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Abstract: Frequency-shifting loops (FSL) are analyzed theoretically in cases where the 
intracavity modulator induces two side-bands at each round-trip, a situation that can be 
commonly obtained with electro-optic intensity or phase modulators. Using a simple model, 
we discuss the ability of such loops to perform frequency-to-time mapping, in the integer 
Talbot condition, or pulse repetition rate enhancement, in the fractional Talbot condition. The 
results are compared to the established acousto-optic FSL with pure frequency shift. We show 
that, in spite of a more complicated situation resulting from the dual sideband modulation, 
pulse repetition rate amplification can be obtained with an amplitude modulator, and 
frequency-to-time mapping can be obtained with a phase modulator. This opens new routes to 
high-frequency manipulation of microwave-optical signals with high-bandwidth (multi-GHz) 
modulators. 

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement  

1. Introduction 

Frequency-shifted feedback loops (FSL) have attracted much attention recently because their 
peculiar time-frequency properties could lead to numerous applications, such as ultra-high 
repetition rate pulse generation [1], frequency-to-time mapping [2], optical signal processing 
[3], arbitrary waveform generation [4,5], heterodyne spectroscopy [6], and ranging [7,8,9]. 
Inspired from frequency-shifted feedback (FSF) lasers [10,11], a frequency-shifting loop is a 
sub-threshold ring resonator. It is typically seeded by a continuous-wave (cw) laser and it 
contains (i) a modulator that induces a frequency shift every round-trip, (ii) an optical 
amplifier to compensate for the losses, and (iii) an optical filter. Up to now the modulator in 
the FSL was usually an acousto-optic (AO) frequency-shifter. While it features high 
frequency conversion efficiency in the sub-100 MHz range, AO has limited efficiency in the 
GHz range and offers limited tunability. Besides the AO frequency-shifter, a phase modulator 
(PM) or an amplitude modulator (AM) can also provide frequency-shifted sidebands at each 
round-trip, with a potentially much higher bandwidth. In this respect, electro-optic (EO) 
modulators have been demonstrated to provide high repetition rates [12] or peculiar double-
pulse [13] regimes. In addition to high modulation frequency and bandwidth, EO modulators 
are compact and easy to integrate with other fiber devices. In view of enhancing the 
properties of FSLs in terms of bandwidth and tunability for applications, it is hence important 
to analyze the properties of EO-based FSLs. 

One striking feature of  AO-FSL is its ability to convert a cw narrow linewidth seed into 
Fourier-transform-limited pulses. This property is linked to the temporal Talbot effect [14, 
15]. It permits to generate pulses at a repetition rate equal to the round-trip rate, when the 
frequency-shift equals this round-trip rate (the integer Talbot condition), or to a multiple of 
the round-trip rate (the fractional Talbot condition). In addition, when the integer Talbot 
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where ̅ߛ =  ௝ఠబఛ is a constant complex parameter containing the loop optical phase as݁ߛଶଶݐ
well as the gain and loss parameters. In the following we focus our discussion on the loop 
function L(t) defined by 

(ݐ)ܮ  = ∑ ௟ே௟ୀଵߛ̅ ∏ ݐ)ߓ − ݊߬)௟௡ୀଵ . (6) 

L(t) is essentially the part of the output complex optical envelope generated in the loop, 
including all the generated sidebands. We will investigate three different cases that can lead 
to a frequency-shift ௠݂ = ߱௠/2ߨ. Modulation functions of the three different modulators can 
be written as follows: 

(ݐ)ிߓ  = ݁௝ఠ೘௧, (7a) 

(ݐ)஺ߓ  = sinሾ߁଴ + ௠߁ sin(߱௠ݐ)ሿ, (7b) 

(ݐ)థߓ  = ݁௝ఋ ୱ୧୬(ఠ೘௧), (7c) 

corresponding to the frequency translation (AO), the amplitude modulator (EO-AM), and the 
phase modulator (EO-PM), respectively. In Eq. (7b), ߁଴ is a static retardance, and ߁୫ is the 
modulation depth. In Eq. (7c), δ is the modulation depth of the phase modulator. The purpose 
of our analysis is to derive the different characteristics of the loop functions ܮி, ,஺ܮ థܮ  in 
integer and Fractional Talbot conditions, and hence to predict the ability of either FSL 
scheme to perform harmonic repetition rate pulse trains or frequency-to-time mapping. In all 
cases the optical power at port 1, that is ௢ܲ௨௧(ݐ) =  ଶ, will be obtained by|(ݐ)௢௨௧ଵܧ|

