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Introduction

Grain growth has been extensively investigated due to its importance in determining the mechanical properties of polycrystalline materials. However, predicting grain growth remains a challenging task and requires modeling at different scales. Atomic-scale modeling and electronic structure calculations are increasingly used to characterize the structure, energy, mobility of grain boundaries [START_REF] Baruffi | Overdamped langevin dynamics simulations of grain boundary motion[END_REF] and of triple junctions [START_REF] Adlakha | Atomic-scale investigation of triple junction role on defects binding energetics and structural stability in α-Fe[END_REF], as well as to investigate solute segregation to these crystalline defects [START_REF] Seidman | Atomic scale studies of solute-atom segregation at grain boundaries: Experiments and simulations[END_REF]. Mesoscopic models have been developed to study grain growth and recrystallization, such as kinetic Potts models [START_REF] Anderson | Computer simulation of grain growth I : kinetics[END_REF]5], cellular automaton [START_REF] Hesselbarth | Simulation of recrystallization by cellular automata[END_REF][START_REF] Raabe | Introduction of a scalable three-dimensional cellular automaton with probabilistic switching rule for the discrete mesoscale simulation of recrystallization phenomena[END_REF], front tracking and vertex models [START_REF] Soares | Computer simulation of grain growth in a bidimensional polycrystal[END_REF][START_REF] Bronsard | A numerical method for tracking curve networks moving with curvature motion[END_REF][START_REF] Wakai | Three-dimensional microstructural evolution in ideal grain growth general statistics[END_REF]. More recently, phase-field models have been extended to the description of grain growth and recrystallization [START_REF] Chen | Computer simulation of the domain dynamics of a quenched system with a large number of nonconserved order parameters: The grain-growth kinetics[END_REF][START_REF] Steinbach | A phase field concept for multiphase systems[END_REF][START_REF] Garcke | A multiphase fiels concept: numerical simulations of moving phase boundaries and multiple junctions[END_REF][START_REF] Warren | Modeling grain boundaries using a phase-field technique[END_REF]. The key point of the phase-field approach is that interfaces are implicitly described by continuous fields that take constant values in the grains and vary continuously but steeply across a diffuse front. The powerfulness of this approach is that it avoids the difficult problem of interface tracking and, most importantly, allows for any topological evolution of grains. In addition, phase-field models offer a consistent thermodynamic framework, in which many phenomena can be strongly coupled, such as curvature driven interface motion, diffusion, elastic relaxation, plastic activity. This approach is therefore particularly suited for studying multi-physics problems and has been used to analyze the importance of GB energy anisotropy [START_REF] Moelans | Quantitative analysis of grain boundary properties in a generalized phase field model for grain growth in anisotropic systems[END_REF][START_REF] Chang | Effect of strong nonuniformity in grain boundary energy on 3-D grain growth behavior: A phase-field simulation study[END_REF], GB mobility anisotropy [START_REF] Kazaryan | Grain growth in anisotropic systems: Comparison of effects of energy and mobility[END_REF][START_REF] Suwa | Three-dimensional phase field simulation of the effect of anisotropy in grain-boundary mobility on growth kinetics and morphology of grain structure[END_REF], Zener pinning [START_REF] Moelans | A phase field model for the simulation of grain growth in materials containing finely dispersed incoherent second-phase particles[END_REF][START_REF] Suwa | Phase field simulation of grain growth in three dimensional system containing finely dispersed second-phase particles[END_REF], recrystallization and stored energy [START_REF] Takaki | Phase-field model during static recrystallization based on crystal-plasticity theory[END_REF][START_REF] Abrivard | Phase field modelling of grain boundary motion driven by curvature and stored energy gradients. Part II: Application to recrystallisation[END_REF][START_REF] Gentry | Simulating recrystallization in titanium using the phase field method[END_REF], triple junctions drag [START_REF] Johnson | ScienceDirect A phase-field model for grain growth with trijunction drag[END_REF]... However, phase-field methods are computationally very demanding, especially when accurate statistical measurement is needed. As an example, we detail the conditions that have to be fulfilled to measure an accurate steady-state grain size distribution, a question that has been recently the focus of several phase-field works [START_REF] Kim | Computer simulations of twodimensional and three-dimensional ideal grain growth[END_REF][START_REF] Kamachali | 3-D phase-field simulation of grain growth: Topological analysis versus mean-field approximations[END_REF][START_REF] Miyoshi | Multi-phase-field study of the effects of anisotropic grainboundary properties on polycrystalline grain growth[END_REF][START_REF] Yadav | Investigation on the existence of a 'Hillert regime' in normal grain growth[END_REF].

• First, the accurate measurement of a grain size distribution requires a large enough number of grains and, based on the calculations in [START_REF] Miyoshi | Multi-phase-field study of the effects of anisotropic grainboundary properties on polycrystalline grain growth[END_REF], about 3 × 10 4 grains are necessary.

Then, to ensure that enough grains remain in the simulation box once the scale-invariant regime is reached, the simulation must be started with a much larger number of grains. This number depends on the choice of initial conditions, but a rough estimate would be that at least N 0 = 3 × 10 5 grains are necessary.

• Second, in a phase-field model, the interface width is, for numerical purpose, chosen much larger than the real one. This is only justified if the grain size D is significantly larger than the interface width. When quantitatively analyzing the kinetics of grain boundaries using the simple case of a circular grain, [START_REF] Moelans | Quantitative analysis of grain boundary properties in a generalized phase field model for grain growth in anisotropic systems[END_REF] concluded that the interface thickness , defined as the inverse of the profile gradient in the middle of the interface, should be smaller than D 8 to ensure an accurate description of the kinetics. However, the influence of the interface width has to be also analyzed on the triple junction kinetics. Based on [START_REF] Johnson | ScienceDirect A phase-field model for grain growth with trijunction drag[END_REF], reproducing accurate triple junction mobility requires an interface width smaller than D 20 .

