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ABSTRACT

Context. This work is part of the Gaia Data Processing and Analysis Consortium papers published with the Gaia Early Data Release
3 (EDR3). It is one of the demonstration papers aiming to highlight the improvements and quality of the newly published data by
applying them to a scientific case.
Aims. We use the Gaia EDR3 data to study the structure and kinematics of the Magellanic Clouds. The large distance to the Clouds
is a challenge for the Gaia astrometry. The Clouds lie at the very limits of the usability of the Gaia data, which makes the Clouds an
excellent case study for evaluating the quality and properties of the Gaia data.
Methods. The basis of our work are two samples selected to provide a representation as clean as possible of the stars of the Large
Magellanic Cloud (LMC) and the Small Magellanic Cloud (SMC). The selection used criteria based on position, parallax, and proper
motions to remove foreground contamination from the Milky Way, and allowed the separation of the stars of both Clouds. From these
two samples we defined a series of subsamples based on cuts in the colour-magnitude diagram; these subsamples were used to select
stars in a common evolutionary phase and can also be used as approximate proxies of a selection by age.
Results. We compared the Gaia Data Release 2 and Gaia EDR3 performances in the study of the Magellanic Clouds and show the
clear improvements in precision and accuracy in the new release. We also show that the systematics still present in the data make
the determination of the 3D geometry of the LMC a difficult endeavour; this is at the very limit of the usefulness of the Gaia EDR3
astrometry, but it may become feasible with the use of additional external data. We derive radial and tangential velocity maps and global
profiles for the LMC for the several subsamples we defined. To our knowledge, this is the first time that the two planar components of
the ordered and random motions are derived for multiple stellar evolutionary phases in a galactic disc outside the Milky Way, showing
the differences between younger and older phases. We also analyse the spatial structure and motions in the central region, the bar,
and the disc, providing new insights into features and kinematics. Finally, we show that the Gaia EDR3 data allows clearly resolving
the Magellanic Bridge, and we trace the density and velocity flow of the stars from the SMC towards the LMC not only globally, but
also separately for young and evolved populations. This allows us to confirm an evolved population in the Bridge that is slightly shift
from the younger population. Additionally, we were able to study the outskirts of both Magellanic Clouds, in which we detected some
well-known features and indications of new ones.

Key words. Magellanic Clouds – catalogs – astrometry – parallaxes – proper motions

1. Introduction

This paper takes advantage and highlights the improvements
from Gaia Data Release 2 (DR2) to Gaia Early Data
Release 3 (EDR3) in the context of astrometry, photometry,
and completeness in the Magellanic Cloud sky area. A previ-
ous Gaia DR2 science-demonstration paper on dwarf galaxies
Gaia Collaboration (2018) only scratched the surface of what
Gaia can tell us about these objects; it only considered their

†Deceased.

basic parameters, and barely used the photometry. Here we
demonstrate how much more Gaia EDR3 shows us compared
to Gaia DR2, thus demonstrating the value added by this new
data release. A summary of the contents and survey properties
of the Gaia EDR3 release can be found in Gaia Collaboration
(2021), and a general description of the Gaia mission can be
found in Gaia Collaboration (2016). Specifically, as described in
Gaia Collaboration (2021), we use:

– A reduction of a factor 2 in the proper motion uncertainty.
– A new transit cross-match that provides a significant

improvement in crowded areas and increases completeness.
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– 33 months of data significantly reduce the Gaia scanning-
law effects observed in Gaia DR2 when means and medians
of parallaxes and proper motions are computed

– New photometry, with reduced systematic effects, that is less
affected by crowding effects in the centre of the clouds (see
Fig. 9). This helps us to unveil different stellar populations
in the area of the Magellanic Clouds.

In Sect. 3 we provide an analysis of the improvements since Gaia
DR2 in Gaia EDR3. In Sect. 2 we define the samples we use
throughout the paper. We start by selecting objects in a radius
around the centre of each cloud, and then we filter the objects
using parallax, proper motions, and G magnitude. The result is
two clean samples, one for the Large Magellanic Cloud (LMC)
and one for the Small Magellanic Cloud (SMC). They constitute
the baseline for our work. By selecting objects based on their
position in the (G,GBP − GRP) diagram, we then further split
these samples into a set of evolutionary phase subsamples that
can be used as a proxy for age selection.

In Sect. 3 we compare Gaia DR2 and Gaia EDR3 using the
LMC and SMC samples. We compare the parallax and proper
motion fields and show that the systematics and noise are signif-
icantly reduced. We also show that the photometry has improved
by comparing the excess flux.

In Sect. 4 we use the Gaia EDR3 astrometry to resolve the
3D structure of the LMC by modelling it as a disc. We deter-
mine its parameters using a Bayesian approach. We show that the
Gaia EDR3 level of parallax systematics (essentially the zero-
point variations), combined with the parallax uncertainties for a
distant object such as the LMC, place this determination at the
very limit of feasibility. We do not reach a satisfactory result, but
we conclude that it might be possible with Gaia EDR3 com-
bined with external data, and certainly with future releases, in
which the systematics and uncertainties will be reduced.

In Sect. 5 we study the kinematics of the LMC in detail. We
analyse the general kinematic trends and consider the velocity
profiles across the disc in detail, focusing on the separation of
the rotation velocities as a function of the evolutionary stage.

In Sect. 6 we study the outskirts of the two Magellanic
Clouds, and we specifically focus on one of its more promi-
nent features: the Magellanic Bridge, a structure joining the
Magellanic Clouds that formed as a result of tidal forces that
stripped gas and stars from the SMC towards the LMC. We
show that using Gaia EDR3 data, the Bridge becomes apparent
without the need of sophisticated statistical treatment, and we
can determine its velocity field and study it for different stellar
populations.

In Sect. 7 we study the structure and kinematics of the spiral
arms of the LMC using samples of different evolutionary phases,
so that we can compare its outline as it becomes visible through
different types of objects. We also study the streaming motions
in the arms and produce radial velocity profiles for the differ-
ent evolutionary phases. In the appendices we finally compile a
variety of additional material based on Gaia EDR3 data.

2. Sample selection

We describe here the samples that we used in this paper. The
selection was made in three steps that we describe below. First,
we applied a spatial selection (radius around a predefined cen-
tre) to generate two base samples (LMC and SMC) in order to
select objects in the general direction of the two clouds. Second,
for each one of these samples, we introduced an additional selec-
tion to retain objects whose proper motions are compatible with
the mean motion of each cloud. This second selection ensured

that most of the contamination from foreground (Milky Way)
objects was removed. Finally, we defined a set of eight subsets
for each cloud based on the position in the colour-magnitude
diagram (CMD) with the aim to produce groups of objects in
similar evolutionary phases as a proxy of ages (see the discussion
in Sect. 2.3). We did not apply the correction to G magnitudes for
sources with 6p solutions that was suggested in Sect. 7.2 of Gaia
Collaboration (2021). The correction is small enough (around
0.01 mag) to not have relevant effects for the methods applied in
this paper, and we verified that it only very marginally affects the
composition of our samples (0.04% or less of the sample size).

2.1. Spatial selection

2.1.1. LMC

The base sample for the LMC was obtained using a selec-
tion with a 20◦ radius around a centre defined as (α, δ) =
(81.28◦,−69.78◦) van der Marel (2001) and a limiting G mag-
nitude of 20.5. This selection can be reproduced using the
following ADQL query in the Gaia archive:

SELECT * FROM user_edr3int4.gaia_source as g
WHERE 1 = CONTAINS(POINT(’ICRS’,g.ra,g.dec),
CIRCLE(’ICRS’,81.28,-69.78,20))
AND g.phot_g_mean_mag < 20.5 AND g.parallax IS NOT NULL

The resulting sample contains 27, 231, 400 objects. The large
selection radius causes the selection to include part of the SMC,
as is shown in Fig. 1. The purpose of such a large selection area
was to ensure the inclusion of the outer parts of the LMC and the
regions where the LMC-SMC bridge is located.

2.1.2. SMC

The base sample for the SMC was obtained using a
selection with an 11◦ radius around a centre defined as
(α, δ) = (12.80◦,−73.15◦) Cioni et al. (2000a) and a limiting G
magnitude of 20.5. This selection can be reproduced using the
following ADQL query in the Gaia archive:

SELECT * FROM user_edr3int4.gaia_source as g
WHERE 1 = CONTAINS(POINT(’ICRS’,g.ra,g.dec),
CIRCLE(’ICRS’,12.80,-73.15,11))
AND g.phot_g_mean_mag < 20.5 AND g.parallax IS NOT NULL

The resulting sample contains 4 709 622 objects.

2.2. Proper motion selection

Starting from the base samples described above, we followed
the procedure described in Gaia Collaboration (2018) to remove
foreground (Milky Way) contamination of objects based on
proper motion selection. For the proper motions to be rela-
tively easy to interpret in terms of internal velocities, we defined
an orthographic projection, {α, δ, µα∗ , µδ} → {x, y, µx, µy} (see
Eq. (2) from Gaia Collaboration (2018) and also Sect. 3). To
determine the proper motions of the LMC and SMC and build
the filters that lead to the clean samples of both clouds, we
then used the following procedure. First, we computed a robust
estimate of the proper motions of the clouds by:
1. We retained objects with

√
x2 + y2 < sin rsel, where rsel is

5 deg for the LMC and 1.5 deg for the SMC.
2. We minimised the foreground contamination by selecting

stars with $/σ$ < 5. This parallax cut excludes solutions
that are not compatible with being distant enough to be part
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Fig. 1. Sky density plots for the LMC (left) and SMC (right) clean samples (after spatial and proper motion selection). Top row: plots in equatorial
coordinates. Bottom row: orthographic projection (as used in Sect. 3)

of the LMC or SMC, and therefore possible foreground con-
tamination from Milky Way stars. This filter was kept for the
final clean samples, as described below.

3. We also introduced a magnitude limit G < 19. This limit
aims to remove the less precise astrometry from the estima-
tion of proper motions, and was relaxed to build the final
clean samples, as described below.

4. We then computed median values for µx and µy with the
above selection (µx,med, µy,med). These values are our refer-
ence for the typical LMC and SMC proper motions in the
orthographic plane. Using these values, we determined the
covariance matrix of the proper motion distribution (Σµx,µy ).

5. We retained only stars with proper motions within
µ′T Σ−1µ′ < 9.21, where µ′ = (µx − µx,med, µy − µy,med). This
corresponds to a 99% confidence region. For simplicity, we
did not take the covariance matrix of individual stars into
account. The aim was simply to remove clear foreground
objects, and we considered the given formulation just an
approximation, but sufficient for this purpose.

6. We determined the median parallax of this sample, $med,
and for each star in our full sample, we determined the proper
motion conditional on $med being the true parallax of the
star, taking the relevant uncertainties σ and correlations ρ
into account. for example, µ̂α∗ = µα∗− ($−$)ρµα∗$σµα∗/σ$.

7. We computed new µx, µy from µ̂α∗, µ̂δ. We used these to
repeat steps 1–4 to derive a final estimate of µx,med, µy,med,
and Σµx,µy .

Using these results, we applied the following two conditions to
the base samples defined in the previous section:
1. We retained only stars with proper motions within
µ′T Σ−1

µx,µy
µ′ < 9.21.

