
HAL Id: hal-03046371
https://hal.science/hal-03046371

Submitted on 15 Dec 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Lagrangian bounds for large-scale multicommodity
network design: a comparison between Volume and

Bundle methods
Rui Sá Shibasaki, Mourad Baïou, Francisco Barahona, Philippe Mahey,

Mauricio Souza

To cite this version:
Rui Sá Shibasaki, Mourad Baïou, Francisco Barahona, Philippe Mahey, Mauricio Souza. La-
grangian bounds for large-scale multicommodity network design: a comparison between Volume
and Bundle methods. International Transactions in Operational Research, 2021, 28 (1), pp.296-326.
�10.1111/itor.12770�. �hal-03046371�

https://hal.science/hal-03046371
https://hal.archives-ouvertes.fr

Intl. Trans. in Op. Res. 28 (2021) 296–326
DOI: 10.1111/itor.12770

INTERNATIONAL
TRANSACTIONS

IN OPERATIONAL
RESEARCH

Lagrangian bounds for large-scale multicommodity network
design: a comparison between Volume and Bundle methods

Rui S. Shibasakia,b , Mourad Baioub, Francisco Barahonac, Philippe Maheyb and
Mauricio C. de Souzad,∗

aPPGEP, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901, Belo Horizonte, Brazil
bLIMOS, Université Clermont-Auvergne, 1 rue de la Chebarde, 63178, Aubière, France

cThomas J. Watson Research Center, IBM, 1101 Kitchawan Road, Yorktown Heights, NY, USA
dDEP, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901, Belo Horizonte, Brazil
E-mail: ruishibasaki@gmail.com [Shibasaki]; baiou@isima.fr [Baiou]; barahon@us.ibm.com [Barahona];

philippe.mahey@isima.fr [Mahey]; prof.mauriciodesouza@gmail.com [de Souza]

Received 1 April 2019; received in revised form 19 December 2019; accepted 20 December 2019

Abstract

The Bundle Method and the Volume Algorithm are among the most efficient techniques to obtain accurate
Lagrangian dual bounds for hard combinatorial optimization problems. We propose here to compare their
performance on very large scale Fixed-Charge Multicommodity Capacitated Network Design problems. The
motivation is not only the quality of the approximation of these bounds as a function of the computational
time but also the ability to produce feasible primal solutions and thus to reduce the gap for very large
instances for which optimal solutions are out of reach. Feasible solutions are obtained through the use of
Lagrangian information in constructive and improving heuristic schemes. We show in particular that, if the
Bundle implementation has provided great quality bounds in fewer iterations, the Volume Algorithm is able
to reduce the gaps of the largest instances, taking profit of the low computational cost per iteration compared
to the Bundle Method.

Keywords: Bundle method; Volume algorithm; fixed-charge multicommodity network design problem

1. Introduction

Lagrangian Relaxation has long been widely used to generate lower bounds for difficult constrained
minimization problems and to serve as a basis for developing efficient approximation schemes;
see Geoffrion (1974), Lemaréchal (2001), Frangioni (2005) for the basic theory. As the resulting
Lagrangian dual functions are generally nonsmooth and concave, the ability to lean on efficient
subgradient algorithms is a crucial issue for the success of Lagrangian Relaxation. In this paper,

∗Corresponding author.

C© 2020 The Authors.
International Transactions in Operational Research C© 2020 International Federation of Operational Research Societies
Published by John Wiley & Sons Ltd, 9600 Garsington Road, Oxford OX4 2DQ, UK and 350 Main St, Malden, MA02148,
USA.

https://orcid.org/0000-0002-5561-4937
https://orcid.org/0000-0001-6558-958X

R.S. Shibasaki et al. / Intl. Trans. in Op. Res. 28 (2021) 296–326 297

we aim at comparing two classical versions of these algorithms, namely the Bundle method, as
proposed by Wolfe and Lemaréchal (Lemaréchal, 1989) and the Volume algorithm proposed by
Barahona and Anbil (2000). Comparisons of nonsmooth optimization algorithms can be found
in the literature (Briant et al., 2008; Frangioni et al., 2017) but a direct comparison of these two
algorithms applied to large-scale combinatorial models is missing and our work is an attempt to fill
this gap. An interesting work was done in Briant et al. (2008) where the authors compare different
algorithms including Bundle, Column Generation, and Volume, for five different problems. The
present study is inspired by the work of Lemaréchal (2001) and Frangioni and Gallo (1999) who
contributed to the present success of modern Bundle methods that remain the most successful
approach to treat small or medium scale combinatorial problems by Lagrangian Relaxation. Our
claim is that the Volume algorithm can do as well or even better when dealing with large-scale
Network Design problems. It would be nice to compare with other methods like analytic center
(Gondzio et al., 1996) or proximal cutting planes (Ouorou, 2009), deflected (Sherali and Choi, 1996)
or majorize-minimize-mean (Hunter and Lange, 2004) subgradient algorithms, just to mention a
few, but this is not feasible due to the large amount of programming work that it would require.
Moreover, a state-of-the-art review on nondifferentiable optimization (NDO) methods is out of the
scope of the present paper and we refer to Bonnans et al. (2006) for a broad history and practical
guide on the subject. However, we make our code publicly available, so that other researchers can
use it to benchmark their algorithms.

With respect to the Volume–Bundle comparison, the results have shown that they behaved simi-
larly but Bundle enjoyed more reliable stopping criteria, even though it might be fairly expensive to
reach them. According to Briant et al. (2008), the Bundle algorithm obtained better bounds with
fewer iterations, though we believe that its average time per iteration is a bit more expensive than the
Volume one. Considering that, the present work focuses on the comparison on the computational
total time rather than on the number of iterations.

In addition, Escudero et al. (2012) and Haouari et al. (2008) have also made comparisons. The
former tested the performance of the Volume, a variant of the cutting-plane method and two other
algorithms for a stochastic problem and concluded that the Volume algorithm provided stronger
bounds in less time. The latter paper worked with the prize collecting Steiner tree problem and
tested several techniques including multiple variants of deflected subgradient strategies and the
Volume algorithm, finally concluding that the Volume was outperformed by the different deflected
subgradient algorithms.

We have chosen to compare the performances of both algorithms on large-scale instances of the
Fixed-Charge Multicommodity Capacitated Network Design (FCMC) problem because, besides the
fact that it is NP-hard, it presents many different characteristics that are favorable to our objectives,
such as the presence of different coupling constraints, potential candidates for the relaxation, the
decomposable structure induced by these relaxations, and the possibility to build very large instances,
out of reach of most exact approaches but with relatively small duality gaps (Crainic et al., 2001).
Observe that what we mean by a “numerical comparison” is not only to compare their respective
performance to produce good lower bounds, but to analyze their capacity to generate interesting
primal fractional solutions (almost feasible for the continuous relaxation of the model) from which
feasible mixed-integer solutions may be produced to reduce the gap. In that sense, we contribute
to reduce the gap of very large instances of FCMC, unsolved in the literature; see Gendron et al.
(1999), Gendron and Larose (2014).

C© 2020 The Authors.
International Transactions in Operational Research C© 2020 International Federation of Operational Research Societies

298 R.S. Shibasaki et al. / Intl. Trans. in Op. Res. 28 (2021) 296–326

The next sections will present the network design model followed by an explanation of the
algorithms. Then, in Section 4, constructive and improving heuristic schemes using Lagrangian
information is proposed to provide upper bounds for the FCMC, as well as to serve as a basis
to compare the primal fractional solutions obtained with the two algorithms being tested. The
computational experiments and results are reported in Section 5. Finally, conclusions are made and
future work is discussed in Section 6.

2. Fixed-Charge Multicommodity Network Design problem

The Multicommodity Network Design problem consists in minimizing the total cost of multicom-
modity transport between pairs of origin–destination, so that the demand is satisfied and the arc
capacities are respected. In the FCMC, the objective function includes transportation costs for
each commodity and arc installation costs, the latter being associated with a single facility of given
capacity. Many additional features should be added to model real life network design problems,
like the ones faced in telecommunications or transportation networks, but the model is sufficiently
challenging and well adapted to our current purpose.

In this paper, it is considered for a given directed graph G = (N, A), N being the set of nodes and
A the set of arcs, the problem of minimizing the total cost and satisfying the demands qk, k ∈ K,
associated with a set of pairs origin–destination K called commodities, while respecting the arc
capacities we, e ∈ A. The total cost is represented by the sum of the transportation cost ck

e ≥ 0 for
each unit of flow of the commodity k flowing on the arc e and the fixed charge fe ≥ 0 to install arc
e. A single origin O(k) and destination D(k) are associated with each commodity k.1 Introducing
the variables xk

i j for the flow quantity of commodity k on the arc e = (i j) and the binary variables
ye for the arc installation (ye = 1 if the arc e is used, otherwise ye = 0), the model is presented as
follows (Magnanti and Wong, 1984):

Minimize
∑
k∈K

∑
e∈A

ck
e xk

e +
∑
e∈A

feye; (1)

∑
j∈N+

i

xk
i j −

∑
j∈N−

i

xk
ji =

⎧⎪⎨
⎪⎩

qk, if i = O(k)

−qk, if i = D(k)

0, otherwise

∀i ∈ N, k ∈ K; (2)

∑
k∈K

xk
e ≤ weye ∀e ∈ A; (3)

xk
e ≤ bk

eye ∀e ∈ A, k ∈ K; (4)

xk
e ≥ 0 ∀e ∈ A, k ∈ K; (5)

ye ∈ {0, 1} ∀e ∈ A; (6)

1Aggregated commodities by origin or by destination are not considered here

C© 2020 The Authors.
International Transactions in Operational Research C© 2020 International Federation of Operational Research Societies

R.S. Shibasaki et al. / Intl. Trans. in Op. Res. 28 (2021) 296–326 299

where N+
i = { j ∈ N|e = (i j) ∈ A} is the set of nodes j having an arc arriving from node i and

N−
i = { j ∈ N|e = (ji) ∈ A} the set of nodes j having an arc arriving into the node i. The con-

stants bk
e = min{we, qk}, ∀ e ∈ A and k ∈ K define upper bounds on the commodity flow through

arc e.
The first constraints (2) guarantee the flow conservation in the network, then come the capacity

constraints, and finally the domain of the variables. One can note that the strong forcing constraints
(4) are redundant for the mixed-integer program, but they increase considerably the quality of the
lower bound when solving the linear relaxation of the program (Gendron et al., 1999) as well as
being known to be facet-defining for the convex hull of the solutions (Cornuejols et al., 1991). Many
other valid inequalities for FCMC have been discussed in the literature, see Chouman et al. (2003)
for a complete study, but we will not analyze their addition here.

3. Lagrangian Relaxation and decomposition of the FCMC

The reason for using Lagrangian Relaxation to obtain lower bounds for the FCMC problem is
justified when large-scale instances are involved. These instances will generally be out of reach
for the general purpose MIP solvers like CPLEX, even if they are indeed able to exploit the
block structure of the underlying linear programs (LP) at each node of their branching search
tree.

Resuming the main features of Lagrangian Relaxation, let us start from a primal problem (P) in
R

n, supposed to be linear with mixed-integer variables, defined as

Minimize c.x s.t. Ax = b, x ∈ S,

where Ax = b represent the difficult constraints that are to be relaxed (A is a (p × n) matrix). The
set S may be discrete and defined by linear constraints. The continuous (or linear) relaxation lower
bound is defined as ZL = minx c.x s.t. Ax = b, x ∈ Conv(S), where Conv(S) is the convex hull of
the set S.

For a given vector of Lagrange multipliers u ∈ R
p associated with the difficult constraints, the

Lagrangian subproblem defines a lower bound for the optimal value of the primal problem:

L(u) = inf
x∈S

(c − AT u).x + b.u.

The dual problem is thus to search the best lower bound, that is, to maximize the dual func-
tion L on R

p that is indeed concave on any convex subset of its domain (see, for example,
Lemaréchal, 1989). That function is generally nonsmooth and piecewise affine (with a huge num-
ber of pieces, theoretically up to the number of extreme points of the polyhedral set Conv(S)).
This motivates the search for efficient algorithms of nonsmooth optimization. These take profit
of the fact that, for any solution x(u) of the Lagrangian subproblem, a subgradient of L at u
is easily computed, indeed g(u) = b − Ax(u) ∈ ∂L(u), where ∂L(u) denotes the set of subgradi-
ents of L at u. Finally, we recall that the best lower bound ZR = supu L(u) is finite if the primal
problem is feasible and satisfies ZL ≤ ZR ≤ Z∗, where Z∗ is the optimal value of the primal prob-
lem. Moreover, ZL = ZR if the Lagrangian subproblem has the integrality property (Geoffrion,
1974).