• Third, the numerical solution of the classical phase-field model requires the use of a discretization grid size d, which is much smaller than the interface width. Based on [START_REF] Moelans | Quantitative analysis of grain boundary properties in a generalized phase field model for grain growth in anisotropic systems[END_REF], d should be larger than 6.6 to ensure accuracy of 1.3% on the shrinkage rate of a decreasing circular grain. The condition becomes d > 13 for an accuracy of 0.25%.

The volume V of the simulation box can be related to the initial number of grains N 0 and their average size D 0 , as V = (Nd) 3 ≈ ζ D 3 0 N 0 , where ζ is a number close to 1 for equiaxed grains and where N is the number of grid point in a cubic direction. From this expression, we get N ≈ ( D 0 )( d )(N 0 ) 1/3 . Using the above estimates, if we want to accurately simulate the microstructure evolution starting from the initial condition, we obtain that the number N of grid points along each cubic direction must be of the order of 9300, i.e. about 8 × 10 11 grid points. Even if the precise value of N depends on the required accuracy, it is clear that extremely large simulations box are required, implying also extremely long simulation times.

Recently, the S-PFM approach [START_REF] Finel | Sharp Phase Field Method[END_REF] has provided a new inherently discrete formulation, where interfaces can be resolved with only one grid point, thus drastically improving the numerical performances of the method. The S-PFM approach was successively applied for the single phase-field case, and it was also shown to be easily extended to the case where supplementary fields such as concentration and strain fields are considered [START_REF] Finel | Sharp Phase Field Method[END_REF][START_REF] Degeiter | Étude numérique de la dynamique des défauts d'alignement des précipités γ dans les superalliages monocristallins à base de nickel[END_REF]. The aim of the present paper is to extend this approach to a multiphase field model. More precisely, we show how the S-PFM approach can be used to describe ideal grain growth.

The paper is organized as follows. First, a general derivation of the model is presented, followed by its application to a square lattice in two dimensions. Second, we show how to select the model parameters to control the energy, kinetics and isotropy of grain boundaries.

Third, the triple junction behavior is closely examined, and confronted with the sharp interface theory. Then, the numerical improvement of the method is demonstrated by comparing the simulation results with those obtained with a classical phase-field method. Finally, a largescale simulation of grain growth in two dimensions is performed and the grain size distribution in the scale-invariant regime is analyzed.

2 New S-PFM model for normal grain growth

S-PFM model formulation

The S-PFM approach provides a new, inherently discrete, formulation, in which interfaces are resolved with essentially one grid point while keeping an accurate translational and rotational energy invariance. This approach was first developed for a single-phase field model [START_REF] Finel | Sharp Phase Field Method[END_REF] and then extended to the coupling with a supplementary field, such as concentration or strain fields [START_REF] Finel | Sharp Phase Field Method[END_REF][START_REF] Degeiter | Étude numérique de la dynamique des défauts d'alignement des précipités γ dans les superalliages monocristallins à base de nickel[END_REF]. The aim of the present section is to further extend the method to the case of a multi phase-field model. More specifically, we consider the case of ideal grain growth where an arbitrary polycrystalline microstructure is defined by the value of a set of fields {φ 1 , φ 2 , . . . , φ p } at each point r of a given lattice. Within the grain labeled (i), φ i is equal to one and all other fields are equal to zero. We now introduce the discrete free energy functional:

F = V d ∑ r ∆ f p ∑ i=1 g(φ i ) + β ∑ j>i φ 2 i φ 2 j + κ 2 p ∑ i=1 ∇ d φ i 2 (1)
where ∆ f is the free energy density scale and V d the volume of an elementary lattice cell. The biquadratic term ensures that the minima of the homogeneous energy density involves only one non-zero component [START_REF] Chen | Computer simulation of the domain dynamics of a quenched system with a large number of nonconserved order parameters: The grain-growth kinetics[END_REF]. The coefficient β has been assigned the value 3 2 , which is used in the classical phase-field model to ensure symmetry at the interface [START_REF] Moelans | Quantitative analysis of grain boundary properties in a generalized phase field model for grain growth in anisotropic systems[END_REF][START_REF] Johnson | ScienceDirect A phase-field model for grain growth with trijunction drag[END_REF]. κ is the gradient coefficient and ∇ d φ i is a discrete gradient which, following [START_REF] Finel | Sharp Phase Field Method[END_REF], is written as:

∇ d φ i 2 = Ns ∑ s=1 Dγ s m s d 2 s m s ∑ k=1 φ i ( r + r s (k)) -φ i ( r) 2 (2)
where N s is the number of neighbor shells, r s (k) is a vector running over the m s components of a neighboring shell s, d s is the length of an s th neighbor pair, D is the space dimensionality, and γ s are weighting coefficients with the constraint that ∑ N s s=1 γ s = 1. In the S-PFM approach, the adimensional free energy density g(φ ) has to be selected to ensure that an equilibrium interface normal to a given direction u is continuously invariant by translation. Contrarily to the single phase field formulation [START_REF] Finel | Sharp Phase Field Method[END_REF], the interface between two grains (1 and 2) is here defined by two fields φ 1 ( r) and φ 2 ( r). Assuming a symmetric profile of the interface, i.e.

φ 2 = 1 -φ 1 ,
and under the hypothesis that all other fields φ i are strictly equal to zero everywhere, the equilibrium equation is given by:

∆ f g (φ 1 ) + 2β φ 1 (1 -φ 1 ) 2 = κ Ns ∑ s=1 Dγ s m s d 2 s m s ∑ k=1 φ 1 (x + r s (k) • u) -2φ 1 (x) + φ 1 (x -r s (k) • u) (3) 
where x = r • u is the coordinate normal to the interface, along a specific direction u discussed below.

