ af ter obtained by pulling forward the preceding distribution. So we have: ρ after = φ * ρ before = ρ before • φ. Let us suppose, in Weyl's manner, a law of total determination of the metric by matter. If the metric g before is associated with the distribution of matter ρ before , and if our law is generally covariant, then, to the distribution of matter φ * ρ before we must necessarily associate the metric g after = φ * g before ; in which the pulling forward φ * g of a metric by a dieomorphism is dened by:

  Weyl seems to have become gradually aware that the encountered technical problems were not contingent only due to an oversimplied conceptual framework but on the contrary fell within the range of the actual diculties inherent to Mach's principle itself. This leads Weyl, in Massenträgheit und Kosmos, to rene his thought about the adequate expression and the relevance of the principle which links matter, inertia and metric. The problem is all the more important since Weyl remains convinced that such a principle Saul to Paul sich vom Saulus zu Paulus wandeln , used to describe a radical change of personality or behaviour. 72 About Einstein's abandonment of Mach's principle, see letter of 02.02 1954 to F. Pirani, the extract of which is reported and translated into English in [Ren07, p. 61]. In [Nor87, p. 180-sq.], it explains that this abandonment by Einstein of Mach's principle takes the form of a shift from an overt anti-realism towards space (then identied with the naked manifold) to a realism towards space (then identied with the metric eld, called ether). Other references about Einstein's position concerning Mach's principle in: [BP95, P. 10; 67-90], [Nor93, p. 808-sq.], [Tor83, section 6.2]. Before abandoning Mach's principle, Einstein gave it very variable forms. According to Norton and [Tor83, p. 201], Einstein's change of mind about Mach's principle began in the years 1918-1919. 73 The question whether Weyl had real persons in mind behind his characters is minor. What is important is to underscore the fact that Paul's intellectual evolution is close to Einstein's and Weyl's. Paul and Peter, in the dialogue, say that they rst met in the United States in 1915. Einstein and Weyl met as early as 1913 at the E.T.H. of Zurich.

Weyl arrived at the institute when Einstein was there, working with his friend Grossman at elaborating general relativity. In the dialogue, Paul tells Peter that the latter should well know the axial symmetry solutions of the theory of general relativity , since he raised the problem of their existence. Weyl (with Lense and Thirring) is amongst the rst scientists who published such solutions (see

[START_REF] Weyl | Space, Time, Matter[END_REF] 32; 

and bibliography note 22 of chapter IV].

  On can] think about the four-dimensional universe as a plasticine mass penetrated by bres, world-lines of particles of matter, which cannot converge into a single one, but which can otherwise spread arbitrarily [• • • ] In Raum-Zeit-Materie, the pba concerned space rather than space-time. The idea of motion was there reduced to a transformation from an initial static equilibrium state into a nal state of the same type. In contrast, in the present text, the bred plasticine represents a four-dimensional Lorentzian manifold endowed with a still undetermined metric. The bres in the plasticine represent the worldlines of the material points, which are one-dimensional submanifolds of space-time 78 . At the end of the text, Weyl species in a literary therefore imprecise way that this family of lines must constitute what is nowadays called a foliation (at least local, and generally not unique) of space-time of the type R × R 3 (with one-dimensional sheets). Weyl's formulation is not precise enough to indicate whether he has in mind only a local foliation (which exists in all Lorentzian manifolds) or, in a more restrictive manner, a global foliation. In that case, the hypothesis would not be trivially veried

76 However, there is no consensus on Mach's real purpose. See

[START_REF]Mach's Principle. From Newton's Bucket to Quantum Gravity[END_REF]

65;90-sq.]. 77 [Wey15, p. 1]. [in general relativity, but would require an additional cosmological hypothesis, similar to what is nowadays known as Weyl's principle 79 . In other words, it should be assumed that space-time can accept a globally dened (not necessarily unequivocal) temporal orientation.

  Einstein's programme, in the years 1917-1918, consists in looking for all possible subterfuges to avoid boundary conditions. Weyl shows in the last part of Massenträgheit und Kosmos that this programme is in principle unrealisable. All cosmological subterfuges imagined by Einstein and others 103 to get rid of the boundary conditions are doomed to failure. These conditions, whether they concern the spatial innite, or the past (innitely distant or not) are inevitable 104 .Weyl ends his argumentation by specifying that a choice has to be made between all the possible universes without matter, which are the solutions to the Einstein equations with T µν = 0. This choice is a real physical hypothesis, since this solution will represent the ether in its normal state, when it is not disturbed by any matter. Concerning this choice, Weyl prefers de Sitter's hypothesis

	105
	for:

  If so, it is not because the eld is xed on the innitely distant spatial horizon, but, instead the link comes from the world boundary of the past which goes back to an innitely distant [time].