C© 2020 The Authors.
International Transactions in Operational Research C© 2020 International Federation of Operational Research Societies

300 R.S. Shibasaki et al. / Intl. Trans. in Op. Res. 28 (2021) 296–326

Subgradient algorithms were studied by Shor and Polyak in the 1960s (Polyak, 1969) and first
applied to the Lagrangian Relaxation of hard combinatorial problems by Held and Karp (1971)
in their seminal paper on the Traveling Salesman problem. Further improvements have been pro-
posed later, either by the Russian school (Khachian, 1980; Shor, 1985) or by western researchers
(Held et al., 1974). These variants try to improve the search direction like in the conjugate gra-
dient method or change the metric of the direction-finding step (Khachian’s ellipsoid algorithm
is indeed a subgradient method). As it can be seen below, Bundle methods and the Volume algo-
rithm share the same strategy as these early methods, extending the direction-finding step to more
than two former subgradients. We will now focus on the NDO solvers: the Volume and Bundle
algorithms.

3.1. Volume

Observing that the dual function, as a piecewise affine concave function, can be written as the
infimum of a finite set of affine functions associated with the potential solutions of the Lagrangian
subproblems xj, j ∈ J, that is, the extreme points of Conv(S), the dual problem can be written
as

Maximize Z

s.c.: Z ≤ c.xj + u.(b − Axj) ∀ j ∈ J

u ∈ R
p, Z ∈ R,

(7)

a linear program with a generally exponential number of constraints that, dualized in its turn, yields
the following so-called master program (of the Dantzig–Wolfe decomposition, see Lemaréchal,
1989):

Minimize
∑
j∈J

(c.xj)λ j

s.t.:
∑
j∈J

(Axj − b)λ j = 0

∑
j∈J

λ j = 1

λ j ≥ 0, ∀ j ∈ J.

(8)

Cutting planes algorithms use a subset Jt of J at each outer iteration t corresponding to part
of the extreme points already generated by the Lagrangian subproblems, thus yielding a re-
stricted master problem where the primal variables λ j are the weights of the extreme points
xj, j ∈ Jt in a primal solution x̄ = ∑

j∈Jt
λ jx

j , feasible for the polyhedral constraint set {Ax = b, x ∈
Conv(S)}.

The Volume algorithm attempts to find an approximate solution of that master problem by
computing at each iteration t a stability center ū, a step st

v, and a subgradient-based direction dt
v.

C© 2020 The Authors.
International Transactions in Operational Research C© 2020 International Federation of Operational Research Societies

R.S. Shibasaki et al. / Intl. Trans. in Op. Res. 28 (2021) 296–326 301

The stability center represents a point that has provided significant improvement with respect to
the optimization process. In its turn, the step represents how far one may move in the direction
of dt

v = (b − Ax̄), so that a new trial point ut = ū + st
v · dt

v is obtained. The stability center ū will
be updated whenever L(ut) − L(ū) > 0 and dt

v · (Axt − b) > 0 (yielding then a “green iteration” or
“serious step”).

The directions are updated at each iteration according to the primal vector estimate x̄ such that

x̄ ← θxt + (1 − θ)x̄.

The parameter θ ∈ [0 1] is itself updated in order to force an ascent direction, that is, such that

gt · (θgt + (1 − θ)dt
v) ≥ 0.

As stated in Barahona and Anbil (2000), at the end of an iteration t, {θ , (1 − θ)θ , (1 − θ)2θ, . . . , (1 −
θ)tθ} can serve as an approximation for the primal variables λ1, . . . , λt of the Dantzig–Wolfe’s master
problem, with respect to the dual constraints. Furthermore, those λ could be approximated by the
volume between the active faces of (7) and the current lower bound Z̄, which explains the name of
the method. The choice of the key parameters is detailed in Section 5.2.

3.2. Bundle

Bundles were initially presented as extensions of the method of ε-subgradients (Wolfe, 1975;
Lemaréchal, 1989); nevertheless, recent versions include different backgrounds. It is usual to
say that bundle methods are stabilized versions of Kelley’s (1960) cutting plane algorithm, since
they have the same idea of computing models to approximate functions. Bundle methods usu-
ally present better performance than Kelley’s algorithm since they avoid going too far from the
current point, thanks to the stabilization term added to the objective function. Many variants
and extensions have been discussed in the literature but it is not the aim of the present pa-
per to survey them. A remarkable work by Lemaréchal et al. (1995) has proposed to cover and
analyze most of these stabilized variants under the name of “level methods.” Later, Frangioni
(2002) introduced a generalized bundle method and a version for cases in which the Lagrangian
dual can be decomposed; see also Oliveira and Sagastizábal (2014) for a brief survey on bundle
methods.

The main idea is to gather information throughout iterations in order to build a model to
approximate the dual function L(u). Indeed, if g is a subgradient of the concave function L at
ū, then L(u) ≤ L(ū) + g.(u − ū) ∀ u ∈ R

p (extending the dual value with −∞ if the Lagrangian
subproblem is unbounded). Assuming that there exists an initial bundle β = {i | gi ∈ ∂L(ui)}, L̂(u)

is the piecewise affine concave function such that

L(u) ≤ L̂(u) := min{L(ui) + gi.(u − ui) : i ∈ β} ∀u ∈ R
p. (9)

The model at this point is represented by a group of affine functions that together form an easier
NDO problem. The Moreau–Yosida regularization comes then as an alternative to this problem

C© 2020 The Authors.
International Transactions in Operational Research C© 2020 International Federation of Operational Research Societies

302 R.S. Shibasaki et al. / Intl. Trans. in Op. Res. 28 (2021) 296–326

since the function and its regularized function share the same maximum. The regularized concave
function is defined by

Ls(ū) = maxu L̂(u) − 1
2sb

‖u − ū‖2, (10)

where sb is the step size in the bundle method.
Assuming the bundle has m parts, thanks to the information transfer property (Lemaréchal,

1989), it is convenient to rewrite the bundle in terms of linearization errors computed at ū, such
as ei := L(ui) − L(ū) + gi.(ū − ui) ∀i = 1, . . . , m. Then rewriting the calculation of Ls(ū) as a
constrained program with an auxiliary scalar variable η:

Maximize η − 1
2sb

‖u − ū‖2

η ≤ L(ū) + gi(u − ū) + ei ∀i ∈ β (11)

u ∈ R
p, η ∈ R

and further dualizing (11) with the dual coefficients αi ≥ 0, i ∈ β, one obtains:

Minimize
sb

2

∥∥∥∥∥∥
∑
i∈β

αigi

∥∥∥∥∥∥
2

+
∑
i∈β

αiei + L(ū)

∑
i∈β

αi = 1 (12)

αi ≥ 0 ∀i ∈ β.

The main search procedure is to get, at each iteration t, the solution αt of (12) and a new trial
point along the direction of dt

b = ∑
i∈β αt

i gi with a step of size st
b. Furthermore, the strong duality

property of the pair of quadratic programs allows to estimate the increase in the current solution
value if such step is performed, that is, denoting ut the current solution of (11):

	β = L(ut) − L(ū) = st
b

∥∥∥∥∥∥
∑
i∈β

αt
i gi

∥∥∥∥∥∥
2

+
∑
i∈β

αt
i ei. (13)

A weaker version can be obtained considering Ls(ū) the solution value of (12) and taking
δβ = Ls(ū) − L(ū) as an estimation (see Section 5.2 for more implementation issues on the role of
these estimates).

Bundle methods are now known to be very efficient while solving the Lagrangian dual problem,
however, with the drawback of the need to solve a quadratic subproblem at each iteration, which
can significantly decrease the performance of the method. Frangioni (1996) introduced a specially
tailored algorithm to solve such quadratic programs (12) in a way to reduce the computational cost
and we have used his software in our experiments.

C© 2020 The Authors.
International Transactions in Operational Research C© 2020 International Federation of Operational Research Societies

R.S. Shibasaki et al. / Intl. Trans. in Op. Res. 28 (2021) 296–326 303

So to conclude this short presentation, it can be observed that both algorithms rely on similar
features, namely a combination of subgradients from which a stability center is built for the dual
problem and, simultaneously, a tentative primal solution converges to a feasible (but generally
fractional) solution. Convergence issues will not be discussed here (see Frangioni, 2002, among
others, for the bundle method). It can just be mentioned that the Volume algorithm can be slightly
modified to be interpreted as a bundle method and thus inherit its convergence properties (Bahiense
et al., 2002).

3.3. Decomposition of the pricing subproblem

Different choices to relax subsets of constraints of FCMC have been considered in the literature.
The most common are:

� Relaxing the capacity constraints (including the strong inequalities) (3)–(4) inducing a decompo-
sition by commodity of the pricing step into shortest-path subproblems.

� Relaxing the flow conservation constraints (2) inducing a decomposition by arcs into knapsack
subproblems.

Direct comparisons on these choices have been made in different works (Gendron et al., 1999;
Crainic et al., 2001; Gendron, 2011) as well as combinations of both, in the so-called “total relax-
ation,” which has been used successfully for the “proximal decomposition” of convex-cost multi-
commodity flow problems (Ouorou et al., 2000) and also considered by Gendron and Larose (2014)
for the present case of FCMC.2

Even if it depends on the type of instances, the relaxation of the flow conservation constraints
has shown a better behavior and these comparisons are generally combined with discussions on
the possibility to aggregate commodities by origins (or by destinations) or to force other valid
inequalities in the model. We will focus on the model FCMC of Section 2, thus only including the
strong forcing inequalities (4).

Let the dual multipliers be denoted by

� αe ≥ 0, e ∈ A for the capacity constraints (3),
� γ k

e ≥ 0, e ∈ A, k ∈ K for the strong forcing inequalities (4),
� πk

i ∈ R, i ∈ N, k ∈ K for the flow conservation Equations (2),

in order to compare the trade-off between the number of dual variables and the potential splitting
into smaller subproblems.

3.4. Solving the pricing subproblem

As it is generally considered in the literature to be the most effective strategy, one can choose the
relaxation of the flow conservation constraints for illustration purpose. The Lagrange multipliers

2New strategies called “node-based Lagrangian Relaxation” (Kazemzadeh et al., 2019) have come recently to our knowl-
edge and it could be valuable to test them on similar instances as the ones reported here.

C© 2020 The Authors.
International Transactions in Operational Research C© 2020 International Federation of Operational Research Societies

304 R.S. Shibasaki et al. / Intl. Trans. in Op. Res. 28 (2021) 296–326

associated with each node i and each commodity k are denoted by πk
i ∈ R, ∀ i ∈ N, k ∈ K. The

dual space is thus in R
|N|×|K|, which can be huge for a full set of commodities (of order |A|2). The

complete Lagrangian dual function is given by

L(π) = min
y

∑
e∈A

[fe + ge(π)]ye +
∑
k∈K

qk (
πk

D(k) − πk
O(k)

)
, (14)

ye ∈ {0, 1}, ∀e ∈ A, (15)

where, for each arc e = (i j) ∈ A:

ge(π) = min
x

∑
k∈K

(
ck

i j + πk
i − πk

j

)
xk

i j, (16)

∑
k∈K

xk
i j ≤ wi j, (17)

0 ≤ xk
i j ≤ bk

i j, ∀k ∈ K. (18)

Thus, computation of ge(π) is a continuous knapsack problem defined separately for each arc
e ∈ A, and very simple to be solved. It suffices to fill up the arc with the commodities having the
most negative reduced costs (ck

e + πk
i − πk

j) ≤ 0 if any, until the arc flow equals the capacity.
The Lagrangian dual problem is then defined as the maximization of the Lagrangian function

L(π) on π ∈ R
N×K as discussed in the previous sections.

4. Upper bounds

We propose a heuristic scheme to obtain upper bounds for the FCMC problem. The main idea,
employed repeatedly, is to select arcs to compose a topology and then optimize the routing of
multicommodity flows over the topology set down. The heuristic makes use of (i) perturbations on
a given topology to build a pool of topologies, and (ii) arc combinations between pairs of topologies
from the pool. A key element of the heuristic is the use of information collected throughout the
Lagrangian optimization process to guide topology construction, in particular the frequency in
which an arc is opened when solving the subproblem (14)–(18) at each Lagrangian iteration.

4.1. Initial solution

Let us now describe the construction of a first feasible topology, which is done after the procedure
to obtain the Lagrangian lower bound. Let yc f ∈ R

|A|, with values 0 ≤ yc f
e ≤ 1, ∀e ∈ A, be the

frequency vector of opening arcs, that is, the ratio between the number of Lagrangian iterations arc
e was opened and the total number of Lagrangian iterations.