2. As before, we selected only stars with $/σ$ < 5 to min-
imise any remaining foreground contamination, but now we
set a fainter magnitude limit, G < 20.5.

The resulting clean sample for the LMC contains a total of
11 156 431 objects, and the sample for the SMC contains
1 728 303 objects; their distribution in the sky is depicted in
Fig. 1 and the mean astrometry is presented in Table 1. The
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Table 1. Mean astrometry of the LMC and SMC clean (after spatial and proper motion selection) samples and the evolutionary phase subsamples
extracted from them.

$ σ$ µα∗ σµα∗ µδ σµδ

LMC –0.0040 0.3346 1.7608 0.4472 0.3038 0.6375
Young 1 −0.0049 0.0729 1.7005 0.2700 0.2073 0.4733
Young 2 0.0058 0.1154 1.7376 0.3260 0.2083 0.5067
Young 3 −0.0095 0.4245 1.7491 0.4814 0.2859 0.6586
RGB −0.0010 0.3239 1.7690 0.4372 0.3255 0.6344
AGB −0.0164 0.0414 1.8387 0.2686 0.3217 0.4486
RRL −0.0046 0.3201 1.7698 0.4818 0.2947 0.6742
BL 0.0047 0.1341 1.7103 0.3996 0.2852 0.6260
RC −0.0050 0.2314 1.7719 0.4167 0.3093 0.6113

SMC –0.0026 0.3273 0.7321 0.3728 –1.2256 0.2992
Young 1 −0.0099 0.0995 0.7754 0.2495 −1.2560 0.1195
Young 2 0.0036 0.1585 0.7708 0.2981 −1.2555 0.1951
Young 3 −0.0012 0.4382 0.7721 0.4224 −1.2336 0.3472
RGB −0.0034 0.3244 0.7106 0.3593 −1.2183 0.2883
AGB −0.0145 0.0545 0.7267 0.2247 −1.2432 0.1222
RRL −0.0028 0.4196 0.7372 0.4368 −1.2214 0.3637
BL −0.0080 0.1401 0.7647 0.2907 −1.2416 0.2070
RC −0.0050 0.2576 0.7130 0.3572 −1.2196 0.2890

Notes. Parallax is in mas and proper motions in mas yr−1. As discussed in the text, the negative mean parallaxes arise because zero-point parallax
corrections were not applied.

mean parallaxes of both objects are negative, while the expected
values would be $LMC ' 1

49.5kpc = 0.0202 mas (Pietrzyński et al.
2019) and $SMC ' 1

62.8kpc = 0.0159 mas (Cioni et al. 2000b).
This is due to the zero-point offset in the Gaia parallaxes that
was discussed in Lindegren et al. (2021a); using the values in
this paper, the (rough) estimates of the LMC (−0.0242 mas) and
SMC (−0.0185 mas) zero-points are in line with a global value of
−0.020 mas, as discussed in Sect. 4.2 of Lindegren et al. (2021a).

2.3. Evolutionary phase subsamples

The two samples obtained following the procedure outlined in
the two previous sections constitute our basic selection of objects
for the LMC and SMC, our clean samples for the stars of the
clouds. These were used for analysis of the LMC and SMC as
a whole. A selection of basic statistics and maps using these
samples is presented in Appendix A.

Several cases required a definition of subsamples that were
adequate for the study of different substructures of the clouds
(disc, halo, etc.), however. Ideally, we would like to select
these subsamples by age, but this would require either gen-
erating our own age estimates or a cross-match with external
catalogues, which is beyond the scope of a Gaia EDR3 demon-
stration paper such as this. Instead, we used a different approach,
using a selection of samples based on the CMD of the clouds.
We defined cut-outs in the shape of polygonal regions in the
(G,GBP −GRP) diagram to select the following target evolution-
ary phases:

Young 1: very young main sequence (ages < 50 Myr)
Young 2: young main sequence ( 50 < age < 400 Myr)
Young 3: intermediate-age main-sequence population (mixed

ages reaching up 1−2 Gyr)
RGB: red giant branch
AGB: asymptotic giant branch (including long-period variables)
RRL: RR-Lyrae region of the diagram

BL: blue loop (including classical Cepheids)
RC: red clump.

The defined areas are shown in Fig. 2. There are unassigned
areas in the CMD diagrams: this is on purpose because these
unassigned areas are too mixed, affected by blended stars, or too
contaminated by foreground (Milky Way) stars. The areas are
exclusive, that is, they do not overlap.

This rather raw selection is not even corrected for redden-
ing, but to some extent, it can be used as an age-selected proxy.
Based on a simulation using a constant star formation rate, the
age-metallicity relation by Harris & Zaritsky (2009), and PAR-
SEC1.2 models, the estimated age distribution of the resulting
subsamples is shown in Fig. 3. The figure shows that the resulting
subsamples indeed have different age distributions that suffice
for the purposes of this demonstration paper. For the sake of
brevity, we refer to these subsamples as “evolutionary phases”.

2.3.1. LMC evolutionary phases

The polygons in the CMD diagram defining the LMC subsam-
ples are as follows, and they are represented in Fig. 2 (left
panel):

Young 1: [0.18, 16.0], [-0.3, 10.0], [-1.0, 10.0], [-1.0, 16.0], [0.18,
16.0]

Young 2: [-1.0, 16.0], [0.18, 16.0], [0.34, 18.0], [-1.0, 18.0], [-1.0,
16.0]

Young 3: [-0.40, 20.5], [-0.6, 19.0], [-0.6, 18.0], [0.34, 18.0],
[0.40, 18.9], [0.45, 19.5], [0.70, 20.5], [-0.40, 20.5]

RGB: [0.80, 20.5], [0.90, 19.5], [1.60, 19.8], [1.60, 19.0], [1.05,
18.41], [1.30, 16.56], [1.60, 15.3], [2.40, 15.97], [1.95, 17.75],
[1.85, 19.0], [2.00, 20.5], [0.80, 20.5]

AGB: [1.6, 15.3], [1.92, 13.9], [3.5, 15.0], [3.5, 16.9], [1.6, 15.3]
RRL: [0.45, 19.5], [0.40, 18.9], [0.90, 18.9], [0.90, 19.5], [0.45,

19.5]
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Fig. 2. Areas (as defined by the polygons given in the text) of the CMD for the LMC (left) and SMC (right) evolutionary phases. The colours are
not corrected for reddening for the selection.
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Fig. 3. Estimated age distribution of the selected evolutionary phase.
Based on a simulation using a constant star formation rate, the age-
metallicity relation by Harris & Zaritsky (2009), and PARSEC1.2
models

BL: [0.90, 18.25], [0.1, 15.00], [-0.30, 10.0], [2.85, 10.0], [1.30,
16.56], [1.05, 18.41], [0.90, 18.25]

RC: [0.90, 19.5], [0.90, 18.25], [1.60, 19.0], [1.60, 19.8], [0.90,
19.5].

The number of objects per subsample is listed in Table 2. The
sky distribution of the stars in the samples is shown in Fig. A.6.

2.3.2. SMC evolutionary phases

The polygons in the CMD diagram defining the SMC subsam-
ples are as follows, and they are represented in Fig. 2 (right
panel):

Young 1: [-1.00, 16.50], [-1.00, 10.00], [-0.30, 10.00], [-0.15,
15.25], [ 0.00, 16.50], [-1.00, 16.50]

Young 2: [-1.00, 18.50], [-1.00, 16.50], [0.00, 16.50], [0.24,
18.50], [-1.00, 18.50]

Young 3: [-0.50, 20.50], [-0.65, 20.00], [-0.65, 18.50], [0.24,
18.50], [0.312, 19.10], [0.312, 20.00], [0.50, 20.50], [-0.50,
20.50]

Table 2. Object counts of LMC evolutionary phases.

Total objects LMC 11 156 431

Young 1 23 869
Young 2 233 216
Young 3 3 514 579
RGB 2 642 458
AGB 34 076
RRL 221 100
BL 261 929
RC 3 730 351

RGB: [0.65, 20.50], [0.80, 20.00], [0.80, 19.50], [1.60, 19.80],
[1.60, 19.60], [1.00, 18.50], [1.50, 15.843], [2.00, 16.00],
[1.60, 18.50], [1.60, 20.50], [0.65, 20.50]

AGB: [1.50, 15.843], [1.75, 14.516], [3.50, 15.00], [3.50, 16.471],
[1.50, 15.843]

RRL: [0.312, 20.00], [0.312, 19.10], [0.80, 19.10], [0.80, 20.00],
[0.312, 20.00]

BL: [0.40, 18.15], [-0.15, 15.25], [-0.3, 10.00], [2.60, 10.00],
[1.00, 18.50], [0.80, 18.50], [0.40, 18.15]

RC: [0.80, 19.50], [0.80, 18.50], [1.00, 18.50], [1.60, 19.60],
[1.60, 19.80], [0.80, 19.50].

The number of objects per subsample is listed in Table 3. The
sky distribution of the stars in the samples is shown in Fig. A.7.

3. Comparison with DR2 results

In this section we show the improvement in astrometry and pho-
tometry of sources in the Magellanic clouds in Gaia EDR3
compared to Gaia DR2. The selection of sources from Gaia DR2
for the comparison was made in the same way as for our main
clean samples (as described in Sect. 2).

One of the scientific demonstration papers released with
Gaia DR2, Gaia Collaboration (2018) studied the LMC and
SMC, in addition to the kinematics of globular clusters and
dwarf galaxies around the Milky Way. Following this study,
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Table 3. Object counts of SMC evolutionary phases.

Total objects SMC 1 728 303

Young 1 7166
Young 2 83 417
Young 3 379 234
RGB 448 948
AGB 5887
RRL 40 421
BL 86 212
RC 634 569

and to ensure that the quoted (and plotted) proper motions are
relatively easy to interpret in terms of internal velocities, it is
particularly helpful to define an orthographic projection of the
usual celestial coordinates and proper motions,

x = cos δ sin(α − αC)
y= sin δ cos δC − cos δ sin δC cos(α − αC)

, (1)

where αC and δC are the reference centres of the respective
clouds (see Sect. 2.1).

The corresponding proper motions µxy = (µx, µy) and uncer-
tainties in the form of a covariance matrix Cµxy can be found from
µα∗δ = (µα∗, µδ), and their uncertainty covariance matrix Cµα∗δ by
the conversions

µxy = MµT
α∗,δ

Cµxy = M Cµα∗,δ MT
, (2)

where

M =

[
cos(α − αC) − sin δ sin(α − αC)

sin δC sin(α − αC) cos δ cos δC + sin δ sin δC cos(α−αC)

]
.

(3)

We note that at (αC , δC), we have µx = µα∗, µy = µδ. We use
these coordinates throughout.

In Figs. 4–7 we show the parallax and proper motion fields
of the area around each of the cloud centres, as shown in the
filtered Gaia DR2 and Gaia EDR3 data. We use a Voronoi bin-
ning scheme (Cappellari & Copin 2003), which produces bins
with approximately 1000 stars each. The bins are therefore irreg-
ularly shaped and become large far from the centre of the clouds.
Each bin is coloured according to the error-weighted mean of
the indicated quantity. In each case, the dark lines are density
contours.

