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Abstract: Frequency-shifting loops (FSL) are analyzed theoretically in cases where the
intracavity modulator induces two side-bands at each round-trip, a situation that can be
commonly obtained with electro-optic intensity or phase modulators. Using a simple model,
we discuss the ability of such loops to perform frequency-to-time mapping, in the integer
Talbot condition, or pulse repetition rate enhancement, in the fractional Talbot condition. The
results are compared to the established acousto-optic FSL with pure frequency shift. We show
that, in spite of a more complicated situation resulting from the dual sideband modulation,
pulse repetition rate amplification can be obtained with an amplitude modulator, and
frequency-to-time mapping can be obtained with a phase modulator. This opens new routes to
high-frequency manipulation of microwave-optical signals with high-bandwidth (multi-GHz)
modulators.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Frequency-shifted feedback loops (FSL) have attracted much attention recently because their
peculiar time-frequency properties could lead to numerous applications, such as ultra-high
repetition rate pulse generation [1], frequency-to-time mapping [2], optical signal processing
[3], arbitrary waveform generation [4,5], heterodyne spectroscopy [6], and ranging [7,8,9].
Inspired from frequency-shifted feedback (FSF) lasers [10,11], a frequency-shifting loop is a
sub-threshold ring resonator. It is typically seeded by a continuous-wave (cw) laser and it
contains (i) a modulator that induces a frequency shift every round-trip, (ii) an optical
amplifier to compensate for the losses, and (iii) an optical filter. Up to now the modulator in
the FSL was usually an acousto-optic (AO) frequency-shifter. While it features high
frequency conversion efficiency in the sub-100 MHz range, AO has limited efficiency in the
GHz range and offers limited tunability. Besides the AO frequency-shifter, a phase modulator
(PM) or an amplitude modulator (AM) can also provide frequency-shifted sidebands at each
round-trip, with a potentially much higher bandwidth. In this respect, electro-optic (EO)
modulators have been demonstrated to provide high repetition rates [12] or peculiar double-
pulse [13] regimes. In addition to high modulation frequency and bandwidth, EO modulators
are compact and easy to integrate with other fiber devices. In view of enhancing the
properties of FSLs in terms of bandwidth and tunability for applications, it is hence important
to analyze the properties of EO-based FSLs.

One striking feature of AO-FSL is its ability to convert a cw narrow linewidth seed into
Fourier-transform-limited pulses. This property is linked to the temporal Talbot effect [14,
15]. It permits to generate pulses at a repetition rate equal to the round-trip rate, when the
frequency-shift equals this round-trip rate (the integer Talbot condition), or to a multiple of
the round-trip rate (the fractional Talbot condition). In addition, when the integer Talbot
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condition is met, the output temporal trace maps the input optical spectrum, leading to optical
real-time Fourier processing of RF signals [2]. While theoretical models have been proposed
to explain the frequency-to-time mapping (FTM) and temporal fractional Talbot effect in the
AO-based configuration, the electro-optic modulator needs further investigation, because it
generates two sidebands at each round-trip. Double-pulse operation was reported in [13], but
frequency-to-time mapping or fractional Talbot condition was not considered. Moreover
phase modulation has never been studied in this context, to the best of our knowledge. It is
hence the aim of this paper to propose a general time-delay interference model suited to any
type of modulator, and to compare the properties of EOM-based modulators with either
amplitude or phase modulation, to the AO-FSL. In this study we put the emphasis on
investigating the properties in the integer and fractional Talbot conditions.

In Section 2 we recall the FSL principles and derive the general analytical framework,
introducing a loop modulation function. Then, we recall the basics of AO-FSLs for
completeness (Section 3), and then focus on amplitude-modulated (Section 4) and phase-
modulated EOM-FSL (Section 5). The potentials of EO-FSLs are discussed in the conclusion
(Section 6).