Algorithm 1 describes the procedure to get an initial solution. After solving the Lagrangian dual,
the frequency value is used trying to identify attractive arcs to compose a topology. Thus, all arcs

C© 2020 The Authors.
International Transactions in Operational Research C© 2020 International Federation of Operational Research Societies

R.S. Shibasaki et al. / Intl. Trans. in Op. Res. 28 (2021) 296–326 305

with frequency yc f
e ≥ 0.3 are fixed to 1, forming the topology A0, and all arcs with yc f

e ≤ 0.001
are discarded. The set
 contains the unfixed arcs that will be later evaluated according to their
frequency in further solutions of restricted Lagrangian subproblems. Preliminary computational
experiments have shown that topologies composed strictly with arcs such that yc f

e ≥ 0.3 often do
not support feasible routing of the multicommodity flows. So, in the while loop, the attractive arcs
that remained in set
 can be identified. Lagrangian subproblems (14)–(18) are then succesively
solved with ye fixed to 1 if e ∈ A0, ye unfixed if e ∈
, and ye fixed to 0 if e /∈ A0 ∪
. As restricted
subproblems have fewer arcs and some of them are already set to 1, it is expected that some unfixed
arcs may no longer be necessary, while others may become more requested. Solving the FCMC
Lagrangian dual with respect to
 ∪ A0 yields a new vector of frequencies y f for arcs in
. The new
frequencies serve as basis to fix arcs in
, such that the arc is opened if y f

e ≥ 0.3, or closed if y f
e < b,

where b is a threshold value. The value of b is then increased every time there is no change in
.

Algorithm 1. First Feasible Topology

Given yc f , the vector of frequency
A0 = {e ∈ A : yc f

e ≥ 0.3}

 = {e ∈ A : 0.001 ≤ yc f

e < 0.3}
b = 0.01
while b ≤ 0.05 do

Set ye = 1, ∀e ∈ A0
Solve Lagrangian Dual for set
 ∪ A0 (i.e., (7) if using Volume, or (11) if using Bundle)
Given y f , the vector of frequency
A0 = A0 ∪ {e ∈
 : y f

e ≥ 0.3}

 =
 \ {e : y f

e < b or y f
e ≥ 0.3}

if No changes in
 then
b = b + 0.01

Check/Restore feasibility of A0
Solve the multicommodity flow problem over topology A0
return A0

Given the topology A0 ⊆ A obtained at the end of the while loop, the objective is to try to satisfy
all the multicommodity demands subject to the installed arc capacities. If such demand can be
satisfied, the topology is feasible, otherwise either there is no path for a flow to go from its origin
to its destination, or there are paths for all k ∈ K but the capacities installed are not sufficient. The
checking procedure adds artificial flow variables xk

od ≥ 0 with high transportation costs for each
commodity k ∈ K, such that o = O(k) and d = D(k). The simplex algorithm is applied until the
first basic feasible solution is obtained (Phase I of the method). If all artificial variables have value
zero, the topology is feasible and the optimization phase takes place to solve the multicommodity
flow problem using column generation (similar to what is described in Gendron and Larose, 2014).
Otherwise, a restoring procedure takes place.

To restore feasibility, the procedure consists in rerouting the flow present in each artificial variable
through the shortest path between the origin and the destination of the corresponding commodity,
using Dijkstra’s algorithm. To ensure that, for a given k, the computed path can accommodate
q = xk

od > 0 units of flow, only arcs with enough residual capacity are considered, that is, the

C© 2020 The Authors.
International Transactions in Operational Research C© 2020 International Federation of Operational Research Societies

306 R.S. Shibasaki et al. / Intl. Trans. in Op. Res. 28 (2021) 296–326

original arc capacity minus the total flow in the arc must be greater than or equal to q. The costs
are recomputed accordingly to the amount of flow to be routed, so for a given k, if e ∈ A0, then
ck′

e = ck
e q, otherwise ck′

e = ck
e q + fe(1 − yc f

e) (e ∈ A \ A0). To summarize, for each commodity with
a positive artificial slack, the capacities and costs are recomputed and an O-D shortest path is
obtained. The flow is then rerouted and the same process is repeated until all artificial variables have
zero value. Finally, all arcs not in A0, but carrying some flow, are added to the topology and the
optimal flow is computed using column generation. The commodities are examined in increasing
order of q. Once the solution is obtained, opened arcs e ∈ A0 with no flow are deleted from the
topology and its fixed cost subtracted from the solution value.

Although, in the computational experiments, a feasible solution has always been found with this
procedure of successive shortest paths, it is important to note that there is no guarantee for a feasible
solution to be found. As the shortest paths are computed successively, it may occur that the only
possible path for a certain commodity has been already blocked by previously routed ones. If the
procedure to restore feasibility fails, an alternative would be to set A0 = A, which is likely to produce
a high-cost solution. As mentioned, that situation did never occur in all computational experiments.

The cost of a feasible topology A0 returned by Algorithm 1 is given by the sum of the fixed
charges of the arcs in A0, plus the transportation costs of routing the multicommodity flow through
that topology.

4.2. Searching for a high-quality solution

The search for a high-quality solution is performed in two phases. In a first phase, some perturbations
are applied to the topology leading to the best solution found so far to build a pool of topologies. In
a second phase, some combinations of arcs are generated from pairs of topologies belonging to the
pool in an attempt to obtain improved solutions. The heuristic performs 10 rounds of such scheme,
and returns the best solution found.

Algorithm 2 presents the heuristic. The topology leading to the best solution found so far is kept
as Abest , which is initially set to the first feasible solution obtained with Algorithm 1 described in the
previous section. Let c∗(A′) be the optimal cost of a multicommodity flow problem over a topology
A′ ⊆ A (optimal routing cost), then U B is the best upper bound known so far.

The perturbation phase builds a new pool in each round by applying perturbations to Abest . A
perturbation consists in replacing a percentage of the arcs in Abest. The procedure of perturbation
will be described later. For each value p = 2%, 4%, 6%, 8%, 10% of |Abest|, n = 1, . . . , 5 topologies
An are generated. Let L(An) be the value computed with Lagrangian Relaxation for the optimal
routing cost over topology An, n = 1, . . . , 5. Lagrangian Relaxation is used to compute the routing
cost in order to speed up the algorithm. The corresponding Lagrangian dual is obtained with
the relaxation of the flow conservation constraints and the subproblem defined by (14)–(18) with
variables ye set to 1, if e ∈ An, 0 otherwise. For each value of p, a topology of minimum cost among
the five generated is added to the pool. Thus, at the end of the perturbation phase, the pool has five
topologies, each one generated with a different value of p.

The combination phase generates topologies considering pairs of topologies from the pool.
For each unordered pair {A′, A′′} of the pool, n = 1, 2, 3 topologies An are generated, such that
An ⊆ A′ ∪ A′′ and An ⊇ A′ ∩ A′′. The frequency vector yc f defined above is used as the probability

C© 2020 The Authors.
International Transactions in Operational Research C© 2020 International Federation of Operational Research Societies

R.S. Shibasaki et al. / Intl. Trans. in Op. Res. 28 (2021) 296–326 307

for an arc e ∈ A′�A′′ to be inserted in An, so arcs with a high frequency have more chances to be
selected. Again, Lagrangian Relaxation is used to compute the routing cost over An, and Around is
updated if it is the case.

At the end of each round, a new topology Around is found. If its cost improves U B, the procedure
is applied to check and restore feasibility if needed as described in the previous section. The actual
routing cost over the feasible topology Around is computed, and Abest and the corresponding U B
are updated if this is the case. The heuristic returns Abest and U B, which is used to compute an
optimality gap with respect to the lower bound provided by Lagrangian Relaxation.

Algorithm 2. Two Phase Searching

Set Abest = A0 and U B = ∑
e∈A0

fe + c∗(A0)

for round = 1 to 10 do
Pool ← ∅

for p = 2%, 4%, 6%, 8%, 10% of |Abest | do � Perturbation Phase
for n = 1, . . . , 5 do

Generate An by perturbation of p arcs to Abest � Algorithm 3
Compute L(An)

Pool = Pool ∪ {arg minn=1,...,5{
∑

e∈An
fe + L(An)}}

Around = arg minA′∈Pool {
∑

e∈A′ fe + L(A′)}

for each unordered pair {A′, A′′} of Pool such that A′ �= A′′ do � Combination Phase
for n = 1, 2, 3 do

An = A′ ∩ A′′

for all e ∈ A′�A′′, i.e., in the symmetric difference of the sets A′ and A′′ do
Select a random number q ∈ [0, 1]
if q ≤ yc f

e then
An = An ∪ {e}

Compute L(An)

Update Around if
∑

e∈An
fe + L(An) <

∑
e∈Around

fe + L(Around)

if
∑

e∈Around
fe + L(Around) < U B then

Check/Restore feasibility of Around
Solve the multicommodity flow problem over Around
Update Abest and U B if

∑
e∈Around

fe + c∗(Around) < U B
return Abest and U B

Algorithm 3 describes the perturbation phase. The inputs are the topology Abest, the frequency
vector yc f , and the number p of arcs to be replaced. A threshold of 0.05 is used, as in Algorithm 1,
to select a set
 ⊆ A \ Abest of unfixed arcs. Initially, topology An is set to Abest , and then in the
while loop p arcs are removed from An. Given a randomly chosen arc e ∈ An, the frequency value
yc f

e is used as the probability for e to be kept in An, so arcs with a high frequency have less chance to
be removed. The procedure to insert arcs in An is similar to the one used in Algorithm 1. New arc
frequencies y f are computed while solving the FCMC Lagrangian dual defined over
 ∪ An with
the arcs in
 unfixed. Note that the p arcs that were removed from An do not belong to
. At most

C© 2020 The Authors.
International Transactions in Operational Research C© 2020 International Federation of Operational Research Societies

308 R.S. Shibasaki et al. / Intl. Trans. in Op. Res. 28 (2021) 296–326

p arcs are selected with the highest y f values to be included in An, given that it must not be inferior
to 0.3.

Algorithm 3. Perturbations

Given Abest , the frequency vector yc f , and p

 = {e ∈ A : yc f

e ≥ 0.05} \ Abest
An = Abest
while less than p arcs were removed from An do

Randomly choose an arc e ∈ An
Select a random number q ∈ [0, 1]
if q ≥ yc f

e then
An = An \ {e}

Set ye = 1, ∀e ∈ An
Solve Lagrangian Dual for set
 ∪ An (i.e., (7) if using Volume, or (11) if using Bundle)
Given y f , the frequency vector
Insert in An at most p arcs of
 with the largest values of y f , y f ≥ 0.3
return An

5. Computational experiments

To solve the Lagrangian dual, the two algorithms were implemented in C++, compiled with
g++ version 4.8.5, using the flag -O3. Tests were run on a CentOS Linux 7 3.1 GHz Intel Xeon
machine, with 60 Gb RAM. The linear programs were solved with CPLEX 12.7.0.0. The Volume
implementation has been provided by the COIN-OR project https://projects.coin-or.org/Vol and
the Bundle implementation by Frangioni (2013).

5.1. Instances

Instances were elaborated using the generator available at http://www.di.unipi.it/optimize/Data/
MMCF.html. The instance generator receives a number |N| of nodes, a number |A| of arcs, and a
number |K| of commodities as parameters. Two nodes are randomly connected until the number of
arcs is achieved, with parallel arcs not allowed. A similar procedure is adopted for the commodities.

Costs, capacities, and demands are uniformly distributed in an interval given also as parameter.
However, costs and capacities are recomputed in order to obtain different difficulty levels among
the instances, as well as proposed in Crainic et al. (2001). Two ratios are used to do so: one for the
capacities C and another F for fixed costs.

C = |A|
∑
k∈K

qk/
∑

(i, j)∈A
wi j

F = |K|
∑

(i, j)∈A

fi j/

⎛
⎝∑

k∈K

qk
∑
k∈K

∑
(i, j)∈A

ck
i j

⎞
⎠ .

C© 2020 The Authors.
International Transactions in Operational Research C© 2020 International Federation of Operational Research Societies

https://projects.coin-or.org/Vol
http://www.di.unipi.it/optimize/Data/MMCF.html
http://www.di.unipi.it/optimize/Data/MMCF.html

R.S. Shibasaki et al. / Intl. Trans. in Op. Res. 28 (2021) 296–326 309

Table 1
Characteristics of the instances generated for this study

Group Nodes Arcs Commodities (C–F) ratios Binary Var Continuous Var Constraints

A 100 1000 2000 (10–0.5), (8–0.5), (14–0.5) 1.0 × 103 2.0 × 106 2.2 × 106

B 100 1000 500 (10–10), (6–10), (14–10) 1.0 × 103 5.0 × 105 5.5 × 105

C 100 1000 800 (2–10), (2–0.001), (14–0.001) 1.0 × 103 8.0 × 105 8.8 × 105

D 100 1200 1000 (1–20), (14–12), (20–0.001) 1.2 × 103 1.2 × 106 1.3 × 106

E 100 2000 2000 (1–20), (1–0.001), (20–0.001) 2.0 × 103 4.0 × 106 4.2 × 106

F 100 5000 7000 (1–20), (1–0.001), (20–20) 5.0 × 103 3.5 × 107 3.6 × 107

G 100 8000 8000 (20–0.001), (1–0.001), (20–20) 8.0 × 103 6.4 × 107 6.5 × 107

H 200 12,000 10,000 (1–20), (1–0.001), (20–20) 1.2 × 104 1.2 × 108 1.2 × 108

In general, for low values of C, the network is lightly constrained, but it becomes more congested
as C increases. Moreover, for low values of F , fixed costs lose relevance in the objective function,
while the converse happens if F is sufficiently increased.