These figures show that the Gaia EDR3 data are a clear
improvement to Gaia DR2 data: the sawtooth variation that was
seen in parallax and proper motion is significantly reduced. The
outer bins of both the LMC and SMC still show a net positive
parallax, which indicates that for these bins, foreground contam-
ination that passes our proper motion and parallax filter makes a
small but non-negligible contribution.

In Figs. 6 and 7 we show the proper motions that remain
when we subtracted a linear gradient from each, so we show in
each case

∆µi = µi −
(
µi,0 +

∂µi

∂x

∣∣∣∣∣
0

x +
∂µi

∂y

∣∣∣∣∣
0
y

)
, (4)

Table 4. Linear fit to the proper motions in the x, y directions using
Gaia EDR3.

µx µy
∂µx
∂x

∂µx
∂y

∂µy
∂x

∂µy
∂y

LMC 1.871 0.391 –1.561 –4.136 4.481 –0.217
SMC 0.686 –1.237 1.899 0.288 –1.488 0.213

Notes. Proper motions are in mas yr−1, and x, y positions in radians.

where the central values, µi,0, and partial derivatives ∂µi/∂x and
∂µi/∂y were evaluated as a linear fit to the values within a radius
of 3◦ around the centre. The values found using Gaia EDR3 are
shown in Table 4. This allows us to show the sawtooth pattern in
proper motions more clearly. The patterns are again significantly
reduced in Gaia EDR3. The faint indications of a streaming
motion along the bar that were pointed out in Gaia DR2 stand
out much more clearly in Gaia EDR3, and we investigate them
further in Sect. 7.

As explained in Gaia Collaboration (2018, Eq. (3)), we can
use the simple linear gradients to estimate the inclination, orien-
tation and angular velocity of the disc under the assumptions
that this angular velocity ω is constant, which is valid for a
linearly rising rotation curve, and that the average motion is
purely azimuthal in a flat disc. We define the inclination i to be
the angle between the line-of-sight direction to the cloud cen-
tre and the rotation axis of the disc, and orientation Ω is the
position angle of the receding node, measured from y towards
x, that is, from north towards east. Here and elsewhere, we
assume that the distances to the LMC and SMC are DLMC =
49.5 kpc (Pietrzyński et al. 2019) and DSMC = 62.8 kpc (Cioni
et al. 2000b), respectively.

The line-of-sight velocity of the disc can either be
derived from these gradients, or (as we do here) assumed
given the known line-of-sight velocity of the LMC (van
der Marel et al. 2002, 262.2± 3.4 km s−1) or SMC (Harris
& Zaritsky 2006, 145.6± 0.6 km s−1). The values we find
for i, Ω, and ω are 34.538◦, 298.121◦, 4.732 mas yr−1 and
78.763◦, 8.955◦, 0.854 mas yr−1 for the LMC and SMC, respec-
tively. This is broadly consistent with the values found for Gaia
DR2. The LMC values are consistent with those found by the
more detailed investigation in Sect. 5.

In Fig. 8 we use the technique of line-integral convolu-
tion (Cabral & Leedom 1993) to better illustrate the proper
motion field of the Magellanic Clouds. The direction of the
lines illustrates the vector field of the proper motions, while
their brightness illustrates the density (more precisely, we set
the alpha parameter in MATPLOTLIB to be proportional to the
1/4 power of the star count). The ordered rotation of the LMC is
very clear from this image, while the SMC is more jumbled.

Finally, to complete this section, we compare the quality of
the photometry in the LMC and SMC areas. Extracting GBP and
GRP photometry from prism spectra is challenging in the dense,
central parts of the Magellanic Clouds. A simple diagnostic for
the consistency of the photometry for a source is the photomet-
ric excess factor (included in the archive), which is defined as the
ratio of the flux of the prism spectra (GBP and GRP) and the G
flux. Because the two spectra overlap slightly and have a higher
response in the red, this ratio typically lies in the range 1.1–
1.4 for isolated point sources, with higher values for the redder
sources. Figure A.3 shows that the centres of the clouds are not
very red, and Fig. 9 shows that the mean excess factor increases
in these centres, but with abnormally high values in Gaia DR2
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Fig. 4. Comparison of the parallaxes (left) and proper motions in the x and y directions (middle and right, respectively) of LMC sources in Gaia
DR2 (upper panels) and Gaia EDR3 (lower panels).
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Fig. 5. Same as in Fig. 4, but for the SMC.
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Fig. 6. Comparison of the residual proper motion fields of the LMC
after a first-order approximation of the field was subtracted to empha-
sise the systematic errors in Gaia DR2 (upper panels) and Gaia EDR3
(lower panels).
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Fig. 7. Same as in Fig. 6, but for the SMC.

(left panel) and typical values in Gaia EDR3 (right panel). In
Gaia EDR3 the background estimation has changed significantly
as compared to Gaia DR2 (Riello et al. 2021), while crowding
is still left uncorrected for. We conclude that the photometry in
Gaia DR2 was strongly affected by background issues in the
central areas, and that this problem has greatly diminished in
Gaia EDR3, where traces of crowding are still visible. The G
flux has only changed slightly between the two releases, that is,
by a few hundredths of a magnitude, while GBP and GRP have
been revised by a few tenths of a magnitude. It is therefore a
fair assumption that the improved excess factor is driven by the
improvement of GBP and GRP photometry in Gaia EDR3.

4. Spatial structure of the Large Magellanic Cloud

In this section we summarise our attempts to infer the spatial
distribution of sources in the LMC using a simplified model
without separating the various stellar populations that constitute
the galaxy. This is an oversimplification (see e.g. El Youssoufi
et al. 2019, for a recent summary of the complexity of the
problem when the different populations are taken into account),
aimed only at exemplifying the use of the Gaia astrometry for
this type of studies.

Despite the significant improvement of the Gaia EDR3
astrometry with respect to Gaia DR2, systematic problems
remain, as described in Lindegren et al. (2021b) and exemplified
in the spatial distribution of median parallaxes shown in Fig. 4.
In order to infer the parameters of the LMC spatial distribution,
we therefore modelled the observed parallaxes as affected by a
zero-point offset.

We assumed, for the sake of illustrating the magnitude of
these zero-point offsets, that the sources selected as candidate
members of the LMC have a mean parallax of 0.02 mas, cor-
responding to a distance of 50 kpc from the Sun (Pietrzyński
et al. 2019). The central 90% interval around the median (binned)
Gaia EDR3 parallaxes shown in Fig. 4 extends from −0.075
to 0.05 mas. We can therefore estimate the range of zero-point
offsets as (−0.095,0.03). This means that the zero-point offsets
are of the same order of magnitude, but larger than the expected
value of the mean parallax of the LMC. Variations in parallaxes
around the mean value due to the spatial distribution of the LMC
sources (e.g. due to its depth or inclination angle) are expected
to be much smaller. In addition, these systematics occur in com-
bination with the usual random uncertainties associated with the
individual measurements that propagate to yield the catalogue
parallax uncertainty of each source. In the case of the data set
used here, these parallax uncertainties have a median value of
0.17 mas. Estimating the zero-point offsets therefore is a criti-
cal element of the modelling effort we describe in this section
and plays a central role in the inference of the parameters of the
spatial structure of the LMC.

Unfortunately, we did not succeed in our aim of inferring
geometric properties of the LMC from the Gaia EDR3 astro-
metric measurements. We tried several degrees of model com-
plexity and two approaches to the inference problem: Markov
chain Monte Carlo posterior sampling (MCMC) (Robert &
Casella 2013), and approximate Bayesian computation (ABC)
(Beaumont et al. 2002; Marjoram et al. 2003), always in the
context of the Bayesian approach to inference. In the MCMC
posterior sampling we used the parallaxes of the individual
LMC sources to compute the full likelihood, while in the ABC
approach, we binned the data in a certain number of constant-
size right ascension and declination bins and employed a dis-
tance metric to compare simulations and observations in order
to avoid computing the full likelihood.

Both approaches used the same probabilistic generative
model for the distribution of the Gaia EDR3 parallax measure-
ments. This model assumes that the LMC sources are spatially
distributed as an elliptic double -exponential disc (similarly as
in Eq. (1) of Mancini et al. 2004, but with the vertical distances
from the disc mid-plane modelled by a central Laplace prior) and
generates as many (proper to the disc) location coordinates as
there are sources in the Gaia EDR3 sample. The model applies
a number of geometrical transformations (see e.g. Weinberg
& Nikolaev 2001) to generate a set of true parallaxes that are
unaffected by the measurement uncertainties and/or zero-point
offsets. Our generative model has nine global parameters: the
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Fig. 8. Illustration of the proper motion field of the LMC (left) and SMC (right) using line-integral convolution. We set the alpha parameter
(opacity) of the coloured lines according to the density, with the densest regions being the most opaque.
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Fig. 9. Photometric excess factor, i.e. the sum of fluxes in the GBP and GRP bands over the G flux. Left: for Gaia DR2. Right: for Gaia EDR3.

disc scale length R0, the disc scale height h0, the disc elliptic-
ity parameter ε, the disc minor-axis position angle θma, and the
LMC line of nodes position angle θLON (both angles measured
with respect to the west direction), the inclination angle i of the
LMC plane with respect to the plane of the sky, and the spherical
coordinates (α0, δ0,DLMC) of the centre of the LMC disc.

To simulate observed parallaxes, we took the Gaia EDR3
parallax uncertainties (the variance error component) and the
parallax zero-point offset patterns (the systematic error com-
ponent) observed in the Gaia EDR3 data into account. We
modelled the latter as part of the inference process by means of
a linear combination of Gaussian radial basis functions (RBFs)
using the observed patterns and a canonical distance to the LMC
as initial guess. Finally, each parallax measurement was simu-
lated using a Gaussian distribution centred at the sum of the

true simulated parallax and the offset generated using the RBF
model.

In addition to modelling the parallax zero-point offsets using
the RBF parametrisation as part of the inference process, we
also tried to correct individual source parallaxes using an early
version of the fit proposed in Lindegren et al. (2021b) as a func-
tion of the apparent magnitude and colour. Unfortunately, the
correction is not useful for our purposes. The mentioned correc-
tion (from Lindegren et al. 2021b) is obtained by a combination
of information from quasars, physical stellar pairs, and LMC
sources. However, it is not able to reproduce the local varia-
tions of the parallax zero-point in the LMC field because its only
dependence on positions is of the form of the sinus of the ecliptic
latitude, which is almost constant in the LMC area. Additionally,
the correction assumes that all the LMC stars are at the same
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distance embedding its internal 3D structure, which is what we
aimed to determine.

In what follows we describe our attempt of using the prob-
abilistic generative model to perform the parameter inference
using the MCMC algorithm. We attempted to evaluate the full
likelihood for several of the populations defined in Sect. 2. The
inference process was based on a hierarchical Bayesian model
and an MCMC no-U-turn posterior sampler (NUTS) (Hoffman
& Gelman 2014). In this approach the true parallax of indi-
vidual LMC sources was used to compute the likelihood. This
implies the inclusion of one additional parameter per source (its
true distance). The computational demands were so high that
we were forced to distribute the likelihood computations in a
TensorFlow (Abadi et al. 2016) Probability (Dillon et al. 2017)
framework in the Mare Nostrum supercomputer at the Barcelona
Supercomputing Centre. Unfortunately, the maturity level of the
TensorFlow libraries involved was not sufficient and we did not
achieve the required performance accelerations. Then, our main
problem was that we were unable to scale our models to the size
of the Gaia EDR3 sample using the MCMC NUTS algorithm.

