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Abstract

We introduce frame-equivalence games tailored for reasoning about the size, modal
depth, number of occurrences of symbols and number of different propositional vari-
ables of modal formulae defining a given property. Using these games we prove that
the Löb axiom 2(2p → p) → 2p and the (m,n)-transfer axioms 3mp → 3np are
optimal among those defining their respective class of frames.

Keywords: modal logic, correspondence theory, formula-size games, lower bounds
on formula-size.

1 Introduction

One of the key advantages of modal logics over first-order logic is that the for-
mer are often decidable. However, decidability is not sufficient for applications:
efficiency plays a huge role in determining the usefulness of a formal system.
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2 Frame-validity games andabsolute minimality of modal axioms

Typical measures of complexity revolve around problems such as satisfiability
and model-checking, but the sometimes-overlooked succinctness plays a crucial
role as well: there is little use in a ptime logic if properties of interest can only
be defined by exponentially large formulas.

The power of first-order logic and some of its extensions to succinctly define
graph properties has been investigated extensively [7], as that of the modal
language and natural extensions to define properties of relational models [3,9].
In contrast, it seems that the only study of how succinctly frame properties can
be expressed in modal logic is [8], where the question of how many different
propositional variables are needed to modally define certain classes of Kripke
frames is being considered. To increase our understanding of the succinctness
of modal languages, we develop in the present paper techniques for proving
lower bounds on the complexity of modal formulas defining frame properties
and apply them to some well-known classes of frames.

As usual, we say that a modal formula ϕ defines a class F of frames if F
exactly consists of the frames on which ϕ is valid. If a class of frames is definable
by a modal formula, it is natural to ask how complex any such formula must
be, where the complexity of a formula may be measured according to the total
number of symbols, the modal depth, the number of occurrences of symbols of
a certain type, or the number of different variables needed.

The techniques we will employ are based on frame equivalence games, closely
related to model-equivalence games as appeared in [4,5,6]. To demonstrate the
applicability of the former to both first- and second-order semantic conditions,
we prove that

(i) For each m,n ≥ 0, the (m,n)-transfer axiom 3mp → 3np is essentially
the shortest modal formula defining the first-order condition

∀x∀y(xRmy → xRny), (1)

where Rj denotes the j-fold composition of R.

(ii) The Löb axiom 2(2p → p) → 2p is essentially the shortest modal for-
mula defining transitivity plus the second-order property of converse well-
foundedness.

Note that the former result applies to the well-studied axioms defining transi-
tivity, reflexivity, and density.

2 Technical preliminaries

Our formula size games are based on formulas in negation normal form, i.e.,
negations appear only in front of propositional symbols. Fix a countably infinite
set of propositional variables P = {p1, p2, . . .}, and let L3 denote the uni-modal
language that has as atomic formulas the literals p, p for each p ∈ P as well as
⊥, > and as primitive connectives ∨, ∧, 3, and 2. The expressions ¬ϕ and
ϕ→ ψ will be regarded as abbreviations defined using De Morgan’s rules.

As usual a frame is a pair A = (WA, RA) where WA is a nonempty set
and RA ⊆WA ×WA, a model based on (WB, RB) is a tuple B = (WB, RB, VB)
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consisting of a frame equipped with a valuation VB : WB → 2P , and a pointed
model is a tuple c = (C, c) consisting of a model C equipped with a designated
point c ∈WC ; pointed models will always be denoted by a, b, . . . and frames or
models by A,B, . . .. For a pointed model a = (A, a), we denote by 2a the set
{(A, b) : a RA b}, i.e., the set of all pointed models that are successors of the
pointed model a along the relation RA.

Given ϕ ∈ L3 and a pointed model a, we define a |= ϕ according to
standard Kripke semantics, and as usual if A is a model we write A |= ϕ if
(A, a) |= ϕ for all a ∈WA, and if A is a frame, A |= ϕ if (A, V ) |= ϕ for every
valuation V . We use structure as an umbrella term to denote either a model,
a frame, or a pointed model. For a class of structures A and a formula ϕ, we
write A |= ϕ when X |= ϕ for all X ∈ A, and say that the formulae ϕ and ψ
are equivalent on A when for all X ∈ A, X |= ϕ if and only if X |= ψ.

Our goal in this paper is to develop techniques to establish when a formula
ϕ is of minimal complexity among those defining some class of frames. Here
complexity could mean many things: by a complexity measure (or just measure)
we simply mean a function µ : L3 → N. We are interested in the following
measures: (i) the length of a formula ϕ, denoted |ϕ| and defined as the number
of nodes in its syntax tree (including leaves); (ii) the number of ocurrences of
any connective, (iii) the modal depth, and (iv) the number of variables.

Note that these are a total of nine measures, as each connective gives rise
to its own measure in (ii). We will show that several modal axioms of interest
are minimal with respect to all of these measures simultaneously. To this end,
given a set Γ ⊆ L3 and ϕ ∈ Γ, say that ϕ is absolutely minimal among Γ if for
all ψ ∈ Γ and any of the nine measures µ described above, µ(ϕ) ≤ µ(ψ).

3 A formula-bound game on models

The game described below is the modal analogue of the formula-size game
developed in the setting of first-order logic in [1]. The general idea is that
we have two competing players, Hercules and the Hydra. Given two classes of
pointed models A and B, Hercules is trying to show that there is a “small”
L3-formula ϕ such that A |= ϕ but B |= ¬ϕ whereas the Hydra is trying to
show that any such ϕ is “big”. The players move by adding and labelling nodes
on a game-tree T . For our purposes a tree is a finite set partially ordered by
some order 4 such that if η ∈ T then ↓η = {ν : ν 4 η} is linearly ordered; any
set of the form ↓η is a branch of T .

Definition 3.1 The (L3, 〈A,B〉) formula-complexity game on models (de-
noted (L3, 〈A,B〉)-fgm) is played by two players, Hercules and the Hydra,
who construct a game-tree T in such a way that each node η ∈ T is labelled
with a pair 〈L(η),R(η)〉 of classes of pointed models and either a literal or a
symbol from the set {⊥,>,∨,∧,3,2} according to the rules below.