 ௢ܲ௨௧(ݐ) = ቚݐଵଵ + ௧మభ௧భమ௧మమ ቚଶ(ݐ)ܮ ଴ܲ. (8) 

While the AO-FSL case has already been investigated in detail by Guillet de Chatellus et al. 
[1-3], the EO-FSLs need to be analyzed. Since our formulation is slightly different from the 
one adopted before, we begin the next sections by considering quickly this most-well-known 
case in order to point out the differences with the EO-FSL following results. 

3. Frequency translation (AO-FSL) 

Using Eq. 7(a) in Eq. 6, the loop function is ܮி(ݐ) = ∑ ௟ே௟ୀଵߛ̅ ∏ ݁௝ఠ೘(௧ି௡ఛ)௟௡ୀଵ . In the integer 
Talbot condition that writes ௠݂߬ = ௠݂ ௖݂⁄ = ݌ with ,݌ ∈ ℕ∗ , we have ݁௝ఠ೘(௧ି௡ఛ) = ݁௝ఠ೘௧ , 
then ܮி(ݐ) = ∑ ௟ே௟ୀଵߛ̅ ݁௝௟ఠ೘௧. In the limit N→∞, this sum of a geometric series writes: 

(ݐ)ிܮ  = ௧మమఊ௘ೕഘ೘೟௘ೕഘ೚ഓଵି௧మమఊ௘ೕഘ೘೟௘ೕഘ೚ഓ , (9) 

 

 
Fig.2 FTM process in the AO-FSL. (a) Single-frequency input yields the pulsed output in (b). 
(c) Multi-tone input yields the output signal in (d) that maps the input spectrum. 



where we have expanded ̅ߛ in order to emphasize the role of the optical phase ߱଴τ. Since ݐଶଶߛ < 1 (assuming ݐଶଶ  real positive), obviously ܮி (t) will be a sharp function peaked in ߱௠t + ߱଴τ = 2݇π (݇ ∈ ℤ). Therefore, the response of the loop to a single optical frequency 
(cw seed) is a periodic function whose repetition rate is ௠݂, as shown for example in Fig. 
2(a)-(b). Moreover, it is important to notice here that the pulse positions in time are highly 
dependent on the optical frequency of the seed laser, through the term ݁௝ఠ೚ఛ. If the seed laser 
contains multiple frequencies ߱௜ , as shown in Fig. 2(c)-(d), the output traces in the time 
domain will map the input spectrum, each optical frequency yielding maxima when 
 ߱௠t + ߱௜τ = 2݇π (݇ ∈ ℤ). Therefore, the response of the loop is a time map of the input 
spectrum, repeated at the fundamental loop frequency ௖݂. The resolution of the process was 

evaluated in [2] to be ݂ߜ = ௙೘௙೎୼௙ ~ ௙೎ே where the loop bandwidth is Δ݂~ܰ ௠݂. 

Now under the fractional Talbot condition, i.e., when ௠݂߬ = ௠݂ ௖݂ = ݌ ⁄⁄ݍ , with (݌, -co (ݍ

primes, the modulation function becomes ߓி(ݐ − ݊߬) = ݁௝ఠ೘௧ି௝ଶగ௡೛೜. Then LF(t) writes  

(ݐ)ிܮ  = ∑ ௟ே௟ୀଵߛ̅ ∏ ݁௝(ఠ೘௧ିଶగ௡೛೜)௟௡ୀଵ . (10) 

Eq. (10) yields different analytical expressions depending on the parities of p and q. For the 

analytical derivation we choose ܰ = ܭ) ݍܭ ∈ ℕ∗). Defining ݂(௟)(ݐ) = ௟ߛ̅ ∏ ݁௝ఠ೘௧ି௝ଶగ௡೛೜௟௡ୀଵ  
and ߩ = ሾ̅݁ߛ௝ఠ೘௧ሿ௤݁௝గ(௤ାଵ), one can then show (see Appendix A) that 