Because of the scalability issues found when using the
MCMC, we decided to try with a sequential Monte Carlo approx-
imate Bayesian computation algorithm (SMC-ABC), which is
further described in Jennings & Madigan (2017) and Sect. 5 of
Mor et al. (2018). The theoretical basis for these algorithms can
be found in Marin et al. (2011), Beaumont et al. (2008), and
Sisson & Fan (2010).

The choice of the summary statistics is crucial for the per-
formance of the SMC-ABC algorithm. For the purposes of the
present work, we defined the summary statistics as the median
parallax of the stars in the LMC sample, distributed in a grid
of 50× 50 bins in right ascension (from 50 deg to 120 deg) and
declination (−50 deg to −80 deg). The stellar sample used for
this inference was the combination of the following subsamples:
Young 1,Young 2,Young 3, RGB, AGB, RRL, BL, and RC.

With the SMC-ACB technique we attempted to infer up to
seven parameters of the structure of the LMC: the distance to
the centre DLMC, the inclination angle i, the position angle of the
line of nodes θLON, the position angle of the disc minor axis θma,
the ellipticity factor ε, and the position in the sky of the LMC
centre (α0, δ0). To infer these structural parameters, we chose
Gaussian priors centred on the standard values found in the liter-
ature; the prior in distance is the most restrictive. Furthermore,
we simultaneously inferred the model parameters of the paral-
lax zero-point variations (i.e. the coefficients of the RBF linear
model described above) using 50 basis functions. Additionally,
we fixed the scale height and the radial scale length of the disc
at 1.6 and 0.35 kpc, respectively.

From the SMC-ABC attempt, our conclusion is that the local
parallax zero -point of the LMC in Gaia EDR3 distorts most of
the signal of the 3D structure of the LMC (in the astrometry), and
that there is not enough information in our summary statistics to
simultaneously infer the local parallax zero-point variations and
the 3D structure of the LMC. However, it may be possible if the
former is constrained with additional external restrictions and/or
finding an optimal way to add the information from the density
distribution of the stars in the LMC area.

5. Kinematics of the Large Magellanic Cloud

In this section we use the Gaia EDR3 data to study the kine-
matics of the Magellanic Clouds. The analysis is focused on the
LMC because it has a clear disc structure that can be meaning-
fully modelled and understood; the SMC has a more complex,

irregular structure that would require a more extensive and deep
analysis, which is beyond the scope of this demonstration paper.

In the Sect. 5.1 we describe the method and tools we used in
our analysis, and in Sect. 5.2 we present an analysis of the general
kinematic trends and a detailed look at the velocity profiles in
the disc, focusing on the segregation of the rotation velocities as
a function of the evolutionary stage.

5.1. Method and tools

Gaia Collaboration (2018) presented formulae relating the in-
plane velocities of stars to their observed proper motions under
the assumption that the stars all move in a flat disc1. Here we
summarise the key results and equations.
Defining:

– a = tan i cos Ω
– b = − tan i sin Ω
– (lx, ly) = (sin Ω, cos Ω)
– (mx,my,mz) = (− cos i cos Ω, cos i sin Ω, sin i).

Gaia Collaboration (2018) show that Cartesian coordinates can
be defined in the plane of the disc ξ, η, where

ξ =
lxx + lyy

z + ax + by

η=
(mx − amz)x + (my − bmz)y

z + ax + by

, (5)

and derive simultaneous equations relating the velocities ξ̇, η̇ to
µx, µy for a given disc inclination, orientation, and bulk veloc-
ity of the galaxy. The bulk velocity of the galaxy is expressed
as (µx,0, µy,0, µz,0), where µx,0 and µy,0 are the associated proper
motions in the x and y directions at the centre of the disc, and
µz,0 = vz,0/DLMC, the associated line-of-sight velocity, expressed
on the same scale as the proper motions by dividing by DLMC.
We derive

(lx − x(lxx + lyy))ξ̇ + (mx − x(mxx + myy + mzz))η̇

= − µx,0 + x(µx,0x + µy,0y + µz,0z) +
µx

ax + by +
√

1 − x2 − y2

(ly − y(lxx + lyy))ξ̇ + (my − y(mxx + myy + mzz))η̇

= − vy + y(µx,0x + µy,0y + µz,0z) +
µy

ax + by +
√

1 − x2 − y2
.

(6)

Furthermore, we can gain much more physical insight by
converting these Cartesian coordinates ξ, η, ξ̇, and η̇ into polar
coordinates R, φ, vR, and vφ.

Our strategy in this paper therefore was to fit the proper
motion of the filtered LMC population as a flat rotating disc with
average vR = 0 and vφ = vφ(R). Our model has ten parameters,
some of which can be kept fixed (based on the other knowledge
of the Magellanic Clouds):

– Rotational centre of the disc on sky, parametrised as (α0, δ0)
– Bulk velocity in the x direction, which we parametrise as
µx,0, the associated proper motion at the centre of the disc.

– Bulk velocity in the y direction, which we parametrise as
µy,0, the associated proper motion at the centre of the disc.

1 See the erratum, Gaia Collaboration (2020), for corrections required
for some of the formulae given in Appendix B of Gaia Collaboration
(2018).
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Table 5. Parameters of the kinematic model fit to our data.

Model α0 δ0 µx,0 µy,0 µz,0 i Ω v0 r0 αRC
(deg) (deg) (mas yr−1) (mas yr−1) (mas yr−1) (deg) (deg) (km s−1) (kpc)

Main [81.28] [−69.78] 1.858 0.385 [1.115] 34.08 309.92 75.9 2.94 5.306
µz,0 free [81.28] [−69.78] 1.858 0.385 1.179 34.95 310.93 76.5 2.96 5.237

Centre free 81.07 −69.41 1.847 0.371 [1.115] 33.28 310.97 74.2 2.89 6.160
Centre free, rmin = 1◦ 81.14 −69.42 1.847 0.374 [1.115] 33.21 311.26 74.0 2.96 7.110
Centre free, rmin = 2◦ 81.34 −69.48 1.845 0.383 [1.115] 33.24 312.74 73.5 3.21 13.529
Centre free, rmin = 3◦ 81.59 −69.55 1.844 0.394 [1.115] 33.31 313.35 72.1 0.20 4.901

Notes. Values in square brackets are held fixed for that model.

– Bulk velocity in the z direction, which we parametrise as
µz,0 = vz,0/DLMC.

– Inclination, i.
– Orientation, Ω.
– Three parameters (v0, r0 and α) are used to describe the

rotation curve,

vφ,M(R) = v0

(
1 +

( r0

R

)α)−1/α
.

To analyse the data, we considered bins of 0.08◦ by 0.08◦ in
x, y in the range −8◦ < x < 8◦, −8◦ < y < 8◦. For each bin with
centre xi, yi, we derived a maximum likelihood estimate of the
typical proper motion, that is, for the ith bin, µi = (µx,i, µy,i), and
dispersion matrix

Σi =

[
σ2

x,i ρσxy,iσx,iσy,i
ρσxy,iσx,iσy,i σ2

y,i

]
(7)

by maximising

Li =

Ni∏
j = 1

1
2π

√|Σ + Cµxy, j|

× exp
(
−1

2
(µ j − µi)T (Σi + Cµxy, j)

−1(µ j − µi)
), (8)

where the product is over all Ni sources in our sample in the ith
bin, µ j is the quoted proper motion of the source (µx, j, µy, j), and
Cµxy,j is the covariance matrix associated with the uncertainties
as derived in Sect. 3.

We estimated the uncertainty of µi by bootstrap resampling
within each pixel. This gave us an estimate of the error covari-
ance matrix in proper motion for the bin, Cµxy,i. As a simple way
of taking systematic errors in proper motion into account, we
added a systematic uncertainty of 0.01 mas yr−1 for each com-
ponent of proper motion, isotropically. This is smaller than the
statistical uncertainty in most bins outside the inner ∼3◦. We
chose this value because it is of the same order as the spatially
dependent systematic errors found by Lindegren et al. (2021b).
Binning the data allowed us to make this correction for sys-
tematic uncertainty and reduced the computational difficulty of
fitting the model.

The parameters µx,0, µy,0, µz,0, i, and Ω give a conversion
between the (xi, yi, µx,i, µy,i) values for each pixel and the cor-
responding positions and velocities in the frame of the LMC,
(Ri, φi, vR,i, and vφ,i) thorugh Eq. (6). We also converted the cor-
responding uncertainty matrix in proper motion into one for
vR,i, vφ,i (for these values of µx,0, µy,0, µz,0, i, and Ω), which we

refer to as C(vR,vφ),i. The statistic that we then calculate is
chi-square-like,

χ2 =

Nbins∑
i = 1

(∆ui)T C(vR,vφ),i(∆ui) (9)

with (∆ui) =
(
vR,i, vφ,i − vφ,M(Ri)

)
.

We note that the statistical uncertainties on the values we
quote are very small. They are ∼0.2 µas yr−1 on µx,0 and µy,0,
and less than 0.5% on the derived quantities such as µz,0 or i.
We emphasise therefore that systematic errors, particularly those
due to our simple model, are the dominant uncertainty. The dif-
ference between values in Table 5 can be seen as a gauge of these
systematic errors.

Our main analysis takes the centre of rotation (α0, δ0)
as fixed at the photometric centre αC , δC (Sect. 2), and
µz,0 = 1.115 mas yr−1 taking the value from spectroscopy
(Sect. 3). The parameters of this model, found by minimising
χ2, are given in Table 5 (along with those from the other models
we considered).

We also considered the case where we did not fix µz,0, but
left it as a free parameter. We find a value of 1.179 mas yr−1, cor-
responding to a line-of-sight velocity of 288 km s−1, which is a
difference of about 7% from the value known from spectroscopy.
The difference in inclination and orientation is around 1.5◦ in
each case, and the bulk motion in x and y is almost unchanged.
The ability of measuring µz,0 from the proper motions alone
comes from the perspective contraction of the LMC as it moves
away from the Sun, but we cannot expect this model-dependent
result to provide a more accurate measure than from a spectro-
scopic study.

