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ABSTRACT This paper presents a comprehensive framework for studying methods of pulse rate
estimation relying on remote photoplethysmography (rPPG). There has been a remarkable development of
rPPG techniques in recent years, and the publication of several surveys too, yet a sound assessment of their
performance has been overlooked at best, whether not undeveloped. The methodological rationale behind
the framework we propose is that in order to study, develop and compare new rPPG methods in a principled
and reproducible way, the following conditions should be met: i) a structured pipeline to monitor rPPG
algorithms’ input, output, and main control parameters; ii) the availability and the use of multiple datasets;
iii) a sound statistical assessment of methods’ performance. The proposed framework is instantiated in the
form of a Python package named pyVHR (short for Python tool for Virtual Heart Rate), which is made
freely available on GitHub (github.com/phuselab/pyVHR). Here, to substantiate our approach, we
evaluate eight well-known rPPG methods, through extensive experiments across five public video datasets,
and subsequent nonparametric statistical analysis. Surprisingly, performances achieved by the four best
methods, namely POS, CHROM, PCA and SSR, are not significantly different from a statistical standpoint
highlighting the importance of evaluate the different approaches with a statistical assessment.

INDEX TERMS Remote photoplethysmography (rPPG), Python package, Statistical analysis, non-
parametric statistical test, pulse rate estimation

I. INTRODUCTION

Heart beats cause capillary dilation and constriction that, in
turn, modulate the transmission or reflection of visible (or
infra-red) light emitted to and detected from the skin. The
amount of reflected light changes according to the blood
volume and these cardiac-synchronous variations can be eas-
ily captured through photoplethysmography (PPG) [1], [2],
a noninvasive optoelectronic measurement technology pro-
viding the PPG signals. The latter are waveforms fluctuating
according to the cardiac activity, which are also known as
blood volume pulse (BVP) signal. The pulse rate variability
(PRV, or heart rate variability - HRV) can then be computed
from the PPG signal by measuring the time interval between
two consecutive peaks of the PPG waveform.

Recently, optoelectronic sensors based on this measure-
ment principle have gained an important role because of

their noninvasive nature. Yet, this technique still requires
contact with the skin. An advancement towards contactless
technology is given by the possibility of measuring back-
scattered light remotely using a RGB-video camera. Such
remote PPG (rPPG) measurement, formerly proposed in [3]–
[5], is required in particular applications where contact has
to be prevented for some reasons (e.g. surveillance, fitness,
health, emotion analysis) [6]–[9]. All these works postulate
that the RGB temporal traces can produce a time signal which
is very close to the waveforms generated by classical PPG
sensors. The traces are generally obtained by averaging the
light intensity of skin at pixel level taken on some region of
interest (ROI), and then concatenating them on a frame-wise
basis.

In recent years researchers have developed a number of
new rPPG techniques for recovering HRV using low-cost dig-
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ital cameras and making strong video-image processing [5],
[10]–[16]. All these achievements are widely documented in
a number of review articles covering different aspects of the
non-contact monitoring of cardiac signals (see [13], [17]–
[21]), and some of them have even brought to commercial
solutions. This compulsive development of rPPG techniques
emphasizes the importance of fair comparison of competing
algorithms while promoting reproducible research. This is
usually conducted on empirical basis since theoretical eval-
uations are almost infeasible due to the complex operations
or transformations each algorithm performs. Therefore, em-
pirical comparisons focused on publicly available benchmark
datasets have become, under many respects, a cogent issue to
face in establishing ranking among methods. However, ex-
isting comparisons suffer under several aspects that deserve
to be thorough. These will be widely discussed in Section
II, but can be broadly recapped in the following points:
1) lack of a standardized pre/post processing procedure, 2)
non reproducible evaluation, 3) absence of comparison over
multiple datasets, 4) unsound statistical evaluation.

To overcome these problems and promote the development
of new methods and their experimental analysis, we propose
a framework supporting the main steps of the rPPG-based
pulse rate recovery, together with a sound statistical assess-
ment of methods’ performance. The framework is conceived
to cope with the analysis on multiple datasets and to support
each development stage of the overall Virtual Heart Rate
(VHR) recovery process. This should allow researchers and
practitioners to make principled choices about the best anal-
ysis tools, to fine tune process parameters or method meta-
parameters, and to inquire what are the steps that mainly
influence the quality of the estimations carried out.

To concretely support experimental work within the field,
the framework is instantiated into a fully open-source Python
platform, namely pyVHR1. It allows to easily handle rPPG
methods and data, while simplifying the statistical assess-
ment. Precisely, its main features lie in the following.

Analysis-oriented. It constitutes a platform for experi-
ment design, involving an arbitrary number of methods ap-
plied to multiple video datasets. It provides a systemic end-
to-end pipeline, allowing to assess different rPPG algo-
rithms, by easily setting parameters and meta-parameters.
Openness. It comprises both method and dataset factory,
so to easily extend the pool of elements to be evaluated
with newly developed rPPG methods and any kind of video
datasets.
Robust assessment. The outcomes are arranged into
structured data ready for in-depth analyses. Performance
comparison is carried out based on robust non-parametric
statistical tests.

To the best of our knowledge, this proposal represents a
novelty within the rPPG research field.

In order to substantiate our framework, we analyse eight
well-known rPPG methods, namely ICA [22], PCA [10],

1Freely available on GitHub: github.com/phuselab/VHR.

GREEN [5], CHROM [23], POS [13], SSR [14], LGI [15],
PBV [16] (cfr. Table 1, Section III). Such methods have
been selected in order to provide a substantial (although not
exhaustive) set of well-known, widely adopted and method-
ologically representative techniques. It is worth remarking
that an extensive review of all the rPPG methods proposed
so far is out of the scope of the present work, whose primary
concerns have been cogently remarked above.

Experiments are performed on five publicly available
datasets, namely PURE [24], LGI [15], UBFC [25], MAH-
NOB [26] and COHFACE [27] The experimental results,
some rather surprising, suggest that the four best performing
methods, namely POS, CHROM, PCA and SSR, behave in
the same way, leading to the conclusion that the “small”
differences among these four are at chance level. The detailed
results achieved by extensive tests conducted on the declared
methods/datasets are reported in Section IV.

The paper is organized as follows. Section II summarizes
the background and rationale about the rPPG approaches and
their assessment. Section III presents the framework features
and functionalities in the form of a pipeline to process the
information at the various stages. Section IV reports a com-
prehensive statistical comparison of popular algorithms over
multiple datasets using non-parametric significance hypothe-
sis testing. Section V provides a discussion and draws some
conclusions.

II. BACKGROUND AND RATIONALE
The aim of this section is to summarize the background and
rationale at the base of this paper. We recall the hindrances
still encountered in rPPG processing and the main challenges,
currently leaving open some aspects concerning the complex
nature of this remote analysis. Further, we introduce the
cogent issue of statistical analysis, suitable to assess/compare
methods’ effectiveness.

As outlined in Section I, the main concerns regarding rPPG
methods assessment can be summarized in the following.

1) Standardized pre/post processing.

All the considered algorithms perform some form of
pre/post-processing. Such procedures heavily impact on the
method’s prediction quality [20]. We believe that such proce-
dures fall outside the method at hand, and should, therefore,
be standardized in order to shed light on the quality of the
rPPG extraction procedure, itself. One striking example is
the face detection module; while not strictly being part of the
rPPG computation from the RGB signal, it is an extremely
sensible link in the chain, whose failure would lead to poor
quality predictions. Other examples entail the skin detec-
tion/ROI extraction module, the filtering of the predicted
rPPG signal or the spectral estimation method employed.
Standardizing such procedures would allow to set up a fair
comparison for all the rPPG methods involved in the analysis.
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2) Reproducible evaluation
A glance at the related literature reveals how there is a lack
of a benchmark commonly recognised as suitable for testing
rPPG methods. Indeed, experiments are generally conducted
either on private datasets (e.g. [13], [14], [16], [23]), or on
public ones that are not conceived for rPPG assessment (e.g.
[19], [20]), preventing in both cases fair comparisons. More-
over, the different experimental conditions (e.g, illumination,
subject movements, in the wild/controlled environment), or
different ground truth reference signals (e.g., electrocardio-
gram (ECG) or BVP), are likely to prejudice comparisons,
too. For instance, the public dataset Mahnob HCI-Tagging
[26] was not designed for rPPG benchmarking, but rather
for studying human emotions. Yet, it has been adopted to
evaluate rPPG techniques [19] due to the fact that is freely
available and provides recordings of the ECG signal (from
which BVP can be recovered) and face videos. The same
observations hold for the DEAP dataset [28] which has
been used for rPPG algorithm evaluation [20] despite being
collected for the analysis of human affective states.