Eight groups of very large scale instances were generated for the experiments in this work. Table 1
describes the features of each group of instances. The first column identifies the group. The second
to the fourth columns show the network size. The fifth column shows the (C–F) ratios considered,
five randomly instances were generated for each (C–F) ratio. For example, Group A has 15 instances
of 100 nodes, 1000 arcs, and 2000 commodities, five of them for each of the three cluster (C–F)
ratios. Then, the sixth to the eighth columns show the number of binary variables, of continuous
variables, and constraints, respectively, generated in the model given by (1)–(6) for each instance
of the group. The goal has been to test large scale instances with different levels of difficulty. The
higher the ratios, the higher is the expectation to get a difficult instance, due to the large importance
of fixed charges and capacity restrictions.

In addition, the benchmark group Canad-N with 48 instances was also tested, corresponding to
medium size randomly generated problem instances. These instances were introduced by Frangioni
and Gorgone (2014) and are available for download at http://www.di.unipi.it/optimize/Data/
MMCF.html. In particular, there are 12 different network sizes, and four instances with different
capacity and fixed-charge ratios were generated for each size. Table 2 presents these instances, a
more detailed description can be found in Frangioni and Gorgone (2014). Analogously to the
previous table, in Table 2 the first column identifies the group. The second to the fourth columns
show the network size, and the fifth to the seventh columns show the number of binary variables, of
continuous variables, and constraints, respectively, generated in the model given by (1)–(6) for each
instance of the group.

5.2. Computational settings

The subgradient algorithms were tuned in order to obtain the best trade-off between good-quality
bounds and fast convergence. A limit of 1000 iterations and a time limit of 10,000 seconds have been
set and different calibrations were tested to keep the best one on average. The chosen configuration
was then applied on the whole testbed. Parameters not discussed here were not crucial for the
performances of the algorithms and so they were left as its default value.

C© 2020 The Authors.
International Transactions in Operational Research C© 2020 International Federation of Operational Research Societies

http://www.di.unipi.it/optimize/Data/MMCF.html
http://www.di.unipi.it/optimize/Data/MMCF.html

310 R.S. Shibasaki et al. / Intl. Trans. in Op. Res. 28 (2021) 296–326

Table 2
Characteristics of the benchmark instances considered in this study

Instances Nodes Arcs Commodities Binary Var Continuous Var Constraints

cN/ 01-04 20 299 100 3.0 × 102 3.0 × 104 3.2 × 104

cN/ 05-08 20 298 200 3.0 × 102 6.0 × 104 6.4 × 104

cN/ 09-12 20 297 400 3.0 × 102 1.2 × 105 1.3 × 105

cN/ 13-16 20 300 800 3.0 × 102 2.4 × 105 2.6 × 105

cN/ 17-20 30 599 100 6.0 × 102 6.0 × 104 6.3 × 104

cN/ 21-24 30 599 200 6.0 × 102 1.2 × 105 1.3 × 105

cN/ 25-28 30 598 400 6.0 × 102 2.4 × 105 2.5 × 105

cN/ 29-32 30 597 800 6.0 × 102 4.8 × 105 5.0 × 105

cN/ 33-36 50 1200 100 1.2 × 103 1.2 × 105 1.3 × 105

cN/ 37-40 50 1200 200 1.2 × 103 2.4 × 105 2.5 × 105

cN/ 41-44 50 1200 400 1.2 × 103 4.8 × 105 5.0 × 105

cN/ 45-48 50 1200 800 1.2 × 103 9.6 × 105 1.0 × 106

To calibrate the Bundle implementation, the discussion made by Crainic et al. (2001) was taken
as reference. In that paper, a few suggestions are made for parameters related to the bundle admin-
istration and the stepsize choice. Indeed, the settings proposed by the authors performed well, even
for the new generated instances. Furthermore, despite the absence of a similar study for the Volume,
the best settings were, somehow, similar to the Bundle ones as precised below.

Concerning the Volume algorithm, the stepsizes are computed by st
v = ρ(L∗ − L(ū))/‖dt

v‖2 as
stated by Polyak (1969), given that L∗ is a target value for the Lagrangian bound L∗ > L(ū), which is
updated as the bound L(ū) increases. An initial value is given to ρ, which is then updated accordingly
to each iteration label, namely red, yellow, or green. In short, if no improvement is detected, the
iteration is labeled red, on the contrary, the scalar μv = gt · dt

v is computed. If μv ≥ 0, the iteration
is called green, otherwise it is called yellow. On the other hand, in the case of the Bundle method,
the step st

b is set to an initial value and updated accordingly to the type of iterations classified as null
or serious steps. Normally, a serious step happens if the real increase in the current bound matches
some fraction of the predicted one, that is, if L(ut) − L(ū) ≥ 0.1δβ , and a null step occurs in the
opposite case. Good results were obtained for the Bundle method keeping s0

b = 1.0 and an initial
value ρ0 = 0.1, thanks to the slightly better bounds on average.

Usually, stepsizes are reduced after a series of iterations without improvements and can be
enlarged when a profitable search direction is available. In the specific case of the Bundle implemen-
tation, the decrease also depends on whether et ≤ 0.3

∑
i∈β αiei. If the condition is true, the decrease

is inhibited, assuming that an accurate first-order information has been gathered.
A minimum of four consecutive iterations without improvement before reducing the stepsize was

established in both algorithms. It means that ρ is diminished after nrv = 4 red iterations and st
b after

nnb = 4 null steps. Inversely, both ρ and st
b are increased after every green iteration and serious step.

Even though yellow iterations in the Volume algorithm represent a gain in the current solution, the
scalar product μv < 0 indicates that the current subgradient may not be that interesting, so then,
a more cautious rule might be preferable. It was also set a minimum of four consecutive yellow
iterations before ρ is increased. Moreover, it might be important to point out the fact that, in both

C© 2020 The Authors.
International Transactions in Operational Research C© 2020 International Federation of Operational Research Societies

R.S. Shibasaki et al. / Intl. Trans. in Op. Res. 28 (2021) 296–326 311

implementations, better bounds were obtained setting higher values for nrv and nnb (for example
10), but significantly more computational time was needed to achieve those bounds.

With respect to the procedure of increasing/reducing stepsizes, the Volume algorithm simply
multiplies ρ by a factor 0 < r < 2, which can be 0.66, 1.1, and 2, for red, yellow, and green iterations,
respectively, while the Bundle method presents a more complex rule, see Frangioni (1997) for a
detailed explanation. Indeed, to update st

b, the maximizer of the quadratic one-dimensional function
φ(s) = L(ū + sdt

b) that satisfies φ(0) = L(ū), φ(st
b) = L(ut), and φ

′
(st

b) = gt · dt
b = μb has been used.

That maximizer will be greater than st
b if and only if μb > 0, which resembles the yellow step policy

present in the Volume algorithm. Practically the same function is used to perform stepsize decreases,
but with the derivative in the current point φ

′
(0) = 	beta.

The red–yellow–green scheme for stepsize updates has been successfully adapted to classical
subgradient-based methods, providing them better performances in terms of solution quality and
number of iterations. In a stochastic optimization context, Escudero et al. (2016) obtained interesting
results applying such scheme to the Subgradient Algorithm. When compared to other NDO solvers,
it managed to provide the best performance overall.

Still concerning the Bundle method, useful information can be derived from the solution of
the quadratic problem (12), which can be helpful in the choice of st

b. Sophisticated heuristics
exploiting those information have been developed by Frangioni (1997). For the present work, the
heuristic implemented tends to increase st

b whenever 	β is not great enough, compared to an ideal
improvement: 	∗ = s∗‖∑

i∈β αt
i gi‖2 + ∑

i∈β αt
i ei, given the parameter s∗, considered as the longest

step it can be taken. In other words, if 	β < 0.001	∗, the latest step performed is useless and a
larger one might be preferable. Sensitive analysis is used in order to ensure that 	β ≥ 	∗ in the
next iteration.

In addition to step-control parameters, it is valuable to consider too the ones related to the search
direction management, which are closely related to how the bundle is updated in the Bundle method
and how the value of θ is chosen throughout the Volume algorithm. Concerning the bundle β, a
maximum size has been set to 10 items. In order to respect that limit, some old subgradients need
to be discarded when a new one is proposed: indeed, a subgradient gi is called active if the dual
variable αi belongs to the optimal basis of the dual subproblem (12). Thus, items are automatically
discarded, if inactive after 20 consecutive iterations. Moreover, if there is no removable item and
an active one must be replaced, an aggregation is done so that the information is not lost. In other
words, a convex linear combination of the |β| items is kept, using the current optimal vector α as
its multiplier.

Back to the Volume algorithm, a heuristic is used to choose the value for θt at each iteration t. In
the intention to obtain an ascent direction, θt is set in an order to have (θtg

t + (1 − θt)d
t
v) · gt ≥ 0,

which can be estimated compared to θ0‖g0‖2. This is done keeping θt ∈ [0, 1] by

θt =
θ0, if τ > 1

θ0/10, if τ < 0

τ, otherwise

τ = max
{
θ0,

θ0‖g0‖2 − dt
vgt

‖g0‖2 − dt
vgt

}
. (19)

The parameter θ0 is initially set to 1.0 and then decreased. More precisely, θ0 is multiplied by a
factor 0.3, every time that the current solution value has not improved by at least 1%. According

C© 2020 The Authors.
International Transactions in Operational Research C© 2020 International Federation of Operational Research Societies

312 R.S. Shibasaki et al. / Intl. Trans. in Op. Res. 28 (2021) 296–326

to Barahona and Anbil (2000), the reductions are made in order to enhance the precision of the
primal solution. A lower bound set to 0.01 allows the algorithm to stop decreasing θt.

Finally, a third stopping criterium as stated by Frangioni et al. (2017) was put in practice for
both algorithms. At an iteration t, if the current search direction dt and its respective linearization
error êt, with respect to the current point ū, are such that s∗‖dt‖2 + êt ≤ ε|L(ū)|, the algorithm
stops. As described before, s∗ is an estimate of the largest step that can be performed along dt

and an interesting value for it was found to be 1◦ or 2◦ of magnitude from the initial value set to
st

b. Such observation has been made within the Bundle method context. Nevertheless s∗ was set
to 10 and ε to 10−4 in both implementations. The rationale behind this criterium is to stop the
iterations if the maximum estimated improvement is less than a fraction of the current solution
value. Alternatively, one can say that the condition indicates that both ‖dt‖2 and êt are relatively
small enough. Although some modifications are needed to be done in the Volume algorithm for the
computation of the linearization error, they did not represent a significant loss in performance.

The settings concerning the Lagrangian heuristic discussed in Section 4 were almost all presented
during the explanation of the algorithm. In general, a priority was given to the computational time
performance, due to the very large scale instances. Therefore, the combinations were limited to three
for each pair of topology and for each percentage p of arcs, only five perturbations are performed.
The number of rounds was set to 10, with a computational time limit of 24 hours for the heuristic
to run.

Still aiming at the time consumption, the results obtained with the first relaxation (presented in
5.3) showed that the most crucial steps were usually performed in the first quarter of the optimization
process, which led us to set a reduced limit of 250 iterations to the NDO optimizers to solve each
routing subproblem. When the solution value is not important and the solvers are only used in the
interest of computing the frequency of unfixed arcs, the limit is set to 100 iterations. In addition,
attempting to boost those secondary Lagrangian optimizations, the first dual solution obtained
with the FCMC Lagrangian Relaxation was used as hotstart.

5.3. Computational results

We first analyze the computational performance of the Volume and Bundle methods to obtain lower
bounds for the FCMC. Then, we analyze the optimality gaps we can get with the lower and upper
bounds procedures.