Any leaf η can be declared either a head or a stub. Once η has been declared
a stub, no further moves can be played on it. The construction of T begins
with a root labelled by 〈A,B〉 that is declared a head. Afterwards, the game
continues as long as there is at least one head. In each turn, Hercules goes
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first by choosing a head η labelled by 〈L(η),R(η)〉. Then, he plays one of the
following moves.

literal-move: Hercules chooses a literal ι such that L(η) |= ι and R(η) |= ¬ι.
The node η is declared a stub and labelled with the symbol ι.

⊥-move: Hercules can play this move only if L(η) = ∅. The node η is declared
a stub and labelled with the symbol ⊥.

>-move: Hercules can play this move only if R(η) = ∅. The node η is declared
a stub and labelled with the symbol >.

∨-move: Hercules labels η with the symbol ∨ and chooses two sets L1,L2 ⊆ L
such that L(η) = L1∪L2. Two new heads, labelled by 〈L1,R(η)〉 and 〈L2,R(η)〉,
are added to T as daughters of η.

∧-move: Dual to the ∨-move, except that in this case Hercules chooses R1,
R2 such that R1 ∪R2 = R(η).

3-move: Hercules labels η with the symbol 3 and, for each pointed model
l ∈ L(η), he chooses a pointed model from 2l; if for some l ∈ L(η) we have
2l = ∅, Hercules cannot play this move. All these new pointed models are
collected in the set L1. For each pointed model r ∈ R(η), the Hydra replies
by picking a subset of 2r 5 . All the pointed models chosen by the Hydra
are collected in the class R1. A new head labelled by 〈L1,R1〉 is added as a
daughter to η.

2-move: Dual to the 3-move, except that Hercules first chooses a successor
for each r ∈ R and Hydra chooses her successors for frames in L.

The (L3, 〈A,B〉)-fgm concludes when there are no heads and we say in this
case that T is a closed game tree.

Note that the Hydra has no restrictions on the number of pointed models
she chooses on modal moves; in fact, she can choose all of them, and it is
often convenient to assume that she always does so. To be precise, say that
the Hydra plays greedily if (i) whenever Hercules makes a 3-move on a node
η and adds a new node η′, then Hydra sets R(η′) =

⋃
r∈R(η) 2r, and similarly

(ii) whenever Hercules makes a 2-move on a node η and adds a new node η′,
then Hydra sets L(η′) =

⋃
l∈L(η) 2l.

The (L3, 〈A,B〉)-fgm can be used to give lower bounds on the length of
formulae defining a given property [4,5,6]. Here we will generalize this to show
that it can be used to give lower bounds on any complexity measure. For this,
we need to view game-trees as formulae.

Definition 3.2 Given a closed (L3, 〈A,B〉)-fgm tree T , we define ψT ∈ L3

to be the unique formula whose syntax tree is given by T .

Formally speaking, ψT is defined by recursion on T starting from leaves: if T
is a single leaf then it must be labelled by a literal ι, or by ⊥, or by >, so we

5 In particular, if 2r = ∅ for some r ∈ R(η), the Hydra does not add anything to R1 for
the pointed model r.
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respectively set ψT = ι, or ψT = ⊥, or ψT = >; if T has a root η labelled by
∨, then η has two daughters η1, η2. Letting T1, T2 be the respective generated
subtrees, we define ψT = ψT1

∨ψT2
. The cases for ∧, 3 and 2 are all analogous.

Then, given a complexity measure µ, we extend the domain of µ to include the
set of closed game trees by defining µ(T ) = µ(ψT ).

If m ∈ N, A, B are classes of models, and µ : L3 → N a complexity measure,
we say that Hercules has a winning strategy for the (L3, 〈A,B〉)-fgm with µ
below m if Hercules has a strategy so that no matter how Hydra plays, the
game terminates in finite time with a closed tree T so that µ(T ) < m.

Theorem 3.3 Let A, B be classes of models, µ any complexity measure, and
m ∈ N. Then, the following are equivalent:

(i) Hercules has a winning strategy for the (L3, 〈A,B〉)-fgm with µ below m;

(ii) there is an L3-formula ϕ with µ(ϕ) < m and A |= ϕ whereas B |= ¬ϕ.

We defer the proof of Theorem 3.3 to Appendix A, where we also establish some
useful properties of the formula-complexity game. However, we remark that the
proof is essentially the same as that of the special case where µ(ϕ) = |ϕ|, which
can be found in any of [4,5,6]. We will also use the following easy consequence
of Theorem 3.3. We assume familiarity with bisimulations [2].

Corollary 3.4 Let A and B be classes of pointed models such that there are
a ∈ A and b ∈ B with a bisimilar to b. For all complexity measures µ and for
all nonnegative integers m, Hercules has no winning strategy for the (A,B)-
fgm with µ below m.

4 A formula-complexity game on frames

We develop an analogous game to the one above that is played on frames instead
of models in order to reason about the “resources” needed to modally define
properties of frames.

Definition 4.1 Let A, B be classes of frames. The (L3, 〈A,B〉) formula-
complexity game on frames (denoted (L3, 〈A,B〉)-fgf) is played by Hercules
and the Hydra as follows.

Hercules Selects Models: For each B ∈ B Hercules chooses a model BM
based on B and a point .B ∈WB and then sets Bm = {(BM, .B) : B ∈ B}.
The Hydra Selects Models: The Hydra replies by choosing a class of
pointed models Am of the form (A, V, a) with A ∈ A.

Formula Game on Models: Hercules and the Hydra play the
(L3, 〈Am,Bm〉)-fgm.

The game tree assigned to a match of the (L3, 〈A,B〉)-fgf is the game tree of
the subsequent (L3,A

m,Bm〉)-fgm.

Remark 4.2 The Hydra is free to assign as many models as she wants to each
A ∈ A, even no model at all. We say that the Hydra plays functionally if
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she chooses Am so that for each A ∈ A there is exactly one pointed model
(AM, .A) ∈ Am with AM based on A.

As was the case for the fgm, for m ∈ N, classes of frames A, B, and
µ : L3 → N a complexity measure, Hercules has a winning strategy for the
(L3, 〈A,B〉)-fgf with µ below m if no matter how Hydra plays, the game
terminates in finite time with a closed tree T so that µ(T ) < m.