Following the S-PFM approach described in [START_REF] Finel | Sharp Phase Field Method[END_REF], we impose the following interface discrete equilibrium profile:

φ 1 (x) = 1 2 1 + tanh 2(x -x 0 ) (4) 
where is the interface width and x 0 is the interface position. This profile is a solution of equation 3, for any real number x 0 , if the energy density g(φ ) is given by:

g(φ ) = -β φ 2 6 (3φ 2 -8φ + 6) + κ 4∆ f Ns ∑ s=1 Dγ s m s d 2 s m s ∑ k=1 α 2 ( r s (k)) -1 α 2 ( r s (k)) log (1 -α 2 ( r s (k))(2φ -1) 2 -(2φ -1) 2 (5) with α( r s (k)) = tanh 2 r s (k) • u . (6) 
In the above expression, the inner summation is restricted to k values such that α( r s (k)) = 0.

As the profile φ 1 (x) given in Eq. 4 is an equilibrium solution for any real number x 0 , the corresponding interface energy is continuously invariant by translation along the direction u.

We also note that, as in [START_REF] Finel | Sharp Phase Field Method[END_REF], the interface thickness can be chosen arbitrarily and independently of the grid spacing.

The choice of the direction u along which we impose a translation invariance can be made based on two different criteria. As disscused in [START_REF] Finel | Sharp Phase Field Method[END_REF], the first is associated with a direction that displays the highest possible degeneracy with respect to the computational lattice symmetries, while the second corresponds to the direction with the largest inter-reticular distance, for which grid pinning effects, if present, are expected to be more pronounced. Suppressing exactly grid pinning along the directions that display the largest interface distance is also a way to get low remaining pinning effects along the other directions.

The next step consists in minimizing the loss of rotational invariance, necessarily introduced by a 2D or 3D computational grid. This is achieved by choosing other lattice directions, and identifying the ponderation coefficients γ s so that the corresponding interface energies are equal to the interface energy in the translational invariant direction (see also [START_REF] Fleck | Frictionless motion of marginally resolved diffuse interfaces in phase-field modeling[END_REF] for a different methodology). Note also that, for the S-PFM energy density (5) and for a symmetric profile, the surface energy in an arbitrary direction is proportional to κ. It implies that the ponderation coefficients γ s , obtained with a given value of κ, are still valid for other values of κ. However, a constraint on κ must be considered. Indeed, in the derivation followed above to identify the free energy density g(φ ), and which is based on Eq. 3, we suppose that the equilibrium interface profiles between two grains do not involve other fields than those associated to these grains. A numerical analysis shows that this hypothesis is fulfilled provided κ is larger than a critical value κ c , which depends on /d.

Finally, the microstructure evolution is given by a dissipative dynamics. Whereas space is discrete, time, as in the original S-PFM [START_REF] Finel | Sharp Phase Field Method[END_REF], is still continuous. As we only consider non- conserved fields, we use the simple relaxation equation:

∂ φ i ∂t = -L δ F δ φ i (7) 
where L is a kinetic coefficient, which can be related to the grain boundary mobility by µ gb = 3 4 L. We introduce the characteristic time t 0 = 1 (L∆ f ) and the adimensional surface tension σ = σ gb d∆ f , where σ gb is the grain boundary energy.

The numerical implementation of the S-PFM model [START_REF] Finel | Sharp Phase Field Method[END_REF] is similar to that performed for classical phase field models. In this work, we have chosen an implementation in Fourier space which allows a simple calculation of differential operators and which makes it possible to use very efficient semi-implicit spectral schemes for the time integration [START_REF] Chen | Applications of semi-implicit Fourier-spectral method to phase field equations[END_REF].

2D S-PFM model on a square lattice

We now show how to apply this methodology to the simple case of a square lattice generated by the orthogonal vectors ( e x , e y ). We extend the gradient term to the second nearest neighbors (N s = 2) and we choose the translational invariance direction based on the criteria of the largest inter-reticular distance, i.e. u = e x . Using the first and second nearest neighbors of the 2D square lattice and the sharp direction u = e x the scalar products u • r s (k) are either equal to d or 0 (Figure 1). Therefore, the values of α(r s (k)) defined in Eq. 6 are either equal to α = tanh( 2d ),

d γ 1 σ[10] σ min [11]
σ max [START_REF] Chen | Computer simulation of the domain dynamics of a quenched system with a large number of nonconserved order parameters: The grain-growth kinetics[END_REF] σ avg [START_REF] Chen | Computer simulation of the domain dynamics of a quenched system with a large number of nonconserved order parameters: The grain-growth kinetics[END_REF] 1 0.5976 0.8853 0.8822 0.8884 0.8853 1.5 0.625 0.7214 0.7212 0.7217 0.7214 2 0.635 0.5889 0.5889 0.5889 0.5889 Table 1. Adimensional interface energies σ = σ /(d∆ f ) for a flat interface perpendicular to [01] and [START_REF] Chen | Computer simulation of the domain dynamics of a quenched system with a large number of nonconserved order parameters: The grain-growth kinetics[END_REF] directions, along with the optimized coefficients γ 1 , for different interface width ratios d . Values are given for κ = 1.

-α or to zero. Introducing these values in Eq. 5 and using the fact that γ 1 + γ 2 = 1 we get

g(φ ) = -φ 2 4 (3φ 2 -8φ + 6) + κ 4 α 2 -1 α 2 log (1 -α 2 (2φ -1) 2 -(2φ -1) 2 -ν (8) 
where κ = κ d 2 ∆ f , ν is a constant selected to have g(0) = 0, so that the total energy remains unchanged by adding a new empty field. In all the simulations that follow, the coefficient κ has always been chosen so that it is larger than the critical κc = κ c d 2 ∆ f mentioned above. We also note that, in the simple case considered here, the expression of g(φ ) is independent on the weighting coefficients γ s .

For a chosen value /d, we now proceed to the rotational energy invariance optimization.

For that purpose, the ponderation coefficients γ 1 and γ 2 = 1γ 1 are identified such that the energy σ [START_REF] Chen | Computer simulation of the domain dynamics of a quenched system with a large number of nonconserved order parameters: The grain-growth kinetics[END_REF] of a flat interface perpendicular to the direction [START_REF] Chen | Computer simulation of the domain dynamics of a quenched system with a large number of nonconserved order parameters: The grain-growth kinetics[END_REF], is equal to the energy σ [START_REF] Wakai | Three-dimensional microstructural evolution in ideal grain growth general statistics[END_REF] .