Heusch and Marcel [19] proposed a novel dataset for
the reproducible assessment of rPPG algorithms. In this
work, authors compare three rPPG methods on the newly
collected dataset (COHFACE) and on the Mahnob HCI-
Tagging dataset. Despite being a remarkable effort towards
the principles advocated in the present research, it presents
some pitfalls. Besides the absence of proper statistical eval-
uation, the most important is surely represented by the fact
the all the analyses where carried out solely on compressed
video datasets. Indeed, recent research has shown that a
sound video acquisition pipeline of rPPG pulse-signal should
require uncompressed coding [29]. Clearly, such recordings
are often too large to be easily published online. As a con-
sequence, many suitable datasets are often kept private. On
the other hand, video compression introduces artifacts and
destroys the subtle pulsatile information essential to rPPG
estimation, thus making the final result inconsistent [29].

3) Comparison over multiple datasets
A long debated issue in the pattern recognition field is
represented by the bias of the dataset used when performing
an analysis. As a matter of fact, running the same algorithm
on different datasets may produce markedly different results.
In other words, every dataset has its own bias, consequently
the performances reported on a single dataset reflect such
biases [30]. rPPG methods make no exception, being de
facto very sensitive to different conditions [15], [24] (video
compression, different lighting conditions, different setups).
Hence, a sound statistical procedure for the comparison on
multiple dataset is needed. To the best of our knowledge,
no such analyses were proposed earlier in literature for the
assessment of rPPG methods.

4) Rigorous statistical evaluation
Typically, the performance assessment mostly relies on basic
statistical and common-sense techniques, such as roughly

rank a new method with respect to the state-of-the-art. These
crude methods of analysis often make the assessment unfair
and statistically unsound, showing at the same time that there
is no established procedure for comparing multi classifiers
over multiple datasets. Here we claim that a good research
practice in the field should not limit to barely report perfor-
mance numbers. A partial remedy for this manifold situation
probably lies in a correct experimental analysis. Many works
set the focus on establishing the “winner” of a given dataset
competition; as a consequence, the very question of whether
the improvement over other methods is statistically signifi-
cant is by and large neglected.

There is a growing quest for statistical procedures suitable
for principled analyses through multiple comparisons. For
instance, in domains, such as machine learning, computer
vision and computational biology non parametric statistical
analysis based on Friedman test (FT) has been advocated
[30]–[33]. The rationale behind the FT is the analysis of
variance by ranks, i.e., when rank scores are obtained by
ordering numerical or ordinal outcomes. FT is well suited
in the absence of strong assumptions on the distributions
characterising the data. A common situation in which the FT
is applied is in repeated measures design, where each experi-
mental unit constitutes a “block” that serves in all “treatment”
conditions [34]. Notable examples are provided by experi-
ments in which k different algorithms (e.g., classifiers) are
compared on multiple datasets [31]. When the FT rejects
the null hypothesis because the rank sums are different,
generally multiple comparisons are carried out to establish
which are the significant differences among algorithms. The
latter comprises the Nemenyi post-hoc test [35]. This allows
for determining whether the performance of two algorithms
is significantly different when the corresponding average of
rankings is at least as great as its critical difference.

Of interest for the work presented here, the Nemenyi test
takes into account and properly control the multiplicity effect
while doing multiple comparisons [31]. It assumes that the
value of the significance level α is adjusted in a single step by
dividing it merely by the number of comparisons performed.

In view of all these considerations, in Section IV we show
how to perform the statistical comparison of rPPG algorithms
under the proposed framework. Multiple datasets will be
considered and the results will be ranked according to non-
parametric hypothesis testing.

III. THE FRAMEWORK
The functional architecture of the pyVHR framework is de-
picted in Figure 1. The diagram shows an end-to-end pipeline
with at the heart rPPG-based pulse rate estimation algo-
rithms. Specifically, pyVHR computes the beats per minute
(BPM) estimate ĥ(t) starting with a pulse-signal in RGB-
space extracted from a video sequence. We assume that the
procedure takes as input a sequence of T frames and uses
partially overlapped sliding windows to estimate a BVP like
pulse-signal as a prelude to the final computation of ĥ(t). The
overall process consists of six steps. They are schematically
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FIGURE 1: Overall pyVHR framework schema.

shown in Figure 1 and briefly summarized here.
1) Face Extraction. Given an input video v(t), a face de-

tection algorithm computes a sequence b(t) of cropped
face images, one for each frame t = 1, 2, . . . , T .

2) ROI processing. For every cropped face, a ROI is se-
lected, as a set of pixels containing PPG-related infor-
mation, i.e. the signal q(t).

3) RGB computation. The ROI, is used to compute the
average (or median) colour intensities, thus providing
the multi-channel RGB signal s(t).

4) Preprocessing. The raw signal s(t) undergoes either de-
trending, frequency selective-filtering or standard nor-
malization; the outcome signal x(t) is the input to any
subsequent rPPG method.

5) Method. The rPPG method at hand is applied to the win-
dowed signal x(t)w(t−kτfps) (for a fixed τ ) producing
a pulse signal y(t), with t = τ, 2τ, . . . , kτ, . . . ; here, fps
denotes the frame rate and w the rectangular window

w(t) =

{
1, −M2 ≤ t <

M
2

0, otherwise
(1)

has arbitrary size M . The number of frames used by the
method to estimate the BPM for a given instant t = kτ
is in the order of M = Wsfps, with Ws (sec) a time
normally not exceeding 10 seconds.

6) BVP spectrum. The BPM estimate ĥ(t) is obtained from
the spectral analysis of the BVP signal y(t), either by
power spectral density (PSD) or by short-time Fourier
transform (STFT).

The final stage proceeds with the error prediction analysis
and the statistical assessment. The latter is normally extended
to multiple methods across several datasets. Error compu-
tation is essentially based on standard metrics (for details

cfr. Section IV-B) such as Mean Absolute Error (MAE),
Root-Mean-Square Error (RMSE), or Pearson Correlation
Coefficient (PCC), and aims at comparing the ground truth
BPM h(t) with the estimate ĥ(t) obtained via the above
pipeline.

Some of the most important processing stages, involving
relevant choices within the framework, are further detailed in
the following subsections.

A. FACE EXTRACTION
Given a video sequence v(t), the process starts by extracting
the portion of the image corresponding to the face from each
frame. The face detectors included in the framework are: dlib
[36], mtcnn [37], and Kalman filter for face tracking [38].
Thus,

b(t) =


dlib(v(t))

mtcnn(v(t))

kalman(v(t)).

The signal b(t) has dimensions w×h×3×Ws, where w and
h are the width and the height of the bounding box containing
the face, respectively. Signal b(t) has 3 channels being coded
in the RGB-color space, and depth Ws according to the time
window considered.

We include dlib mainly because it is one of the simplest
and used detector in the field. However, since it often fails, es-
pecially when faces present spatial or appearance distortions,
more effective face detectors are also taken into account.
With the advent of deep learning, many algorithms have been
developed to tackle the problem of face detection. Among
them, we include mtcnn [37] that has proven its effectiveness.
The drawback of this method is the time processing that
prevents its adoption under real time constraints. For this
reason, we also consider a simple tracking-based algorithm:
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face is detected on the first frame of the sequence, then
Kalman filter tracking is exploited to update the coordinates
of the face bounding box in subsequent frames.