Theorem 4.3 Let A, B be classes of frames, µ any complexity measure, and
m ∈ N. Then, the following are equivalent:

(i) Hercules has a winning strategy for the (L3, 〈A,B〉)-fgf with µ below m;

(ii) there is an L3-formula ϕ with µ(ϕ) < m such that A |= ϕ but ϕ is not
valid in any frame of B.

Proof. (ii) implies (i). Let ϕ be an L3-formula with µ(ϕ) < m that is valid
on all frames in A and not valid in any frame in B. For each B ∈ B, Hercules
can choose a pointed model BM = (B, V, b) based on B so that BM 6|= ϕ. The
Hydra then responds with some set of pointed models Am; since ϕ is valid on
A, for all A ∈ Am we have A |= ϕ. By Theorem 3.3, it follows that Hercules
has a winning strategy with µ below m for the (L3,A

m,Bm〉)-fgm and thus
for (L3, 〈A,B〉)-fgf.

(i) implies (ii). Assume that Hercules has such a strategy, and that he chooses
Bm according to this strategy. Then Hydra opens greedily by choosing every
pointed model based on a frame in A; in other words, she sets Am to be the
set of all (A, V, a) with A ∈ A, V a valuation on A and a ∈WA.

By playing according to his strategy, Hercules can win the (Am,Bm)-fgm
with a closed game tree T such that µ(T ) < m; but this is only possible if
his sub-strategy for the (Am,Bm)-fgm is a winning strategy with µ below m.
Thus by Theorem 3.3, there is an L3-formula ϕ with µ(ϕ) < m such that
Am |= ϕ and Bm |= ¬ϕ. Since Hercules chose one pointed model for each
B ∈ B it follows that ϕ is not valid in any frame in B, while since Hydra chose
all possible pointed models, it follows that A |= ϕ. 2

5 The transfer axioms

We apply our formula-complexity games to prove the minimality of some modal
axioms. We begin with what we call the transfer axioms, defined as TA(m,n) =
3mp → 3np, where m 6= n ∈ N; since we treat ϕ → ψ as an abbreviation,
we can rewrite these axioms as 2mp ∨ 3np. It is well-known that TA(m,n)
defines the first-order property of (m,n)-transfer (1) from the introduction. As
special cases we have that (2, 1)-transfer is just transitivity and (0, 1)-transfer
is reflexivity. Instead of (m,n)-transfer we write n-reflexivity when m = 0, m-
recurrence when n = 0, (m,n)-transitivity when m > n > 0 and (m,n)-density
when 0 < m < n.

In this and the following sections, we define a number of pointed models
using figures for ease of understanding. We follow the convention that such
pointed models consist of the relevant Kripke model and a point that is denoted
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A1 A2 A3

. . .

Am+1 B

m

AM
1

/

AM
2

/

AM
3

/. . .

AM
m+1

/

BM

/

Fig. 1. The frames A1, . . ., Am+1 and B and the pointed models based on them.

by the . sign next to it. Our goal is to prove the following.

Theorem 5.1 For any n 6= m ∈ N, 2mp ∨3np is absolutely minimal among
all formulas defining (m,n)-transfer.

The proof that for each m,n ≥ 0, 3mp → 3np is essentially the shortest
formula defining (m,n)-transfer is split in four parts according to the ordering
between m and n. Cases where one of the two is zero are treated in Appendix B.

5.1 Generalized density axioms

First we consider the generalized density axioms, i.e. (m,n)-transfer when
0 < m < n. We prove that Theorem 5.1 holds in this case by considering a
suitable formula-complexity game. Specifically, Hercules and the Hydra play a
(L3, 〈A,B〉)-fgf where A = {A1, . . .Am+1} and B contains a single element
B. These frames are shown in the left rectangle in Figure 1 and separated by
the dotted line. A1 is constructed so that the vertical path leading from the
lowest non-reflexive point to the uppermost non-reflexive one consists of m
steps whereas the rightmost path that starts and ends respectively with these
two points consists of n steps (not counting the reflexive steps) and every point
on this rightmost path is reflexive. The frame B is obtained from A1 by simply
erasing the latter path. Each Ai, for 2 ≤ i ≤ m+ 1, contains a vertical path of
i−2 steps. Obviously, 3mp→ 3np is valid in all frames in A and not valid on B.

selection of the models on the right: If Hercules wishes to win the
game, he must choose his pointed models with some care.

Lemma 5.2 In any winning strategy for Hercules for an (L3, 〈L,R〉)-fgf in
which A1 ∈ L and B ∈ R, Hercules must pick a pointed model (BM, .) based
on the lowest irreflexive point in B.

Proof. It is easy to see that Hercules is not going to select a pointed model
that is not based on the lowest non-reflexive point in B because the Hydra can
always reply with a bisimilar pointed model based on A1. 2

selection of models on the left: The Hydra replies with the pointed
models shown on the left of the dotted line in the right rectangle in Figure 1.
She has constructed them as follows. Using the fact that B is a sub-structure
of A1, the Hydra makes sure that the same points in AM

1 and BM satisfy
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the same literals; moreover, the black points in both models satisfy the same
literals, too. The models AM

i for 2 ≤ i ≤ m + 1 receive valuations that make
them initial segments of the vertical path in BM, i.e., the lowest non-reflexive
point in any AM

i and the lowest non-reflexive point in BM satisfy the same
literals and similarly for their vertical successors. When the Hydra chooses her
pointed models in this way, we say she mimics Hercules’ choice.

formula size game on models: We consider the fgm starting with
(AM

1 , .), . . . , (AM
m+1, .) on the left and (BM, .) on the right. First we show

that there are some constraints on the moves that Hercules may make.

Lemma 5.3 Let L, R be classes of models such that Hercules has a winning
strategy for the (L3, 〈L,R〉)-fgm. Let T be any closed game tree on which the
Hydra played greedily and η be any position of T such that (BM, .) ∈ R(η) while
(Ai, .) ∈ L(η) for some i with 1 ≤ i ≤ m+ 1.

(i) If Hercules played a 3-move at η then he did not pick the left lowest
reflexive point in AM

i , and if i = 1 then he picked the bottom-right reflexive
point on AM

1 .

(ii) If Hercules played a 2-move at η then he did not pick the left lowest
reflexive point in BM.