Considering that the interface energy is not translationally invariant in the [START_REF] Chen | Computer simulation of the domain dynamics of a quenched system with a large number of nonconserved order parameters: The grain-growth kinetics[END_REF] direction , its value will be slightly dependent on the interface position along the [START_REF] Chen | Computer simulation of the domain dynamics of a quenched system with a large number of nonconserved order parameters: The grain-growth kinetics[END_REF] direction. As proposed in [START_REF] Finel | Sharp Phase Field Method[END_REF] we define σ [START_REF] Chen | Computer simulation of the domain dynamics of a quenched system with a large number of nonconserved order parameters: The grain-growth kinetics[END_REF] as the arithmetic average of the extremum values. The identified coefficients (γ 1 , γ 2 ), along with the interface energies ( σ [START_REF] Wakai | Three-dimensional microstructural evolution in ideal grain growth general statistics[END_REF] , σ [START_REF] Chen | Computer simulation of the domain dynamics of a quenched system with a large number of nonconserved order parameters: The grain-growth kinetics[END_REF] ) for different interface widths, are presented in Table 1. Adimensional energy values are given for κ = 1. However, as explained above, the value of the optimised coefficients are valid whatever the value of κ.

As a simple test, we have numerically verified the interface energy translational invariance achieved by the above parametrization. We have computed the interface energy σ [START_REF] Wakai | Three-dimensional microstructural evolution in ideal grain growth general statistics[END_REF] of a flat interface perpendicular to the direction [START_REF] Wakai | Three-dimensional microstructural evolution in ideal grain growth general statistics[END_REF], using the equilibrium profile (Eq. 4) with different translated positions x 0 . For an interface defined with only one grid point, we numerically ver- ified that regardless of x 0 , the generated energies are, up to the computer accuracy, exactly the same, indicating that the grid pinning is indeed totally suppressed in that particular direction.

Interfacial energy isotropy

In order to evaluate the S-PFM parametrization for the rotational invariance optimization, we analyze the evolution of a single circular grain embedded in another grain (Fig. 2b). The model capability of preserving shape isotropy during grain evolution is then examined by calculating a circularity indicator defined as the ratio of radii in [START_REF] Wakai | Three-dimensional microstructural evolution in ideal grain growth general statistics[END_REF] and [START_REF] Chen | Computer simulation of the domain dynamics of a quenched system with a large number of nonconserved order parameters: The grain-growth kinetics[END_REF] directions. The grain radius in each of both directions was determined by linearly fitting the corresponding order parameter profile to equation 4, at each time step, using a least square method. It should be noted that while equation 4 corresponds exactly to the equilibrium profile in the [START_REF] Wakai | Three-dimensional microstructural evolution in ideal grain growth general statistics[END_REF] direction, it still presents a very good approximation for profiles along the [START_REF] Chen | Computer simulation of the domain dynamics of a quenched system with a large number of nonconserved order parameters: The grain-growth kinetics[END_REF] direction.

The circularity indicator evolution is determined in a growing grain scenario, where a supplementary term ζ h(φ 1 ) was added to the total free energy, where h(φ ) = 3φ 2 -2φ 3 is an interpolation function, in order to favor the growth of the grain 1. ζ was given the minimal value that allows to initiate the growth process for a small-sized grain with an initially diffuse grain boundary given by the equilibrium profile (Eq. 4).

Simulations were carried out for different interface widths and for sufficiently long times, at the end of which the grain boundary almost reached the limits of the simulation box. The temporal evolution of the circularity indicator, as defined above, is displayed in Fig. 2a. Fig. 2b gives a visual indication of the shape of the grains at the end of the runs and for different interface widths. At the end of the simulation the anisotropy is above 2% for d = 1, but decreases to 0.37% for d = 1.5 and to 0.04% for d = 2. In brief, only 2 points within the interface are necessary to obtain a very high rotational accuracy.

Kinetics

Next, we check the model capability to reproduce kinetic properties by analysing the evolution of a circular grain. According to the analytical model of Von-Neuman Mullins [START_REF] Mullins | Two-dimensional motion of idealized grain boundaries[END_REF], the grain area A(t) linearly decreases with time:

A(t) = A 0 -2π µ gb σ gb t (9) 
where A 0 is the initial grain area.

Kinetics for different interface widths were computed and compared to equation 9. Without loss of generality, we have used the typical values σ gb = 1Jm -2 and µ gb = 10 -6 m(Js) -1 . As shown in Fig. 3a, a linear decrease of the grain area is observed, and the corresponding slope is very close to the analytical one. The precision is of 5.2% for d = 1, 1.06% for d = 1.5, and 0.04% for d = 2.

For comparison purpose, kinetics using the classical phase-field model of Chen and Yang [START_REF] Chen | Computer simulation of the domain dynamics of a quenched system with a large number of nonconserved order parameters: The grain-growth kinetics[END_REF], usually refered to as the continuum-field (CF) model, were also determined for different interface widths. A brief description of the CF model can be found in the supplementary material. The precision on the slope is of 5.3%, 1.1%, 0.2% and 0.03%, for d = 2, d = 3.3, d = 6 and d = 8, respectively (see supplementary material for details). These results, which are consistent with previous CF simulations [START_REF] Fan | Effect of grain boundary width on grain growth in a diffuse-interface field model[END_REF][START_REF] Mckenna | Phase field modeling of grain growth: Effect of boundary thickness, triple junctions, misorientation, and anisotropy[END_REF][START_REF] Moelans | Comparative study of two phase-field models for grain growth[END_REF], indicates that kinetics accuracy obtained by the S-PFM model can only be reached by a CF model discretized with a much finer grid size.

In particular, we note that the S-PFM model is able to accurately reproduce a curvature Fig. 3b gives a clear demonstration of the significant improvement achieved by using the S-PFM formulation, where profiles across the interfaces of the CF and the S-PFM models, that both reproduce equivalent kinetics accuracy, are displayed.