(ݐ)ிܮ  = ଵିఘ಼ଵିఘ ∑ ݂(௟)(ݐ)௤௟ୀଵ , (11) 

which we now expand according to the parity of q. 
(i) Let q odd. By expanding ߩ, the loop function writes: 

(ݐ)ிܮ  = ଵି(௧మమఊ)ಿ௘ೕಿഘ೚ഓ௘ೕಿഘ೘೟ଵି(௧మమఊ)೜௘ೕ೜ഘ೚ഓ௘ೕ೜ഘ೘೟ ∑ ݂(௟)(ݐ)௤௟ୀଵ . (12) 

Hence the output trace tends to a modulated function with intensity peaks localized at values 
defined by ߱ݍ௢߬ + ݐ௠߱ݍ = ݇) ߨ2݇ ∈ ℤ). This behavior corresponds to the generation of ݍ 
optical pulses per period. In the time domain, this corresponds to a repetition rate equal to ݍ ௠݂ = ݌ ௖݂.  

(ii) Let q even. Expanding ߩ, the loop function becomes: 

(ݐ)ிܮ  = ଵି(ିଵ)಼(௧మమఊ)ಿ௘ೕಿഘ೚ഓ௘ೕಿഘ೘೟ଵା(௧మమఊ)೜௘ೕ೜ഘ೚ഓ௘ೕ೜ഘ೘೟ ∑ ݂(௟)(ݐ)௤௟ୀଵ . (13) 

As for Eq. (12), the output results in a peaked function localized at values of 
௢߬߱ݍ  + ݐ௠߱ݍ = (2݇ + ߨ(1 , (݇ ∈ ℤ). There are ݍ  pulses per modulation period and the 
repetition rate is ݍ ௠݂ = ݌ ௖݂  but, at variance with case (i), the pulses are shifted from the 
origin by a delay ݍ/ߨ. 

In order to illustrate the fractional Talbot effect in this AO-FSL, we evaluate Eq. (8) with 
modulation frequencies corresponding to the cases of Eqs. (12)-(13). We choose simulation 
parameters as follows: the fundamental loop frequency is ௖݂  = 10 MHz (߬ = 100 ns), the 
frequency shift is adjusted to ௠݂ = 10 ௖݂ + ′݌) ⁄′ݍ ) ௖݂. The splitting ratio of the 2×2 coupler is 
50:50. The loop loss is 0.4 and the gain is 3.5. We fix the round-trip number N = 100. In Fig. 
3, we report the pulse trains obtained when ݌′ ⁄′ݍ = 5/4, 12/11, 16/15, and 21/20, that is p/q 
= 45/4, 122/11, 166/15, and 221/20. As shown by Fig. 3, these correspond to qfm-repetition 
rates ranging here from 4fm to 20fm. These simulations confirm the analytical predictions: the 
loop generates periodic pulses with a repetition rate ݍ ௠݂ = ݌ ௖݂, with a time-shift depending 
on the parity of ݍ. Obviously the condition N = Kq is not respected in all these cases, but we 
checked that this has actually little influence on the waveforms; in other words, the harmonics 
higher than Kq are negligible. 



After having revisited the AO-based FSL for which these results had already been 
observed, we now turn to dual-sideband EO cases, first in the amplitude-modulation (AM) 
scheme that was recently shown to lead to pulse doublets [13], and then in the phase-
modulation (PM) regime. 

 

 
Fig.3 Fractional Talbot effect for the AO-FSL with ݌ ⁄ݍ  ratios as indicated. The 
resulting pulse repetition rate is qfm (with fm close to 110 MHz in all these 
examples). 

4. EO-FSL with amplitude modulation 
By using Eq. (7b) in Eq. (6) we write the loop function ܮ஺(ݐ) = ∑ ௟ே௟ୀଵߛ̅ ∏ sin൫߁଴ +௟௡ୀଵ߁௠ sin൫߱௠(ݐ − ݊߬)൯൯. 
4.1. Integer Talbot condition 

When ௠݂߬	 is an integer, we have sin൫߱௠(ݐ − ݊߬)൯ = sin(߱௠ݐ) . Then the loop function 
becomes 