5.3.1. Computational performance of the Volume and Bundle methods
Volume and Bundle methods will be compared in terms of the quality of the lower bound they
provide, and in terms of time consumption. Because the Lagrangian subproblem resulting from
the relaxation of flow conservation constraints, that is, (14)–(18), has the integrality property, the
Lagrangian bound is theoretically equal to the linear relaxation bound. Thus, it means that in case
the linear program is solved to optimality, one has a good-quality proof for the lower bounds. We ran
the CPLEX Dual-Simplex algorithm in an attempt to get the linear relaxation value. Unfortunately,
the linear relaxation for the large instances with 2000 or more commodities could not be solved
to optimality, keeping the linear relaxation bound for instances Canad-N and for the groups B–D.

C© 2020 The Authors.
International Transactions in Operational Research C© 2020 International Federation of Operational Research Societies

R.S. Shibasaki et al. / Intl. Trans. in Op. Res. 28 (2021) 296–326 313

The linear relaxation of instances with low fixed costs, C 02_001, C 14_001, and D 20_001, could
be solved in few minutes, whereas it can take few days to solve the others.

A brief comparison in terms of memory consumption was also made. As expected, the Volume
algorithm is more efficient in terms of RAM consumption, since the Bundle might have approxi-
mately |β| times more data to store. Especially for group H, while the Volume algorithm consumed
3 GB in average for that group, the Bundle needed 14 GB of RAM, which can be an obstacle
depending on the machine available to solve problem instances of that size.

Although Crainic et al. (2001) discuss the dynamic generation of Lagrangian variables aiming to
decrease levels of time and RAM consumption, the same scheme can also be adapted to the Volume,
as discussed by Frangioni et al. (2017). Moreover, results have shown that such a mechanism is not
efficient for the decomposition considered here. The procedure tries to work only with the variables
related to violated relaxed constraints, which leaves the possibility of saving time and memory,
excluding variables that would have zero value throughout most part of the optimization process.
That works very well when the capacity inequalities are being relaxed, but in the present case, it is
very expected that all variables might be generated, given that equality constraints are more likely
to be violated.

Table 3 presents average computational results. The first column indicates the group of instances.
The line of instances Canad-N corresponds to average results for 48 instances, the remaining lines
correspond to average results for five instances with each C–F ratio in each group, see Table 1. Then,
for each method, we report in column “Deviation” the average deviations in percentage between
the lower bound obtained with the method and the best lower bound obtained. In case of instances
of groups Canad-N, B, C, and D, the best lower bound is the linear relaxation value. Otherwise,
the best lower bound is the best one given by either Volume or Bundle. Thus, for instances A,
E, F, G, and H, a 0.00% deviation means that the method obtained the best lower bounds for
all five instances with a given C–F ratio in a group. The best average results for each group of
instances are highlighted in bold face. The computational time is reported in column “Time”
in seconds.

For the experiments conducted, Table 3 shows that, in average, the Volume algorithm had better
performance in terms of lower bound quality and time consumption than the Bundle method. The
differences in computation times become evident when large instances are involved, which confirms
that the fact of dealing with a quadratic problem at each iteration can be a bottleneck for the Bundle
method. For example in group H, since the average time per iteration is much higher, the method
performed fewer iterations due to the time limit, which consequently impacted the bound quality.

In general, taking as reference the cases in which the linear optimal could be obtained, the La-
grangian bounds were very close to the theoretical one, but without reaching the required precision.
For almost all the testbed, both algorithms stopped because either the time or the iteration limits
were attained.

We plot in Fig. 1 the bound progression by the computation time for the larger instances. The
curves indicate the ratio between the current value LBt

x and LBbest measured every five iterations and
the respective computation time at that precise moment. The curves for groups E–H (Figs. 1a–d)
confirm the already known fast convergence of the Bundle method. However, even though Bundle
provides higher values in the very beginning, the Volume manages to follow and rapidly overtake
it. In other words, it was observed that the gain obtained at each step of the Bundle method is
quite worthwhile at the beginning of the optimization process, but thanks to the faster iterations,

C© 2020 The Authors.
International Transactions in Operational Research C© 2020 International Federation of Operational Research Societies

314 R.S. Shibasaki et al. / Intl. Trans. in Op. Res. 28 (2021) 296–326

Table 3
Average computational performance of the Lagrangian methods

Bundle Volume

Group (C_F) Deviation (%) Time (s) Deviation (%) Time (s)

Canad-N 0.16 26.8 0.10 11.3
A 08_05 0.66 171.8 0.00 89.3
A 10_05 0.69 154.7 0.00 96.0
A 14_05 0.80 161.2 0.00 111.6
B 14_10 2.07 46.1 0.26 31.4
B 10_10 2.53 46.0 0.28 30.6
B 06_10 3.02 45.3 0.26 29.0
C 02_10 1.59 65.0 0.22 40.2
C 02_001 0.03 45.0 0.05 16.0
C 14_001 0.04 46.6 0.05 16.1
D 14_12 0.99 108.4 0.22 85.9
D 20_001 0.10 73.9 0.05 26.2
D 01_20 1.43 108.2 0.22 66.4
E 01_001 0.09 300.9 0.01 100.2
E 20_001 0.06 307.1 0.01 100.6
E 01_20 0.81 438.4 0.00 229.1
F 01_20 0.47 3508.3 0.00 2376.9
F 20_20 0.40 4070.7 0.14 2989.5
F 01_001 0.59 2436.3 0.00 947.0
G 20_001 0.75 4717.4 0.00 2024.1
G 20_20 0.10 6567.1 0.00 4430.3
G 01_001 0.87 4614.1 0.00 2115.0
H 01_20 0.60 9624.8 0.00 7217.5
H 20_20 0.53 10,006.8 0.00 9078.0
H 01_001 1.62 9493.7 0.00 4152.1

the Volume manages to perform more steps in the same period of time, presenting better solutions
already in the first quarter of the total elapsed time.

5.3.2. Optimality gaps
From another perspective, it is worth to consider the impact of embedding the Lagrangian meth-
ods in the heuristic schemes proposed in Section 4 to produce feasible primal solutions for the
FCMC. Table 4 presents results for the benchmark set of instances Canad-N. As, to the best of our
knowledge, there are no upper bounds reported in the literature for instances Canad-N, CPLEX
was run with a time limit of 24 hours of CPU time, using 10 threads and all other parameters
set as default. The first column indicates the instance. Then, for each method, the followings are
reported (i) the optimality gap (U B − LB)/U B in percentage between the upper bound U B ob-
tained with Algorithm 1 (the first feasible solution) and the lower bound LB obtained with the
Lagrangian method, (ii) the time in seconds to obtain the first upper bound, (iii) the optimality
gap in percentage between the best upper bound with Algorithm 2 and the lower bound obtained
with the Lagrangian method, (iv) the time in seconds to obtain the best upper bound, and (v)

C© 2020 The Authors.
International Transactions in Operational Research C© 2020 International Federation of Operational Research Societies

R.S. Shibasaki et al. / Intl. Trans. in Op. Res. 28 (2021) 296–326 315

Fig. 1. Average bound progression for the largest instances with respect to computation time

the deviation (U B − U BCPLEX)/U BCPLEX in percentage of the best upper bound U B obtained
with the method with respect to the upper bound U BCPLEX obtained with CPLEX in 24 hours.
Negative values of deviation mean that the heuristic managed to provide a better upper bound than
the one obtained with CPLEX, which is clearly outperformed for the largest Canad-N instances.
Moreover, it is important to note that the computational times reported include the elapsed CPU
time for the resolution of the FCMC Lagrangian dual to obtain the lower bound, plus the CPU
time spent in the heuristic procedure. Thus, the total time to obtain the optimality gap is effectively
reported.

It is interesting to see that for the largest Canad-N instances, from cN/29 to cN/48, the optimality
gaps between the first feasible solution and the Lagrangian bound, obtained in few minutes, are
much better than those obtained with CPLEX in 24 hours for almost all such instances. The use

C© 2020 The Authors.
International Transactions in Operational Research C© 2020 International Federation of Operational Research Societies

316 R.S. Shibasaki et al. / Intl. Trans. in Op. Res. 28 (2021) 296–326

Table 4
Feasible solutions for benchmark instances Canad-N

Bundle Volume CPLEX

Instance
1st Sol
Gap (%)

Time
(s)

2nd Sol
Gap (%)

Time
(s) Dev (%)

1st Sol
Gap (%)

Time
(s)

2nd Sol
Gap (%)

Time
(s) Dev (%) Gap (%)

cN/01 15.75 1 4.11 25 1.98 7.78 2 2.56 23 0.36 0.00
cN/02 17.50 1 3.24 23 2.42 3.67 1 2.01 27 1.13 0.00
cN/03 17.02 2 3.58 38 2.24 7.20 1 2.63 23 1.30 0.00
cN/04 16.37 2 4.67 38 1.48 8.02 2 4.61 27 1.51 0.00
cN/05 17.43 4 5.23 95 0.31 12.15 4 5.29 88 0.40 3.15
cN/06 18.52 4 7.14 102 1.71 6.26 3 5.71 62 0.31 3.32
cN/07 20.91 6 6.75 95 0.21 12.82 4 7.59 70 1.21 4.17
cN/08 19.36 5 7.23 129 2.37 8.88 4 5.34 77 0.37 3.25
cN/09 25.07 14 5.79 293 0.07 18.58 10 7.31 218 1.78 5.07
cN/10 27.19 12 9.21 326 4.30 16.04 9 7.31 243 2.20 4.32
cN/11 12.70 18 5.15 452 2.34 12.51 12 4.58 335 1.74 2.42
cN/12 11.19 16 6.02 477 1.45 10.94 13 4.32 368 −0.35 4.20
cN/13 12.58 34 3.53 1098 0.10 11.27 30 3.76 747 0.35 3.10
cN/14 17.42 43 3.33 1098 −1.33 9.94 30 3.18 803 −1.47 4.37
cN/15 13.35 42 3.07 1355 0.36 12.54 30 3.41 948 0.72 2.50
cN/16 12.08 45 6.19 1287 0.40 11.17 35 4.27 1103 −1.62 5.57
cN/17 15.59 6 8.43 84 2.38 14.31 4 8.23 80 2.19 5.51
cN/18 13.39 7 6.47 83 1.47 8.63 3 6.87 59 2.03 3.56
cN/19 20.53 5 9.53 69 2.25 16.24 3 10.09 65 3.01 6.43
cN/20 14.76 8 6.08 75 2.27 6.61 3 5.81 51 2.11 2.11
cN/21 26.62 13 9.25 232 −2.98 19.45 10 10.23 195 −1.86 11.42
cN/22 26.59 12 14.25 254 4.19 20.59 10 11.93 204 1.50 10.19
cN/23 19.12 15 8.61 351 0.44 15.70 13 9.28 288 1.24 7.73
cN/24 18.52 14 13.04 361 5.61 15.19 12 8.87 293 0.84 7.69
cN/25 10.42 62 3.82 1576 −20.02 10.13 62 3.60 944 −20.23 22.89
cN/26 9.19 70 3.41 1880 −2.37 9.68 67 3.90 1180 −1.91 5.44
cN/27 9.39 63 3.35 1536 0.43 10.47 53 3.55 942 0.62 2.72
cN/28 10.28 61 3.64 1586 0.41 9.24 59 3.69 1026 0.43 3.01
cN/29 16.99 110 5.01 2106 −83.51 12.06 93 5.29 1843 −83.46 84.33
cN/30 12.79 139 3.65 2729 −25.20 10.66 116 4.53 2081 −24.49 27.85
cN/31 17.57 101 4.22 2940 −72.29 10.42 100 4.15 2125 −72.31 73.44
cN/32 10.91 130 4.19 2364 −81.52 10.98 103 4.33 1891 −81.48 82.27
cN/33 17.84 22 11.27 386 1.10 16.35 13 12.21 266 2.19 8.07
cN/34 15.43 28 11.62 402 −16.42 14.87 17 10.45 262 −17.51 24.14
cN/35 15.22 26 11.51 522 −0.79 14.51 17 11.60 346 −0.70 10.24
cN/36 15.68 33 10.10 518 −1.76 15.07 18 9.90 303 −1.98 9.50
cN/37 24.44 28 17.18 560 −31.48 19.07 24 12.26 426 −35.27 42.74
cN/38 15.67 56 9.69 536 −27.52 13.36 29 8.90 375 −28.04 34.01
cN/39 29.32 22 19.83 431 −37.01 19.14 22 14.51 352 −40.83 49.13
cN/40 15.62 88 9.30 657 −48.77 10.53 55 8.14 335 −49.30 53.20
cN/41 12.09 185 5.94 3452 −27.22 11.28 185 5.47 2461 −27.51 31.29
cN/42 21.39 66 12.62 1418 −42.44 15.44 57 10.28 1101 −43.85 49.46
cN/43 16.02 95 8.04 1778 −39.64 15.15 78 8.01 1582 −39.58 44.29
cN/44 19.51 85 13.82 1913 −38.62 14.41 85 9.36 1659 −41.48 46.82
cN/45 17.23 358 6.44 6087 −83.68 16.04 250 6.44 5050 −83.67 84.71
cN/46 11.80 743 4.16 13,098 −66.97 10.94 655 4.34 10,775 −66.90 68.30
cN/47 15.13 725 4.85 9138 −80.28 12.45 719 5.06 8573 −80.23 81.21
cN/48 14.85 471 5.31 10,840 −82.86 14.32 738 6.06 9655 −82.71 83.74

C© 2020 The Authors.
International Transactions in Operational Research C© 2020 International Federation of Operational Research Societies

R.S. Shibasaki et al. / Intl. Trans. in Op. Res. 28 (2021) 296–326 317

of perturbations and combinations in Algorithm 2 lead much better solutions, but at expense of
higher computational times. Nevertheless, in less than four hours, the heuristic with both Volume
and Bundle obtained optimality gaps of less than 15% for all instances, whereas CPLEX in 24
hours obtained optimality gaps of more 20% for 18 out of 48 instances, including gaps larger than
50% for eight instances, and up to 84%. Therefore, regardless of the Lagrangian method used, the
heuristic has been able to provide good quality solutions, being six times faster than CPLEX in the
worst case.