2. General time-delayed interference model

The frequency-shifting loop is modeled theoretically by using a time-delayed interference
model that takes the modulation function of the modulator, round-trip delay and optical
amplifier into account. The general setup of the FSL is shown in Fig. 1. We assume that the
loop is seeded by an external cw laser, whose electric field is E;,; = Epe /0t (w, is the
optical frequency) at the coupler input. The output field E,,,; writes:

Eoutl] tll t12 [Einl]
_ , 1
Eoutz [t21 tzz] Eina M

where [ti j] is the transmission matrix of the coupler. Introducing a constant real parameter y
that includes loss and gain factors inside the loop, the modulation function of the modulator
Y (t), and the round-trip time 7, the electric field at output port 2 writes:

Eoutz(t) = t21Eimy + topEims = ta1Ege 190 + t5,y Egyer (t — DY (t — 17),(2)
with

Eguez(t = T) = tp1 Eqe /900D 4 ty,yE gy (8 — 20)Y (¢ — 21), 3)
and so on. Combination of N round-trips yields:

Eouea(t) = t21Eoe_jw°t + 121 E{":l téz Vl H£l=1 Y(t —nt) Eoe_jw‘)(t_”)- “4)

cw laser FSL output

Fig.1 Sketch of the FSL. The modulator induces pure frequency-translation (AO), or dual-
sideband generation in either amplitude (EO-AM), or phase (EO-PM) cases.

The experimentally accessible and useful signal is at the output port 1, where

to1t _ i
Eou1(t) = [tll + %Z?I:l 7 e Y(E - n‘r)] Eje™/®ot, Q)



where ¥ = t,,ye/®°% is a constant complex parameter containing the loop optical phase as
well as the gain and loss parameters. In the following we focus our discussion on the loop
function L(t) defined by

L) =X 7 [They Y (& — n1). (6)

L(?) is essentially the part of the output complex optical envelope generated in the loop,
including all the generated sidebands. We will investigate three different cases that can lead
to a frequency-shift f,, = w,,/2m. Modulation functions of the three different modulators can
be written as follows:

YVp(t) = e/omt, (7a)
Y,(t) = sin[l; + Ly sin(wpt)], (7b)
Y¢(t) — ej&sin(wmt)’ (70)

corresponding to the frequency translation (AO), the amplitude modulator (EO-AM), and the
phase modulator (EO-PM), respectively. In Eq. (7b), [} is a static retardance, and I, is the
modulation depth. In Eq. (7¢), 6 is the modulation depth of the phase modulator. The purpose
of our analysis is to derive the different characteristics of the loop functions Lg, Ly, Ly in
integer and Fractional Talbot conditions, and hence to predict the ability of either FSL
scheme to perform harmonic repetition rate pulse trains or frequency-to-time mapping. In all
cases the optical power at port 1, that is Py, (£) = |E,,¢1 (£)]?, will be obtained by

2
Poue(8) = [ta1 +ZE2L(0)| P, ®

While the AO-FSL case has already been investigated in detail by Guillet de Chatellus ef al.
[1-3], the EO-FSLs need to be analyzed. Since our formulation is slightly different from the
one adopted before, we begin the next sections by considering quickly this most-well-known
case in order to point out the differences with the EO-FSL following results.

3. Frequency translation (AO-FSL)

Using Eq. 7(a) in Eq. 6, the loop function is Lz(t) = YN, 7 [14=; /") In the integer
Talbot condition that writes f,,7 = f,,/f. = p, with p € N*, we have e/¥m{=17) = gjomt

then Lp(t) = YNV, 7! e/'mt In the limit N—oo, this sum of a geometric series writes:
_ tapyel@mtejwot
Lp(t) = Tt yefomteioot > 9
@i in (b);
— H

Fig.2 FTM process in the AO-FSL. (a) Single-frequency input yields the pulsed output in (b).
(c) Multi-tone input yields the output signal in (d) that maps the input spectrum.