B. ROI PROCESSING
The aim of the ROI processing is to collect pixels contain-
ing the most informative signal components for heart rate
estimation. Typically, best regions to extract PPG-related
information encompass the entire face or are predetermined
rectangular patches including, for instances, forehead, nose
or cheeks. ROI selection is a critical process often requiring
refinements in order to remove noise and artifacts, while
preserving reliable elements for beat detection [10], [22].

In the pyVHR framework, we implement both rectangular
ROIs and a skin detection module. As to the latter, we use
simple thresholding on HSV color space (see [39]), provid-
ing two options for thresholds: fixed user-defined values,
or adapted threshold calculated according to color statistics
of the video frame at hand. Specifically, the face cropped
image of the i-th video frame is transformed in the HSV
space and empirical distributions are computed for each color
channel. Thresholds are then defined as the Highest Density
Interval (HDI) of the empirical distributions. HDIs represent
a convenient way for summarizing distributions exhibiting
skewed and multi modal shapes, for which standard disper-
sion metrics (standard deviations, inter quartile range, etc.)
fail to provide an adequate description. HDI specifies an
interval that spans most of the distribution, say 95% of it,
such that every point inside the interval has higher probability
than any point outside the interval [40]. Formally, given the
color channel c ∈ {H,S, V }, call xc ∈ (0, 255) the possible
values of the c-th color channel; the 100(1 − α)% HDI
includes all those values of xc for which the density is at least
as big as some value ρ, such that the integral over all those
xc values is 100(1 − α)%. Namely, the values of xc in the
100(1 − α)% HDI are those such that P (xc) > ρ, where ρ
satisfies

∫
xc:p(xc)>ρ

p(xc)dxc = (1−α). In our experiments
we found that a suitable value of α is α = 0.2.

The rationale behind this thresholding method is simple: it
is assumed that in a face crop, the majority of pixel values
will belong to skin; hence, thresholds should cut off all such
less common pixels describing non skin areas (beards, hairs,
eyes, small portions of background, etc.). Nonetheless, each
face has its own features in terms of skin pigmentation, thus
thresholds should exhibit an adaptive behaviour. In Figure
2, the empirical distributions of HSV values are shown; red
dotted lines represent the thresholds found via HDIs. Even-
tually only pixels whose values lie between the thresholds
are retained. Note how multiple thresholds are found when
multiple modes are present. Figure 2d displays a result of skin
detection; notably, non skin pixels (glasses, hair, background)
are effectively removed.

For each frame t = 1, . . . , T , given the ROIs, either
rectangular patch-based R(t) or skin-based S(t), we average
over all the selected pixels to compute the output q(t) of this
step. More formally, if N denotes the number of rectangular

(a) Hue (b) Saturation

(c) Value (d) Face

FIGURE 2: (a), (b), (c) HSV color space thresholding via
computation of HDIs, represented in the image by dotted red
lines. (d) Original and masked face after thresholding.

patches,
∣∣R(i)(t)

∣∣ the number of pixels in the i-th patch, and
|S(t)| the number of detected skin pixels within the face, we
have

q(t) =

{
Patch(R(t))

Skin(S(t)),

where

Patch(R(t)) =
1

N

N∑
i=1

1∣∣R(i)(t)
∣∣ ∑

(x,y)∈R(i)(t)

R(i)
x,y(t)

Skin(S(t)) =
1

|S(t)|
∑

(x,y)∈S(t)

Sx,y(t).

C. SIGNAL PREPROCESSING
Before computing the final photoplethysmography signal
leading to the BPM estimate, a preprocessing step is applied
to the raw RGB signal extracted from ROIs in order to sup-
press unnecessary noise and artifacts, while keeping relevant
information from signal.

A first very common preprocessing operation is band-
pass filtering suppressing frequency components outside the
heart rate bandwidth (ranging from 40 to 220 BPM). In the
framework, several band-pass filtering are provided:

• FIR filter using Hamming window which is very effec-
tive for high frequency noise [41].

• Butterworth IIR filter which enhances the performance
of peak detection providing a better HRV estimate [42].

• Moving Average (MA) filtering that, besides removing
the high frequencies of the signal, removes various base
wandering noises and motion artifacts of PPG signals,
caused for example by user motion [43].

Another kind of signal preprocessing frequently applied,
and thus included in the framework, is detrending. It has
been demonstrated ( [44]) that, in frequency domain, the low-
frequency trend components increase the power of the very-
low frequency (VLF) one. Thus, when using autoregressive
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models in spectrum estimation (like in our framework), de-
trending is especially recommended, since the strong VLF
component distorts other components, especially the LF
component, of the spectrum. The implemented detrending
method [44] can be used for computing respiratory sinus
arrhythmia (RSA) which component can be separated from
other frequency components of HRV by properly adjusting
the smoothing parameter of the method.

D. RPPG METHODS
In order to make the rPPG methods compliant with our
framework, we introduced minor algorithmic changes not
affecting the nature of the methods. Indeed, the ultimate goal
of this work is to inquire the algorithmic principles that have
inspired innovative techniques, rather than the best variants
proposed for each specific method over the years. The pool
of algorithms employed to carry out the experiments are
listed in Table 1. They have been chosen among the most
representative and widely used in this domain.

From a notational standpoint, henceforth we denote x(t) =
(xr(t), xg(t), xb(t))

T the preprocessed temporal trace in
RGB space, resulting from the filtering-based RGB prepro-
cessing stage having the raw RGB signal s(t) as input. As
explained at the beginning of this section, x(t) is split into
overlapped subsequences, each representing samples of a
finite-length multivariate measurement with t = 1, 2, . . . ,M ,
where M = Wsfps is the number of frames selected by the
sliding window defined in (1). Thus, for homogeneity, each
method receives as input a chunk of the sequence x(t) and
produces as output a monovariate temporal sequence y(t), a
real BVP estimate coming from the application of the rPPG
model.

1) ICA Method
The Independent Component Analysis (ICA) is a statistical
technique aiming at decomposing a linear mixture of sources
under the assumption of independence and non-Gaussianity
[45]. Considering the RGB temporal traces x(t) as multivari-
ate measurements, the instantaneous mixture process can be
expressed by

x(t) = Az(t), (2)

where A3×3 is a memoryless mixture matrix of the latent
sources z(t) = (z1(t), z2(t), z3(t))T . The problem of source
recovery can be recasted into the problem of estimating the
demixture matrix W ≈ A−1 such that

ẑ(t) = Ŵx(t) ≈ z(t). (3)

Problem (3) can be conceived as a problem of blind iden-
tification or separation, and many popular approaches solve
it exploiting higher-order cumulants (such as kurtosis) or
negentropy to measure non-Gaussianity of the mixture array
(see for instance [46], [47]). Despite of the effectiveness of
the method, there are nevertheless severe limitations in its ap-
plicability known as indeterminacies affecting the solutions
found. Indeed, the sources are not uniquely recovered but

TABLE 1: rPPG algorithms employed to carry out the exper-
iments and comparisons.

Method Characterization

ICA
Decomposition based on blind source sep-
aration (BSS) to achieve independent com-
ponents from temporal RGB mixtures.

PCA
Statistical technique for extracting a subset
of uncorrelated components from temporal
RGB traces.

GREEN Green channel extraction preferred to red
and blue because it contains less artefacts.

CHROME
Chrominance-based method carrying out
color channel normalization to overcome
distortions.

POS
It leverages on a plane orthogonal to the
skin-tone in the temporally normalized
RGB space.

SSR
Based on spatial subspace of skin-pixels
and temporal rotation measurements for
pulse extraction.

LGI
It provides features invariant to action and
motion based on differentiable local trans-
formations.

PBV

It uses the signature of blood volume
changes in different wavelengths to ex-
plicitly distinguish the pulse-induced color
changes from motion noise in RGB mea-
surements.

they are reconstructed unless arbitrary scaling, permutation
and delay. Notwithstanding these ambiguities, the demixture
generally preserves the waveform of the original sources re-
taining the most relevant time-frequency patterns particularly
important in rPPG domain. Unfortunately, in order to carry
out the final BPM estimation this property does not provide
an answer about which component has the strongest BVP
waveform among all the three. To overcome this difficulty,
many solutions have been proposed in literature, but in the
spirit of principled assessment motivating this framework,
we implemented one of the simplest approach. It consists in
calculating the normalized PSD of each source and to choose
the source signal with the greatest frequency peak or signal-
to-noise-ratio (SNR) within the range 40 - 220 BPM. This is
quite similar to the method used in [22].