(ݐ)஺ܮ  = ∑ ௟ሾsinߛ̅ ሿ௟ே௟ୀଵ(ݐ)ߠ = ௧మమఊ௘ೕഘ೚ഓ ୱ୧୬ఏ(௧)ଵି௧మమఊ௘ೕഘ೚ഓ ୱ୧୬ఏ(௧), (14) 

where (ݐ)ߠ = ଴߁ + ௠߁ sin(߱௠ݐ) . Note that the ݁௝ఠ೘௧  term of the AO case in Eq. (9) is 
replaced by sin  resulting in a very different behavior. Considering the special case ,(ݐ)ߠ
where ݁௝ఠ೚ఛ = 1 , Eq. (14) shows here that the loop delivers a pulse every time (ݐ)ߠ ߨ= 2 + ⁄ߨ2݇  ( ݇ ∈ ℤ ). Interestingly, two temporally separated solutions appear in one 
modulation period. According to this analysis, we may predict that the output of the 
amplitude-modulated loop in the time domain delivers a periodic series of pulse doublets 
[13]. Moreover, the output signal does not map the input spectrum anymore. This is 
evidenced by plotting the output signals obtained with different input spectra, as depicted in 
Fig. 4. The output time traces in the amplitude-modulated FSL show the same patterns 
(double pulses) regardless of the input optical spectra. Note that ݁௝ఠ೚ఛ = −1  leads to (ݐ)ߠ = ߨ− 2 + ⁄ߨ2݇  and to the same conclusions. Besides, if the condition ݁௝ఠ೚ఛ = ±1 is 
not met, we verified numerically that the output modulation amplitude is much weaker, and 
there is no FTM a fortiori. This emphasizes an important difference from the AO-FSL: it 
means that an EO-AM FSL cannot be used for real-time Fourier transformation.  

4.2. Fractional Talbot condition 

We now consider the fractional Talbot condition ௠݂߬ = ௠݂ ௖݂ = ݌ ⁄⁄ݍ , with (݌,  ,co-primes (ݍ
in order to check for the possibility of using this scheme for harmonic high-repetition rate 
pulses. The equations are more cumbersome than in the AO-FSL case. However, there are 
some conditions under which the loop function can be simplified. To this aim, we choose the 
static phase retardance ߁଴ = 0 (a case corresponding to carrier suppression), and we assume 



that the modulation is weak enough to write sin (ݐ)ߠ ≈ 	.(ݐ)ߠ Then ݐ)ߓ − ݊߬) ௠߁= sin(߱௠ݐ −  is used to write the loop function as (ݍ/݌݊ߨ2

(ݐ)஺ܮ  = ∑ ௟(௠߁)௟ߛ̅ ∏ sin ቀ߱௠ݐ − ݊ߨ2 ௣௤ቁ௟௡ୀଵே௟ୀଵ .  (15) 

 

 
Fig. 4. EO-AM FSL under the integer Talbot condition. Simulation output power with (left) 
single frequency and (right) multi-tone input. Double-pulse operation depends on the EO bias 
(Γ) but there is no frequency-to time mapping. 

We could not find any simpler expression of Eq. (15) that could be directly compared with 
Eq. (11). However, simulations were performed using Eq. (8) with different fractional orders ݌ ⁄  in Eq. (15). All simulation parameters are the same as before, except for the loop gain ݍ
that is now set to 5.3. As illustrated in Fig. 5, the output traces show trains of pulses with  
repetition rates ݍ ௠݂ = ݌ ௖݂ (fractional Talbot effect) whatever the parity of ݍ. Meanwhile, the 
pulse train amplitude is modulated at fm. 

 

 
Fig. 5. EO-AM FSL under fractional Talbot condition with ݌ ⁄ݍ  ratios as indicated. 
The resulting pulse repetition rate is qfm (with fm close to 110 MHz in these 
examples). Note the 1/fm-periodic modulation amplitude. 
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laser should be kept smaller than ௖݂. Fourth, one can estimate the resolution Δ݂ of the process. 
In the linear part of the sine function we find a situation similar to the AOFS case discussed in 
[2]. The input frequency and output pulse time are linearly related, and two input lines 
spectrally separated by ∆݂ yield pulses separated by ∆ݐ with ߜ × ߱௠∆ݐ =  Then, by .݂߬∆ߨ2
considering that a single-frequency input yields an output pulse-width given by	∆1~ݐ 2ܰ ௠݂⁄  

(2N in-phase spectral lines in the loop), one finds the resolution	Δ݂~ߜ × ௙೘∆௧ఛ = ఋଶ ௙೎ே  . The 

resolution depends notably on the modulation depth but, as a rule of thumb, one may retain: 

 ∆݂~ ௙೎ே. (18) 

It is interesting to note that the resolution scales as 1/N, and it can be improved by enhancing 
the number of spectral lines in the loop, as in the AOFS case.  