where we have expanded y in order to emphasize the role of the optical phase w,t. Since
tyo¥ < 1 (assuming t,, real positive), obviously Lp(f) will be a sharp function peaked in
Wt + wot = 2km (k € Z). Therefore, the response of the loop to a single optical frequency
(cw seed) is a periodic function whose repetition rate is f;,, as shown for example in Fig.
2(a)-(b). Moreover, it is important to notice here that the pulse positions in time are highly
dependent on the optical frequency of the seed laser, through the term e/®o7. If the seed laser
contains multiple frequencies w;, as shown in Fig. 2(c)-(d), the output traces in the time
domain will map the input spectrum, each optical frequency yielding maxima when
Wt + w;T = 2k (k € Z). Therefore, the response of the loop is a time map of the input
spectrum, repeated at the fundamental loop frequency f.. The resolution of the process was

evaluated in [2] to be §f = f’:—]{C ~ % where the loop bandwidth is Af ~Nf,,,.

Now under the fractional Talbot condition, i.e., when f,,7 = f,,/f. = p/q, with (p, q) co-

jwmt—jZHnE

primes, the modulation function becomes Yz (t — nt) = e 4, Then L(t) writes

_ i(mt—2mnk
Lp(t) = ¥V, 7 T4, o/ mi ™2™, (10)

Eq. (10) yields different analytical expressions depending on the parities of p and g. For the

jwmt—jZn:ng

analytical derivation we choose N = Kq (K € N*). Defining f(O(t) = 7' [T4=, e
and p = [ye/®mt]9e/m(@+1) one can then show (see Appendix A) that

L e, )

_1-p%
Lp(t) = —p

which we now expand according to the parity of g.
(i) Let q odd. By expanding p, the loop function writes:

1_(t22y)Neijo‘reijmt

_ a fa
LF(t) - 1—(t22y)qequofeiqwmf l=1f )(t) (12)

Hence the output trace tends to a modulated function with intensity peaks localized at values
defined by qw,7 + qw,,t = 2km (k € Z). This behavior corresponds to the generation of g
optical pulses per period. In the time domain, this corresponds to a repetition rate equal to

4fm = Pfe-
(1) Let g even. Expanding p, the loop function becomes:

_ 1_(_1)K(t22y)Neijgreijmt q 0]
LF (t) - 1+(t22y)qejq‘“0""efq“’mt l=1f (t) (13)

As for Eq.(12), the output results in a peaked function localized at values of

qw,T + qwut = 2k + 1), (k € Z). There are q pulses per modulation period and the
repetition rate is qf,, = pf; but, at variance with case (i), the pulses are shifted from the
origin by a delay /q.

In order to illustrate the fractional Talbot effect in this AO-FSL, we evaluate Eq. (8) with
modulation frequencies corresponding to the cases of Eqgs. (12)-(13). We choose simulation
parameters as follows: the fundamental loop frequency is f. =10 MHz (7t = 100 ns), the
frequency shift is adjusted to f;,, = 10f. + (p'/q')f,. The splitting ratio of the 2x2 coupler is
50:50. The loop loss is 0.4 and the gain is 3.5. We fix the round-trip number N = 100. In Fig.
3, we report the pulse trains obtained when p'/q'= 5/4, 12/11, 16/15, and 21/20, that is p/g
=45/4, 122/11, 166/15, and 221/20. As shown by Fig. 3, these correspond to gf,-repetition
rates ranging here from 4f,, to 20f,,. These simulations confirm the analytical predictions: the
loop generates periodic pulses with a repetition rate q f,, = pf;, with a time-shift depending
on the parity of q. Obviously the condition N = Kgq is not respected in all these cases, but we
checked that this has actually little influence on the waveforms; in other words, the harmonics
higher than Kq are negligible.



After having revisited the AO-based FSL for which these results had already been
observed, we now turn to dual-sideband EO cases, first in the amplitude-modulation (AM)
scheme that was recently shown to lead to pulse doublets [13], and then in the phase-
modulation (PM) regime.
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Fig.3 Fractional Talbot effect for the AO-FSL with p/q ratios as indicated. The
resulting pulse repetition rate is gf,, (with f, close to 110 MHz in all these
examples).