We include both JADE [46] and FastICA [47] iterative
implementations of ICA in the framework since they are
the most effective and stable. To determine the final source
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among all three candidates, we compute the PSDs S(ẑk) with
k ∈ {1, 2, 3} and set

y(t) = ẑj(t), s.t. j = arg max
k∈{1,2,3}

{SNR(S(ẑk))} ,

where SNR is defined in Section III-E.

2) PCA Method
The Principal Component Analysis (PCA) is a technique
broadly used in multivariate statistics and in machine learn-
ing aiming at maximizing the variances, minimizing the
covariances and reducing the data dimensionality.

Assuming that the multi-channel temporal trace x(t) be a
realization of the random vector Z, PCA looks for an orthog-
onal linear transformation W ∈ R3×3 that transforms Z to
a new coordinate system Y = W Z such that the greatest
possible variance lies on the first coordinate, called the first
principal component. In general, if Z has finite mean E[Z] =
µ and finite covariance E[(Z − µ)(Z − µ)T ] = Σ, the trans-
formation W satisfies WTΣW = Λ = diag(λ1, λ2, λ3),
where Λ is diagonal and the i-th component of Y is called
i-th principal component.

Let µ̂ denote the sample mean, Σ̂ the sample covariance,
and Ŵ the eigenvector matrix of Σ̂. Then, the sample PCA
transformation can be written

ẑ(t) = ŴT (x(t)− µ̂).

In [10] PCA is mentioned for the first time in the context of
pulse rate measurement, and compared against ICA, both be-
ing general procedures for blind source separation. However
the authors do not make an explicit choice concerning the
component to select for BVP approximation. In this regard,
we adopt the same choices as in ICA, where frequency peaks
are detected via SNR, i.e.,

y(t) = ẑj(t), s.t. j = arg max
k∈{1,2,3}

{SNR(S(ẑk))} .

3) Green Method
In many works it has been reported that the green channel
provides the strongest plethysmographic signal, correspond-
ing to an absorption peak by oxyhaemoglobin ( [5], [11]).
Thus, it has been argued that one of the simplest approach
in estimating pulse rate via rPPG consists in 1) identifying
suitable ROIs within the subject’s face, 2) calculating the
average colour intensity for the green channel and, 3) by
spatial averaging over the ROI, extracting the spectral content
to look for highest frequency component.

Thus, given the RGB temporal traces x(t), the green
method boils down to consider the homonymous channel, i.e.

y(t) = xg(t).

4) CHROM Method
The CHROM method [23] has been proposed to deal with
a weakness of other rPPG methods: the unpredictable nor-
malization errors resulting from specular reflections at the

skin surface, absent in contact PPG. Briefly, light reflected
from the skin consists of two components, as described by
the dichromatic reflection model in [23]: a diffuse reflection
component, whose variations are related to the cardiac cycle,
and a specular reflection component, which shows the color
of the illuminant and no pulse signal. The relative contri-
bution of specular and diffuse reflections, which together
make the observed color, depends on the angles between the
camera, skin, and the light source. Therefore, they vary over
time with motion of the person in front of the camera, and
create a weakness in rPPG algorithms where the additive
specular component is not eliminated. CHROM methods
eliminate the specular reflection component by using color
difference, i.e., chrominance signals.

Given the RGB traces x(t), the CHROM method, after
a Zero Standard Deviation Normalization, projects normal-
ized RGB values into two orthogonal chrominance vectors
XCHROM and YCHROM defined as follow:

XCHROM(t) = 3xr(t)− 2xg(t),

YCHROM(t) = 1.5xr(t) + xg(t)− 1.5xb(t).

The output rPPG signal is finally calculated by

y(t) = XCHROM(t)− αYCHROM(t),

where α = σ(XCHROM(t))/σ(YCHROM(t)), and σ(·) is the
standard deviation.

5) POS Method
With the same goal of the CHROM method, that is re-
moving specular reflections at the skin surface, the “Plane-
Orthogonal-to-Skin” (POS) method [13] defines a plane or-
thogonal to the skin-tone in the temporally normalized RGB
space.

In details, given x(t), POS method goes through three
stages. A temporal normalization step is performed before
the signal projection on the plane orthogonal to skin by

XPOS(t) = xg(t)− xb(t)
YPOS(t) = xg(t) + xb(t)− 2xr(t).

Similar to CHROM, the last step is accomplished to tune
an exact projection direction within the bounded region de-
fined by the previous step, i.e.

y(t) = XPOS(t) + αYPOS(t), (4)

where α is the same as CHROM.
The POS approach is slightly different with respect to

CHROM, because in the latter the two projected signals
are antiphase, while POS directly finds two projection-axes
giving in-phase signals. Moreover, to improve the SNR of
the signal, the input video sequence is divided into smaller
temporal intervals and pulse rate is estimated from the short
video intervals; the final signal is derived by overlap-adding
the partial segments.
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6) SSR Method
The rationale behind the SSR algorithm [14] is to overcome
two well-known issues in existing algorithms that require
skin-tone or pulse-related priors. The method consists of
two steps: the construction of a subspace of skin-pixels,
and the computation of the rotation angle of the computed
subspace between subsequent frames. The subspace of skin-
pixels is represented by the eigenvectors of an eigenvalue
decomposition of the RGB space representing skin pixels.

In detail, the vectorized matrix of skin-pixels in a video
frame from RGB channels is formed, i.e. a matrix X whose
dimensions areN×3, whereN is the number of pixels. Then,
the 3 × 3 symmetric correlation matrix C with non-negative
values is computed,

C =
XT ·X
N

. (5)

Note that C is different from a covariance matrix in which
the mean of X is subtracted. C is subsequently expressed in
terms of the eigenvalues Λ = diag(λ1, λ2, λ3) and eigen-
vectors U , and matrix U is taken as a new axis system for
skin-pixels.

The model then foresees instantaneous rotation between
eigenvectors (direction change) and a change of eigenvalues
(energy change). To such end, a temporal stride with length l
is considered and by denoting the first frame of a stride with
Uτ as the reference rotation, the rotation for each t < l is
given by V = Ut · Uτ . Actually, only the rotation between
the vector ut1 and orthonormal plane uτ2 , u

τ
3 are used:

V ′ = (ut1)T · (uτ2 , uτ3).

In addition to the subspace rotation, by the decomposition of
C, a scale/energy change of the subspace is given by

E =

(√
λt1/λ

τ
2 ,
√
λt1/λ

τ
3

)T
.

Combining rotation and scaling, in order to obtain the
time-consistent E V over multiple strides, we have to back-
project it into the original RGB space:

E V ′ =

√
λt1
λτ2
· ut1

T · uτ2 · uτ2
T +

√
λt1
λτ3
· ut1

T · uτ3 · uτ3
T .

Finally, in a single stride, multiple E V ′ between the
reference frame and succeeding frames are estimated and
concatenated into a 3-dimensional trace E V . Similar to
CHROM a pulse signal is derived by combining only the anti-
phase traces E V 1 and E V 2 as

p̄ = E V 1 −
σ(E V 1)

σ(E V 2)
E V 2,

and a long-term pulse-signal is estimated from subsequent
strides by using overlap-adding as P̄ (t−l) = P̄ (t−l) − (p̄ −
µ(p̄)), where µ denotes the averaging operator, eventually
providing the output

y(t) = P̄ (t).

7) LGI Method
Local Group Invariance method [15] aims at finding a new
feature space from preprocessed signal x(t), in which rPPG
is more robust to nuisance factors, like human movements
and lightness variations. The projection into this new space
is very similar to that of the SSR method and it is based on
matrices C in Eq. (5) and U introduced above. A projection
operator O onto this new space is calculated by

O = I − UUT ,

where I is the identity matrix.
Finally, the rPPG signal is computed by projecting the

input signal x(t) with matrix O is given by

y(t) = Ox(t).