3 Results and discussion

Triple junction

At this point, we have shown that the S-PFM model is able to accurately reproduce energetic and kinetic properties of grain boundaries. We now focus on the behavior of triple junctions.

This study is necessary, because the S-PFM method was derived by considering only interfaces. Its capability to model triple junction kinetics remains to be demonstrated.

It is well known that in some cases, the triple junction mobility can be lower than the grain boundary mobility and that the resulting drag effect can affect the microstructure evolution [START_REF] Johnson | ScienceDirect A phase-field model for grain growth with trijunction drag[END_REF][START_REF] Weygand | Reduced mobility of triple nodes and lines on grain growth in two and three dimensions[END_REF][START_REF] Protasova | Triple junction motion in aluminum tricrystals[END_REF][START_REF] Zöllner | Investigating the von Neumann-Mullins relation under triple junction dragging[END_REF]. However, in the present paper, our aim is to show that despite the discrete character Fig. 4 Simulation of a three-grain structure on a 128×128 grid system, within the steady state, y 0 is a constant distance equal to one fourth of the system size, and 2θ is the dihedral angle at the triple junction. The square on the upper right region is a zoom of the triple junction region. The red line represents the theoretical profile of the triple junction. Image mapping is according to

∑ i φ 2 i .
of the S-PFM model, it is possible to select the parameters such that the triple junction drag is negligible.

We first consider the simple three-grain configuration presented in Fig. 4, and we analyze the steady state and its velocity. According to ref [START_REF] Gottstein | Triple junction dragging and von neumannmullins relation[END_REF], the shape of the grain boundary y(x) in the steady-state is expressed as:

y(x) = y 0 ( π 2 -θ ) arccos e (-x/y 0 )( π 2 -θ ) (10) 
where 2y 0 is the lateral grain size, 2θ is the dihedral angle at the triple junction (see Fig. 4).

The steady state velocity V is:

V = - µ gb σ gb y 0 π 2 -θ (11) 
where µ gb is the grain boundary mobility and σ gb is the grain boundary energy. In the absence of triple junction drag, the system fulfills the well known Young's law, in which the forces balance at the triple junction implies that the angle θ is equal to π 3 . In the presence of triple junction drag, the steady-state profile and velocity are still given by (10) and ( 11), but the angle θ differs from π 3 . This simple configuration is thus an efficient way to detect triple junction drag. Up to this point, the S-PFM method has imposed no requirements for the value of the adimensional gradient coefficient κ. Our aim is to demonstrate that a proper value of κ can be selected to ensure a negligible junction drag.

d κ V t j [d/t 0 ] V gb [d/t 0 ] ∆V /V [%] θ [ • ] S-
Starting from an initial configuration presented in Fig. 4 with θ = π 2 , the velocity V gb of the center of the grain boundary and the triple junction velocity V t j are measured within the steady-state. The two velocities progressively reach a plateau with values that are equal up to the accuracy of measurement. This steady-sate velocity is then compared to the reference velocity (equation 11 with θ = π 3 ). Equation 11is also used to extract the dihedral angle 2θ corresponding to the measured velocity. Results are presented in Table 2.

For values of κ of 0.24 and 0.3, which are larger than the critical value κc = κ c d 2 ∆ f mentioned above (equal to 0.23 ± 0.01 for /d = 2), the observed steady state velocity differs from the reference one by 1.33% and 1.21%, respectively, which corresponds to an angle θ equal to 59.60 • and 59.64 • , respectively. This indicates that, in the two situations numerical triple junction drag is negligible. We found that higher values of κ lead to a further decrease of the triple junction drag. For example, for κ = 0.362, which is used in all following simulations, the deviation of the steady state velocity from the reference value is of 0.6%. We have verified that, using the CF model, a deviation smaller than 1% requires a grid spacing d such that d = 8.

We now analyze the shape of the grain boundary in the steady-state. The position of the highest point on the grain boundary was first accurately measured using a hyperbolic tangent fit. Then the theoretical steady-state shape (equation 10) was drawn as a red curve in Fig. 4.

It is clear that the shape of the simulated grain boundary remarkably follows the theoretical profile. In the inset of Fig. 4, a zoom of the triple junction region clearly shows that, despite its discrete nature and the high pixellisation of the generated interfaces, the S-PFM model is able to accurately reproduce the grain boundary shape up to and including the tri-junction.

Additionally, similar tests were performed on a twice as large system, which showed that the above results are not sensitive to the system size. We note that in contrast to previous studies [START_REF] Moelans | Quantitative analysis of grain boundary properties in a generalized phase field model for grain growth in anisotropic systems[END_REF][START_REF] Chang | Effect of strong nonuniformity in grain boundary energy on 3-D grain growth behavior: A phase-field simulation study[END_REF][START_REF] Moelans | Comparative study of two phase-field models for grain growth[END_REF], the procedure used here to analyze the triple junction avoids a direct measurement of the dihedral angle, which is difficult to make with a good accuracy.

Simulations on a four-sided grain were also performed, where kinetics were compared to the Mullins Von-Neuman theory [START_REF] Mullins | Two-dimensional motion of idealized grain boundaries[END_REF]:

dA dt = µ gb σ gb π 3 (N -6) ( 12 
)
where A is the area of the grain, with N = 4 sides.

Fig. 5a, displays the initial configuration as well as the subsequent grain evolution in a 128 × 128 simulation box, where the phase field values at the box boundaries were kept unchanged, and the interface width ratio was set to d = 2. Fig. 5b shows the temporal evolution of the central grain area. After a transient stage, the area decreases linearly with time. A linear fit shows that the shrinkage rate is about 2.4% higher than the one predicted by the Mullins

Von-Neuman theory. The same test was carried out using the CF model, with a sufficiently diffuse interface of a width ratio of d = 8 (see supplementary material). The relative error on the velocity is around 2%. It is worth mentioning that in both simulations, data were acquired for grain sizes sufficiently larger than the interface. In brief, even though the triple junction is resolved with only 2 grid points in the S-PFM simulation, these results show that the predicted kinetics are equivalent to those of a CF model with 8 grid points within the interface.