Finally, we considered the question of the rotational centre
of the LMC. The easiest way to do this within our analysis is
to allow the centre of the x, y coordinate system to shift, and
then recalculate the binned values xi, yi, µx,i, and µy,i and uncer-
tainties in the new coordinate system (in practice, we converted
the binned values into equatorial coordinates, and then con-
verted into the new coordinate system, rather than rebinning each
time). The rotational centre of the LMC has been a matter of
debate, most notably with the photometric centre and the cen-
tre of rotation for the HI gas lying at different positions. The
photometric centre was found to be (81◦.28,−69◦.78) by van der
Marel (2001), who also found that the centre of the outer iso-
pleths (corrected for viewing angle) was at (82◦.25,−69◦.50).
The kinematic centre of the HI gas disc has been found to be
(79◦.40,−69◦.03) by Kim et al. (1998) or (78◦.13,−69◦.00) by
Luks & Rohlfs (1992). Using Hubble Space Telescope (HST)
proper motions in the LMC, van der Marel & Kallivayalil (2014)
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found a rotational centre (78◦.76± 0◦.52,−69◦.19± 0.25◦) that
lies close to the centre of rotation for the HI gas, but pointed out
that this was inconsistent with the rotational centre derived from
studies of the line-of-sight velocity distribution in carbon stars
(van der Marel et al. 2002, e.g. 81◦.91± 0◦.98,−69◦.87± 0◦.41).
More recently, Wan et al. (2020) used Gaia DR2 proper
motions, along with SkyMapper photometry (Wolf et al. 2018)
to find dynamic centres for carbon stars, RGB stars, and
young stars – (80◦.90± 0◦.29,−68◦.74± 0◦.12), (81◦.23± 0◦.04,
−69◦.00± 0◦.02), and (80◦.98± 0◦.07,−69◦.69± 0◦.02), respec-
tively.

We derive a centre of (81◦.01,−69◦.38) when this was left
as a free parameter, which is somewhat closer to the photomet-
ric centre than to the HI centre. The inner regions of the galaxy
do not provide much information in the proper motion field to
find the centre because, to first order, a linearly rising rotation
curve produces a linearly varying proper motion field, so that the
position of the centre is degenerate with the bulk velocity. The
centre of the LMC does, however, have a significant non-circular
motion, which is not captured by our model, and large statisti-
cal weight in our calculations (because of the high density of
stars). We therefore investigated whether cutting data from the
inner few degrees of the LMC changed our results. We did this
by cutting data from our analysis with x2 + y2 < r2

min (taking x
and y from our original coordinate system, so that the data were
the same for any centre considered), and re-deriving the parame-
ters. The results are again listed in Table 5. The rotational centre
moves slightly closer to the photometric centre as we cut larger
areas from the centre of our dataset, suggesting that this result
is robust against some of the incompleteness of our kinematic
model. We tested whether changing the centre of our cut region
affects the results (e.g. cutting data centred on the rotational
centre of the HI gas instead), and the differences are very small.

In Fig. 10 we show the different proposed centres of rotation
on a stellar density map of the centre of the LMC. The centres
derived from Gaia EDR3 are closer to those from photomet-
ric studies than to those from the rotation of H I gas or from
proper motions measured by the HST. The change in centre also
naturally produces a change in derived bulk velocity, inclina-
tion, and orientation of the disc. The bulk velocity changes by
∼0.02 mas yr−1, which at the distance of the LMC corresponds to
a velocity difference of 5km s−1. The inclination and orientation
only change by about 1◦. We show plots of vφ and vR for our main
model, and our model with the centre left as a free parameter
(considering all data), in Fig. 11. As expected, the differences are
relatively minor, although the outer parts the north-south asym-
metry of the vφ field is clearly reduced when the centre is left
as a free parameter. The strong east-west asymmetry in vR near
the centre is also reduced (but because the minimum in vφ also
appears to be offset from the centre, we are cautious about giving
too much weight to this fact).

5.2. Kinematics analysis

After we robustly constrained the main parameters with the sim-
ple rotation model, we built maps of the azimuthal and radial
velocities and velocity dispersions for each of the stellar evolu-
tionary phases of the LMC, as well as for a sample combining
all phases. This latter sample is referred to as the combined
sample in this section and in Sect. 7. These maps were thus
derived at fixed and constant parameters with radius, as given
by the main model of Sect. 5.1 (i = 34◦, Ω = 310◦, α0 = 81.28◦,
δ0 =−69.78◦, µx,0 = 1.858 mas yr−1, µy,0 = 0.385 mas yr−1, and
µz,0 = 1.104 mas yr−1).

−2.0−1.5−1.0−0.50.00.51.01.52.0
x [deg]

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

y
[d

eg
]

Phot

Phot outer

H i Kim H i Luks

HST pm

Carbon LOS

Sky CS

Sky RGB

Sky Y

EDR3
EDR3 r > 1◦

EDR3 r > 2◦

EDR3 r > 3◦

Fig. 10. Positions of the centre of the LMC as found by different studies
(as described in the text, SkyMapper estimates are referred to as “Sky”
in the figure) superimposed on an image coloured according to the total
density in star counts in the inner few degrees of the LMC. The centres
found in this study lie closer to the photometric centre than to the centre
of H I rotation.

The angular resolution of the maps can be chosen to be as
high as possible. In practice, the maps were made of 400× 400
squared pixels of 0.04◦ size, which is sufficiently resolved for the
simple analysis of the kinematics proposed here, and it avoids
more significant statistical noise inherent to higher resolutions.
At the assumed distance to the LMC, it corresponds to a linear
scale of 35 pc, which is equivalent to that of observations made
at 0.7′′ resolution (i.e. the typical seeing at e.g. the ESO Very
Large Telescope) of galaxies located at the periphery of the local
10 Mpc volume. At this resolution, the maximum number of stars
per pixel is 599, 288, 265, 239, 136, 105, 54, 52, and 13 for the
combined, Young 3, RC, RGB, Young 2, BL, RRL, Young 1, and
AGB samples, respectively. Despite the low surface density of
the AGB, we were able to infer useful quantities, and we found
that on average, AGB star kinematics compare well with other
evolutionary phases. The maximum likelihood of Eq. (8) then
yields the tangential and radial components of the velocity and
velocity dispersion for each pixel.

5.2.1. General trends

Appendix B presents the vφ, vR, σφ, and σR maps for the eight
stellar LMC subsamples, as well as those of the combined sam-
ple. These maps are the first of their kind ever obtained for an
extragalactic disc, and the first maps that cover the integrality of
the stellar kinematics for a galactic disc. To keep the description
short in view of such a large quantity of kinematic data for a sin-
gle galaxy, we present here example maps for two evolutionary
phases only. We selected an evolved phase (RC stars) and a less
evolved phase (Young 2 stars), which are both assumed to trace
the kinematics of older and younger stellar ages.

The vφ and vR maps of the two phases are shown in Fig. 12
and their corresponding velocity dispersion maps in Fig. 13.
They all exhibit the noisy sawtooth patterns visible in the
Gaia proper motion fields (Sect. 3), as well as variations occur-
ring at larger angular scales that may likely reflect the perturbed
kinematics in the spiral arms and the bar (see also Sect. 7).

Such maps present the diversity and similarity in kinemat-
ics of the various stellar evolutionary phases. For instance, the
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Fig. 11. Plots of vφ and vR for our main model (top) and for our model with the centre left as a free parameter (bottom).

younger phase presents higher tangential motions than the older
phase (e.g. 45 versus 27 km s−1 at R = 1 kpc, or 88 versus
77 km s−1 at R = 4 kpc, on average), which is a beautiful sig-
nature of the asymmetric drift, while both of them present lower
velocities in a region that is apparently aligned with the stellar
bar, with tens of pixels sometimes at negative values (e.g. down
to approximately −25 km s−1). It needs to be investigated further
whether these negative values reveal counter-rotation in the bar
or artificial features resulting from incorrect assumptions in this
perturbed region of the disc, that is, that the stars only orbit in
the z = 0 mid-plane and with vz = 0.

The radial velocity map shows similar trends, with stronger
motions for the young phase than for the RC sample. Overall,
the radial motion is mostly negative for R . 5 kpc, indicating
inwards bulk motions towards the centre of the LMC, although
this picture strongly depends on the location in the disc. Alter-
nating negative and positive velocity patterns as a function of the
azimuthal position, apparently centred on the assumed photocen-
tre at x = y= 0, are indeed visible in the bar and spiral arms. Sim-
ilarly to the rotation velocity, the velocity streaming of vR appears
to be weaker for the older stars than for the less evolved stars.

The radial and tangential velocity dispersion maps are also
rich in information. Globally, the radial dispersion dominates the
tangential dispersion in both samples, and the difference between

the components increases with radius. There is an extended
pattern of large random motions aligned with the bar in both
kinematic tracers, but also a dominant feature in σR that is per-
pendicular to the bar (only for the RC sample). In this inner
region of the bar, σR is also observed to be larger where σφ
is lower for RC stars, which indicates a variation in the veloc-
ity anisotropy as a function of the azimuthal position in the bar
region. As for the comparison of the samples, random motions
of the RC sample are always larger than those for the young stars
(e.g. 105 versus 80 km s−1 in the innermost pixels, or 45 versus
20 km s−1 at R = 3 kpc, on average), as expected for more evolved
stars that lie in a thicker disc component than younger stars.

5.2.2. Velocity profiles

The 36 velocity profiles are shown in Appendix B and are made
available in electronic format at the CDS. The profiles are the
median values of all pixels from the maps located in radial bins
of 200 pc width. This angular sampling suffices to identify varia-
tions of slope and amplitude in curves in the evolutionary phases.
Radial bins with fewer than 5 pixels were discarded. The asso-
ciated errors were derived from bootstrap resamplings of the
velocity distributions and velocity dispersion at a given radial
bin, at the 16th and 84th percentiles.
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Fig. 12. Example of velocity maps for the LMC. Left and right columns: young and evolved evolutionary phases (Young 2 and RC, respectively,
see Sect. 2.3). Upper and bottom rows: vφ and vR, respectively. The linear velocity scales shown by colour bars are the same for the two stellar
evolutionary phases and were chosen to show the structure inside the velocity fields more clearly.

Figure 14 summarises the segregation of vφ as a function of
the evolutionary stage. The more evolved the stellar population,
the shallower the rotation curve at low radius, and the lower the
amplitude; this is an expected result from the asymmetric drift.
Taking Young 1 as a reference sample with the highest values,
we find that on average, the amplitude of the rotation curve of
Young 2 stars is smaller by 0.6 km s−1 (thus similar within the
errors), and that of the BL, Young 3, AGB, RGB, RC, and RRL
samples by 6, 10, 13, 17, 18, and 22 km s−1 , respectively. The
amplitude of the combined sample lags by 15 km s−1, as it is
indeed dominated by the more numerous evolved stars. The BL
curve is always above the Young 3 curve, and the AGB curve
is above the Young 3 curve as well, but only beyond R∼ 3 kpc.
Younger phases tend to have flatter rotation curves than more
evolved stars. Finally, the curves of younger stars show wiggles,
which are likely caused by the perturbed kinematics from the bar
and spiral perturbations. The effects from the sawtooth pattern
in the proper motion fields are averaged when the curves are
derived, and should contribute little to the observed wiggles.

Figure 14 compares our rotation curves with a vφ profile of
carbon stars, as obtained by Wan et al. (2020) from modelling

the Gaia DR2 astrometry. The curves of the more evolved stars
from our samples agree well with their curve for R < 6 kpc.
Beyond this radius, the scatter is large in the kinematics of the
carbon stars, and the curves disagree. The difference is likely
caused by more significant noise in Gaia DR2 astrometry than
in Gaia EDR3.