8) PBV Method
In [16] the authors show that the optical absorption changes
caused by blood volume variations in the skin occur along a
very specific vector in the normalized color channel space
and this is called Pulse Blood Volume (PBV) vector. It is
calculated as

P c=r,g,bbv (t) =
σ(Xc)√

σ2(Xr) + σ2(Xg) + σ2(Xb)
,

where X = {Xr, Xg, Xb} is the matrix representation of
the pre-processed signal x(t) for the considered window, and
σ(·) is the standard deviation operator.

The output signal is finally computed by the projection

y(t) = Mx(t),

where M is the orthogonal matrix

M = kPbv(XXT )−1,

and k is a normalization factor.

E. SPECTRAL ANALYSIS
To assess the pulse rate variability (PRV), spectral methods
are commonly used. The time-domain approaches based on
interbeat interval (IBI) provided by ECG traces are more
accurate, but they are rarely used due to the difficulty in esti-
mating RR-peaks in time series [48]. For this reason, methods
relying on pulse-wave analysis are more commonly used,
being considered more effective and stable for the estimation
of heart rate variability [12]. This fact is witnessed by a
number of publications reporting universally good agreement
between PRV and HRV, even if this concordance may be sus-
ceptible of many variables such as experimental conditions
and postures (see [48] and the citations thereof).

To face a stochastic scenario like that offered by rPPG
measurements, two relevant issues should be taken into ac-
count: the basic periodicity of the underlying phenomenon
and the random effects introduced by noise. Based on these
assumptions, almost all methods used to capture the peaked
patterns within the rPPG waveforms consider more reliable
the frequency domain than the temporal one. A further reason
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supporting this approach is that the noise spectrum has almost
certainly a different spectral line, helping in discriminating
the most informative frequency peaks.

Under such circumstances, the usual spectral analysis is
performed via PSD estimation, which provides information
about power distribution as a function of frequency. It inher-
ently assumes that the signal is at least weakly stationary to
avoid distortion in time- and frequency-domain. In order to
assure a weaker form of stationarity, here we compute the
PSD on small intervals, e.g. 5÷10 seconds, so as to preserve
the significant peaks in the pulse frequency-band ([40, 240]
BPM). In this framework, the PSD is accomplished through
the discrete time Fourier transform (DFT) using the Welch’s
method, which employs both averaging and smoothing to
analyze the underlying random phenomenon [49].

Given a sequence y(t) of length N yielded by averaging
ROIs on as many video frames, with t = t0 + nT and
n = 0, 1, . . . , N − 1, the sequence is split into K segments
of length L, with a shift of S samples between adjacent
segments (resulting in an overlap of L − S points). Here
T represents the time between two successive frames, i.e,
T = 1/fps. By denoting with x(0), . . . , x(N − 1) the rPPG
signal y(t), for each segment k (k = 0 toK−1) a windowed
DFT is computed by

Xk(ν) =
∑
`

w(`)x(t`)e
−i2πν`,

where t` = (k− 1)S, . . . , L+ (k− 1)S − 1 and frequencies
ν = κ/L, with κ ∈ Ω

M
= {−L/2−1, . . . , L/2}. These DFTs

in turn provide the per segment periodogram

Pk(ν) =
1

Wp
|Xk(ν)|2 ,

where Wp denotes the window power.
The overall PSD is then yielded by averaging over peri-

odograms:

Sx(ν) =
K−1∑
k=0

1

K
Pk(ν).

Naturally, the frequency f expressed in Hz (PSD is plotted
vs Hz) ranges from (−1/2T + 1/LT ) and 1/2T achieved
by simple conversion from the normalized frequency ν ex-
pressed in Hz-sec and ranging in Ω. After the computation of
the PSD estimate Sx, the peak provided by

κ̄ = arg max
κ∈Ω

{Sx(κ/L)} (6)

results in the frequency

f̄ = κ̄/(LT ) Hz, (7)

corresponding to PSD maxima, carried out by Welch’s
method.

Clearly L is the dominant parameter and it is worth noting
that in terms of frequency resolution at 60 BPM, short
intervals (e.g. less than 20 sec) should entail very coarse
estimates of BPMs. For the latter and previous reasons, here
we increase the resolution of the DFT setting L = 2048,

which results in a final reasonable compromise for temporal
video segmentation of less than 10 seconds.

A useful metric to compare traces is the SNR expressed
in terms of frequency power spectrum. To select better PSD
shapes emphasizing the fundamental frequency, a simple
way is to maximize the ratio between the peak of the first
harmonic and other spurious peaks appearing in the rPPG-
signal PSD. Figure 3 shows an example where the main lobe
identifies the fundamental frequency and the maximum side-
lobe the noise.

FIGURE 3: SNR: ratio between the magnitude of main lobe
and the maximum magnitude of sidelobes.

This metric is definitely useful for ICA and PCA methods
in order to identify the best trace among the three (one for
each color channel) carried out by methods.

F. THE GROUND TRUTH SIGNAL
Public datasets provide ECG or BVP signals as ground truth,
while methods usually provide BPM estimation on a video.
It is therefore necessary to estimate HRV from ECG or BVP
signals in order to compare method outcomes with ground
truth. HRV measurement is not simple and this problem is
well known in literature ( [50]–[52]). A variety of recording
techniques have been proposed, which can roughly be cate-
gorized into time and frequency domain-based.

In time domain, HRV is calculated from RR intervals
occurring in a chosen time window (usually between 0.5
and 5 min). In frequency domain, HRV is computed by
calculating the spectrogram of the BVP signal (by STFT
computation). Both techniques present advantages and disad-
vantages (see [50] for an in-depth analysis). Figure 4 shows
that however in general the estimate achieved by both time
and frequency domain are very close, with a MAE (see
Section IV-B) less than 1 BPM. So in the pyVHR framework
we use only the frequency domain technique (i.e. PSD) to
estimate the ground truth from ECG or BVP signal.

An important aspect rising from the previous considera-
tions is the window size setting for both video and ground
truth analysis. Figure 5 displays the results of extensive
simulations comparing different overlapped window sizes
(Ws vs ground truth window size) for BPM estimation using
POS method on the UBFC dataset. As can be noted, the
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FIGURE 4: The spectrogram calculated on one video of the
PURE dataset. The estimated HRV by frequency analysis and
by time analysis (RR peaks difference) are shown in red and
(dashed) white respectively. The MAE between these two
signals is 0.87 BPM.

highest PCC is obtained when setting video winSize= 10 and
GT winSize = 7. For higher values no significant increase
in PCC was found. Although Figure 5 provides the results
obtained with the POS method, the same analysis conducted
with other methods yielded similar results. Unsurprisingly,
we found that (regardless to the method) wider video win-
Sizes produce better predictions; eventually a plateau is
reached around 10 seconds. Similar considerations apply to
the ground truth signal winSize, where typically the plateau
is attained at around 7 seconds.

According to this analysis, in all our experiments (see
Section IV) we set the video window size equal to Ws = 10
sec and ground truth window size equal to 7 sec.

FIGURE 5: Average Pearson Correlation Coefficient (PCC)
between ground truth and predicted heart rate using the POS
method. PPC values are computed for different values of
video winSize and ground truth (GT) winSize on the UBFC
dataset. The red dot indicates the optimum.

IV. DATA AND STATISTICAL ANALYSES
In this section we report a comprehensive statistical compar-
ison of the algorithms outlined in the previous section over
multiple datasets by safe, yet robust non-parametric tests. As
motivated by many works in different scientific domains, we
apply the Friedman test [53] instead of standard ANOVA,
because it relaxes the assumptions of normality and equality
of variances of the residuals.

Moreover, we are not only interested in knowing whether
any difference exists among algorithms, but also in discover-
ing which method is significantly different from each other
(and the FT is not designed for this purpose). To this end, we
apply the so-called post-hoc tests to find out which methods
actually differ [31].

In the rest of this section we describe the evaluation
metrics used to assess the performance quality, and the non-
parametric hypothesis testing procedure as applied to a pool
of six benchmarking datasets. The provided results have been
carried out either referring to tests on each dataset separately,
or on tests across datasets.