4. EO-FSL with amplitude modulation

By using Eq.(7b) in Eq. (6) we write the loop function L,(t) = X, 7' [Thy sin(l} +
I, sin(wp, (t — n1))).
4.1. Integer Talbot condition

When f,,7 is an integer, we have Sin(wm(t — nr)) = sin(w,,t). Then the loop function
becomes

ta2ye/®oT sin 6(t)

— VN Sl 1 —
La(®) = T, 'lsin0(0)]! = (22Xl (14)

where 0(t) = I, + I, sin(w,,t). Note that the e/“mt term of the AO case in Eq. (9) is
replaced by sin 8(t), resulting in a very different behavior. Considering the special case
where e/®oT = 1, Eq. (14) shows here that the loop delivers a pulse every time 0(t) =
n/2+ 2kn (k €Z). Interestingly, two temporally separated solutions appear in one
modulation period. According to this analysis, we may predict that the output of the
amplitude-modulated loop in the time domain delivers a periodic series of pulse doublets
[13]. Moreover, the output signal does not map the input spectrum anymore. This is
evidenced by plotting the output signals obtained with different input spectra, as depicted in
Fig. 4. The output time traces in the amplitude-modulated FSL show the same patterns
(double pulses) regardless of the input optical spectra. Note that e/®°? = —1 leads to
0(t) = —m/2 + 2km and to the same conclusions. Besides, if the condition e/“0% = +1 is
not met, we verified numerically that the output modulation amplitude is much weaker, and
there is no FTM a fortiori. This emphasizes an important difference from the AO-FSL: it
means that an EO-AM FSL cannot be used for real-time Fourier transformation.

4.2. Fractional Talbot condition

We now consider the fractional Talbot condition f,,T = f,,/f. = p/q, with (p, q) co-primes,
in order to check for the possibility of using this scheme for harmonic high-repetition rate
pulses. The equations are more cumbersome than in the AO-FSL case. However, there are
some conditions under which the loop function can be simplified. To this aim, we choose the
static phase retardance I, = 0 (a case corresponding to carrier suppression), and we assume



that the modulation is weak enough to write sin8(t) = 6(t). Then Y(t —nrt) =
Iy sin(wy,t — 2mnp/q) is used to write the loop function as

La(®) = B, 7 (5! Tlhey sin (@t — 27n2). (15)
ﬂ_l r

O ® i 0o ®

Output Signals

i1 P
: I=x/6 P rmfsA
P o k i
a1 Bl
5‘3 T=n/3 Ee’ r=n/3
i ‘g
2 i3
HN ] HR
HE HEES |
=7/ 2 h =1 e]
0 P
0 5 10 15 20 25§ H 0 5 10 15 20 25
Time (ns) Time (ns)

Fig. 4. EO-AM FSL under the integer Talbot condition. Simulation output power with (left)
single frequency and (right) multi-tone input. Double-pulse operation depends on the EO bias
(I') but there is no frequency-to time mapping.

We could not find any simpler expression of Eq. (15) that could be directly compared with
Eq. (11). However, simulations were performed using Eq. (8) with different fractional orders
p / q in Eq. (15). All simulation parameters are the same as before, except for the loop gain
that is now set to 5.3. As illustrated in Fig. 5, the output traces show trains of pulses with
repetition rates qf,, = pf. (fractional Talbot effect) whatever the parity of q. Meanwhile, the
pulse train amplitude is modulated at f,,.
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Fig. 5. EO-AM FSL under fractional Talbot condition with p/q ratios as indicated.
The resulting pulse repetition rate is gf,, (with f,, close to 110 MHz in these
examples). Note the 1/f,,-periodic modulation amplitude.



In conclusion of this section, the EO-based FSL with amplitude modulation presents also
the fractional Talbot property already found in the pure frequency shifting AO case, but with
additional amplitude modulation. Besides, it is also found that the integer Talbot condition
yields fundamental pulse trains, but the loop function do not depend on the optical frequency
any more, which means that the input spectrum is not mapped in the time domain. In order to
complete our study, we now study the last case concerning EO-based phase modulation.