Comparisons with stellar rotation curves derived from
line-of-sight velocities and HST astrometry as published in
van der Marel & Kallivayalil (2014) are also shown in Fig. 14.
The HST rotation curve of mixed stellar populations shown as
magenta squared symbols agrees well with the Gaia curves
within the quoted errors and scatter, but it has three outliers (one
above 80 km s−1 is not shown). The rotation velocity of old stars
shown as red diamonds is systematically lower than that of our
curves, while those of the young stars shown as blue circles are
in fair agreement with the kinematics of the less evolved pop-
ulation, despite the discrepant point at R = 2.2 kpc. The large
difference with the line-of-sight velocities of the older stars is
not understood because the orientation parameters quoted in
van der Marel & Kallivayalil (2014) do not differ strongly from
those adopted here.
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Fig. 13. Same as in Fig. 12, but for the velocity dispersion.
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Fig. 14. Stellar velocity curves of the LMC. Left and right panels: rotation curves and radial motions, respectively. Coloured lines are for the
eight evolutionary phases and the combined sample, as given by the legend. In the left panel, blue circles, red diamonds and magenta squares are
the rotation velocities for the samples of younger and older stars from line-of-sight spectroscopic and HST astrometric measurements published in
van der Marel & Kallivayalil (2014). The dashed blue lines are the tangential and radial velocity profiles derived by Wan et al. (2020) from Gaia
DR2 astrometry.
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The vR profiles (right panel of Fig. 14) mainly show dips
with minima located at R = 2.5 − 3 kpc, near the end of the
bar, except for the least evolved stars. The Young 1 and Young
2 samples indeed exhibit stronger average inwards motion at
lower radius (down to vR ∼ −15 km s−1, R∼ 1.5 kpc). The radial
motion of Young 2 stars also strongly decreases beyond R = 3
kpc. Figure 14 also shows large discrepancies between the curves
of the more evolved stars with the vR profile of carbon stars
derived by Wan et al. (2020). Most of their radial velocities are
>10 km s−1, and show radial motions that significantly increase
as a function of radius.

Appendix B also shows the variation in the slope and ampli-
tude of the velocity dispersion profiles as a function of the
evolutionary phase. For example, the youngest phase Young 1
presents almost flat profiles, with low amplitudes (<30 km s−1),
whereas the random motions of more evolved stars are steeper,
and with larger amplitudes in the centre (up to 100 km s−1).
Again choosingYoung 1 as a reference sample, we measure that
on average, σR of the AGB, Young 2, BL, RGB, RRL, Young 3,
and RC samples is larger by 5, 21, 24, 37, 40, 40, and 52 km s−1,
respectively. The amplitude of the combined sample is larger
by 44 km s−1. Similar mean differences are observed with the
tangential component of the velocity dispersion.

6. Magellanic Bridge and the outskirts of the
Magellanic Clouds

One of the most prominent features in the outskirts of two inter-
acting galaxies is the formation of a bridge between them due
to tidal forces that strip gas and stars from the least to the most
massive galaxy (Toomre & Toomre 1972). The relative position
of the Milky Way with respect to the Magellanic Clouds places
us in the privileged position of witnessing the close encounter
between the LMC and the SMC, and of studying the Magellanic
Bridge.

The stellar characterisation of the structure and kinematics
of the Magellanic Bridge has been pursued for a long time,
with simulations (e.g. Besla et al. 2012; Diaz & Bekki 2012)
and observations (e.g. Irwin et al. 1985; Harris 2007; Bagheri
et al. 2013; Noël et al. 2013; Carrera et al. 2017). In addition
to this expected tidally induced feature, other structures such as
plumes, shells or stellar streams can be found in the outskirts of
the Magellanic Clouds (e.g. Deason et al. 2017; Mackey et al.
2018; Martínez-Delgado et al. 2019; Navarrete et al. 2019). In
this section we show the quality of Gaia EDR3 in highlighting
the Magellanic Bridge and its kinematics, and we show several
equally interesting features in the outskirts of the Magellanic
Clouds.

The Magellanic Bridge was first detected as an overdensity in
HI gas by Hindman et al. (1963). More recently, several studies
have tried to follow the connection between the LMC and SMC
using samples of stars in different evolutionary phases. Because
tidal forces have similar effects on stars and gas, the Bridge
would be traced by both a young stellar population with a strong
correlation with the HI distribution, and an old population made
of stars stripped into the Bridge by the tidal interaction. This is
supported by dynamical simulations (e.g. Guglielmo et al. 2014).
The stellar Magellanic Bridge was first traced by a population of
young stars (Irwin et al. 1985) showing in situ star formation and
a strong correlation between the location of the stars and that of
HI overdensities (e.g. Skowron et al. 2014). Casetti-Dinescu et al.
(2012) selected young OB-type stars in a wide area between the
Clouds to study the structure and kinematics of the Bridge using

GALEX, 2MASS, and the Southern Proper Motion 4 catalogue.
Jacyszyn-Dobrzeniecka et al. (2020a) used Cepheids from the
OGLE Collection of Variable Stars to characterise the Magel-
lanic Bridge with young stars, while Bagheri et al. (2013) and
Noël et al. (2013) used RGB stars to search for an old counter-
part. Spectroscopic confirmation of stripped stars at the SMC
side of the Bridge was obtained by Carrera et al. (2017). Very
recently, Grady et al. (2021) assembled a catalogue of red giants
from Gaia DR2 from which the authors obtained photomet-
ric metallicities using machine-learning methods. Based on the
metallicity structure in the Magellanic Bridge, the authors con-
cluded that it is composed of a mixed stellar population of LMC
and SMC debris.

In this section we explore the Gaia capabilities of detecting
and characterising the Magellanic Bridge using the evolution-
ary phase samples described in Sect. 2. Because the Magellanic
Bridge encompasses the region in which the MC overlap, we
have to adopt a modification of the selection described in Sect. 2.
This modification takes into consideration that LMC (SMC)
stars may extend farther than 20 (11) degrees and overlap with
each other spatially and in proper motion. Our query is identi-
cal to the one described in Sect. 2, but we queried by HEALPIX
(NSIDE = 8) pixels that have a separation to their centres smaller
than 35 (15) degrees from the LMC (SMC) centre. The proper
motion selection described in Sect. 2 was performed, but we did
not adopt any separation from either of the clouds as a member-
ship criteria. This produced a sample that allowed for overlap in
space and velocity and also provided a larger sky-coverage that is
useful to explore stellar structures in the outskirts of both clouds.
The total number of stars and the number in each stellar phase
subsample agrees well with what we reported in Sect. 2, but
because we allowed stars to mix in PM and on sky, we obtained
numbers that are generally larger by <1% than in Sect. 2.

To study the Bridge, we defined two populations, one rep-
resentative of the young population, and the other the RC
population in both clouds. The young population was defined
as the combination of Young 1LMC, Young 2LMC, Young 1SMC,
and Young 2SMC, that is, inner-joined with the combination of
the PM-selected LMC and SMC populations. It contains 167 643
sources. The RC population is defined in the same way, but using
the RC subsamples. It contains 1 806 102 sources.

In the left panel of Fig. 15 we show a density plot of the
Young stellar population in the Bridge region; the connection
between the two galaxies is obvious without applying any statis-
tical technique. The morphology of the young Magellanic Bridge
is represented by an arched elongated connection between the
Magellanic Clouds. In the right panel of Fig. 15 we show the den-
sity plot of the RC sample in the Bridge region. The Magellanic
Bridge in the RC sample is not so clear, as expected from a more
evolved and kinematically hot population, although it has been
traced in RC stars by Carrera et al. (2017) at the near side of
the SMC using the MAGIC spectroscopic survey. In this case,
it is of key importance to remove the Milky Way foreground
contamination of RC stars. This exploration has been performed
by Zivick et al. (2019) using Gaia DR2 data and HST proper
motions. Belokurov & Erkal (2019) used astrometry and broad-
band photometry from Gaia DR2, and Schmidt et al. (2020) used
data from the VISTA survey of the Magellanic Clouds (Cioni
et al. 2011) and Gaia DR2 to perform a kinematic study of the
region around the MC and of the Bridge region.

In Fig. 16 we specifically use the proper motions included
in Gaia EDR3 to study the kinematic interaction between the
Magellanic Clouds. We checked the dynamical attraction of the
LMC on the SMC by plotting the vector field of the proper
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Fig. 15. Sky density plot for the Bridge region using the Young1 and Young2 evolutionary phases (left panel) and the RC evolutionary phase (right
panel). The bin size is 0.06 deg in x and y. The colour bar is in log scale and the black contours are at the levels 0.1, 1, 5, and 70 (young evolutionary
phases) and 0.25, 1.5, 15, and 165 (RC sample).
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Fig. 16. Vector field of the proper motions in the Magellanic Clouds using theYoung 1 +Young 2 (left panel) and RC (right panel) samples. The
coordinates are centred on the SMC. In the background, to guide the eye of the reader, we show the density in logarithmic scale. The dashed line in
the left panel shows the location of the young bridge from Belokurov et al. (2017). The velocity vector field is only shown for bins with more than
10 (200) stars in theYoung 1 +Young 2 (RC) sample.

motion of the sources.We separately show the Young 1-2 (left
panel) and the RC evolutionary phases (right panel). In contrast
to the density plot (see Fig. 15), we clearly observe, using both
evolutionaryphases, a coherent motion of stars from the SMC
towards the LMC. For young stars the flow moves as we would
expect, from the SMC to the LMC along the Bridge (depicted
in the background density plot). We emphasise that the excellent
quality of the Gaia EDR3 proper motions allows tracing the

interaction between the Magellanic Clouds using a rather simple
strategy to separate stars into different phases of evolution.

The high quality of the Gaia EDR3 proper motions allows
confirming a flow of RC stars from the SMC towards the LMC.
As mentioned above, the track of an old bridge between the LMC
and SMC has recently been pursued using different tracers and
strategies. In this demonstration paper we considered only the
RC population, which is characteristic of an intermediate to old
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Fig. 17. Number count map for the LMCout sample (left): the names of the most notable substructures are given and, for a better visualisation, the
inner parts of the LMC and SMC were omitted. Total velocity dispersion map (right): the velocity vector field is shown as orange arrows.

population, and we did not use a typical >10 Gyr old population
such as that of the RR Lyrae stars. Recent works have specifi-
cally targeted the RR Lyrae stars in the bridge region of the MC
(e.g. Belokurov et al. 2017; Clementini et al. 2019; Jacyszyn-
Dobrzeniecka et al. 2020b). Based on their selection strategy,
Belokurov et al. (2017) claimed an old RR Lyrae bridge for
Gaia DR1 RR Lyraes. The Gaia DR2 bona fide RR Lyraes and
those from the Gaia EDR3 sample (see Sect. 2) both show a
smooth halo-like density distribution (Clementini et al. 2019),
however. The Gaia DR2 accompanying paper was confirmed by
Jacyszyn-Dobrzeniecka et al. (2020b) using the extended OGLE
catalogue. Evans et al. (2018) stated in a Gaia DR2 accompa-
nying paper that a suboptimal computation affected the mean
magnitude standard deviation given in Gaia DR1 and Gaia
DR2 (and revised in Gaia DR3; Riello et al. 2021), which may
have affected the selection strategy of Belokurov et al. (2017)
with only candidate RR Lyrae stars. We show here that a flow
of RC stars (see Fig. 16) confirms a bridge composed of an
evolved population, and it would have a similar trajectory to that
of Belokurov et al. (2017). It is beyond the scope of this paper,
however, to make a quantitative comparison.