A. BENCHMARK DATASETS
The framework accounts for a multi-dataset analysis.
Namely, we consider data from 6 datasets, briefly described
in the following.

Mahnob [26]. Although this database was mainly con-
ceived for emotion analysis, it has been adopted for testing
rPPG algorithms, [54], [55], even though it applies a strong
compression on the videos. 30 participants (17 females
and 13 males, aging between 19 to 40 years old) were
shown fragments of movies and pictures, while monitoring
them with 6 video cameras, each capturing a different view
point, a head-worn microphone, an eye gaze tracker, as
well as physiological sensors measuring ECG, electroen-
cephalogram, respiration amplitude, and skin temperature.
Since ECG data is available, this dataset has been widely
used also for heart rate estimation, after processing ECG
data to create heart rate ground truth. Mahnob dataset
contains videos compressed in H.264/MPEG-4 AVC com-
pression, bit rate ≈ 4200kb/s, 61 fps, 780 × 580 pixels,
which gets ≈ 1.5 × 10 − 4 bits per pixel, resulting in an
heavy compression. In this paper only a subset of the video
data has been used.
Cohface [27]. This dataset contains 160 one-minute-long
RGB video sequences, synchronized with the heart-rates
and breathing-rates of the 40 subjects (12 females and 28
males) recorded. Each participant was asked to sit still
in front of a webcam to allow capturing the whole face
area. Two types of lighting conditions were considered:
studio, using a spot light, and natural light. The videos are
compressed in MPEG-4 Visual, i.e. MPEG-4 Part 2, bit
rate ≈ 250kb/s, resolution 640 × 480 pixels, 20 frames
per second, which gets≈ 5×10−5 bits per pixel. In other
words, the videos were heavily compressed.
PURE [24]. This database comprises 10 subjects (8 male,
2 female) that were recorded in 6 different setups resulting
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in a total number of 60 sequences of 1 minute each. Light-
ing condition was frontal daylight, with clouds changing
illumination conditions slightly over time. People were
positioned in front of the camera with a distance of about
1.1 meters, capturing uncompressed cropped resolution
images of 640 × 480 at 30Hz. Reference pulse rate was
captured using a finger clip pulse oximeter with sampling
rate of 60 Hz. Six different setups have been recorded:
Steady (S); Talking (T); Slow translation (ST); Fast trans-
lation (FT); Small rotation (SR); Medium rotation (MR).
UBFC [25]. This dataset is composed of 50 videos, syn-
chronized with a pulse oximeter finger clip sensor for the
ground truth. Each video is about 2 min long recorded at
30Hz with a resolution of 640 × 480 in uncompressed 8-
bits RGB format. The authors divided this dataset into two
subsets: the first one, UBFC1 is composed by 8 videos, in
which participants were asked to sit still; the second one,
UBFC2 is composed by 42 videos, in which participants
were asked to play a time sensitive mathematical game that
aimed at augmenting their heart rate while simultaneously
emulating a normal human-computer interaction scenario.
Participants were sitting frontal to a camera placed at a
distance of about 1 meter.
LGI [15]. This database is designed for the heart rate
estimation from uncompressed face videos acquired in the
wild. It is recorded in four different sessions: 1) a resting
scenario with neither head motion or illumination changes,
2) head movements are allowed (with static lighting), 3) a
more ecological setup, where people are recorded while
performing exercises on a bicycle ergometer in a gym; 4)
urban conversations are recorded including head and facial
motions as well as natural varying illumination conditions.
Videos were captured at 25Hz while the pulse sampling
rate was 60Hz. It’s worth remarking that although the
original dataset nominally provides 25 subjects, at the time
of writing only 6 are officially released and therefore used
in the analysis.
In literature, all these datasets have been adopted to test

rPPG algorithms. However it has also been pointed out how
the compression can destroy and pollute the subtle pulsatile
information essential to rPPG. In [56] it has been claimed that
uncompressed videos could increase SNR due to information
being lost during the video compression process. Similarly, in
[29] a more in depth analysis has been conducted, aiming at
finding an acceptable level of compression, indeed necessary
in real world applications.

B. EVALUATION METRICS
We use three common metrics to evaluate the performance
of the methods that are briefly recalled here. Procedurally,
to measure the quality of the bmp estimate ĥ(t) with respect
to the ground truth h(t) with a cadence dictated by a fixed
time τ , i.e., t = τ, 2τ, . . . , Nτ we split each trial (see section
III) into epochs of Ws seconds with Ws − τ overlap seconds
only when τ < Ws. If the video frame sequence is made
by T frames, N = T/(τ fps) is the number of samples of

sequence ĥ(t), being fps the video frame rate. The following
quantities were used to assess estimation performance for the
epochs of each participant.

MAE. The Mean Absolute Error is calculated as:

MAE =
1

N

∑
t

|ĥ(t)− h(t))|.

In all experiments carried out (see next section), τ = 1 sec,
which give about 60 BPM, and elapsed video time are no
more than 120 seconds.
RMSE. The Root-Mean-Square Error measures the dif-
ference between quantities in terms of the square root of
the average of squared differences, i.e.

RMSE =
1

N

√∑
t

(ĥ(t)− h(t))2.

RMSE represents the sample standard deviation of the
absolute difference between reference and measurement,
i.e., smaller RMSE suggests more accurate extraction.
PCC. Pearson Correlation Coefficient represents the cor-
relation between the estimate ĥ(t) and the ground truth
h(t):

PCC =

∑
t(ĥ(t)− µ̂)(h(t)− µ)√∑

t(ĥ(t)− µ̂)2

√∑
t(ĥ(t)− µ)2

where µ̂ and µ denote the means of the respective signals.

C. NONPARAMETRIC STATISTICAL TESTS
The aforementioned performance measures are now used
to perform the statistical analysis. By following [31] each
metric is analyzed via the Friedman Test (FT) followed by
the associated post-hoc analysis.

To perform the FT, we apply the repeated measures design
in which k classifiers are compared on multiple datasets.
The observed data is arranged in a tabular form, where the
columns represent the classifiers (i.e., “groups” in standard
statistical test notation) and the rows the datasets (“blocks”).
Observations in different blocks are assumed to be indepen-
dent, but obviously this assumption does not apply to the
observations within a block.

Denote xj,d the performance measure for the j-th method
on the d-th dataset (with j = 1, . . . , k and d = 1, . . . , n).
The xj,d values are sorted with respect to j so that each
observation within a block receives a distinct rate among the
first k integers, thus yielding the values rj,d ∈ {1, . . . , k}
indicating the rank of j-th algorithm on the d-th dataset.

A rank of rj,d tells that the method j outperformed k−rj,d
methods on the dataset d. The average rank for any j over the
datasets is defined as Rj = (1/n)

∑
i rj,d. Under the null

hypothesis, i.e., no difference between the algorithms, their
ranks Rj should be equal, and the statistic is

χ2
F =

12n

k(k + 1)

∑
j

R2
j −

k(k + 1)2

4

 , (8)
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which follows a chi-squared distribution with k−1 degrees of
freedom. The FT rejects the null-hypothesis at a pre-specified
significance level α when the test statistic (8) exceeds the
100(1 − α)th percentile of the limiting chi-squared distribu-
tion of χ2

F with k − 1 degrees of freedom [53].
When the null-hypothesis is rejected, a post-hoc test, such

as Nemenyi test [35], can be performed to establish which are
the significant differences among the algorithms. If the differ-
ence in average rank between two methods i and j exceeds
a critical difference CDα,k,n, i.e., Ri − Rj > CDα,k,n then
the performance of algorithm i is better than the performance
of algorithm j with confidence α. The critical difference is
given by [31]

CDα,k,n = qα,k

√
k(k + 1)

6n
, (9)

where qα,k is drawn from the studentized range distribution
and depends on both the significance level α and the number
of methods compared k (see Table 5 in [31]). Put simply, the
critical difference is the minimum required difference in rank
sums for a pair of algorithms to differ at the prespecified level
of significance α.