Proof. If Hercules picks the left lowest reflexive point when playing such a
move, the Hydra is going to reply with the same point in BM1 and obtain
bisimilar pointed models on each side. If i = 1 and Hercules picks the unique
irreflexive successor on AM

1 , then Hydra can reply with the irreflexive successor
on BM, which means by Corollary 3.4 that Hercules cannot win. The second
claim is symmetric. 2

Lemma 5.4 Suppose that L, R are classes of models and Hercules has a win-
ning strategy for the (L3, 〈L,R〉)-fgm. If T is any closed game tree in which
the Hydra played greedily and η is any position of T such that (BM, .) ∈ R(η),
then

(i) if (AM
1 , .) ∈ L(η), then Hercules did not play a 2-move on η;

(ii) if (AM
2 , .) ∈ L(η), then Hercules did not play a 3-move on η.

Proof. The first claim is immediate from the fact that if Hercules played a
2-move, the Hydra can reply with the same point in AM

1 and obtain bisimilar
pointed models on each side. For the second, Hercules is forced to pick the
reflexive point in AM

2 when playing a 3-move which contradicts Lemma 5.3.2

With this we can establish lower bounds on the number of moves of each
type that Hercules must make, as established by the proposition below.

Proposition 5.5 Let L, R be classes of models such that Hercules has a win-
ning strategy for the (L3, 〈L,R〉)-fgm and let T be a closed game tree in which
the Hydra played greedily.

(i) If {(A1, .), (A2, .)} ⊆ L and (B, .) ∈ R, then Hercules made at least one
∨-move during the game.
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(ii) If (AM
1 , .) ∈ L, and (BM, .) ∈ R, then T has modal depth at least n, at

least n 3-moves and one literal.

(iii) If {(AM
2 , .), . . . , (AM

m+1, .)} ⊆ L and (BM, .) ∈ R, then Hercules made at
least m 2-moves during the game.

Proof.
(i) By Lemma 5.4, Hercules cannot play a modality as long as (A1, .), (A2, .)
are on the left and (B, .) on the right, and the three satisfy the same literals, so
that he cannot play a literal either. Playing a ∧-move would lead to at least one
new game position that is the same as the previous one. Hence, every winning
strategy for Hercules must ‘separate’ (A1, .), from (A2, .) with an ∨-move.

(ii) Note that (AM
1 , .) and (BM, .) satisfy the same literals and ∨ and ∧-moves

lead to at least one new game-position in which (AM
1 , .) is on the left and

(BM, .) is on the right. By Lemma 5.4.i, Hercules cannot play a 2-move in
any of these positions. Thus Hercules must perform a 3-move in a position in
which (AM

1 , .) is on the left and (BM, .) is on the right. By Lemma 5.3 he is
going to pick the first reflexive point on the rightmost path in AM

1 .
The Hydra replies with, among others, the left lowest reflexive point in BM.

Since this point satisfies the same literals as the reflexive points lying on the
rightmost path in AM

1 , Hercules cannot play a literal-move; moreover, ∨, ∧ and
2-moves lead to at least one new game position that is essentially the same as
the previous one. In the case of 2-moves this is true because, when playing
such a move, Hercules must stay in the lowest reflexive point in BM while the
Hydra can stay in the current reflexive point on the rightmost path in AM

1 .
Hence, he must make at least n − 1 subsequent 3-moves to reach a point in
AM

1 that differs on a literal from the lowest reflexive point in BM. Finally he
must play a literal, as no other move can close the tree.

(iii) Fix i ∈ [2,m + 1]. Let w1, . . . , wi−1 enumerate the vertical path of Ai
starting at the root, and similarly let v1, . . . , vm enumerate the vertical path of
B. Let wj = (AM

i , wj) and vj = (BM, vj).
Say that a branch −→ν = (ν0, . . . , νk) on T is i-critical if there exists j ∈ [1, i)

with wj ∈ L(νk), vj ∈ R(νk) and Hercules has played exactly j − 1 modal
moves on ν1, . . . , νk−1. Since T is finite and the singleton branch consisting of
the root is i-critical, we can pick a maximal i-critical branch −→η = (η0, . . . , η`)
for some value of j.

We claim that j = i − 1 and Hercules plays a 2-move on η`. Since T is
closed η` cannot be a head, but wj and vj share the same valuation so it cannot
be a stub either, thus η` is not a leaf. If Hercules played a ∧- or a ∨-move then
η` would have a daughter giving us a longer i-critical branch. Thus Hercules
played a modality on η`. If j < i − 1 then for the unique daughter η′ of η`
we have that wj+1 ∈ L(η′) and vj+1 ∈ R(η′), where in the case of j = 0 we
use Lemma 5.3 and otherwise there simply are no other options for Hercules;
but this once again gives us a longer i-critical branch. Thus j = i − 1; but
then Hercules is not allowed to play 3, as there is a pointed model on the left
without successors, so he played a 2-move on η`.
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We conclude that for each i ∈ [2,m+ 1] there is an instance of 2 of modal
depth exactly i− 1, which implies that each instance is distinct. 2

With this we prove Theorem 5.1 in the case 0 < m < n.

Proof. If 0 < m < n we consider the (L3, 〈A,B〉)-fgf with A, B as depicted
in Figure 1. By Lemma 5.2 Hercules chooses some pointed model BM based
on the irreflexive point at the bottom of B, and Hydra replies by mimicking
Hercules’ pointed models. Then by Proposition 5.5 Hercules must play at least
one disjunction, one literal, n 3-moves, modal depth n, and at least m 2-
moves. By Theorem 4.3, any formula valid on every frame of A and no frame
of B must satisfy these bounds; but the frames in A satisfy the (m,n)-transfer
property while those in B do not. 2

5.2 Generalized transitivity axioms

Next we treat Theorem 5.1 in the case where 0 < n < m. As before, we do so
by considering a suitable (L3, 〈A,B〉)-fgf where A = {A1, . . .Am+1} and B
contains a single element B, but now using the frames shown in Figure 2. The
frame A1 is based on a right-angled triangle in which the sum of the relation
steps in the legs is m whereas the number of relation steps in the hypotenuse is
n; moreover, each path on the left of the hypotenuse that shares nodes with it
consist of n relation steps too. The frame B is obtained fromA1 by “separating”
the hypotenuse from the horizontal leg and erasing the points that do not lie
either on the hypotenuse or on the legs of A1. Each Ai, for 2 ≤ i ≤ m + 1,
contains a vertical path of i− 2 relation steps and a diagonal one of n relation
steps. Obviously, 3mp→ 3np is valid in all frames in A and not valid on B.