With respect to the comparison of the heuristic versions, the running times were relatively close.
In terms of solution quality, the Bundle version did better for half of instances, while the Volume
version provided the best solutions for the other half of the Canad-N group. Indeed, the differences
between each method become evident while working with groups A–H, when the large (and very
large) instances are considered.

The results for the groups of large instances are presented in Tables 5–7, using the same col-
umn nomenclatures as in Table 4, except for the columns of deviation with respect to CPLEX.
Given the very large size of instances in these groups, CPLEX was not able to provide feasi-
ble solutions for them, even after 24 hours, so the optimality gap is the only solution quality
measure.

Very small optimality gaps were obtained for instances with low values of F-ratio, that is, C/2_001,
C/14_001, and D/20_001. In addition, specially with the Volume version, good quality bounds were
provided for lightly congested instances, that is, D/1_20, F/1_001, and almost all instances of group
E, because optimality gaps between 5% and 13% were obtained. Inversely, the hardest instances
were the ones having high levels of F and C ratios.

Time consumption can be considered satisfactory having in mind the size of the instances.
At each round, a total of 55 Lagrangian duals may be optimized (five per pertubation, be-
ing five different percentages of pertubation, and three per combination, being 10 combinations
given a pool of five topologies) with 250 iterations allowed, which would have been impracti-
cable if one had to deal with LPs. Moreover, remind that after the first phase (Algorithm 1),
arcs with low frequency were neglected, leading to a reduced set of unfixed variables to be ex-
plored, which also reduced computational times. Indeed, the Volume version of the heuristic is
noticeably faster, taking the average as reference (lines “Avg”). Note that, except for group H, it
was able to perform all the rounds before the time limit, while the Bundle version struggled to
complete the rounds already for instances in group G and F (with smaller instance sizes than
in H).

With respect to the gaps obtained, the Volume version of the heuristic clearly outperforms the
Bundle version. Except for the group A, and some instances of group G, the heuristic with the
Volume algorithm obtained better results in average and quite often significantly smaller gaps. The
Volume version of the heuristic was able to provide optimality gaps within 30% for all instances of
groups A–E. For the very large instances of groups F–H, the average optimality gaps obtained by
the Volume version of the heuristic are within 30%, and for less than half of instance in these groups,
17 out of 45, the optimality gaps exceeded 30% remaining below 50%. We remark that, to the best
of our knowledge, this is the first study in the literature to deal with such large instances, which
are by far larger than the benchmark instances Canad-N. Moreover, the gap between lower and
upper bounds includes the potentially high “natural” gap between the linear relaxation value and
the optimal one. Therefore, even though there are gaps reaching 40%, the deviation to the optimal

C© 2020 The Authors.
International Transactions in Operational Research C© 2020 International Federation of Operational Research Societies

318 R.S. Shibasaki et al. / Intl. Trans. in Op. Res. 28 (2021) 296–326

Table 5
Computational results for large scale instances with 100 nodes and 1000 arcs

Bundle Volume

Instance
1st Sol
Gap (%)

Time
(s)

2nd Sol
Gap (%)

Time
(s)

1st Sol
Gap (%)

Time
(s)

2nd Sol
Gap (%)

Time
(s)

A/8_05a 33.30 547 20.94 8349 27.60 213 18.11 4884
A/8_05b 33.49 477 17.69 8513 31.06 220 18.70 4941
A/8_05c 33.39 539 19.04 8498 29.86 221 18.00 5292
A/8_05d 31.73 284 23.59 7857 37.58 218 26.58 5558
A/8_05e 27.30 262 15.90 7975 28.88 208 17.11 5654
A/10_05a 33.89 541 20.09 8841 31.69 252 20.52 5775
A/10_05b 33.32 642 20.15 9015 32.67 283 21.25 6053
A/10_05c 33.68 557 20.72 9237 32.65 273 21.51 6071
A/10_05d 33.80 306 26.46 9081 39.08 240 26.36 5980
A/10_05e 29.12 340 20.70 8537 32.09 272 18.93 6130
A/14_05a 32.01 587 24.08 10,660 38.77 296 25.75 7279
A/14_05b 33.10 585 23.06 10,577 38.12 357 25.22 7274
A/14_05c 33.31 637 25.68 11,218 39.88 308 25.01 7337
A/14_05d 39.53 673 28.08 9568 40.32 432 29.87 7391
A/14_05e 36.99 389 20.42 9540 32.48 497 19.60 7448
Avg 33.20 491 21.77 9164 34.18 286 22.17 6204

B/14_10a 43.40 75 34.24 1542 36.59 57 28.78 1248
B/14_10b 45.11 63 31.02 1531 43.47 52 27.11 1308
B/14_10c 40.90 60 35.71 1830 34.22 62 27.68 1276
B/14_10d 46.18 62 36.03 1941 45.12 51 30.28 1281
B/14_10e 44.88 67 37.51 1800 41.38 53 30.48 1302
B/10_10a 45.51 61 39.21 1735 40.88 50 28.67 1130
B/10_10b 37.97 60 32.98 1208 42.90 49 26.14 1113
B/10_10c 36.94 58 34.39 1192 43.27 46 29.37 1190
B/10_10d 44.06 65 35.44 1702 38.87 52 28.22 1163
B/10_10e 42.73 63 35.76 1662 38.97 62 27.67 1220
B/6_10a 39.11 57 34.80 1512 36.11 47 24.01 1044
B/6_10b 33.72 57 31.80 1018 37.41 46 18.92 987
B/6_10c 36.76 57 28.99 1127 38.09 44 23.15 996
B/6_10d 37.89 59 30.34 1455 39.90 44 23.34 1055
B/6_10e 38.67 57 33.60 1262 40.40 52 21.49 1081
Avg 40.92 61 34.12 1501 39.84 51 26.35 1160

C/2_10a 26.10 89 19.77 1215 21.74 69 9.73 1372
C/2_10b 25.48 84 8.36 1744 18.86 62 4.39 1495
C/2_10c 28.57 91 24.40 1514 27.79 73 15.27 1568
C/2_10d 28.88 90 12.36 1978 24.01 67 8.17 1305
C/2_10e 39.39 84 34.55 1614 29.14 65 21.53 1519
C/2_001a 6.03 207 0.39 4320 0.86 70 0.45 2146
C/2_001b 5.79 162 0.29 4197 0.76 84 0.36 2218
C/2_001c 5.99 235 0.48 4394 0.88 67 0.29 2170
C/2_001d 5.35 101 1.74 4366 2.01 136 1.19 3540
C/2_001e 3.26 190 0.29 4026 0.72 88 0.31 3064
C/14_001a 5.34 249 0.57 4311 1.10 96 0.37 2704
C/14_001b 5.70 188 0.32 4012 0.87 103 0.30 2446
C/14_001c 5.52 190 0.34 4295 0.77 97 0.19 2393
C/14_001d 5.49 98 1.55 4657 2.00 74 1.28 3313
C/14_001e 2.81 165 0.25 4563 0.70 100 0.38 3188
Avg 13.31 148 7.04 3414 8.81 83 4.28 2296

C© 2020 The Authors.
International Transactions in Operational Research C© 2020 International Federation of Operational Research Societies

R.S. Shibasaki et al. / Intl. Trans. in Op. Res. 28 (2021) 296–326 319

Table 6
Computational results for large scale instances with 100 nodes and 1000 and 1200 arcs

Bundle Volume

Instance
1st Sol
Gap (%)

Time
(s)

2nd Sol
Gap (%)

Time
(s)

1st Sol
Gap (%)

Time
(s)

2nd Sol
Gap (%)

Time
(s)

D/14_12a 44.76 166 35.95 4384 39.07 174 25.64 2793
D/14_12b 42.39 213 29.07 3490 40.72 157 27.35 2631
D/14_12c 41.07 164 34.82 2746 26.45 217 24.10 2292
D/14_12d 38.94 229 33.44 2878 40.70 170 29.88 2436
D/14_12e 35.56 132 35.14 2486 39.64 166 26.70 2758
D/20_001a 5.99 317 0.52 6161 1.25 155 0.47 3564
D/20_001b 5.86 382 0.39 5761 1.12 129 0.24 3020
D/20_001c 5.13 263 0.34 5387 0.48 102 0.20 2862
D/20_001d 4.73 181 1.83 5988 2.41 201 1.75 5646
D/20_001e 2.59 312 0.55 6383 0.89 188 0.31 3972
D/1_20a 19.77 129 16.79 1325 15.63 93 5.19 1454
D/1_20b 21.27 127 16.49 1462 16.79 95 4.93 1464
D/1_20c 25.51 128 21.60 1474 15.29 95 6.47 1422
D/1_20d 24.32 125 16.37 1403 14.56 91 4.42 1399
D/1_20e 24.03 129 16.06 1429 17.35 95 9.20 1441
Avg 22.80 200 17.29 3517 18.16 142 11.12 2610

E/1_001a 10.47 872 4.98 17,327 5.22 321 4.03 8848
E/1_001b 10.83 1022 2.25 13,132 2.19 246 1.02 5152
E/1_001c 13.37 1503 2.79 16,202 2.16 269 1.33 5848
E/1_001d 10.58 1580 4.48 17,786 3.66 637 3.25 11,458
E/1_001e 14.87 800 6.73 20,827 5.00 285 3.97 8143
E/20_001a 10.46 936 4.89 16,657 5.32 424 3.76 9224
E/20_001b 8.36 1256 2.11 13,114 2.64 317 1.51 6378
E/20_001c 13.04 1269 2.85 15,457 2.47 242 1.61 6130
E/20_001d 9.91 1615 4.45 18,267 3.62 912 3.23 13,154
E/20_001e 13.75 903 6.20 20,110 5.09 294 3.71 8090
E/1_20a 33.06 469 23.17 4043 17.37 322 8.49 3046
E/1_20b 34.00 479 23.90 4108 21.98 309 13.41 3043
E/1_20c 31.88 463 24.19 3904 15.60 317 6.10 3092
E/1_20d 33.43 449 21.17 3856 15.77 314 9.05 3089
E/1_20e 49.55 401 41.52 5220 24.74 257 19.55 2969
Avg 19.84 934 11.71 12,667 8.86 364 5.60 6511

value is possibly smaller. For example, the heuristic solution using Volume for cN/01 in Table 4 has
a gap of 2.56%, but it is only 0.36% away from the optimal.