To summarize, our S-PFM model has been shown to efficiently fulfill the Young's law at the triple junction, where we showed that the isotropic equilibrium dihedral angle as well as the grain boundary profiles can be reproduced with a very high accuracy. We have also shown that S-PFM with only 2 grid points within the interfaces and triple junctions produces Fig. 5 S-PFM simulation of a four-sided grain with an interface width ratio of d = 2 on a 128×128 grid system. Comparison between the temporal evolution of the grain area of a four sided-grain (blue circles) and the theory (red line). Snapshots of the microstructure at the beginning and at the end of the analysis are also displayed. Image mapping is according to

∑ i φ 2 i .
a very accurate kinetics and that a comparable precision with the CF model requires interfaces resolved by 8 grid points.

Multi-grain structure

For CF phase-field simulations, the discretization grid has to be chosen much smaller than the interface width. We have shown above on model configurations that the accuracy obtained using a grid spacing 8 times smaller than the interface width could be also reached using an S-PFM model in which interfaces are resolved with only two grid points. Therefore, we expect that the grid size in an S-PFM model simulation could be selected four times larger than in a CF simulation while keeping the same physical description of both grain boundaries and triple junctions. This point is demonstrated in this section by analyzing the normal grain growth in two dimensions. Without loss of generality, we used the typical values σ gb = 1Jm -2 and

µ gb = 10 -6 m 4 (Js) -1 .
First, a CF simulation with an interface width ratio of d = 8 was performed on a 1024 × 1024 grid system, starting from a randomly seeded Voronoï structure. The microstructure is relaxed for a short time to obtain a microstructure with diffuse interfaces and dihedral angles close to equilibrium (Figure 6-a). Then, this microstructure containing 1160 grains is used as an initial configuration for the two simulations presented in Fig. 7.

(i) The first one (Fig. 7-bottom) is obtained using the CF model on a 1024 × 1024 grid system with d = 8, and is nothing but the continuation of the previous simulation. Both simulations were carried out using a time step ∆t = 5 • 10 -3 , in units of the characteristic time t 0 = 1 L∆ f introduced above. The comparison of the results of the CF and S-PFM models in Fig. 7 clearly shows that the predicted microstructures are almost identical. This is confirmed in Fig. 8, where we observe that the time evolution of the number of grains and the average grain radius predicted by the two simulations are very close to each other. The very small differences are due to the slight differences in the TJ kinetics (see supplementary material). In brief, the results presented in Fig. 7 and Fig. 8 provide a clear demonstration that a simulation result obtained using a CF model on a 1024 × 1024 grid, can also be reached by an S-PFM model on a 256 × 256 grid.

In summary, a new discrete multi-phase-field model for ideal grain growth was developed based on the S-PFM approach. When compared to the seminal diffuse multi-phase-field model proposed in [START_REF] Chen | Computer simulation of the domain dynamics of a quenched system with a large number of nonconserved order parameters: The grain-growth kinetics[END_REF], we showed that the new approach allows a significant decrease of memory usage (by a factor of 4 D , where D is the space dimension), an improvement which is especially important for phase-field simulations. In addition the simulation time is also reduced by the same factor.

The main conclusions obtained within this study can be summarized as follows:

• By using the S-PFM model on a 2D square lattice, grain boundaries can be resolved with only two grid points preserving an exact translational invariance in the [START_REF] Wakai | Three-dimensional microstructural evolution in ideal grain growth general statistics[END_REF] and

[01] directions and an accurate rotational invariance.

• The observed dihedral angle at a TJ, the grain boundary shape of the neighboring grains, and the steady-state velocity are very close to the expected ones.

• Simulations can be carried out with a grid spacing four times larger than within the classical phase field formulation with no significant effect on the growth kinetics of a multi-grain microstructure.

We also emphasize that, beyond the fact that the numerical improvement achieved within the S-PFM approach extends to other microstructural evolutions, it has a particular interest for normal grain growth simulations, in which the main objective is to reach a steady-state. These simulations require a large number of grains in order to get a significant statistical analysis, and this can only be obtained with large-scale simulations. Using the S-PFM instead of the classical phase-field modeling decreases the memory usage and simulation time by a factor 4 D , which is a drastic improvement for 3D modeling.

Large-scale simulation of normal grain growth

The aim of the following section is to demonstrate the ability of the S-PFM model to perform large scale simulations of normal grain growth with a statistically significant number of grains, and at a reasonable computational cost compared to conventional phase field simulations. Therefore, a S-PFM simulation was performed on a 2D system of 4096 × 4096 grid points, where the initial microstructure had been generated using a Voronoï tessellation, with nearly 270 000 grains, and a mean grain radius R 0 = 4.2 d. The simulation was carried out for a sufficiently long time (i.e. t/t 0 = 4000), during which the mean grain size is multiplied by five. At the end of the simulation, more than 96% of the initial grains have disappeared, and only around 10 000 grains remain. Figure 9 displays two small parts of the simulated microstructures, corresponding to a sixty-fourth of the total simulation box, one at the beginning of the simulation (t/t 0 = 100) and the second one within the scaling regime (t/t 0 = 3000).

Such large-scale simulations are necessary to ensure that the system reaches the scaling regime, a fundamental attribute of normal grain growth, with a very large number of grains that allows for reliable statistical analysis. Microstructures within the scaling regime are selfsimilar, and the grain size distribution (GSD) is time invariant when scaled with its mean value. In 2D, such GSD is shown to exhibit a multimodal behavior [START_REF] Kim | Computer simulations of twodimensional and three-dimensional ideal grain growth[END_REF][START_REF] Mason | Geometric and topological properties of the canonical grain-growth microstructure[END_REF] associated with the GSD of each topological class n, where n is the number of sides of the grains. Therefore, a statistical analysis per class is necessary, which for an error in the order of 1%, requires at least few thousands of grains within each topological class.