A1 A2 A3

. . .

Am+1 B AM
1

.

AM
2

.

AM
3

. . . .

AM
m+1

/

BM
.

Fig. 2. The frames A1, . . ., Am+1 and B and the pointed models based on them.

selection of the models on the right: In this case, Hercules must choose
his models according to the following.

Lemma 5.6 In any winning strategy for Hercules for an (L3, 〈L,R〉)-fgf in
which A1 ∈ L and B ∈ R, Hercules picks a pointed model (BM, .) based on the
lowest point in B, and assigns different valuations to the two dead-end points
of B.
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Proof. Hercules is not going to select a pointed model that is not based on the
lowest point in B because the Hydra can always reply with a bisimilar pointed
model based on A1. Similarly, if Hercules assigns the same valuation to the
two dead-ends the Hydra can choose a bisimilar model based on A1 by copying
the valuations from the hypothenuse onto all paths of length n, and copying
the valuations from the legs onto the path of length m; since the valuations
coincide on the end-points, there is no clash at the top left of the triangle. 2

To indicate that the two end-points of B receive different valuations, we
have drawn one of them black while the other is shaped as a rectangle. The
literals true in the rest of the points are immaterial. Thus, Hercules constructs
the pointed model (BM, .) shown in the right rectangle in Figure 2.

selection of models on the left: The Hydra replies with the pointed
models shown on the left of the dotted line in the right rectangle in Figure 2.
The pointed model based on A1 is defined so that the set of literals true in
the points on a diagonal path that shares points with the hypotenuse but do
not coincide with it copy the respective sets of literals true in the points of the
diagonal path in B.

The models Ai for 2 ≤ i ≤ m + 1 receive valuations so that their diagonal
paths coincide with the diagonal path in the model B whereas their vertical
paths are ‘initial segments’ of the vertical path in B, i.e., the lowest point in
any Ai for 2 ≤ i ≤ m + 1 and the lowest point in B satisfy the same literals
and similarly for their vertical successors. As before, if the Hydra chooses her
models in this way, we say that she mimics Hercules’ choice.

formula size game on models: We consider the fgm starting with
(AM

1 , .), . . . , (AM
m+1, .) on the left and (BM, .) on the right. These lemmas

are analogous to those in Section 5.1.

Lemma 5.7 Let L, R be classes of models so that Hercules has a winning
strategy for the (L3, 〈L,R〉)-fgm. Let T be any closed game in which the
Hydra played greedily and η be a node on which Hercules played a 3-move.

(i) If (AM
1 , .) ∈ L(η) and (BM, .) ∈ R(η), then he picked a pointed model based

on a point that lies on the hypotenuse of AM
1 .

(ii) If for some i ∈ [3,m+ 1] we have that (AM
i , .) ∈ L(η) and (BM, .) ∈ R(η),

then he picked the rightmost daughter as a successor of (AM
i , .).

Proof. Both items hold because if Hercules picked a different point, the Hydra
replied with the same point in BM. In either case we obtain bisimilar models
on each side, which by Corollary 3.4 means that Hercules cannot win. 2

Lemma 5.8 Suppose that L and R are classes of models and Hercules has a
winning strategy for the (L3, 〈L,R〉)-fgm. Suppose that T is a closed game
tree, the Hydra played greedily, and η is a node of T .

(i) If (AM
1 , .) ∈ L(η) and (BM, .) ∈ R(η), then Hercules did not play a 2-move

at η.
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(ii) If (AM
2 , .) ∈ L(η) and (BM, .) ∈ R(η), then Hercules did not play a 3-move

at η.

Proof. The first item is immedate from the fact that if Hercules played a 2-
move, the Hydra can reply with the same point in AM

1 , and similarly in the
second case the Hydra would reply with the same pointed model based on BM.2

As was the case for the generalized density axioms, Hercules must play at
least one ∨-move to separate AM

1 from AM
2 .

Proposition 5.9 Let L and R be classes of models such that Hercules has a
winning strategy for the (L3, 〈L,R〉)-fgm. Let T be a closed game tree in which
the Hydra played greedily.

(i) If (A1, .), (A2, .) ∈ L and (B, .) ∈ R, then Hercules made at least one
∨-move during the game.

(ii) If (AM
1 , .) ∈ L, then T has at least n nested 3-moves and at least one

literal move.

(iii) If {(AM
2 , .), . . . , (AM

m+1, .)} ⊆ L, then T has at least m 2-moves.

Proof. The proof of the first item is analogous to that of Proposition 5.5.i,
except that it uses Lemma 5.8, and the proof of the third item is essentially
the same as the proof of Proposition 5.5.iii. Thus we focus on the second item.

Since (AM
1 , .) and (BM, .) satisfy the same literals, ∨, and ∧-moves lead to

at least one new game-position in which (AM
1 , .) is on the left and (BM, .) is

on the right, Hercules must perform a 3-move in a position in which (AM
1 , .)

is on the left and (BM, .) is on the right. It follows from Lemma 5.7, that he is
going to pick the immediate successor along the hypotenuse of AM

1 . The Hydra
replies, with among others, the immediate successor along the diagonal path
in BM. Since the new pointed models satisfy the same literals, Hercules cannot
play a literal-move; moreover, ∨- and ∧-moves lead to at least one new game
position that is essentially the same as the previous one. If he decided to play a
2-move and picked a pointed model based on a point along the diagonal path in
BM, the Hydra will reply with the same point along a path that is different from
the hypotenuse because such paths are always available. Hence, he must make
at least n− 1 subsequent 3-moves to reach the point in which the hypotenuse
of AM

1 and its horizontal leg meet. Finally, at this point Hercules must play a
literal, as this is the only move that will lead to a closed game-tree. 2

With this we conclude the proof of Theorem 5.1 in the case 0 < n < m.