5. EO-FSL with phase modulation
Inserting Eq. (7¢) in Eq. (6) yields the loop function Ly (t) = X 7' [T4=, e/8 sinlemE=nol,

5.1. Integer Talbot condition
Under the integer Talbot condition f,,7 = p (p € N*), we find /¥ sinlem(t-—nDl = gj8sin(wmt)
Then the geometric series of L (t) can be easily calculated:

_ tzzyejg(f)
Ld)(t) - l—tz;zyejg(t) > (16)
where we introduced
6(t) = & sin(wm,t) + w,T. (17)

Similarly to the situation found with the AO in Section 2 (see Eq. (9)), Ly (t) is a function
peaked in 6(t) = 2km (k € 7Z), with a repetition rate f,,,. From Eq. (16) we see that the optical
frequency will play a role, as in the AO case. However the (w,,t) term of Eq. (9) is replaced
here by 6 sin(w,,t). In order to understand the consequences of this change, we have to
discuss the solutions of 6(t) = 2km under various modulation conditions: § = m, § >,
and § < .

i) Phase modulation depth & = 1.

An illustration of 6(t) = 2km is provided in Fig. 6 under different input spectral
situations, leading to the following comments. First, one single optical frequency (blue curve
in Fig. 6(a) for example) will induce a doublet of pulses per period, in the same fashion as the
AM case of section 4. Second, a narrow bandwidth spectrum will result in a peculiar
frequency-to-time mapping, where the input spectrum and its mirror image will be mapped in
one period (red and blue curves in Fig. . 6(a). Third, it is worthwhile to note that, due to the
(wy7) term in Eq. (17), two optical frequencies separated by multiples of the fundamental
frequency f,, = 1/t would produce identical time traces, as shown in Fig. 6(b). Hence, to
ensure that the FTM process is achieved unambiguously, the frequency bandwidth of the seed

(AWAWEAWAW
NVERVYRYV.

\/,

SRR

Fig. 6 EO-PM case. Sketch of the double-pulse operation with frequency-to-time mapping
when 6 = m. (a) FTM with spectral mirror effect; (b) Two-tone input (frequency difference f;)
showing the ambiguity.




laser should be kept smaller than f.. Fourth, one can estimate the resolution Af of the process.
In the linear part of the sine function we find a situation similar to the AOFS case discussed in
[2]. The input frequency and output pulse time are linearly related, and two input lines
spectrally separated by Af yield pulses separated by At with § X w,,At = 2mAft. Then, by
considering that a single-frequency input yields an output pulse-width given by At~ 1/2Nf;,
fubt _fe e
resolution depends notably on the modulation depth but, as a rule of thumb, one may retain:

(2N in-phase spectral lines in the loop), one finds the resolution Af ~§ X

Af~E, (18)

It is interesting to note that the resolution scales as 1/N, and it can be improved by enhancing
the number of spectral lines in the loop, as in the AOFS case.

Frequency to time mapping is simulated by using Eqgs. (16)-(17) in Eq. (8), keeping the
same parameters as in previous Section. For illustration, we use a three-tone input, like a
carrier with two intensity un-balanced sidebands, as shown in Fig. 7(c). Due to the sinusoidal
modulation function of the phase-modulating EOM, each optical frequency maps to a double-
pulse in the time domain. Fig. 7(d) then exhibits the “mirror effect”. Because of this property,
the output traces with different optical frequencies are distributed in the half period, which is
quite similar to a traditional FFT process. Also the loop fundamental frequency corresponds
to the sampling frequency of the FFT process, limiting the highest frequency of the sampling
signal. Besides, we find in the simulations that when the integer Talbot condition is met
(fm/f: = p) and t,,V is fixed, the ratio of the pulse width to the pulse period (duty cycle) is
always the same regardless of the value of p, as predicted by Eq. (18). Finally, it is important
to note that real-time Fourier transform can be obtained only provided that the solutions of
Eq. (17) stay in the linear region of the sine function. Conversely, when the solutions are out
of the linear region, this EO-PM configuration performs nonlinear FTM.
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Fig. 7. FTM of the EO-PM FSL when & = . (a),(c) input laser spectra; (b),(d) corresponding
output signals.

i) Phase modulation depth & > 1.