In addition to the Bridge, de Vaucouleurs & Freeman (1972a)
showed a wealth of substructure in the outskirts of the Magel-
lanic Clouds in the 1970s. More recently, new shells, plumes,
and streams have been detected using different surveys or pho-
tometric techniques (e.g. Pieres et al. 2017; Belokurov & Erkal
2019; Martínez-Delgado et al. 2019). To search for substructures
around the Clouds, we adopted a more restrictive selection using
the RGB and RC subsamples. First, we corrected for foreground
extinction using Schlegel et al. (1998) (with the correction from
Schlafly & Finkbeiner 2011), and we adopted a (Cardelli et al.
1989) extinction curve with RV = 3.1. This correction is accu-
rate in the outskirts of the Clouds because there is little internal
extinction from the LMC and SMC themselves. Second, we
built a tighter colour-magnitude selection polygon based on the
extinction-corrected RC and RGB samples; in this case, we are
stricter in the colour range allowed for these two evolutionary
phases as in the RC and RGB samples described in Sect. 2. Addi-
tionally, we applied a magnitude cut of G < 19 and selected only

stars with a parallax smaller than 0.15. This led to a sample of
stars that is less strongly affected by Milky Way foreground, thus
allowing us to explore faint substructures in the outskirts; we call
this selection LMCout.

In Fig. 17 we show a star count map of the Magellanic Cloud
region to highlight the substructure found using Gaia EDR3. We
also annotate a few notable features and show the measured total
dispersion and velocity vector map (velocities and dispersion
were computed using LMC-centred coordinates). The northern
tidal arm (NTA) reported initially by Mackey et al. (2016) is vis-
ible in the figure, and this structure is also visible as a velocity
low-dispersion feature, with velocities consistent with the LMC
main body. A southern tidal arm (STA) (Belokurov & Erkal
2019) is also evident, which shows indications of being dynam-
ically cold, like the NTA, and the velocities are consistent with
those of the LMC. The STA appears to be connected with the
SMC through a narrow elongation east of the SMC. The SMC
northern overdensity (Pieres et al. 2017) is also evident, and a
spatially thinner structure is also seen to be connected to it. In
addition to these known substructures, we find a faint overden-
sity east of the LMC that is visible in the velocity field and
density map. We also see a similar structure, but more conspic-
uous, on the western side of the LMC, close to yLMC = 0. We
note, however, that the features observed near yLMC = 0 coincide
with a region of elevated number of Gaia transits. The eastern
feature is also prominent in near-infrared maps from the VISTA
Hemisphere Survey (El Youssoufi et al. 2020, priv. comm.).

7. Spiral arms in the Large Magellanic Cloud

The LMC is a prototype of barred Magellanic spiral galaxies
that are characterised by an off-centre bar and one promi-
nent spiral arm. The dynamical interactions between the LMC
and the SMC (e.g. Besla et al. 2016) are probably responsi-
ble for this and other spiral features associated with the galaxy
(de Vaucouleurs & Freeman 1972a). A comprehensive study of
the morphology of the LMC based on near-infrared observations
is given in El Youssoufi et al. (2019), where high spatial res-
olution maps (0.03 deg2) of stellar populations with different
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median ages show at least four distinct spiral features. These
arms emerge predominantly from the ends of the bar, one in
the east extending to the south, and three in the west, one of
which extends north, one north-west (the most prominent arm),
and the third extends south. The arms are well traced by stellar
populations younger than a few million years, while old stellar
populations instead show external features that may be asso-
ciated with a ring-like structure (e.g. Choi et al. 2018). The
long-term stability of the prominent spiral arm was studied by
Ruiz-Lara et al. (2020) using deep optical photometry to derive
the star formation history throughout the galaxy. This structure
could have formed a few million years ago at the time when the
Magellanic Stream and the Leading Arm formed as well from
a close encounter between the LMC and the SMC. The authors
concluded that the distribution of HI gas and the coherent star
formation at the location of the arm support this scenario. In
this section we show that the spiral structure of the LMC can be
highlighted and studied with the Gaia EDR3 data.

7.1. Basic properties as a function of evolutionary phase

We discuss here the appearance of the spiral arms of the LMC
using the evolutionary phase samples as proxies for age-selected
samples (see Sect. 2.3). In Fig. 18 we show the maps obtained
in the LMC for these samples. The maps were constructed con-
sidering a region 20× 20 deg2 around the galaxy, applying a
Gaussian smoothing and sampling with 400× 400 pixels, each
with a dimension of 3′ × 3′. Each map was normalised to the total
number of objects. The figure shows that the main structures of
the LMC, that is, the bar and the spiral arms, are clearly outlined
by BL stars, objects with ages in the range of 50–350 Myr. We
therefore chose this population as a reference for the comparison
of the spiral structure(s) in other stellar populations of different
ages.

Because the differential maps of the BL with respect to
Young 1 andYoung 2 were similar, we merged these two evo-
lutionary phases into a single sample. We refer to this merged
sample as the young population of stars with age <400 Myr,
which is shown in the middle top panel of Fig. 18. Similar con-
siderations applied to the RC, RGB, and RRL populations, all
older than 1 Gyr, and we refer to these merged evolved pop-
ulations as the old population. The relative differential map is
shown in the lower panel of Fig. 18. Finally, the differential
map with respect to the Young 3 population (MS stars with ages
<1−1.5 Gyr) is shown in the middle panels of the same figure.

The analysis of the top panel in Fig. 18 reveals that the young
population is more concentrated around the bar and an inner
northern arm, showing a clumpy structure. The residual map
with respect to the BL shows that this latter population has an
excess of stars along the bar, in the spiral feature at the end of
the bar, and in an outer north-east arm (referred to as the eastern
arm hereafter).

The comparison of BL andYoung 3 populations shows that
the two populations are distributed in a very similar way, even
though the BL still displays an excess along the bar, especially
in the eastern region, where it shows a concentration superior to
any other population in the LMC (∆RA,∆Dec∼−3◦,−1◦). The
older populations of the LMC have a homogeneous distribution;
the star density decreases smoothly from the centre to the out-
skirts of the LMC. The lower density along the bar is caused by
the Gaia incompleteness in this crowded region. The difference
with the BL population again shows an excess of stars along the
bar and the above-mentioned clump in the eastern bar, but these
features might in part be justified by the incompleteness of old

populations in the more central region of the bar. In contrast,
the excess of BL stars in the inner and outer arms appears to be
genuine.

7.2. Strength and phase of the density perturbations

To be more quantitative on the effect of the bar and spiral struc-
ture on the stellar density, we performed discrete fast Fourier
transforms (FFTs) of density maps of the BL and the combined
samples. For this purpose, we again used 400× 400 pixels maps,
but at 0.04◦ sampling, as in Sect. 5.2. This allowed us to estimate
the properties of any asymmetries in the density maps.

Because the apparent dominant modes of perturbations are
the bar (second-order perturbation), the inner spiral structure
starting at the end of the bar, and the eastern outer arm (first-
order perturbation), we present results up to the second-order
harmonics, although the discrete FFTs yield as many orders
as existing pixels in a vector. Therefore the analytic form
equivalent to the discrete FFT applied to a density map is
Σ(R, φ) =

∑
k Σk(R) cos k(φ − φk(R)), where k is an integer, φ the

azimuthal angle in the plane of the LMC with the reference
φ= 0 chosen aligned to the photometric major axis of the disc
(Ωphot), Σ0 the axisymmetric surface density, and Σk and φk are
the amplitude and phase of the kth asymmetry.

We measured Ωphot by isophotal ellipse fitting to the stellar
surface density map of the combined sample. To avoid confusion
with Sect. 5, which gives radii in a kinematic frame oriented
along the kinematic position angle of Ω = 310◦, we refer to
Rphot as the galactocentric radius measured in the photometric
frame, which is aligned on Ωphot. With this, we find the bar
semi-major axis at a position angle of ∼105◦, and define the
one for the disc as that of the average value in the radial range
Rphot = 3.5−7.5 kpc, which is Ωphot ∼ 10◦. The photometric major
axis therefore differs by ∼60◦ from the kinematic major axis. A
similar discrepancy has been reported in van der Marel et al.
(2002).

Figure 19 shows the results of the Fourier transforms. We
restrict the analysis to Rphot ≤ 7.5 kpc. The axisymmetric density
profile of BL stars is more centrally peaked than that of the whole
sample. At the peak of Σ1 and Σ2, the strengths of the lopsided
outer spiral arm (k = 1) and bisymmetry (k = 2) reach 60% and
40% the amplitude of the axisymmetric mode for the combined
sample, and 48 and 40% for the BL stars. At Rphot > 5.5 kpc,
the strength of the lopsided spiral is similar to the axisymmet-
ric value. The lopsidedness and bisymmetry perturbations are
therefore not negligible in the LMC.

Both samples show that the dominant perturbation at low
radius is the bisymmetric mode (Rphot < 3.5 kpc for BL stars,
Rphot < 2.5 kpc for the combined stars), while the lopsided mode
dominates at larger radii. In the inner kpc, the Σ2 profile of the
whole sample presents a dearth of stars that is lacking in the den-
sity map of younger stars. This is caused by the incompleteness
of Gaia in this crowded region of the LMC disc. This dearth of
stars also affects the inner profile of φ2 for all stars as a central
phase dip.

The orientation of the inner k = 2 perturbation does not
change much in the inner disc, with a bar oriented with a phase
angle of 1.6π rad (modulo π) for both samples. The k = 2 spi-
ral structure of BL stars has a phase angle of 1.4π rad (Rphot >
3 kpc), while that for the combined sample smoothly increases
to ∼2.1π rad for Rphot = 3.5−5.2 kpc, then remains constant out
to the last radius. The phase angles of the lopsided mode contin-
uously vary as a function of radius, and the two stellar samples
present different shapes of φ1. The similar shape of φ1 and φ2 at
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Fig. 18. Differential density maps for different stellar populations in the LMC. Left column: density map in the BL evolutionary phase. Middle
panels from top to bottom: density maps of the young phase, i.e. stars with age <400 Myr, Young 3 phase, i.e. main- sequence stars with age
1−1.5 Gyr, and old phase, i.e. stars with age >1 Gyr. Right column: normalised difference between the left and middle panel maps, shown with a
logarithmic stretch.

Rphot > 2.5 kpc for the combined sample of stars is remarkable,
and the amplitudes only differ by less than 0.2π. The outer spi-
ral structure in the LMC combined sample is thus made of two
modes that are tightly coupled.

7.3. Across and along streaming motions in the eastern
spiral arm

The LMC velocity fields have been shown to exhibit vari-
ations stemming from the juxtaposition of an observational
sawtooth-like pattern inherent to Gaia, and others likely caused
by intrinsic perturbations of the gravitational potential of the
LMC (Sect. 5.2). Here we illustrate in a simple way the varia-
tion of vφ and vR along and across the dominant outer k = 1 spiral
arm to the east in the combined sample.

To isolate the effects of the outer arm better, we only consid-
ered the region where the inner k = 2 mode becomes negligible,
that is, all pixels located at Rphot > 3.8 kpc (Fig. 20). We built
azimuth-radius diagrams of the stellar density and tangential and
radial velocities by calculating average star counts, vφ and vR in
bins of 5◦ size in azimuthal angle, and 63 pc in radius (Fig. 21).
The horizontal variation is thus a good proxy of the streaming of
vφ and vR along the eastern spiral arm, while the vertical axis is
a good proxy for the velocity variation across the spiral arm.