Proof. Similar to the proof for the case 0 < m < n, except that we use the
classes A, B of Figure 2 and Proposition 5.9. 2

6 The Löb axiom

Finally, we consider the Löb axiom, which defines the property of transitivity
and converse-well-foundedness, i.e. that there are no infinite chains w0 R w1 R
. . .. Note that this is a second-order property, and cannot be defined in first-
order logic.
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A1 A2 A3 A4
... B B1

Fig. 3. The sets of frames A = {A1,A2,A3,A4} and B = {B,B1}.

Theorem 6.1 The formula 2p ∨ 3(p ∧ 2p) is absolutely minimal among all
formulas defining the class of transitive and converse well-founded frames.

We have already shown that 22p ∨3p is absolutely minimal among those
formulas defining transitivity, so our strategy will be to expand on the frames
and pointed models in Figure 2 to additionally force Hercules to play a con-
junction. Since these models were already well-founded we can use previous
results.

Let us consider an (L3, 〈A,B〉)-fgf played by Hercules and the Hydra
with the frames shown in Figure 3. Obviously, A1,A2,A3, and B are obtained
from the frames in Figure 2 for m = 2 and n = 1. Additionally, A contains the
frame A4 that is a transitive tree with infinitely many branches such that, for
every natural number n > 0, there is a branch for which the maximum number
or relation steps from the root to its leaf is n. Similarly, B contains the frame
B1 shown on the right of the dotted line in the same figure. Intuitively, we are
going to use A4 and B1 in order to force Hercules to play an ∧-move.

selection of the models on the right: We only consider the choice of
pointed model for the frame B1. It is obvious that Hercules is not going to base
a pointed model on the dead-end point in B1 because the Hydra would reply
with a bisimilar pointed model based on one of the leaves of A4.

Lemma 6.2 In any winning strategy for Hercules in the (L3, 〈A,B〉)-fgf,
Hercules will choose a pointed model based on the reflexive point on B1.

selection of models on the left: Hydra will choose her pointed models
based on A1, A2 and A3 as before. For her pointed model based on A4, she
picks a pointed model based on the root of the tree in which all leaves of
A4 satisfy the same literals as the ones satisfied by the dead-end point in B1
whereas the rest of the points satisfy the same literals as the ones satisfied by
the reflexive point in B1. Once again if Hydra plays in this way we say that
she mimics Hercules’ selection.

formula size game on models: The next lemmas will be used to prove that
Hercules must play an ∧-move.

Lemma 6.3 Let L, R be classes of models such that Hercules has a winning
strategy for the (L3, 〈L,R〉)-fgm. If T is a closed game on which the Hydra
played greedily, then for any game position η and any non-leaf point w of A4,
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if (AM
4 , w) ∈ L(η), (BM1 , .) ∈ R(η), and Hercules played a 2-move at η, then he

selected (BM1 , .) again.

Proof. If Hercules picked the dead-end point in BM1 , the Hydra, using the
transitivity of the relation, would reply with a bisimilar pointed model based
on a leaf in AM

4 . 2

Proposition 6.4 Suppose that L, R are classes of models for which Hercules
has a winning strategy for the (L3, 〈L,R〉)-fgm and let T be a closed game tree
on which the Hydra played greedily.

(i) If (AM
4 , .) ∈ L and (BM1 , .) ∈ R, Hercules played at least one 3-move on

a node η such that L(η) contains a pointed model based on AM
4 whereas

(BM1 , .) ∈ R(η).

(ii) If Hercules plays a 3-move in a position η in which L(η) contains a pointed
model based on AM

4 while (BM1 , .) is on the right, he must play at least one
subsequent ∧-move.

Proof.
(i) Let us suppose that Hercules plays without 3-moves. Since (AM

4 , .) and
(BM1 , .) satisfy the same literals, no literal move is possible in a game position
η in which (AM

4 , .) is on the left and (BM1 , .) on the right. Playing a ∧- or a
∨-move results in at least one new position in which (AM

4 , .) is on the left and
(BM1 , .) is on the right. Hence a 2-move is inevitable and by Lemma 6.3, he
selected (BM1 , .) again.

When Hercules plays such a move, the Hydra would reply with all infinitely
many pointed models based on AM

4 and an immediate successor of the root of
the tree. From this new position on any finite number of ∨, ∧ and 2-moves are
going to result in at least one new position that contains (BM1 , .) on the right
whereas on the left we have infinitely many pointed models based on AM

4 and
a non-leaf point. Obviously, none of the >-, ⊥-, and literal-moves are possible
in such a position. Hence, Hercules has no winning strategy without 3-moves.

(ii) Let us suppose that Hercules plays a 3-move in such a position. The
Hydra is going to respond with both (BM1 , .) and a pointed model based on the
dead-end point in BM1 . Let us suppose now that Hercules is not going to play
any subsequent ∧-move. Obviously, ⊥, >, and literal moves are impossible;
moreover, the presence of a dead-end pointed model on the right prevents 2-
moves. Clearly, playing an ∨-move would result in at least one new game
position which is the same as the previous one. Therefore, Hercules can only
play 3-moves until he reaches a pointed model (A4, v) such that the only
successor of v is a leaf. Playing a 3-move in such a position would lead to a
loss in the next step because of the presence of bisimilar pointed models on
the left and right. Since (AM

4 , v) and (BM1 , .) satisfy the same literals no literal
moves are possible either. Therefore, Hercules has no winning strategy without
playing at least one ∧-move. 2

With this we can prove Theorem 6.1.
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Proof. Consider a (L3, 〈A,B〉)-fgf where A = {A1,A2,A3,A4} and B =
{B,B1} as given in Figures 2 and 3. Hercules must choose his pointed models
according to Lemmas 5.6 and 6.2, and Hydra replies by mimicking Hercules.
Using Proposition 5.9 we see that if the Hydra plays greedily then any closed
game tree must have modal depth at least two, contain two instances of 2, one
instance of each 3 and ∨, and one variable. By Proposition 6.4, it also contains
one conjunction, as required. 2

7 Conclusion

The present work was motivated to a large degree by ideas and results from
[8], where the notion of minimal modal equivalent of a first-order conditions
was introduced. Note however that the term minimal is used in [8] only with
respect to the number of different variables needed to modally define a first-
order condition which does not tell us much about the length, modal depth, or
the number of Boolean connectives required and that is why we have extended
the notion of minimality to cover these as well. With this we have shown that
several familiar modal axioms are minimal with respect to all measures consid-
ered, including the Löb axiom, which is not first-order definable. It is obvious
that once we have shown that a given frame property is modally definable, we
can study its minimal modal complexity with respect to different complexity
measures and therefore there are many natural open problems related to the
present work. We would like to mention one in particular.