	This argument is also developed in [Wey49, 23 C]. Besides the hypothesis of a static nature, on which Weyl insists,
	it seems to me that the homogeneity and symmetry hypotheses on which Einstein and cosmologists usually rely in
	their derivations, have also a metric signicance.
	105 For an extensive development of the subject: [Ker89], [BM99].
	106 [Wey24, p. 202, right hand column].
	107 [Wey24, p. 202, left hand column].

  In Massenträgheit und Kosmos, it is de Sitter's. In Philosophy of Mathematics and Natural Science, Weyl will return to the same argument using Minkowski metric as the rest metric of the ether. This changes nothing to the argument that follows. 112 Weyl explicitly refers to Einstein's article from 1914.113 [Wey24, p. 202, right hand column]: though [de Sitter's metric] is, per se, qualitatively totally determined, there are however an innity of possible ways for this state to be realised in the continuum of the world.

	, between both columns].
	109 [Wey24, p. 203].
	110 [Wey24, p.202, right hand column].
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  To our knowledge, Weyl revisited the pba, after 1924, in two texts only: his vast philosophical monograph Philosophy of Mathematics and Natural Science and in Mind and Nature. 5.1 In Philosophy of Mathematics and Natural Science Philosophy of Mathematics and Natural Science was rst published in German in 1927, then, in English in 1949. As early as 1927 we nd paragraph 16, called The Structure of Space and Time in their Physical Eectiveness. It goes over the fpba and the analogy of the lake and boats again. It is the rst paragraph of the chapter Space and Time, the Transcendental External World.The objective of the whole paragraph is to question the content and the origin of the space-time structure, namely its metric structure. Part of the content of the paragraph already appeared in Weyl's previous literature, but its arrangement is new, and, as in the other chapters of Philosophy of Mathematics and Natural Science, we can nd denite references to Leibniz.The purpose of the passage in which we are particularly interested 116 is to solve the problem of the non-equivalence between the kinematic perspective and the dynamic perspective on the analysis of motion. From the kinematic perspective, any reference frame should be equivalent to describe motion. But from the dynamic point of view, it seems that there are privileged reference frames, in which solely physics laws can be expressed with simplicity. It was Newton's point of view, which was not outdated by special relativity. Is it possible to go beyond this apparent limitation, on a dynamical level, and to enunciate the laws of physics independently from referring to a privileged point of view? Mach's ideas are described here as an attempt to reach the largest generality from the point of view of the dynamical reference frames, without having to assume the existence of anything excepted matter. Weyl names Huygens as a predecessor in this regard, and of course Einstein as a successor on this path, at least for some time. It seems however that the issue of general relativity is partly back projected on Huygens and Mach by Weyl. Weyl then refutes as absurd Huygens's and Mach's path. This refutation closely follows the one in Massenträgheit und Kosmos. Weyl repeats the fpba to justify the fact that the naked spatiotemporal manifold, without metric, cannot be used to support a dierence between the motion and the rest of two separate elements of matter. Ultimately, it is on the inertial structure (itself included in the metric structure) that the existence of a (local)

dynamically privileged reference frame is based. According to Weyl, a reasonable solution to our 116

[START_REF] Weyl | Philosophy of Mathematics and Natural Science. From an article of 1927[END_REF]

.

This is in particular the case when we solve the Einstein equations in the peculiar case of a stationary solution, with specic symmetries, as in the calculus made by Schwarzschild for his interior metric. In this kind of simple situation, the application of Mach's principle takes a form that is reminiscent of Weyl's formulation of the RME principle in Raum-Zeit-Materie, that is: g = F (ρ • • • ).

In Philosophy of Mathematics and Natural Science, contrary to Massenträgheit und Kosmos, Weyl uses Minkowski's metric (and not de Sitter's) for the ether, when he develops the analogy. The cosmological preference for de Sitter's metric will nevertheless be reasserted (and justied in the same manner) by Weyl a few pages further.

118 It is therefore posterior to the German edition of Philosophy of Mathematics and Natural Science, but not to the English edition.

101 Of course, for any relativistic calculation of the metric on a void region, the problem does not arise since the energy-momentum tensor is simply null, therefore, independent per se from any metric. This particularly includes the approximate derivation, by Einstein[Ein15], of the metric which surrounds a point mass, the exact solution suggested by Schwarzschild [START_REF] Schwarzschild | Über das Gravitationsfeld eines Massenpunktes nach der Einsteinschen Theorie[END_REF], or again the metric interior to Thirring's hollow sphere [START_REF] Thirring | Über die Wirkung rotierender ferner Massen in der Einsteinschen Gravitationstheorie[END_REF][START_REF] Thirring | Berichtigung zu meiner Arbeit: Über die Wirkung rotierender Massen in der Einsteinschen Gravitationstheorie[END_REF]) or the metric near a Lense-Thirring rotating massive body ( [START_REF] Lense | Über den Einuÿ der Eigenrotation der Zentralkörper auf die Bewegung der Planeten und Monde nach der Einsteinschen Gravitationstheorie[END_REF]). However in the case of the calculation by Schwarzschild of the metric interior to a spheric mass of perfect uid, incompressible and at rest [START_REF] Schwarzschild | Über das Gravitationsfeld einer Kugel aus inkompressibler Flüssigkeit[END_REF], the problem arises since Tµν should appear under the general form:

T µν = (ρ + p) u α u β -p.g αβ which explicitly depends on the metric. In Schwarzschild's text, it is however clear that the T µν is not a starting data of the problem. In a signicant manner, Schwarzschild starts with the mixed tensor T 1 1 = T 2 2 = T 3 3 = -p and T 4 4 = ρ0 (ρ0 is a constant, since the uid is incompressible, p depends on the radial coordinate as per a function which will be determined by the stability hypothesis). The presence of symmetry hypotheses indeed enables Schwarzschild to specify the general form of the metric, before calculating. But it is clear that the metric (therefore the Tµν ) is only perfectly determined after the eld equations have been solved.

to give a simple representation). It is the usual foliation of Minkowski space dened by an inertial reference frame. Here, the verticality of the lines has a stronger sense than in the bred plasticine argument, for it designates a true metric invariance. Let us suppose that these metric properties are valid for a rst interval of time when our geodesic lines remain in the region R 0 .

Let us now suppose that the boats come to disturb the surface of the water. The lines L x,y,z are extended (as geodesic lines) in a new region R 1 of space-time where a mass M curves the metric. Minkowski metric is no longer valid: we no longer have g µν (t, x, y, z) = η µν either in the system of coordinates dened by the congruence of the L x,y,z , or in any other one.

What happens now when the boats return to port, i.e. if the L x,y,z are again extended into a third region R 3 which is void like the rst one? The surface of the water gradually becomes plane again. That is: the metric will converge again towards a Minkowski metric. However, Weyl insists, the position of each particle of water will not necessarily be the same, within this new plane surface of the water, as before the passing of the boats.

To what does Weyl analogically refer? The Minkowski metric, which will be restored in the new environment devoid of mass, will generally be orientated 115 dierently. That is: it is not necessarily expressed by g µν (t, x, y, z) = η µν but more generally by g µν (t, x, y, z) = φ * η µν (φ * : dieomorphic pulling forward) for a specic φ). Actually, the congruence of the geodesic lines L xyz which was dened in the region R 1 , then extended to R 3 , will no longer be adapted to the recovered Minkowskian structure. While these particles were at rest in relation to one another at the beginning of the process, these particles are no longer at (metric) rest, relative to one another after passing near the mass M . A new system of coordinates (t , x , y , z ) should then be established, by choosing a new family of label-particles, so that the congruence L x ,y ,z of their geodesic lines enables us to re-establish g µν (t , x , y , z ) = η µν in R 3 . . With this analogy, Weyl suggests a ne answer to the question: has the spatiotemporal manifold a physical signicance? The changes of coordinates may be dened in a purely mathematical manner.

Thus two elds g µν and φ * g µν can be seen as dierent representations of a single metric. But as soon as a system of coordinates is associated to a material reality -as the congruence of the geodesic lines of material label-points-then a dieomorphism becomes physically signicant. So, the change of orientation to which Minkowski metric was subjected in our example has a precise physical signicance. To materialise the (at) recovered Minkowskian structure, once we have penetrated into the region R 3 , the family of label-particles used to dene our system of coordinates must be changed. Finally we can see that if we consider two at regions topologically disjoint of space-time, it is meaningless to question whether the Minkowski metrics of the two regions appear with the same 115 Here we use Weyl's terminology. He very often uses the word orientation to refer to the dierent manners in which a same geometrical object may be expressed in coordinates, that is the dierent manners in which it can unfold on the manifold. See for instance [START_REF] Weyl | French-German commented edition of Weyl's text, including discussions about Weyl's original French tapuscripts from Barcelona. Two volumes[END_REF] or [START_REF] Weyl | Zeit, Materie[END_REF]p. 126].

The orientation of a geometrical object, in that sense, may have a purely subjective status, resulting from an arbitrary choice, as when we consider the orientation of the Riemannian metric at a singular point of the manifold, or, on the contrary, have an objective invariant sense, as when we consider the variation of the orientation of the metric throughout an open domain.

In the same manner, here Weyl says that the absolute orientation of Minkowski metric in one region considered in isolation has no physical signicance. But the relative change of the orientation of the metric in passing from a region to another one makes sense. Weyl generally illustrates this type of behaviour by referring to the discussions on the dierentiation between right hand and left hand in Kant's and Leibniz's works.