Finally, we make some remarks about the constructive Algorithm 1 and the operations put in
practice in the search for an improved solution. With respect to the procedure implemented to build
a first feasible solution, the results obtained showed that it is able to produce in a fast manner
a solution within 50% for almost all instances. Now observe the case of instance H/1_001e, for
which the Volume version of Algorithm 1 ran for a much long period, leaving practically no time
for further improvements in phase two. However, in this case the Volume version of Algorithm 1

C© 2020 The Authors.
International Transactions in Operational Research C© 2020 International Federation of Operational Research Societies

320 R.S. Shibasaki et al. / Intl. Trans. in Op. Res. 28 (2021) 296–326

Table 7
Computational results for large scale instances with 100 and 200 nodes and up to 12,000 arcs

Bundle Volume

Instance
1st Sol
Gap (%)

Time
(s)

2nd Sol
Gap (%)

Time
(s)

1st Sol
Gap (%)

Time
(s)

2nd Sol
Gap (%)

Time
(s)

F/1_20a 39.40 5190 24.03 25,285 23.91 3115 12.74 18,025
F/1_20b 36.39 5575 28.37 24,076 17.11 3771 9.28 18,502
F/1_20c 30.76 4691 23.63 19,545 23.57 3984 12.78 20,478
F/1_20d 54.91 3947 42.46 30,138 22.87 2516 21.10 15,588
F/1_20e 53.40 4188 41.74 30,421 26.68 2797 21.17 16,941
F/20_20a 53.50 7533 46.00 64,773 46.82 7573 39.07 45,601
F/20_20b 57.76 5583 47.09 73,930 61.81 5945 46.01 53,075
F/20_20c 49.10 8214 39.07 88,295 43.27 7389 31.29 65,425
F/20_20d 55.91 6374 47.85 52,991 59.87 6047 47.69 45,614
F/20_20e 54.59 6082 46.42 52,949 49.85 5864 39.74 42,237
F/1_001a 21.89 5509 11.10 61,139 10.58 2431 9.87 27,260
F/1_001b 21.41 6140 11.71 71,669 9.97 2429 9.91 27,203
F/1_001c 18.70 6522 9.52 49,269 7.86 2163 7.31 22,922
F/1_001d 21.89 4758 10.92 55,667 10.58 2282 9.87 25,699
F/1_001e 23.11 9239 13.47 92,924 10.93 16,835 10.63 82,305
Avg 39.52 5354 29.56 46,677 28.38 5009 21.90 35,125

G/20_001a 29.37 12,259 14.01 100,695 15.87 5036 15.19 37,794
G/20_001b 27.99 11,625 14.62 101,960 17.49 5979 17.24 45,540
G/20_001c 49.45 8115 31.82 87,603 16.58 7403 15.85 57,861
G/20_001d 35.54 12,027 17.87 89,948 20.79 5294 20.03 40,918
G/20_001e 43.86 9253 23.51 86,630 21.55 8014 20.59 61,858
G/20_20a 61.62 10,484 53.00 73,758 55.75 10,605 44.54 53,434
G/20_20b 50.13 14,308 43.20 91,850 49.46 11,756 40.90 70,321
G/20_20c 58.04 10,021 47.05 93,149 54.08 6705 43.86 46,828
G/20_20d 57.31 12,358 48.36 89,119 61.14 11,047 43.25 73,745
G/20_20e 56.79 9380 45.60 71,617 45.37 8538 36.86 46,055
G/1_001a 31.36 8826 15.69 74,962 25.86 5453 23.88 37,899
G/1_001b 31.17 11,190 15.46 77,377 25.27 4477 24.16 33,981
G/1_001c 27.95 10,582 13.97 77,408 20.65 4483 18.53 32,896
G/1_001d 27.95 10,855 13.91 76,142 20.65 4576 18.53 32,530
G/1_001e 42.34 7417 24.85 90,230 16.75 5439 16.29 57,802
Avg 42.06 10,580 28.19 85,497 31.15 6987 26.65 48,631

H/1_20a 36.85 10,642 35.07 105,030 17.25 11,086 13.11 58,245
H/1_20b 29.47 10,775 10.95 96,943 13.70 11,161 7.99 57,296
H/1_20c 39.34 10,761 37.26 71,769 15.30 11,090 13.40 59,788
H/1_20d 60.46 10,447 54.78 87,719 22.40 11,455 22.40 62,955
H/1_20e 62.99 9511 59.82 88,810 23.63 9362 23.63 56,172
H/20_20a 48.73 22,538 45.55 86,904 48.37 20,747 43.09 90,358
H/20_20b 46.82 37,007 37.82 90,910 44.54 22,426 35.52 90,787
H/20_20c 45.43 12,363 42.75 89,430 52.11 14,826 46.22 92,250
H/20_20d 60.05 10,923 54.96 87,368 51.63 14,838 45.37 88,430
H/20_20e 67.52 11,109 63.59 88,644 52.41 13,720 49.81 92,306
H/1_001a 57.13 19,209 53.71 96,211 38.60 19,091 36.88 90,135
H/1_001b 53.72 26,888 50.04 100,843 21.31 14,250 20.48 86,912
H/1_001c 60.18 21,270 54.21 94,343 45.42 16,653 45.19 88,491
H/1_001d 39.88 33,522 32.31 87,016 31.70 16,574 29.97 88,221
H/1_001e 41.50 23,836 37.88 96,031 17.24 76,101 17.24 89,783
Avg 50.00 18,053 44.71 91,198 33.04 18,892 30.02 79,475

C© 2020 The Authors.
International Transactions in Operational Research C© 2020 International Federation of Operational Research Societies

R.S. Shibasaki et al. / Intl. Trans. in Op. Res. 28 (2021) 296–326 321

obtained a good quality solution with an optimality gap of 17%. To conclude this section, it can be
noticed that, in the improving phase, Algorithm 2 managed to significantly reduce gaps, specially
when the time limitation was not an issue.

5.3.3. Comparisons with state-of-the-art heuristics
A third experiment was conducted to compare the performance of the heuristic schemes proposed
in Section 4 with state-of-the-art heuristics from the literature for the FCMC. For such purpose,
sets C and R of instances introduced by Crainic et al. (2000) were used, because these smaller
instances have been served as benchmark for several heuristics proposed in the literature. Groups
C and R have 43 and 153 instances, respectively. These instances are also available for download at
http://www.di.unipi.it/optimize/Data/MMCF.html.

Our approach is compared to the following heuristics and metaheuristics: (i) CYCLE, the cycle-
based tabu search by Ghamlouche et al. (2003); (ii) RELINK, the path relinking by Ghamlouche
et al. (2004); (iii) MULTI, the multilevel cooperative search by Crainic et al. (2006); (iv) SCALE, the
capacity scaling heuristic by Katayama et al. (2009); and (v) LCBR, the local branching heuristic
by Rodrı́guez-Martı́n and Salazar-González (2010).

Table 8 presents results for the group C. The results are presented as the gap in percentage between
the upper bound obtained with the heuristic and the best upper bound among all the seven heuristics
used in this comparison. A gap of zero means that the heuristic obtained the best result, and are
highlighted in bold face. The first column in Table 8 identifies the instances. The size corresponds
to the number of nodes |N|, arcs |A|, and commodities |K|. The letters stand for tight (T) or loose
(L) capacities, and high fixed charges are indicated by F and the contrary by V. Then, the second to
the sixth columns present results for each heuristic from the literature. The solution values obtained
with CYCLE, RELINK, MULTI, and SCALE are reported in Katayama et al. (2009), and the
ones obtained with LCBR are reported in Rodrı́guez-Martı́n and Salazar-González (2010). The
seventh and eighth columns present results of the best solutions obtained with the heuristic schemes
proposed in Section 4 using Volume and Bundle to solve the Lagrangian problems, respectively.
The last line of Table 8 presents the average gap. Table 9 presents results for instances of group R.
For each size, there is a number of instances with different capacity and cost ratios. As far as we
know, only Ghamlouche et al. (2003) and Katayama et al. (2009) have reported solution values for
this group. Table 9 presents, for instances of the same size, average gaps in percentage between the
upper bound obtained with the heuristic and the best upper bound among the four heuristics used
in this comparison.

For group C, average and maximal running times of the heuristic scheme with Volume were 90
and 439 seconds, respectively, and with Bundle 150 and 709, respectively. For group R, average
and maximal running times with Volume were 30 and 337 seconds, respectively, and with Bundle
29 and 299, respectively. The proposed heuristic scheme had a similar performance using Volume
or Bundle, the former obtaining better results in average for group R and the latter for group C.
Results have shown that both versions of the proposed heuristic scheme are competitive with the
state-of-the-art-heuristics. Indeed, it was able to find new best upper bounds for some cases and
outperformed most of them in terms of average gaps to the best solution. Note that SCALE due to
Katayama et al. (2009) comes out of our experiments as the best performing heuristic in terms of
average gaps to the best solution.

C© 2020 The Authors.
International Transactions in Operational Research C© 2020 International Federation of Operational Research Societies

http://www.di.unipi.it/optimize/Data/MMCF.html

322 R.S. Shibasaki et al. / Intl. Trans. in Op. Res. 28 (2021) 296–326

Table 8
Comparisons for benchmark instances of group C

Instance CYCLE RELINK MULTI SCALE LCBR Volume Bundle

20,230,40, VL 0.22 0.13 0.67 0.05 0.00 0.26 0.00
20,230,40, VT 0.11 0.09 0.00 0.12 0.00 0.10 0.04
20,230,40, FT 0.43 0.39 1.51 0.22 0.00 0.27 0.35
20,230,200, VL 4.80 6.13 4.40 0.00 1.10 0.91 0.54
20,230,200, FL 6.07 6.99 3.85 0.00 4.05 0.51 0.87
20,230,200, VT 6.48 6.42 3.98 0.00 0.07 0.28 0.23
20,230,200, FT 7.64 7.74 3.58 0.00 3.54 1.15 0.68
20,300,40, VL 0.03 0.00 0.10 0.00 0.00 0.00 0.00
20,300,40, FL 1.22 0.74 1.26 0.29 0.00 0.46 0.59
20,300,40, VT 0.05 0.00 0.32 0.01 0.00 0.03 0.00
20,300,40, FT 0.48 0.95 2.42 0.00 0.00 0.00 0.00
20,300,200, VL 7.31 4.18 4.22 0.00 1.91 0.14 0.09
20,300,200 , FL 6.13 6.24 5.06 0.00 2.82 0.79 0.39
20,300,200, VT 5.42 4.52 2.52 0.00 1.14 0.09 0.91
20,300,200, FT 6.08 5.34 3.28 0.31 2.08 0.65 0.00
30,520,100, VL 1.70 1.60 3.10 0.11 0.00 0.35 0.16
30,520,100, FL 4.80 7.11 5.03 0.00 1.51 0.15 0.47
30,520,100, VT 1.62 1.67 2.58 0.29 0.00 0.37 0.95
30,520,100 , FT 6.43 6.97 3.65 0.11 2.34 0.00 0.29
30,520,400, VL 6.47 5.50 2.44 0.00 1.33 0.42 0.64
30,520,400, FL 7.23 8.38 4.57 0.00 5.25 0.91 0.63
30,520,400, VT 5.71 4.60 5.24 0.00 0.52 0.22 0.20
30,520,400, FT 9.05 6.68 4.66 0.00 9.38 0.53 0.85
30,700,100, VL 1.64 2.30 2.59 0.07 0.00 0.10 0.07
30,700,100, FL 3.64 4.59 5.59 0.00 0.13 0.73 1.46
30,700,100, VT 2.38 2.76 3.27 0.57 0.00 0.83 0.59
30,700,100, FT 4.81 2.60 3.17 0.46 0.00 0.24 0.60
30,700,400, VL 8.25 6.80 4.54 0.00 5.60 0.67 0.70
30,700,400, FL 9.32 6.87 6.20 0.00 20.44 0.45 0.43
30,700,400, VT 6.26 5.84 3.92 0.00 1.42 0.45 0.85
30,700,400, FT 8.85 7.70 5.87 0.00 10.20 0.41 1.25
25,100,10, FL 0.00 0.00 0.00 0.64 0.00 6.64 6.64
25,100,10, FT 0.00 0.00 0.08 1.72 0.00 2.67 2.85
25,100,10, VL 0.00 0.00 0.00 0.00 0.00 0.00 0.00
25,100,30, FL 0.69 0.87 0.75 0.39 0.00 4.18 1.33
25,100,30, FT 0.89 1.04 1.08 0.32 0.00 0.40 0.00
25,100,30, VT 0.03 0.03 0.03 0.00 0.00 0.40 0.11
100,400,10, FL 0.00 0.30 0.30 2.09 3.00 8.60 2.23
100,400,10, FT 2.59 0.00 1.52 11.27 3.09 7.98 10.35
100,400,10, VL 0.89 0.22 0.46 0.01 0.00 0.28 0.28
100,400,30, FL 3.26 2.83 1.16 4.01 0.00 2.77 3.40
100,400,30, FT 2.61 0.00 2.99 2.05 0.19 5.22 2.72
100,400,30, VT 0.18 0.03 0.12 0.02 0.00 2.34 3.13
Avg 3.53 3.19 2.61 0.58 1.89 1.25 1.11

C© 2020 The Authors.
International Transactions in Operational Research C© 2020 International Federation of Operational Research Societies

R.S. Shibasaki et al. / Intl. Trans. in Op. Res. 28 (2021) 296–326 323

Table 9
Comparisons for benchmark instances of group R

|N| |A| |K| Number of instances CYCLE SCALE Volume Bundle

10 25 10 6 0.00 0.62 0.07 0.00
10 25 25 6 0.77 0.11 0.02 0.00
10 25 50 6 1.59 0.07 0.02 0.02
10 50 10 9 0.08 0.42 0.78 1.06
10 50 25 9 0.23 0.27 0.66 0.73
10 50 50 9 2.26 0.06 0.10 0.37
10 75 10 9 0.05 0.88 0.06 1.18
10 75 20 9 0.60 0.48 0.45 0.70
10 75 50 9 2.65 0.20 0.37 0.30
Avg 0.93 0.36 0.31 0.54

20 100 40 9 2.22 0.21 0.53 0.93
20 100 100 9 2.44 0.02 0.12 0.27
20 100 200 9 4.62 0.00 0.32 0.43
20 200 40 9 2.51 0.40 0.66 0.95
20 200 100 9 5.98 0.06 0.75 0.75
20 200 200 9 6.83 0.04 0.49 0.96
20 300 40 9 2.28 0.17 0.73 0.79
20 300 100 9 5.25 0.01 0.68 0.76
20 300 200 9 9.34 0.17 0.80 1.07
Avg 4.61 0.12 0.56 0.77

6. Conclusion

In summary, the Bundle and the Volume have both provided good quality bounds. Both methods
computed similar “best” lower bounds for large to very large network instances, but they mostly
reached the time limit or the max iteration counter set by the user without the possibility to prove
convergence within a given accuracy. In other words, the question of defining a reliable stopping
criterion that takes profit of the behavior of both algorithms remains a difficult issue.