Question 1 Is there a complexity measure µ and an infinite sequence of for-
mulae ϕ1, ϕ2, . . . such that if ψ1, ψ2, . . . is a sequence of equivalent Sahlqvist
formulae then µ(ψn) grows exponentially in µ(ϕn)?
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Appendix

A Properties of the formula-complexity game on models

We have seen that a closed game tree T induces a formula ψT . Under certain
conditions, we can also turn formulae into game trees.

Lemma A.1 Let A, B be classes of models and ϕ ∈ L3 be so that A |= ϕ and
B |= ¬ϕ. Then, Hercules has a strategy for the (L3, 〈A,B〉)-fgm so that any
match terminates on a closed game tree T with ψT = ϕ.

Proof. We proceed by induction on the structure of ϕ.

ϕ is a literal. If ϕ is a literal ι, then Hercules plays the literal-move by
choosing ι and the game tree T is closed with ψT = ι, as required.

ϕ is ⊥. If ϕ is ⊥, then Hercules plays the ⊥-move and the game tree T is
closed with ψT = ⊥, as required.

ϕ = ϕ1 ∨ ϕ2. Hercules can play the ∨-move and add two nodes η1, η2 labelled
by 〈A1,B〉 and 〈A2,B〉, respectively, where A = A1 ∪ A2, A1 |= ϕ1 and
A2 |= ϕ2. Applying the induction hypothesis to each sub-game, for i ∈ {1, 2}
Hercules has a strategy for the (L3, 〈Ai,Bi〉)-fgm with resulting closed game
trees Ti so that ψTi = ϕi. This yields a closed game tree T for the original
game with ψT = ϕ, as desired.

ϕ = 3θ. For each a ∈ A, Hercules chooses a pointed model from 2a that
satisfies θ and collects all these pointed models in the class A1. Hydra replies
by choosing a subset of 2b for each b ∈ B and collects these pointed models
in B1. A new node η labelled with 〈A1,B1〉 is added to the game tree as a
successors to the one labelled with 〈A,B〉. Obviously, A1 |= θ and B1 |= ¬θ.
Applying the induction hypothesis, we conclude that Hercules has a strategy
for the sub-game starting at η so that the resulting game tree S is closed with
ψS = θ. This yields a closed tree T for the original game with ψT = 3θ.

Other cases. Each of the remaining cases is dual to one discussed above. 2

Next we show that if the Hydra plays greedily, then any closed game tree
T for the (L3, 〈A,B〉)-fgm is such that A |= ψT and B |= ¬ψT .

Lemma A.2 Let A, B be classes of models and let T be a closed game tree
for the (L3, 〈Ai,Bi〉)-fgm on which the Hydra played greedily. Then, A |= ψT
and B |= ¬ψT .

Proof. For a node η of T let Tη be the subtree with root η, and let ψη = ψTη .
By induction on η starting from the leaves we show that L(η) |= ψη and R(η) |=
¬ψη. The base case is immediate since Hercules can only play a literal when
it is true on the left but false on the right, and the inductive steps for ⊥, >, ∨
and ∧ are straightforward. The critical case is when Hercules plays a modality
on η, which is when we use that the Hydra plays greedily. If Hercules played a
3-move on η with daughter η′ then for each l ∈ L(η) he chose l′ ∈ 2L(η) and
placed l′ ∈ L(η′); by the induction hypothesis l′ |= ψη′ , so that l |= 3ψη′ = ψη
by the semantics of 3. Meanwhile for r ∈ R(η), if r′ ∈ 2r then since the Hydra
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A1 A2

n− 1

B AM
1

/

AM
2

/

n− 1

BM
/

Fig. B.1. The frames A1, A2 and B and the pointed models based on them.

played greedily r′ ∈ R(η′), and since r′ was arbitrary we see that r |= ¬3ψη′ .
The case for a 2-move is symmetric. 2

With this we prove Theorem 3.3

Proof. Let A, B be classes of models, µ any complexity measure, and m ∈ N.
Recall that Theorem 3.3 states that the following are equivalent:

(i) Hercules has a winning strategy for the (L3, 〈A,B〉)-fgm with µ below
m, and

(ii) there is an L3-formula ϕ with µ(ϕ) < m and A |= ϕ whereas B |= ¬ϕ.

First assume that (i) holds, and let Hydra play the (L3, 〈A,B〉)-fgm greed-
ily. By using his winning strategy, Hercules can ensure that the game termi-
nates on some closed tree T with µ(T ) < m. But by definition this means that
µ(ψT ) < m, and by Lemma A.2, A |= ψT while B |= ¬ψT .

Conversely, if (ii) holds, by Lemma A.1 Hercules has a strategy so that no
matter how the Hydra plays, any match ends with a closed tree T with ψT = ϕ,
so that in particular µ(T ) < m. 2

B Generalized reflexivity and recurrence

In this appendix we prove Theorem 5.1 in cases where one of the parameters
is zero.

B.1 The generalized reflexivity axioms

Recall that we write n-reflexivity instead of (0, n)-transfer. In order to prove
that Theorem 5.1 holds in this case, we consider a (L3, 〈A,B〉)-fgf where
A = {A1,A2} and B contains a single element B. These frames are shown in
the left rectangle in Figure B.1 and separated by the dotted line. The “highest”
point in A2 can be reached in n−1 relation steps from the lowest one and then
we can return back to the latter in one additional relation step, i.e, the points
in A2 that are different from the reflexive one form a cycle of length n. It is
immediate that p→ 3np is valid on both A1 and A2 and not valid on B.

Next we study Hercules’ possible strategies. We begin with his choice of
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models on the right.

selection of the pointed models on the right. If Hercules is to win
the formula-complexity game, he must choose his models in a specific way.

Lemma B.1 In any winning strategy for Hercules for an (L3, 〈L,R〉)-fgf in
which A1 ∈ L and B ∈ R,

(i) Hercules chooses the valuation on B so that at least one literal is true in
one point but not on the other, and

(ii) he picks the pointed model based on the irreflexive point in B.