D. EXPLORATORY ANALYSIS OF PERFORMANCE
We first provide a summary, via box plots, of the overall
performances achieved by the eight rPPG algorithms over
the six benchmark datasets (UBFC dataset is split in two
parts, namely UBFC1 and UBFC2, as described in previous
section). By measuring the central tendency via the median
we are able to elicit information about the underlying distri-
bution as well as to identify possible outliers (their character,
the amount, etc.). Figures 6 and 7 present the standard
boxplots computed by pyVHR framework and associated to
MAE and PCC metrics, respectively. Data are plotted in log-
scale in order to emphasize the best values for each metric;
the boxes are put in gray scale with the intensity proportional
to the median value.

The general consideration that can be drawn at a glance
(besides the log-scale) is that the fences defined by the
whiskers are far too small with respect to outliers, and prob-
ably asymmetry or tail heaviness is a distinctive character
of all distributions. It is also evident that the extremities of
upper whiskers go beyond those of the lowers in almost all
cases. It’s worth to notice also that the high variability of the
results does not lay down an absolute winner or loser among
methods against all datasets. Instead, it is beyond doubt
that methods perform consistently better on uncompressed
video datasets (PURE, LGI and UBFC) whereas it is quite
impossible to establish a sound ranking of the methods for
compressed video datasets (MAHNOB and CHOFACE). Be-
sides the median, also the interquartile range, IQR, (defined
as the difference between the third and first quartile and
representing the box size), covering the central 50% of the
data, provides useful insights for the assessment procedure.
By inspecting the IQRs depicted in the figures, it is worth
noticing that in general the methods POS and CHROM

provide better median MAE and PCC values, albeit showing
less spread with respect to the others.

A more rigorous and statistically sound assessment of
the difference in medians between methods is left to the
forthcoming analysis through the Friedman test.

E. INFERENTIAL ANALYSIS OF PERFORMANCE
1) Single Dataset Analysis

In all experiments in the single dataset condition, the FT,
whose statistics is defined in (8), rejected the null hypothesis
with very low p-values (p < 10−3). To establish the signifi-
cant differences between the algorithms post-hoc analysis has
been performed via Nemenyi test, Critical values (Eq. (9))
were computed followed by pairwise comparisons. These are
reported, for each dataset, in Table 2.

TABLE 2: Nemenyi test critical values CDα,k,n for compar-
ing the 8 rPPG methods among n (size of each dataset) videos
at the α = 0.95 confidence level.

dataset size (n) CD

PURE 59 1.36

LGI 17 2.54

UBFC1 8 3.71

UBFC2 24 2.14

MAHNOB 36 1.74

COHFACE 164 0.81

As suggested in [31], differences arising from post-hoc
tests can be visually represented with simple diagrams con-
necting groups of methods that are not significantly different.
Figures 8 and 9 display the critical differences through the
so-called critical differences diagram (CD), a succinct way
to display the differences in methods’ performance.

The top line in the diagram is the axis where the average
ranks of methods are plotted. The axis is turned so that best
performing methods are displayed to the right. Note that de-
pending on the metric adopted, either MAE or PCC, the best
ranking method can be the one with the lowest or highest rank
respectively. The figures display the CD diagrams obtained
from the FT followed by the post-hoc Nemenyi test with a
significance level of 95%. A line connecting two or more
methods indicates that there are no statistical differences
between them. The CDs are also shown above the graph.

CDs show a wide ranking variety depending on dataset
and metric used. The groups of rPPG methods that behave
the same change accordingly, providing a clear picture of
the impossibility to establish an absolute pool of winners
across datasets. The investigation also give evidence of the
usefulness and strength of multiple comparison statistical
procedures to analyse and select the best methods for a single
dataset.
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(a) PURE. (b) LGI.

(c) UBFC1. (d) UBFC2.

(e) MAHNOB. (f) COHFACE.

FIGURE 6: Mean Absolute Error (MAE) for each dataset and each rPPG method represented by the box and whisker plot (in
log-scale). The median is indicated by the horizontal blue line, the first and third quartile are indicated by the blue box, and the
whiskers extend to the most extreme data points not considered outliers.

VOLUME 4, 2016 13



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3040936, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

(a) PURE. (b) LGI.

(c) UBFC1. (d) UBFC2.

(e) MAHNOB. (f) COHFACE.

FIGURE 7: Pearson’s correlation coefficients (PCC) for each dataset and each rPPG method represented by the box and whisker
plot. The median is indicated by the horizontal blue line, the first and third quartile are indicated by the blue box, and the
whiskers extend to the most extreme data points not considered outliers.
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FIGURE 8: Critical differences diagram (CD) obtained from the Friedman test followed by the post-hoc Nemenyi test
comparing the rPPG approaches under MAE metric. Groups of methods that are not significantly different (at p = 0.05) are
connected.
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(a) PURE. (b) LGI.

(c) UBFC1.
(d) UBFC2.

(e) MAHNOB. (f) COHFACE.

FIGURE 9: Critical differences diagram (CD) obtained from the Friedman test followed by the post-hoc Nemenyi test
comparing the rPPG approaches under PCC metric. Groups of methods that are not significantly different (at p = 0.05) are
connected.
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2) Cross-dataset Analysis
Thorough this paper, we have considered the results obtained
in a experimental study regarding 8 well-known algorithms
using a benchmark suite of 5 datasets we have selected
among the most representative.

To finally highlight the significant statistical differences
among the various algorithms, we further split the datasets
into 15 subdatasets, as shown in Table 3. The reason is
twofold: on the one hand this split reflects the peculiar dif-
ferences within each dataset, also motivated by the different
algorithm behaviour on each subdataset. On the other hand
it allows to increase the number of blocks that, as a rule
of thumb, for the FT should be greater than 10 [31]. In
addition, our analysis considers a further partition between
an uncompressed video collection (top 12 of the table) and a
compressed video one (least 3 at the bottom). The rationale
of this distinction relies on the fact that compression certainly
is the feature that more than anything else affects both the
performances of each rPPG approach and the results of
nonparametric statistical tests.

Table 3 also reports the MAE and PCC obtained for
the 8 algorithms over the 15 datasets considered. For the
compressed datasets (top of the table), the lowest median
is obtained by POS method for the MAE metric (lowest
IQR by CHROM) , whereas the highest PCC median values
is produced by POS algorithm (the lowest IQR by others).
In turn CHROM provides the best values when results are
extended to all datasets (complete table), but the same does
not hold for for IQR which has various winners. Boxplot of
Figures 11 and 10 synthetically visualize all comparisons.

As for the FT, the p-values = 9 · 10−6 computed through
the χ2 statistics, strongly suggests the existence of significant
differences among the algorithms considered. Nemenyi tests
results with critical values at 95% are provided in Figs, 11-(c)
and 11-(d).

Surprisingly, it turns that the performances achieved by the
four best methods, namely POS, CHROM, PCA and SSR, are
not significantly different from a statistical standpoint.

Using a three different levels of significance, namely α ∈
{0.05, 0.01, 0.001}, Figures 10-(e) and 10-(f) display in the
form of heatmaps the various hypotheses rejected/accepted
by the Nemenyi method for the uncompressed video datasets.
In particular, the heatmaps collect a family of 28 hypothe-
ses (all pairs of algorithms) highlighting which algorithms
achieve improvements with respect to others, at each given
level of significance. The value of significance levels are
marked with intensity proportional blue color; alternatively,
they are marked with NS to claim that the difference is not
significant. It should be noted that with 8 hypotheses for
MAE and 10 for PCC, the differences between pairwise and
multiple comparisons become apparent. As for the general
case, including uncompressed and compressed videos, the
Figures 11-(e) and 11-(f) show the results of the same sta-
tistical procedure applied to the uncompressed videos. Note
that here with 8 hypotheses for MAE and 8 for PCC the
differences are substantial.

Taking a look at the second row in Figure 10-(e) and 10-
(f), it can be noticed that there is a significant difference
between POS and GREEN (p < 0.001) for both metrics. On
the other hand, differences between CHROM and GREEN
or ICA exhibit less pronounced (although still significant)
differences (p < 0.05).