With respect to the comparison of the lower bounds, one can say that, for the tests put in practice,
the Volume algorithm has performed well no matter the instance characteristics, while the Bundle
has performed worse for a specific group. One can conclude that the Volume algorithm manages
to be more robust, in the sense that it might be successful for a wider range of different instance
configurations. Moreover, in a large scale context, the time consumption may be a bottleneck for
the Bundle method, but its ability to provide good solutions in the early iterations can be very
profitable for small problems. We remark that such conclusions are drawn upon results obtained
with Volume and Bundle for the FCMC, which is a structured problem, and therefore should not
be immediately extrapolated for other types of problems. As a future research, it is suggested to
extend the computational comparisons to a set of nonstructured problems.

With respect to the estimation of good upper bounds, one can say that the results obtained with
the Volume were better in average. Finally, we have provided the first feasible solutions for the very
large scale instances considered and not solved in the literature. Furthermore, the heuristic using

C© 2020 The Authors.
International Transactions in Operational Research C© 2020 International Federation of Operational Research Societies

324 R.S. Shibasaki et al. / Intl. Trans. in Op. Res. 28 (2021) 296–326

Lagrangian information within a perturbation and combination scheme could obtain good quality
solutions (with reduced gaps) for some benchmark instances.

Future work aims at embedding the Lagrangian Relaxation in a more sophisticated schemes like
Branch-and-Price-and-Cut and Relax-and-Cut, inspired in Barahona and Ladányi (2006). The use
of valid inequalities already known for the problem (and summarized in Chouman et al., 2009),
eventually included in the Lagrangian Relaxation, could lead to better bounds and consequently de-
crease the gaps for large-scale instances, without deteriorating the time performances. Furthermore,
alternative NDO methods, such as variable target value methods and the average direction strategy
may be considered for comparison. As there is still no general agreement about which one performs
better, an empirical comparison in the context of the fixed charge multicommodity network design
problem that englobes a wider range of state-of-art nondifferentiable optimization methods would
be worthwhile.

Acknowledgments

We would like to thank Antonio Frangioni for providing his Bundle implementation. The first
author would like to thank FAPEMIG and the last author would like to thank CNPq for the
financial support.

References

Bahiense, L., Maculan, N., Sagastizábal, C., 2002. The volume algorithm revisited: relation with bundle methods.
Mathematical Programming 94, 41–60.

Barahona, F., Anbil, R., 2000. The volume algorithm: producing primal solutions with a subgradient method. Mathe-
matical Programming 87, 385–399.

Barahona, F., Ladányi, L., 2006. Branch and cut based on the volume algorithm: Steiner trees in graphs and max-cut.
RAIRO-Operations Research 40, 1, 53–73.

Bonnans, J.F., Gilbert, J.C., Lemaréchal, C., Sagastizábal, C.A., 2006. Numerical Optimization. Springer-Verlag, Berlin–
Heidelberg.

Briant, O., Lemaréchal, C., Meurdesoif, P., Michel, S., Perrot, N., Vanderbeck, F., 2008. Comparison of bundle and
classical column generation. Mathematical Programming 113, 2, 299–344.

Chouman, M., Crainic, T.G., Gendron, B., 2003. A cutting-plane algorithm based on cutset inequalities for multicom-
modity capacitated fixed charge network design. Technical report, Centre de recherche sur les transports, Université
de Montréal, Montreal, Canada.

Chouman, M., Crainic, T.G., Gendron, B., 2009. A Cutting-Plane Algorithm for Multicommodity Capacitated Fixed-
Charge Network Design. Technical Report, CIRRELT, Montreal, Canada.

Cornuejols, G., Sridharan, R., Thizy, J., 1991. A comparison of heuristics and relaxations for the capacitated plant
location problem. European Journal of Operational Research 50, 280–297.

Crainic, T.G., Frangioni, A., Gendron, B., 2001. Bundle-based relaxation methods for multicommodity capacitated fixed
charge network design. Discrete Applied Mathematics 112, 1–3, 73–99.

Crainic, T.G., Gendreau, M., Farvolden, J.M., 2000. A simplex-based tabu search for capacitated network design.
INFORMS Journal on Computing 12, 223–236.

Crainic, T.G., Li, Y., Toulouse, M., 2006. A first multilevel cooperative algorithm for capacitated multicommodity network
design. Computers & Operations Research 33, 9, 2602–2622.

Escudero, L.F., Garı́n, M.A., Pérez, G., Unzueta, A., 2012. Lagrangian decomposition for large-scale two-stage stochastic
mixed 0-1 problems. TOP 20, 347–374.

C© 2020 The Authors.
International Transactions in Operational Research C© 2020 International Federation of Operational Research Societies

R.S. Shibasaki et al. / Intl. Trans. in Op. Res. 28 (2021) 296–326 325

Escudero, L.F., Garı́n, M.A., Unzueta, A., 2016. Cluster Lagrangean decomposition in multistage stochastic optimization.
Computers & Operations Research 67, 48–62.

Frangioni, A., 1996. Solving semidefinite quadratic problems within nonsmooth optimization algorithms. Computers &
Operations Research 23, 1099–1118.

Frangioni, A., 1997. Dual ascent methods and multicommodity flow problems. PhD thesis, Università di Pisa, Pisa, Italy.
Frangioni, A., 2002. Generalized bundle methods. SIAM Journal on Optimization 13, 117–156.
Frangioni, A., 2005. About Lagrangian methods in integer optimization. Annals of Operations Research 139, 1, 163–193.
Frangioni, A., 2013. The NDOSOlver + FiOracle Project.
Frangioni, A., Gallo, G., 1999. A bundle type dual-ascent approach to linear multicommodity min-cost flow problems.

INFORMS Journal on Computing 11, 4, 370–393.
Frangioni, A., Gendron, B., Gorgone, E., 2017. On the computational efficiency of subgradient methods: a case study

with Lagrangian bounds. Mathematical Programming Computation 9, 4, 573–604.
Frangioni, A., Gorgone, E., 2014. Bundle methods for sum-functions with “easy” components: applications to multicom-

modity network design. Mathematical Programming, Series A 145, 1–2, 133–161.
Gendron, B., 2011. Decomposition methods for network design. Procedia–Social and Behavioral Sciences 20, 31–37.
Gendron, B., Crainic, T., Frangioni, A., 1999. Multicommodity capacitated network design. In Sansò, B., Soriano, P.

(eds) Telecommunications Network Planning. Kluwer Academic, Norwell, MA, pp. 1–19.
Gendron, B., Larose, M., 2014. Branch-and-price-and-cut for large-scale multicommodity capacitated fixed-charge net-

work design. EURO Journal on Computational Optimization 2, 1–2, 55–75.
Geoffrion, A.M., 1974. Lagrangean relaxation for integer programming. In Balinski, M.L. (ed.) Approaches to Integer

Programming, Mathematical Programming Studies, Vol. 2. Springer, Berlin–Heidelberg, pp. 82–114.
Ghamlouche, I., Crainic, T.G., Gendreau, M., 2003. Cycle-based neighbourhoods for fixed-charge capacitated multicom-

modity network design. Operations Research 51, 4, 655–667.
Ghamlouche, I., Crainic, T.G., Gendreau, M., 2004. Path relinking, cycle-based neighbourhoods and capacitated multi-

commodity network design. Annals of Operations Research 131, 109–133.
Gondzio, J., Du Merle, O., Sarkisian, R., Vial, J.P., 1996. ACCPM — A library for convex optimization based on an

analytic center cutting plane method. European Journal of Operational Research 94, 1, 206–211.
Haouari, M., Layeb, S.B., Sherali, H.D., 2008. The prize collecting steiner tree problem: models and Lagrangian dual

optimization approached. Computational Optimization and Applications 40, 1, 13–39.
Held, M., Karp, R.M., 1971. The traveling-salesman problem and minimum spanning trees: part II. Mathematical

Programming 1, 1, 6–25.
Held, M., Wolfe, P., Crowder, H.P., 1974. Validation of subgradient optimization. Mathematical Programming 6, 62–88.
Hunter, D.R., Lange, K., 2004. A tutorial on MM algorithms. The American Statistician 58, 1, 30–37.
Katayama, N., Chen, M., Kubo, M., 2009. A capacity scaling heuristic for the multicommodity capacitated network

design problem. Journal of Computational and Applied Mathematics 232, 1, 90–101.
Kazemzadeh, M.R.A., Bektaş, T., Crainic, T.G., Frangioni, A., Gendron, B., Gorgone, E., 2019. Node-based Lagrangian

relaxations for multicommodity capacitated fixed-charge network design. Technical Report, CIRRELT-2019-21.
Kelley, J.E., 1960. The cutting-plane method for solving convex programs. Journal of the Society for Industrial and Applied

Mathematics 8, 703–712.
Khachian, L.G., 1980. Polynomial algorithms in linear programming. USSR Computational Mathematics and Mathemat-

ical Physics 20, 1, 53–72.
Lemaréchal, C., 1989. Nondifferentiable optimization. In Nemhauser, G., Rinooy Kan, A., Todd, M. (eds) Optimization,

Handbooks in Operations Research and Management Science, Vol. 1. Elsevier Science, Amsterdam, pp. 529–572.
Lemaréchal, C., 2001. Lagrangean relaxation. In Jünger, M., Naddef, D. (eds) Computational Combinatorial Optimization,

Vol. 2241. Springer-Verlag, Berlin–Heidelberg, pp. 112–156.
Lemaréchal, C., Nemirovskii, A., Nesterov, Y., 1995. New variants of bundle methods. Mathematical Programming 69,

111–147.
Magnanti, T.L., Wong, R.T., 1984. Network design and transportation planning: Models and algorithms. Transportation

Science 18, 1, 1–55.
Oliveira, W., Sagastizábal, C., 2014. Bundle methods in the XXIst century: a birds’s-eye view. Pesquisa Operacional 34,

647–670.

C© 2020 The Authors.
International Transactions in Operational Research C© 2020 International Federation of Operational Research Societies

326 R.S. Shibasaki et al. / Intl. Trans. in Op. Res. 28 (2021) 296–326

Ouorou, A., 2009. A proximal cutting plane method using Chebychev center for nonsmooth convex optimization.
Mathematical Programming 119, 2, 239–271.

Ouorou, A., Mahey, P., Vial, J.P., 2000. A survey of algorithms for convex multicommodity flow problems. Management
Science 46, 126–147.

Polyak, B.T., 1969. Minimization of unsmooth functionals. USSR Computational Mathematics and Mathematical Physics
9, 3, 14–29.

Rodrı́guez-Martı́n, I., Salazar-González, J.J., 2010. A local branching heuristic for the capacitated fixed-charge network
design problem. Computers & Operations Research 37, 3, 575–581.

Sherali, H.D., Choi, G., 1996. Recovery of primal solutions when using subgradient optimization methods to solve
Lagrangian duals of linear programs. Operations Research Letters 19, 3, 105–113.

Shor, N.Z., 1985. Minimization Methods for Non-Differentiable Functions, Vol. 3. Springer-Verlag, Berlin–Heidelberg.
Wolfe, P., 1975. A method of conjugate subgradients for minimizing nondifferentiable functions. In Balinski, M., Wolfe,

P. (eds) Nondifferentiable Optimization, Vol. 3. Springer, Berlin–Heidelberg, pp. 145–173.

C© 2020 The Authors.
International Transactions in Operational Research C© 2020 International Federation of Operational Research Societies