Frequency to time mapping is simulated by using Eqs. (16)-(17) in Eq. (8), keeping the 
same parameters as in previous Section. For illustration, we use a three-tone input, like a 
carrier with two intensity un-balanced sidebands, as shown in Fig. 7(c). Due to the sinusoidal 
modulation function of the phase-modulating EOM, each optical frequency maps to a double-
pulse in the time domain. Fig. 7(d) then exhibits the “mirror effect”. Because of this property, 
the output traces with different optical frequencies are distributed in the half period, which is 
quite similar to a traditional FFT process. Also the loop fundamental frequency corresponds 
to the sampling frequency of the FFT process, limiting the highest frequency of the sampling 
signal. Besides, we find in the simulations that when the integer Talbot condition is met 
( ௠݂ ௖݂⁄ =  is fixed, the ratio of the pulse width to the pulse period (duty cycle) is ߛଶଶݐ and (݌
always the same regardless of the value of p, as predicted by Eq. (18). Finally, it is important 
to note that real-time Fourier transform can be obtained only provided that the solutions of 
Eq. (17) stay in the linear region of the sine function. Conversely, when the solutions are out 
of the linear region, this EO-PM configuration performs nonlinear FTM. 
 

 
Fig. 7. FTM of the EO-PM FSL when δ =  input laser spectra; (b),(d) corresponding (c),(a) .ߨ
output signals. 

ii) Phase modulation depth δ > π.  

When the modulating depth is larger than ߨ, the response of the phase-modulated FSL to a 
single optical frequency is shown in Fig. 8. As the optical frequency of the seed laser 
changes, the solutions of (ݐ)ߠ =  may extend over different possible values of k, which is ߨ2݇
illustrated in Fig. 8(b). In conclusion the single-frequency seed laser can yield a 2-pulse or a 
4-pulse regime in one modulating period. 

In order to validate the analysis, we simulate the output traces when ߜ = ߨ5 4⁄ . As an 
example we take three different optical frequencies: ଴݂  (߱௢߬ = 2݇ᇱߨ , ݇ᇱ  is an integer), ଴݂ + 1 5⁄ ௖݂  , ଴݂ + 2 5⁄ ௖݂  , and then feed Eq. (8) with Eq. (16). As illustrated in Fig. 9(a), 
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5.2. Fractional Talbot condition 
Under the fractional Talbot condition, when ௠݂ ௖݂ = ݌ ⁄⁄ݍ ,݌) ,  co-primes, Eq. (5) is given (ݍ

by  ܮథ(ݐ) = ∑ ௟ே௟ୀଵߛ̅ ∏ ݁௝ఋ ୱ୧୬ቀఠ೘௧ିଶగ௡೛೜ቁ௟௡ୀଵ , and can be written: 

(ݐ)థܮ  = ∑ ௟ே௟ୀଵߛ̅ ݁௝ఋ ∑ ୱ୧୬ቀఠ೘௧ିଶగ௡೛೜ቁ೗೙సభ . (19) 

From the derivation given in Annex B, assuming N = Kq (ܭ ∈ ℕ∗), we find that 

(ݐ)థܮ  = ଵିఊഥಿଵିఊഥ೜ ∑ ݂(௟)(ݐ)௤௟ୀଵ ,  (20) 