V. CONCLUSIONS
Pulse rate estimation using remote photoplethysmogram
(rPPG) is an on-going and growing research area. In many
respects it is also a mature discipline encompassing a remark-
able amount of results both in terms of algorithmic princi-
ples introduced and also in relation to the acquired knowl-
edge over time. However, besides the experience gained so
far in the field, many important issues still remain in the
background. We refer in particular to the careless attitude
exhibited during the experimental sessions aiming at fairly
comparing new proposed techniques with well-established
ones. The use of partial or private data sets, the lack of trans-
parent experimental design and questionable reproducibility
of results together with their statistical soundness, definitely
do not help in promoting significant improvements to the
detriment of less performing techniques.

Under such circumstances, we surmise that an open algo-
rithmic framework such as the one we have presented here,
may help in promoting a good practice about the design, the
experimental analysis and the general assessment of rPPG-
based algorithms. We also believe that this work may lead
to a sort of standardization of algorithm evaluation process
overcoming the uncertain different experimental approaches
seen so far. Similar concerns have been reported in the
machine learning field [30]–[32], [57], [58], where by and
large there is no golden standard for making comparisons and
tests based on solid statistical foundations, often leading to
unwarranted and unverified conclusions.

A clear indication has been put forward in the direction of
sound statistical assessment of method performances through
statistical tests and post-hoc procedures devised to perform
multiple comparisons across many datasets. In particular,
when a single dataset is used (or many, but separately) for
experiments, due to dependencies between the samples of
examples drawn, there is the concrete risk to incur into
biased variance estimations, thereby increasing Type 1 error
in hypothesis testing. Conversely, over multiple datasets the
variance comes from the differences between the datasets,
which are usually independent, and this fact can be better
faced with some families of nonparametric statistical tests.

The pyVHR open-source framework we have introduced
here, to substantiate the proposed methodology, is a flexible
and extensible tool for creating, tuning and evaluating any
kind of rPPG-based methods. It already implements the
most representative methods developed for this purpose and
incorporates a relevant amount of results from experiments
conducted on five known datasets, either with compressed
or uncompressed videos. It is also endowed with standard
tools for preprocessing and postprocessing the data, as well
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(a) Mean Absolute Error (MAE) for each dataset and each rPPG
method represented by the box and whisker plot (in log-scale).

(b) Pearson’s correlation coefficients (PCC) for each dataset and
each rPPG method represented by the box and whisker plot.
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(c) Critical differences diagram (CD) under the MAE metric.
Groups of methods that are not significantly different (at p = 0.05)
are connected.
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(d) Critical differences diagram (CD) under the PCC metric. Groups
of methods that are not significantly different (at p = 0.05) are
connected.
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(e) Different levels of significance for MAE metric,
where the adjusted pairwise p-values are shown as a
heatmap: significant p-values are colored blue and non-
significant are colored red.
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(f) Different levels of significance for PCC metric, where
the adjusted pairwise p-values are shown as a heatmap:
significant p-values are colored blue and non-significant
are colored red.

FIGURE 10: Box plots, CDs and heatmaps for the 8 methods applied to the uncompressed video datasets.
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(a) Mean Absolute Error (MAE) for each dataset and each rPPG
method represented by the box and whisker plot (in log-scale).

(b) Pearson’s correlation coefficients (PCC) for each dataset and
each rPPG method represented by the box and whisker plot.
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(c) Critical differences diagram (CD) under the MAE metric.
Groups of methods that are not significantly different (at p = 0.05)
are connected.
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(d) Critical differences diagram (CD) under the PCC metric. Groups
of methods that are not significantly different (at p = 0.05) are
connected.
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(e) Different levels of significance for MAE metric,
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heatmap: significant p-values are colored blue and non-
significant are colored red.
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FIGURE 11: Box plots, CDs and heatmaps for the 8 methods applied to all (compressed and uncompressed) video datasets.
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TABLE 3: MSE and PCC medians for the 8 rPPG algorithms over 15 datasets. The first eleven (top of the table) is a group of
uncompressed video subdatsets, the last 3 are compressed video subdatsets.

Dataset
MAE CC

CHROM GREEN ICA LGI PBV PCA POS SSR CHROM GREEN ICA LGI PBV PCA POS SSR

LGI-PPGI-talk 10.86 18.25 12.46 10.86 13.40 10.75 11.07 13.79 -0.03 -0.07 0.08 -0.04 -0.01 0.18 0.02 0.11

LGI-PPGI-gym 17.38 28.30 24.41 21.28 24.13 11.04 9.84 10.74 0.41 0.30 0.39 0.34 0.32 0.59 0.62 0.62

PURE-small-rot 1.05 4.25 3.03 1.36 4.18 1.27 1.01 3.28 0.78 0.45 0.46 0.67 0.39 0.75 0.79 0.59

LGI-PPGI-rotation 5.05 8.05 5.11 2.98 8.29 6.04 4.04 3.92 0.27 0.22 0.43 0.39 0.23 0.48 0.37 0.40

UBFC2 3.11 8.05 10.44 8.73 5.46 5.21 1.87 5.68 0.64 0.49 0.42 0.39 0.52 0.59 0.83 0.48

PURE-fast-trans 2.40 2.59 4.94 3.56 4.16 2.15 3.80 2.34 0.66 0.58 0.36 0.44 0.31 0.66 0.62 0.56

UBFC1 2.23 15.89 5.85 2.42 8.91 4.47 1.82 4.10 0.72 0.01 0.47 0.68 0.26 0.42 0.87 0.54

PURE-slow-trans 0.97 1.50 2.30 2.12 2.52 1.24 0.90 2.06 0.88 0.76 0.58 0.65 0.51 0.80 0.88 0.81

PURE-fast-rot 1.01 8.69 2.86 1.74 4.52 1.39 0.94 3.53 0.78 0.21 0.48 0.60 0.17 0.62 0.79 0.67

LGI-PPGI-resting 1.02 5.57 2.80 1.63 1.82 1.19 2.27 1.77 0.84 0.45 0.29 0.61 0.47 0.75 0.69 0.71

PURE-talking 3.27 10.19 9.38 7.29 4.14 3.87 3.50 3.43 0.56 0.33 0.20 0.24 0.53 0.58 0.62 0.52

PURE-steady 1.17 1.66 4.33 3.61 2.10 1.81 1.17 7.60 0.80 0.64 0.38 0.32 0.55 0.64 0.78 0.60

Median 2.31 8.05 5.02 3.27 4.34 3.01 2.07 3.72 0.69 0.39 0.40 0.41 0.35 0.60 0.73 0.57

IQR 2.67 7.77 6.65 5.63 4.70 4.05 2.72 3.11 0.26 0.29 0.12 0.28 0.26 0.12 0.18 0.12

COHFACE-naturalLight 13.89 14.69 11.99 13.70 14.05 11.29 14.02 13.89 0.03 0.04 0.18 0.05 0.04 0.22 0.04 0.00

COHFACE-studioLight 11.10 9.89 10.34 11.86 12.50 9.66 9.96 9.89 0.02 0.07 0.19 -0.02 0.05 0.31 0.03 0.07

MAHNOB 18.59 15.25 14.90 19.00 18.64 10.98 19.42 17.46 0.09 0.04 0.17 0.01 -0.01 0.21 0.02 0.06

Median (all) 3.10 8.69 5.84 3.60 5.46 4.47 3.49 4.09 0.64 0.29 0.38 0.38 0.31 0.59 0.62 0.54

IQR (all) 9.86 10.06 7.53 9.08 8.79 8.60 8.40 6.96 0.60 0.41 0.24 0.45 0.37 0.28 0.58 0.35

as to visualize both partial and final results. Cogently, pyVHR
includes multiple comparison statistical procedures, based
on Friedman and Nemenyi hypothesis tests, that can be em-
ployed to carry out sound statistical assessments. As a final
remark, we point out that the pyVHR has been developed in
Python, a language that enjoys a widespread popularity and
a ease of use, qualities that facilitate further developments.
This leaves open the possibility to contribute with new and,
at the moment, lacking features, such as real time pulse rate
estimation or advanced video processing capable of compen-
sating subject movements leading to better prediction.
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