When the modulating depth is larger than m, the response of the phase-modulated FSL to a
single optical frequency is shown in Fig. 8. As the optical frequency of the seed laser
changes, the solutions of 6(t) = 2km may extend over different possible values of k, which is
illustrated in Fig. 8(b). In conclusion the single-frequency seed laser can yield a 2-pulse or a
4-pulse regime in one modulating period.

In order to validate the analysis, we simulate the output traces when § = 57 /4. As an
example we take three different optical frequencies: f; (w,T = 2k'm, k' is an integer),
fo+1/5f., fo+2/5f., and then feed Eq. (8) with Eq. (16). As illustrated in Fig. 9(a),



solutions of & sin(wy,t) + w,T = 2km appear with adjacent values of k. One frequency
fo +2/5 f. is mapped to four pulses in one period, while the two other tones map to two
pulses. The “mirror effect” appears as in the preceding (8 = 7) case.

(2)

L

Fig. 8. EO-PM case Sketch of the response when 6 > m. Depending on the loop parameters
(3,7), the response of the FSL to a single frequency seed can be (a) double-pulse; or (b) four-
pulse generation.

1/(pfe)

Fig. 10. Sketch of the FSL response when 8 < m with different values of w,t. (a) pulse
generation or (b) reduced interference when the condition 6 (t) = 2km cannot be met.

iii) Phase modulation depth & < .

Finally, when the modulating depth is less than m, the response of the phase-modulated
FSL to the optical frequency of the seed laser is shown in Fig. 10. At variance with the
preceding cases, possibly there is not any solution 8(t) = 2km. Depending on the value of
w,T, one optical frequency induces either a pulse doublet regularly mapped along the time-
axis, as shown in Fig. 10(a), or a partial interference leading to a smaller intensity maximum
as shown in Fig. 10(b). This is confirmed by the simulation that we perform with the same
input as before, leading to the output trace of Fig. 9(b).



5.2. Fractional Talbot condition
Under the fractional Talbot condition, when f,,,/f. = p/q, (p, q) co-primes, Eq. (5) is given
by L¢ t) = ?,:1 )71 H£1=1 ej6 sin(wmt—2nn

)4
q), and can be written:

" . _ 4
Lp(t) = T, 7! &P Tamssinlome-2mrg) (19)
From the derivation given in Annex B, assuming N = Kq (K € N*), we find that
1—7N
Lp() =22 3L, OO, (20)

where fO(t) = 7! [[}2, /0 Sin(@mt=2mnD/a)  There is an important point to observe here:
while it is formally similar to Eq. (11), Eq. (20) shows that the high-order harmonics are
eliminated from the FSL under the fractional Talbot condition. The sum Zle F®(t) contains
the ¢ first round-trips in the loop only, so that higher-than-g harmonics, if any, would come
from the pre-factor in Eq. (20). Contrary to Eq. (11) where the pre-factor contains e/N@mt
components, here the pre-factor is a constant value, leaving no trace of high-order harmonics.
This analysis is confirmed by simulations: We plot the output waveforms with different
values of p and q, still with the same parameters as before. Fig. 11 shows the simulated
output waveforms with p /q=45/4, p/q=122/11, p/q=166/15 and p /q =
221/20. Compared with the fractional Talbot laser based on the AO-FSL (Fig. 3) and the
EOAM-FSL (Fig.5), the output signals present smooth waveforms, without the high-
harmonic content leading to high-repetition rate pulses. We checked that the FFTs of the
signals in Fig. (11) present appreciable harmonics up to g™ order only.
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Fig. 11. EO-PM FSL in the fractional Talbot condition. Output waveforms with p/q ratios
as indicated.