where ݂(௟)(ݐ) = ௟ߛ̅ ∏ ݁௝ఋ ௦௜௡(ఠ೘௧ିଶగ௡௣ ௤⁄ )௟௡ୀଵ . There is an important point to observe here: 
while it is formally similar to Eq. (11), Eq. (20) shows that the high-order harmonics are 
eliminated from the FSL under the fractional Talbot condition. The sum ∑ ݂(௟)(ݐ)௤௟ୀଵ  contains 
the q first round-trips in the loop only, so that higher-than-q harmonics, if any, would come 
from the pre-factor in Eq. (20). Contrary to Eq. (11) where the pre-factor contains ݁௝ேఠ೘௧ 
components, here the pre-factor is a constant value, leaving no trace of high-order harmonics. 
This analysis is confirmed by simulations: We plot the output waveforms with different 
values of ݌	and ݍ , still with the same parameters as before. Fig. 11 shows the simulated 
output waveforms with ݌ ⁄ ݍ = 45/4 ݌ , ⁄ ݍ = 122/11 ݌ , ⁄ ݍ = 166/15  and ݌ ⁄ ݍ =221/20. Compared with the fractional Talbot laser based on the AO-FSL (Fig. 3) and the 
EOAM-FSL (Fig. 5), the output signals present smooth waveforms, without the high-
harmonic content leading to high-repetition rate pulses. We checked that the FFTs of the 
signals in Fig. (11) present appreciable harmonics up to qth order only. 

 

 
Fig. 11. EO-PM FSL in the fractional Talbot condition. Output waveforms with ݌ ⁄ݍ  ratios 
as indicated. 

6. Conclusion 

We have derived analytical expressions to investigate the output characteristics of the phase, 
amplitude and frequency-modulating FSF loops. These expressions are deduced from a linear 
time-delayed interference model. We emphasized in this analysis the cases of the integer and 
fractional Talbot conditions, and compared the EO-AM and EO-PM schemes to the AO 
scheme. We can draw some conclusions about the ability of either EO-AM or EO-PM 
schemes to provide frequency-to-time mapping (FTM), or to multiply the repetition rate 
through the fractional Talbot effect 

When the integer Talbot condition is satisfied ( ௠݂ ௖݂⁄ = ݌ ), the output signals show 
periodic pulses in any case, with a fm repetition rate. However, the three modulation schemes 
have specific properties. On the one hand, amplitude modulation (EO-AM) FSL fails to 
provide FTM but features a double-pulse regime with an interval between the two pulses that 
can be continuously adjusted by changing the static phase retardance or the modulation depth. 



On the other hand, phase modulation (EO-PM) can yield FTM, with an interesting “mirror 
effect” due to the sine modulation function in one modulation period. We find a possible 
FTM ambiguity, which could be mitigated by adjusting the modulation depth. Another 
specific feature of the EO-PM is the possibility of nonlinear FTM that may lead to chirped 
pulse generation. 

When the fractional Talbot condition is met ( ௠݂ ௖݂ = ݌ ⁄⁄ݍ ), the frequency-translation 
(AO) and amplitude-modulation (EO-AM) FSLs share the ability to multiply the repetition 
rate of the periodic pulses, with ݍ ௠݂ = ݌ ௖݂ . The AM case has additional amplitude 
modulation of the high-repetition-rate pulse train. On the other side, a phase-modulated FSL 
cannot show the temporal fractional Talbot effect due to the destructive interference of high-
order harmonics.  

The analysis drawn in this paper will trigger future experimental demonstrations. Indeed, 
the FTM effect under phase modulation condition needs to be explored. There is also an 
intriguing transition from sub-threshold operation, described here, and the laser operation 
above threshold where repetition rate multiplication has already been observed 
experimentally (the so-called rational harmonic mode-locking [16,17]).  Besides, the AM-
case was already investigated in [13], but the present analysis predicts the possibility of 
observing repetition rate multiplication, which needs further experimental efforts. 

Appendix A 

We introduce ݂(௟)(ݐ) = ௟ߛ̅ ∏ ݁௝ఠ೘௧ି௝ଶగ௡೛೜௟௡ୀଵ . The product is straightforward to calculate and 

gives ݂(௟)(ݐ) =  is (ݐ)and ݂(௟) (ݐ)௟݁ି௝గ೛೜௟(௟ାଵ). Then the relationship between ݂(௟ା௠௤)(௝ఠ೘௧݁ߛ̅)
given by 