Figure 10 shows the global GSD averaged over different instants within the scaling regime.

The outline of the global GSD exhibits three main features:

• a slightly longer tail for large grain sizes,

• two peaks near the mean grain size,

• a slight bump for grain sizes about half of the mean grain size. Each of the observed features can be explained in terms of the underlying GSDs of topological class n shown in Figure 10.

While the slightly longer tail for large grain sizes has been widely recognized as a characteristic feature of the steady-state GSD in many previous 2D numerical studies [START_REF] Meng | Study on topological properties in two-dimensional grain networks via large-scale Monte Carlo simulation[END_REF][START_REF] Cruz-Fabiano | Assessment of simplified 2D grain growth models from numerical experiments based on a level set framework[END_REF], the double peak close to the middle of the GSD and the small bump along the left side of the GSD have been rarely observed [START_REF] Mason | Geometric and topological properties of the canonical grain-growth microstructure[END_REF]. The GSD determined by Kim et al [START_REF] Kim | Computer simulations of twodimensional and three-dimensional ideal grain growth[END_REF] using a conventional phase field model was shown to exhibit a plateau instead of two separated peaks. This can be attributed to the statistical incapability in their simulations to capture such fine details which are highly affected by statistical fluctuations. On the other hand, Mason et al [START_REF] Mason | Geometric and topological properties of the canonical grain-growth microstructure[END_REF] exploit the low computational cost, generally, associated with vertex models to carry out very large scale simulations in both 2D and 3D. Their grain size distributions in 2D have the same mean features reported in Fig. 10, which confirms the statistical consistency and reliability in our findings.

Figure11, where we display the time evolution of the grain fractions and mean radius of several topological classes, provides strong evidence that the system reaches the scaling regime within the performed simulation time. Indeed, for each topological class, both the fraction of grains (Fig. 11a) and the mean grain radius R n scaled by the mean radius R (Fig. 11b) reach a plateau after t/t 0 = 1000. In decreasing order of frequency, the number of sides of a grain is 6, 5, 7, 4, 8, 9, in agreement with the results presented in [START_REF] Mason | Geometric and topological properties of the canonical grain-growth microstructure[END_REF][START_REF] Elsey | Diffusion generated motion for grain growth in two and three dimensions[END_REF]. These grains (3 < n < 10) represent 98% of the total number of grains. The other grains are not very frequent which strongly limits the precision of the statistical measurements for theses classes.

We also note that the average grain size of a topological class increases with the number of sides and that the average grain size is close to the average size of the class n = 6. This observation is to be compared to the theory of von Neumann (Eq. 12) which predicts that the grains of more than 6 sides grow all the more quickly as the number of faces is large and that the grains having less than 6 sides decrease all the more quickly as the number of faces is small. Finally, the values of f n and R n / R in the scaling invariant regime are gathered in Table 3. The statistical measurement of these quantities, which requires a very large number of grains, is an example of the possibilities opened up by the S-PFM method.

Conclusion

The S-PFM approach is a new formulation of phase field models where the interface width can be as small as the grid spacing, thus drastically improving the numerical performances of the method. The present paper demonstrates that the method can be extended to a multi-phase field model, in which the kinetic behaviour of both interfaces and triple lines is accurately controlled.

The method is first developed for normal grain growth and presented in a general framework. Then, the method is applied to the description of normal grain growth in two dimensions, using a 2D cubic lattice. It is shown how to select the parameters of the model to ensure an isotropic behavior of interfaces and a negligible numerical drag of triple junctions, even with an interface width as small as twice the grid spacing. Such a behavior can only be reached by a classical phase field model using an interface width four times larger. Based on these results, we demonstrate that, for a prescribed accuracy, the memory requirement and simulation times of the S-PFM model are both 4 D times smaller than the ones of a classical phase field model, D being the space dimension.

Finally, we performed a large scale simulation with initially more than 2.7 • 10 6 grains to analyze the normal grain growth in two dimensions. Due to the numerical efficiency of the method, we were able to get the specific shape of the grain size distribution in the scale invariant regime, displaying two peaks near the mean grain size, a result never obtained with such an accuracy using a phase field approach. We were then able to quantitatively analyze the topological classes in the scale invariant regime by measuring the fraction of grains in each class and the mean grain size in each class.

An important point is that the S-PFM approach is general and allows straightforward extensions to more complex situations such as the coupling between grain growth, diffusive phase transformation and elastic stresses.

A Appendix: Dynamic reassignment algorithm

The S-PFM multi-phase field model in which each grain is described by a different field, is extremely demanding in terms of memory requirement. In order to use the model to study microstructures containing a large number of grains, we followed the approach proposed by Krill at al. [START_REF] Krill | Computer simulation of 3-D grain growth using a phasefield model[END_REF], in which each field φ i is used to represent several grains.

This approach is equivalent to the initial model, provided that different grains represented by a given field are separated from each other. However, during the microstructural evolution, two grains initially away from each other can come close to each other so that their description by the same field is no longer possible because it would lead to a spurious coalescence of the two grains. In this case, it is necessary to remove one of the two grains from the field φ i and to transfer it on another field φ j in which this grain will not have neighbouring grains. This procedure is called dynamic reassignment [START_REF] Krill | Computer simulation of 3-D grain growth using a phasefield model[END_REF].

A crucial point of the method is to check efficiently if two grains carried by the same field come close to each other in order to anticipate and avoid a spurious coalescence. An approach proposed in [START_REF] Krill | Computer simulation of 3-D grain growth using a phasefield model[END_REF] is to continuously update a list containing the first and second neighbours of each grain. If one of the grains in the neighbourhood list is on the same field as the considered grain, the latter is moved to a field that does not appear in the considered neighbourhood list.

This approach allows for the study of two-dimensional normal grain growth using only 17 fields, regardless of the number of grains, which opened the route for a statistical study of grain growth by phase field models [START_REF] Krill | Computer simulation of 3-D grain growth using a phasefield model[END_REF].