The density of the spiral arm is strongly asymmetric as a
function of azimuthal angle, caused by its lopsided nature. The
uppermost isocontour of density (mean star count of ∼20 stars)
approximately delineates the maximum radial extent of the spi-
ral arm, which extends to Rphot ∼ 7 kpc along the photometric
major axis (φ= 0◦) to Rphot ∼ 5.4 kpc (φ= 240◦). The highest
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Fig. 20. Stellar density map of the combined sample of the LMC. The
lopsided eastern spiral arm is located beyond Rphot = 3.8 kpc (shown as
an ellipse). The perpendicular axes show the orientation of the photo-
metric major and minor axes (Sect. 7.2). The density scale shown by the
colour bar is logarithmic; the values indicate the star count in pixels.

densities around φ= 300◦ at lower radii correspond to regions
of the LMC that are part of the inner spiral structure, thus not
strictly belonging to the outer lopsided eastern arm.

Along the horizontal axis, vφ is maximum in higher den-
sity regions and minimum in lower density regions. When we
consider pixels below the outermost contour, the azimuthal
streaming in the arm is relatively constant (60 . vφ . 90 km s−1).
An exception to this occurs at R∼ 6 kpc owing to the lower values
of vφ around φ= 100◦. As the pixels above the uppermost contour
likely probe stars beyond the spiral arm, the difference in colours
between pixels below (redder) or above (bluer, vφ < 60 km s−1)

the uppermost contour clearly shows the effect of the arm on vφ
in the azimuthal direction. The radial velocity also varies sig-
nificantly with azimuth. It is stronger in higher density regions
around φ= 50◦ and φ= 200◦ (vR > −10 km s−1) and in lower
density regions for 100 < φ < 180◦, but with inward motions
(vR < −10 km s−1). The noise in vR is higher outside the arm at
large radii.

Along the vertical axis, vφ is observed to decline with radius
across the spiral arm, and the decrease is not complete at the
same rate for different azimuthal angles. This implies a wide
diversity of shapes and amplitudes in the LMC rotation curve
as a function of azimuth. We have observed this trend in the vφ
map of Sect. 5.2. The radial velocity also varies across the spi-
ral arm, but there appears to be no clear rule, unlike for vφ. For
example, the peak of vR at φ= 50◦ occurs at Rphot = 5.5 − 6 kpc,
thus beyond the location of the density peak (Rphot . 4.5 kpc).
However, at an angle of for instance φ= 200◦, the opposite
is observed, with larger vR for higher density regions of this
azimuthal angle (Rphot . 4.5 kpc).

8. Conclusions

Using the new Gaia EDR3 data, we studied the structure and
kinematics of the Magellanic Clouds with a new basis. The
increased completeness and precision of the new release have
allowed us to improve upon previous results using Gaia DR2,
although (by design, because this is just a demonstration paper)
we have certainly barely scratched the potential of the new data
for the study of the Clouds.

In Sect. 3 we compared the Gaia DR2 and Gaia EDR3 data
in the region of the LMC and SMC, showing the improvement
in the astrometry and photometry from one release to the other.
Not only the precision has increased, but the systematic effects
are significantly reduced. The reduced crowding effects in the
photometry are particularly relevant for the central regions of the
Clouds.

We have explored the use of the astrometric data for the
determination of the 3D structure of the LMC. Our attempts
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Fig. 21. Streaming motions across and along the eastern spiral arm of the LMC. The azimuth-radius diagrams show the stellar density (top panel),
the tangential velocity (middle panel), and radial velocity (bottom panel). Contours represent the stellar density shown in the upper panel.

to use Bayesian modelling to reconstruct the geometry of the
system have shown that despite the significant improvements in
Gaia EDR3, the systematic effects still present on the parallaxes
(the regional zero-points discussed in Lindegren et al. 2021b)
distort most of the signal of the 3D structure of the LMC (in
the astrometry), and that there is not enough information in the
summary statistics used by our approximate Bayesian method to
simultaneously infer the local parallax zero-point variations and
the geometry of the LMC. However, we do not rule out that it
may be possible to determine this geometry by adding additional
external restrictions and/or finding an optimal way to include
additional information of the density distribution of the stars in
the LMC area.

Our kinematic modelling of the proper motions has allowed
us to derive radial and tangential velocity maps and global pro-
files for the LMC. This is the first time to our knowledge that
the two planar components of the ordered and random motions
are derived for multiple stellar evolutionary phases in a galactic
disc outside the Milky Way. We show that younger stellar phases
rotate faster than older ones. This is a clear effect of the asym-
metric drift on the stellar kinematics. We have also been able to
find the rotational centre of the stars in the LMC and showed that
is significantly offset from the rotational centre of the H I gas.

On the other hand, we showed that the radial velocity is
mostly negative in the inner 5 kpc, and inward radial motions are
stronger in the bar region for younger stars. This velocity varies
strongly as a function position with respect to the bar, and there-
fore to some extent reflects streaming motions along the bar. We
observed asymmetric radial and tangential motions in the disc,
such as those across and along the large-scale outer spiral arm of

the LMC, in which the tangential velocity is larger in higher stel-
lar density regions of the arm, and lower at lower density. There
appears to be no clear rule in the streaming of the radial motion
as a function of the position in the arm, however.

We showed that the radial and tangential random motions
decrease from the disc centre out to the outskirts, but not at the
same rate in the evolutionary phases. Older stars lie in a dynami-
cally hotter disc than younger stars. While we have found higher
velocity dispersions aligned with the bar in all stellar phases for
both components, we also found evidence that only the radial
component of more evolved stars exhibits a central feature of
higher amplitude, which is oriented perpendicular to the bar.

Our analysis of the stellar density maps has shown more con-
centrated and clumpier distributions for younger stars in the bar
and inner spiral structure(s) than older disc stars. Analysis of
Fourier harmonics of density maps also revealed that the inner
disc is perturbed predominantly by bisymmetries, the bar and
spiral arms, while the outer disc is perturbed by a dominant lop-
sided spiral arm. The peak strengths of these perturbations can
be as high as 40–60% of the axisymmetric amplitude in the inner
region, and higher in the disc outskirts for the lopsidedness.

Finally, we carried out a specific study of the Magellanic
Bridge. Using two different evolutionary phases (the young and
RC samples), we were able to trace the density and velocity
flow of the stars from the SMC towards the LMC following the
Bridge. We showed that it apparently wraps around the LMC,
connecting with the young southern arm-like structure of the
galaxy. The quality of the Gaia EDR3 proper motions also
allowed us to confirm the bridge in the RC evolutionary phase,
at a position slightly shifted from that of the young evolutionary
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phase. Additionally, we were able to study the outskirts of both
Magellanic Clouds and detected some well-known features, such
as the north and south tidal arms of the LMC and the northern
overdensity of the SMC. Our data also suggests a faint overden-
sity east of the LMC, which has only recently been reported with
the help of near-infrared maps (El Youssoufi, priv. comm.).
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Appendix A: Sky plots of the samples used
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Fig. A.1. Source density in the two circular areas with a radius of 20◦
and 11◦, centred on the LMC and SMC. Only the 12.4M sources selected
as potential members are included, and the criteria are therefore slightly
different for the two circles.
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Fig. A.2. Mean G magnitude in the LMC and SMC.

This appendix provides some additional figures complementary
to the main text, collected here to avoid cluttering the main body
and facilitate reading of the paper.

First, in Fig. A.1 we illustrate the joint sky distribution of
our two (LMC and SMC) basic clean samples. The selection
radius for both clouds is clearly visible. Following this map,
the next figures show the distribution of the mean G magnitude
(Fig. A.2), mean GBP −GRP (Fig. A.3), the variation of this mean
between Gaia DR2 and Gaia EDR3 (Fig. A.4), and the mean
parallax (Fig. A.5).

Next, we provide plots of the sky distribution for each one of
our evolutionary phase samples; the plots show that each sample
traces different structures of the clouds. Figure A.6 contains the
plots for the LMC and Fig. A.7 those for the SMC.
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Fig. A.3. Mean colour, GBP −GRP in the LMC and SMC.
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Fig. A.4. Mean change in colour, GBP − GRP, in Gaia DR2 and
Gaia EDR3 for sources in the LMC and SMC. Positive values mean
that the sources are now redder.
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Fig. A.5. Mean parallax for sources in the LMC and SMC. No
corrections have been applied to the parallaxes.
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Fig. A.6. Sky density plots for the complete LMC clean sample and the different evolutionary phase subsamples.
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Fig. A.7. Sky density plots for the complete SMC clean sample and the different evolutionary phase subsamples.

Appendix B: LMC velocity maps and profiles

We include here several figures that complement the analysis of
the kinematics of the LMC presented in Sect. 5. Figures B.1–
B.4 present the velocity maps of the LMC (azimuthal and radial

velocities, mean values, and dispersion) for the eight evolution-
ary phases and the combined sample of stars. Finally, Fig. B.5
presents the velocity profiles of the LMC (as a function of
the distance to its centre) traced using the different populations
defined by our evolutionary phases.
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Fig. B.1. Azimuthal velocity maps vφ of the LMC for the combined sample (main panel) and the various evolutionary phases. The linear velocity
scale shown by the colour bar in the main panel is the same in all subpanels and has been chosen to highlight velocity patterns better.
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Fig. B.2. Radial velocity maps vR of the LMC for the combined sample (main panel) and the various evolutionary phases. The linear velocity scale
shown by the colour bar in the main panel is the same in all subpanels and has been chosen to highlight velocity patterns better.
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Fig. B.3. Azimuthal velocity dispersion maps σφ of the LMC for the combined sample (main panel) and the various evolutionary phases. The
linear velocity scale shown by the colour bar in the main panel is the same in all subpanels and has been chosen to highlight velocity patterns
better.

A7, page 33 of 35

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/202039588&pdf_id=0


A&A 649, A7 (2021)

−505

−5

0

5

y [
de

g]
RRL

−505

−5

0

5

AGB

−505

−5

0

5

RGB

−7.5−5.0−2.50.02.55.07.5
−8

−6

−4

−2

0

2

4

6

8

y [
de

g]

0 10050

COMBINED STARS

−505

−5

0

5

RC

−505

−5

0

5

BL

−505
x [deg]

−5

0

5

y [
de

g]

Young1

−505
x [deg]

−5

0

5

Young2

−505
x [deg]

−5

0

5

Young3

Fig. B.4. Radial velocity dispersion maps σR of the LMC for the combined sample (main panel) and the various evolutionary phases. The linear
velocity scale shown by the colour bar in the main panel is the same in all subpanels and has been chosen to highlight velocity patterns better.
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Fig. B.5. Velocity profiles of the LMC. Rotation curve (vφ), tangential velocity dispersion (σφ), radial velocity (vR), and radial velocity dispersion
(σR) from left to right for each stellar evolutionary phase (from top to bottom). Velocities are in km s−1. Bottom row: result for the combined sample.
The blue shaded areas correspond to the uncertainties.
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