 ݂(௟ା௠௤)(ݐ) = ݂(௟)(ݐ)(̅݁ߛ௝ఠ೘௧)௠௤݁ି௝గ௣௠(௠௤ାଵ)  (A1) 

that we discuss according to the parities of p and q. Recall that p and q are coprimes. If p is 
even (with q odd), ݁ି௝గ௣௠(௠௤ାଵ) = 1 always. If p is odd, ݁ି௝గ௣௠(௠௤ାଵ) = (−1)௠	 when q is 
even, and then ݁ି௝గ௣௠(௠௤ାଵ) = 1  when q is odd. It permits to write ݁ି௝గ௣௠(௠௤ାଵ) =݁ି௝గ௠(௤ାଵ), which remarkably do not depend on p. We then define ߩ ≡  ௤݁ି௝గ(௤ାଵ)(௝ఠ೘௧݁ߛ̅)
and rewrite 

 ݂(௟ା௠௤)(ݐ) = ݂(௟)(ݐ)ߩ௠ .  (A2) 

Now suppose ܰ = ܭ) ݍܭ ∈ ℕ∗). Then Eq. (10) becomes: 

(ݐ)ிܮ  = ∑ ݂(௟)(ݐ)ே௟ୀଵ = ∑ ∑ ݂(௟)(ݐ)௤ା௠௤௟ୀଵା௠௤௄ିଵ௠ୀ଴ = ∑ ∑ ݂(௟ା௠௤)(ݐ)௤௟ୀଵ௄ିଵ௠ୀ଴ =∑ ݂(௟)(ݐ)௤௟ୀଵ ∑ ௠௄ିଵ௠ୀ଴ߩ  ,  (A3) 

leading to Eq. 11 : 

(ݐ)ிܮ  = ଵିఘ಼ଵିఘ ∑ ݂(௟)(ݐ)௤௟ୀଵ  , (A4) 

Appendix B 

Since ∑ ݁ି௝ଶగ௡೛೜௤௡ୀଵ = 0 , by multiplying by the exponential function ݁௝ఠ೘௧  one finds ∑ ݁௝ఠ೘௧ି௝ଶగ௡௣ ௤⁄௤௡ୀଵ = 0 . By expanding the sum using Euler's formula, we get ∑ ݐ௠߱)ݏ݋ܿ − ݊ߨ2 ݌ ⁄ݍ )௤௡ୀଵ = 0 and ∑ ݐ௠߱)݊݅ݏ − ݊ߨ2 ݌ ⁄ݍ )௤௡ୀଵ = 0. It follows that 

 ∏ ݁௝ఋ௦௜௡(ఠ೘௧ିଶగ௡௣ ௤⁄ )௤௡ୀଵ = ݁௝ఋ ∑ ௦௜௡(ఠ೘௧ିଶగ௡௣ ௤⁄ )೜೙సభ = 1 (B1) 

Writing ݂(௟)(ݐ) = ௟ߛ̅ ∏ ݁௝ఋ ௦௜௡(ఠ೘௧ିଶగ௡௣ ௤⁄ )௟௡ୀଵ  and using Eq. (A5), then  



	݂(௟ା௤)(ݐ) = ௟ା௤ߛ̅ ∏ ݁௝ఋ ௦௜௡(ఠ೘௧ିଶగ௡௣ ௤⁄ )௟ା௤௡ୀଵ = ݂(௟)(ݐ)̅ߛ௤ ∏ ݁௝ఋ ௦௜௡(ఠ೘௧ିଶగ௡௣ ௤⁄ )௟ା௤௡ୀ௟ାଵ =݂(௟)(ݐ)̅ߛ௤  (B2) 

Suppose ܰ = (ݐ)ிܮ  :Then Eq. (19) becomes .(K integer) ,ݍܭ = ∑ ݂(௟)(ݐ)ே௟ୀଵ = ∑ ∑ ݂(௟)(ݐ)௤ା௠௤௟ୀଵା௠௤௄ିଵ௠ୀ଴ = ∑ ∑ ݂(௟ା௠௤)(ݐ)௤୪ୀଵ௄ିଵ௠ୀ଴ =∑ ݂(௟)(ݐ)௤௟ୀଵ ∑ ௠௤ߛ̅ = ଵିఊഥಿଵିఊഥ೜ ∑ ݂(௟)(ݐ)௤௟ୀଵ௄ିଵ௠ୀ଴  ,  (B3) 

corresponding to Eq. (20).  
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