The pointed model based on B and its irreflexive point chosen by Hercules
is shown in the right half of Figure B.1. We indicate that the two points in
B satisfy different sets of literals by making one of them black and the other
white.

selection of the pointed models on the left. The Hydra can reply
with the pointed models shown on the left of the dotted line in the right half
in Figure B.1. She selects these pointed models so that two points in any two
models satisfy the same set of literals iff they have the same colour. As usual,
we say that she mimics Hercules if she chooses her pointed models in this way.

formula size game on models: Let us consider now the fgm starting with
(AM

1 , .), (AM
2 , .) on the left and (BM, .) on the right. We first note that the

modal moves that Hercules may make have some restrictions. The following can
be seen by observing that playing otherwise would produce bisimilar pointed
models on each side.

Lemma B.2 Let L, R be classes of models so that Hercules has a winning
strategy for the (L3, 〈L,R〉)-fgm and T a closed game tree in which the Hydra
played greedily.

(i) If there is a game position η in which any pointed model based on either
AM

1 or AM
2 is on the left and any pointed model based on BM is on the

right, then Hercules did not play a 2-move at η.

(ii) If there is a game position η in which (AM
1 , .) is on the left and a pointed

model based on BM is on the right, then Hercules did not play a 3-move
at η.

From this it is easy to see that Hercules must play at least one variable.

Lemma B.3 Suppose that L, R are classes of models and that Hercules has
a winning strategy for the (L3, 〈L,R〉)-fgm. Let T be a closed game tree in
which the Hydra played greedily and such that there is a position η in which
(AM

1 , .) is on the left and (BM, .) is on the right. Then, the number of literal
moves in T is at least one.

Proof. By Lemma B.2 Hercules cannot play any 3- or 2-moves, and ∧- or
∨-moves result in at least one new position with both of these pointed models.
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Fig. B.2. The frames A1, . . ., Am+1 and B and the pointed models based on them.

Since Hercules cannot play ⊥ or >, he must use at least one variable. 2

With this we are ready to prove Theorem 5.1 in the case where m = 0.

Proof. Let A and B be as depicted in the left rectangle in Figure B.1; since
the frames of A are n-reflexive but the ones in B are not, by Theorem 4.3 it
suffices to show that the Hydra can play so that any closed game tree has at
least one ∨-move, one literal move, and modal depth at least n.

Let Bm = {(BM, .B)} be the singleton set of pointed models chosen by
Hercules, which by Lemma B.2 must be so that the top and bottom points
have different valuations, and let Hydra choose Am as depicted in the right-
hand side of Figure B.1. Lemma B.2 implies that Hercules cannot begin the
fgm starting with (AM

1 , .), (AM
2 , .) on the left and (BM, .) on the right by

playing either a 3- or a 2-move. Playing an ∧-move will result in at least
one new position that is the same as the previous one. Therefore, Hercules
must play an ∨-move and he and the Hydra will have to compete in two new
sub-games: the first one starting with (AM

1 , .) on the left and (BM, .) on the
right while the second starts with (AM

2 , .) on the left and (BM, .) on the right.
By Lemma B.3 he can win the former only by playing a literal-move whereas

the latter can be won only by playing a sequence of n 3-moves that must be
made in order to perform a cycle leading back to the black point in A2, giving
us at least n ocurrences of 3 and modal depth at least n. We can then use
Theorem 4.3 to conclude that p ∨3np is absolutely minimal. 2

B.2 The generalized recurrence axioms

Now we treat the m-recurrence axioms, where n = 0. This time Hercules
and the Hydra play a (L3, 〈A,B〉)-fgf where A = {A1, . . .Am+1} while B
contains a single element B, as depicted in the left rectangle in Figure B.2.
For 2 ≤ i ≤ m+ 1, each Ai is a path of i− 2 relation steps. Clearly, 3mp→ p
is valid in all the frames in A and it is not valid in the frame B.

selection of the models on the right: It follows from Lemma B.1 that
Hercules must pick the pointed model (BM, .) shown in the right half of Fig-
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ure B.2. Again, to indicate that the two points of BM satisfy different sets of
literals, we colour one of them black and the other white.

selection of the pointed models on the left: The Hydra replies with
the pointed models shown on the left of the dotted line in the right half in
Figure B.2. Again, she picks these pointed models so that points that satisfy
the same set of literals have the same colour.

formula size game on models: Let us consider the fgm starting with
Am = {(AM

1 , .), . . . , (AM
m+1, .)} on the left and Bm = {(BM, .)} on the right.

Lemma B.4 In any closed game tree T for the (Am,Bm)-fgm in which the
Hydra played greedily, Hercules played at least one ∨-move.

Proof. Using Lemma B.2, we see that in order to win a fgm with a starting
position η in which (AM

1 , .) is on the left and (BM, .) is on the right, Hercules
must not play either a 3- or a 2-move at η. On the other hand, for every game
position ν in which there is some (AM

i , .) on the left for 2 ≤ i ≤ m + 1 and
(BM, .) on the right, Hercules must play at least one 3- or 2-move at ν. This
implies that in any fgm with a starting position in which the pointed models
selected by the Hydra are on the left and (BM, .) is on the right, Hercules must
play at least one ∨ to separate every (AM

i , .) for 2 ≤ i ≤ m+ 1 from (AM
1 , .).2

Lemma B.5 Let L, R be classes of models so that Hercules has a winning
strategy for the (L3, 〈L,R〉)-fgm. Let T be a closed game tree in which the
Hydra played greedily. If all (AM

i , .) for 2 ≤ i ≤ m+1 are in L and (BM, .) ∈ R,
Hercules must have played at least m 2-moves and the modal depth of T must
be at least m.

We omit the proof, which is similar to that of Proposition 5.5.iii. With this
we are ready to prove Theorem 5.1 for the case where n = 0.

Proof. Consider the (A,B)-fgf where A, B are as depicted in Figure B.2
on the left: by Lemma B.1 Hercules must choose different valuations for the
points of B and choose the bottom point. Let Hydra reply as depicted on the
right-hand side of the figure.

By Lemma B.3 Hercules must play at least one variable, by Lemma B.4 he
must play at least one ∨-move, by Lemma B.5 he must play at least m 2-moves
and modal depth at least m on the resulting fgm, and we can apply Theorem
4.3. 2
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