In our work, we also used a dynamic reassignment procedure, but we improved the detection of grains (carried by the same field) which come close to each other. This approach, presented briefly below, is detailed in the supplementary materials. We first calculate, for each grain, the smallest parallelepipedic box that contains the grain. Then, two grains are detected as being close to each other if the bounding boxes of the two grains are closer than a small distance ε. This distance must be at least equal to twice the interface thickness in order to ensure that the overlap between the phase field profiles of two grains is negligible. A higher value of ε can also be used, so as to perform the reassignment procedure less frequently.
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Fig. 1

 1 Fig. 1 First nearest neighbors r 1 (k) (k=1, ..., m 1 with m 1 = 4), and second nearest neighbors r 2 (k) (k=1, ..., m 2 with m 2 = 4) for the square lattice. Projections of the lattice on the e x sharp direction are also shown.

Fig. 2

 2 Fig. 2 Shape anisotropy of a growing grain for different interface widths. (a) Temporal evolution of the circularity indicator R [10] R [11] in an arbitrary time unit. (b) Grains at initial and final stage of the simulation in a 128 × 128 simulation box.

Fig. 3

 3 Fig. 3 (a) Comparison between the analytical kinetics and the S-PFM kinetics for different interface widths. (b) Order parameter profiles φ 1 (x) across the interface along the [10] direction, for d = 8 within the CF simulation (red circles), and d = 2 within the S-PFM simulation (blue squares). The second order parameter profile defining the interface φ 2 (x) = 1φ 1 (x) is not shown for clarity. Both profiles produce kinetics with a precision on the slope better than 0.05%

Fig. 6

 6 Fig.6Initial microstructures used for CF simulation on a 1024 × 1024 grid system (a) and for the S-PFM simulation on a 256 × 256 grid system (b). The latter has been obtained from the former by extracting one phase field value every 4 points along each cubic direction. Image mapping is according to ∑ i φ 2 i .
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  ii) The second simulation (Fig. 7-top) uses the S-PFM model on a 256 × 256 grid with d = 2. To start this simulation, the above 1024 × 1024 initial configuration was reduced to a 256 × 256 configuration by considering the field values once every 4 points in each cubic direction (Figure 6-b).
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 78 Fig. 7 Comparison of microstructural evolutions obtained by CF on a 1024×1024 grid (bottom row) and by the S-PFM on a 256 × 256 grid (top row) at t =160s, 800s and 1600s. Image mapping is according to ∑ i φ 2 i .
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 9 Fig.9(a) Microstructures at the early stages of the simulation (t/t 0 = 100) and (b) within the scaling regime (t/t 0 = 3000). Both microstructures corresponds to a small portion of 512×512 grid points of the 4096 × 4096 simulation box. Image mapping is according to ∑ i φ 2 i .
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 10 Fig. 10 Averaged GSDs within the scaling regime, the global GSD is represented with a grey filled histogram, while GSDs within each topological class are shown in colored steps. Histograms are averaged between t/t 0 = 1000 and 4000.
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 11 Fig. 11 (a) Temporal evolution of the fraction of grains in each topological classe. (b) Temporal evolution of the mean grain radius within each topological class scaled by the global mean radius.
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 9 a) Microstructures at the early stages of the simulation (t/t 0 = 100) and (b) within the scaling regime (t/t 0 = 3000). Both microstructures corresponds to a small portion of 512 × 512 grid points of the 4096 × 4096 simulation box. Image mapping is according to ∑ i φ 2 i . . . . . . . . . . . . . . . . . . . . . . 19 10 Averaged GSDs within the scaling regime, the global GSD is represented with a grey filled histogram, while GSDs within each topological class are shown in colored steps. Histograms are averaged between t/t 0 = 1000 and 4000. . . 20 11 (a) Temporal evolution of the fraction of grains in each topological classe. (b) Temporal evolution of the mean grain radius within each topological class scaled by the global mean radius. . . . . . . . . . . . . . . . . . . . . . . . 21

Table 2 .

 2 Steady state kinetics of the triple junction: V t j and V gb are the triple junction and grain boundary velocities, respectively; ∆V /V is the relative difference between the grain boundary velocity and the theoretical value without triple junction drag; θ is half the dihedral angle extracted from the measurement of V gb .

	PFM 2 0.24 -0.00351 -0.00352	1.33	59.60
		2	0.3	-0.00439 -0.00439	1.21	59.64
		2 0.362 -0.00526 -0.00526	0.60	59.82
	CF	8	8	-0.01652 -0.01652	0.96	59.71

Table 3 .

 3 Fraction of grains f n in each topological classe and mean grain radius R n within each topological class scaled by the global mean radius R in the scale-invariant regime (1000 < t/t 0 < 3000).

	n	3	4	5	6	7	8	9	10	11
	f n	0.0073 0.094 0.285 0.298 0.189 0.088 0.029 0.0075 0.0015
	R n / R	0.281 0.471 0.707 1.029 1.303 1.509 1.685 1.82	1.92

lowest bounding box volume is chosen for the reassignment procedure. Using the bounding box of each grain, we then search for another field in which the grain can be inserted without being close to other grains. Once this field is determined, the grain is erased from the initial field and copied to this new field. Using this reassignment procedure, we observed that 11 fields are enough to perform our two-dimensional simulations, which is significantly less than the method proposed by Krill, which requires 17 fields [START_REF] Krill | Computer simulation of 3-D grain growth using a phasefield model[END_REF]. Both profiles produce kinetics with a precision on the slope better than 0.05% 11 4 Simulation of a three-grain structure on a 128×128 grid system, within the steady state, y 0 is a constant distance equal to one fourth of the system size, and 2θ is the dihedral angle at the triple junction. The square on the upper right region is a zoom of the triple junction region. The red line represents the theoretical profile of the triple junction. Image mapping is according to ∑ i φ 2 i . 12 5 S-PFM simulation of a four-sided grain with an interface width ratio of d = 2 on a 128×128 grid system. Comparison between the temporal evolution of the grain area of a four sided-grain (blue circles) and the theory (red line).
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