6. Conclusion

We have derived analytical expressions to investigate the output characteristics of the phase,
amplitude and frequency-modulating FSF loops. These expressions are deduced from a linear
time-delayed interference model. We emphasized in this analysis the cases of the integer and
fractional Talbot conditions, and compared the EO-AM and EO-PM schemes to the AO
scheme. We can draw some conclusions about the ability of either EO-AM or EO-PM
schemes to provide frequency-to-time mapping (FTM), or to multiply the repetition rate
through the fractional Talbot effect

When the integer Talbot condition is satisfied (f;,/f. = p), the output signals show
periodic pulses in any case, with a f,, repetition rate. However, the three modulation schemes
have specific properties. On the one hand, amplitude modulation (EO-AM) FSL fails to
provide FTM but features a double-pulse regime with an interval between the two pulses that
can be continuously adjusted by changing the static phase retardance or the modulation depth.



On the other hand, phase modulation (EO-PM) can yield FTM, with an interesting “mirror
effect” due to the sine modulation function in one modulation period. We find a possible
FTM ambiguity, which could be mitigated by adjusting the modulation depth. Another
specific feature of the EO-PM is the possibility of nonlinear FTM that may lead to chirped
pulse generation.

When the fractional Talbot condition is met (f;,,/f. = p/q), the frequency-translation
(AO) and amplitude-modulation (EO-AM) FSLs share the ability to multiply the repetition
rate of the periodic pulses, with qf,, = pf.. The AM case has additional amplitude
modulation of the high-repetition-rate pulse train. On the other side, a phase-modulated FSL
cannot show the temporal fractional Talbot effect due to the destructive interference of high-
order harmonics.

The analysis drawn in this paper will trigger future experimental demonstrations. Indeed,
the FTM effect under phase modulation condition needs to be explored. There is also an
intriguing transition from sub-threshold operation, described here, and the laser operation
above threshold where repetition rate multiplication has already been observed
experimentally (the so-called rational harmonic mode-locking [16,17]). Besides, the AM-
case was already investigated in [13], but the present analysis predicts the possibility of
observing repetition rate multiplication, which needs further experimental efforts.

Appendix A

jwmt—j27tn2

We introduce fO(t) = 7' [[4-, e a4, The product is straightforward to calculate and

, —inB
gives fO(t) = (yel@mt)le™ "D Then the relationship between f ™D (t) and fO(t) is
given by
UMD (1) = FO(t) (el omt)mag—jmpm(mag+1) (A1)
that we discuss according to the parities of p and ¢. Recall that p and ¢ are coprimes. If p is
even (with ¢ odd), e /™™(Ma+1) = 1 always. If p is odd, e /™PmMa*+) = (—1)™ when g is
even, and then e /™PM(Ma*+1) = 1 when ¢ is odd. It permits to write e /™Pm(ma+1) =

e J™m@+1) which remarkably do not depend on p. We then define p = (ye/¥mt)de=/m(a+1)
and rewrite

FUmD () = FO(R)p™ (A2)
Now suppose N = Kq (K € N*). Then Eq. (10) becomes:
Le(®) = T, fO@) = T XL fO@ = B XL, FEmO(e) =
YL fO® IR o™, (A3)
leading to Eq. 11 :

1— K
Le(0) =25 3L, FO©) (A4)
Appendix B
o B .
Since Y1_, e 2y = 0, by multiplying by the exponential function e/“m' one finds

Y _ e/@mt=j2mp/4 = 0 . By expanding the sum using Euler's formula, we get
T cos(wpt —2mnp/q) = 0and Y1_, sin(wp,t — 2nnp/q) = 0. It follows that

Hgl—l ejdsin(wmt—Zan/q) — ejszzzlsin(wmt—Zan/q) =1 (Bl)

Writing f O (t) = 7' [1,2, e/¥ sin(@mt=2mm/a) and ysing Eq. (A5), then



f(l+q) (t) — )7l+q Hiltql eJésin(wmt—2mnp/q) — f(l) (t)fq l‘[l+q g8 sin(wmt-2mnp/q) —

n=Il+1

FOm7 (B2)
Suppose N = Kq, (K integer). Then Eq. (19) becomes:

Lp() = ZiL1 fOO) = EXo i fOO) = TR EL, fEO () =

4 FO@) T =39 O (B3)

1-y4 =1

corresponding to Eq. (20).
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