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The Delaunay triangulation of a set of points P on a hyperbolic surface is the projection of the Delaunay triangulation of the set P of lifted points in the hyperbolic plane. Since P is infinite, the algorithms to compute Delaunay triangulations in the plane do not generalize naturally. With the aid of a Dirichlet domain, we exhibit a finite set of points that captures the full triangulation.

Indeed, we prove that an edge of a Delaunay triangulation has a combinatorial length (a notion we define in the paper) smaller than 12g -6 with respect to a Dirichlet domain. On the way, we prove that both the edges of a Delaunay triangulation and of a Dirichlet domain have some kind of distance minimizing properties that are of intrinsic interest.

The bounds produced in this paper depend only on the topology of the surface. They provide mathematical foundations for hyperbolic analogs of the algorithms to compute periodic Delaunay triangulations in Euclidean space.

Introduction

A hyperbolic surface is a closed and orientable topological surface equipped with some hyperbolic metric of constant curvature -1. Recently, motivated in part by applications in other sciences and its ubiquity, there has been an increased effort to understand the hyperbolic geometry of surfaces from a computational geometry point of view. A fundamental question addresses the computation of Delaunay triangulations on hyperbolic surfaces. The classic edge flip algorithm of Lawson [START_REF] Lawson | Software for C 1 surface interpolation[END_REF] computing Delaunay triangulations in the Euclidean plane was recently extended to hyperbolic surfaces [START_REF] Despré | Flipping geometric triangulations on hyperbolic surfaces[END_REF]. However, robust and efficient software to compute Delaunay triangulations on hyperbolic surfaces, and particularly triply-periodic minimal surfaces presented below, does not exist to date, as far as we know. A primary motivation for the work in this paper is to attempt to help fill this gap by establishing fundamental theoretical results in the hyperbolic case, similar to those that have led to the only such software for flat quotient spaces [START_REF] Caroli | 3D periodic triangulations[END_REF][START_REF] Kruithof | 2D periodic triangulations[END_REF][START_REF] Caroli | 3D periodic triangulations[END_REF][START_REF] Osang | Generalizing CGAL periodic Delaunay triangulations[END_REF]. Our results yield structural insights of independent interest into the relationship between different representations of hyperbolic surfaces and Delaunay triangulations on them.

Motivation -Hyperbolic surfaces in other sciences and nature.

One of the motivations for this paper is the hyperbolic surface associated to the family of triplyperiodic minimal surfaces (TPMS) that contains the gyroid, the primitive, and the diamond surface. A TPMS is a minimal surface in R 3 that is invariant under three linearly independent translations, i.e. a rank 3 lattice L 3 [40]. To associate a closed surface to a TPMS, one considers the TPMS as the lift to R 3 of the closed surface S g of genus g in the 3-torus T 3 = R 3 /L 3 . This corresponds to gluing the TPMS along the equivalent faces of a translational domain for L 3 . It turns out that the surface S g is always intrinsically hyperbolic [START_REF] William | The theory of triply periodic minimal surfaces[END_REF]. The gyroid, the primitive, and the diamond TPMS are arguably the most prominent and simple examples of TPMS [START_REF] Schröder-Turk | Bicontinuous geometries and molecular self-assembly: comparison of local curvature and global packing variations in genus-three cubic, tetragonal and rhombohedral surfaces[END_REF] and have received considerable attention in the mathematical, physical, chemical and biological as well as interdisciplinary literature [41, [START_REF] Jacob | Hierarchical self-assembly of a striped gyroid formed by threaded chiral mesoscale networks[END_REF][START_REF] Hyde | Ab-initio construction of some crystalline 3D Euclidean networks[END_REF][START_REF] Stephen | The Language of Shape[END_REF][START_REF] Deng | Three-dimensional periodic cubic membrane structure in the mitochondria of amoebae Chaos carolinensis[END_REF][START_REF] Robins | Tile-transitive tilings of the Euclidean and hyperbolic planes by ribbons[END_REF]. More recently, TPMS have also found a role in the materials sciences as a scaffold for crystallographic structures [START_REF] Myfanwy | Periodic entanglement I: networks from hyperbolic reticulations[END_REF][START_REF] Myfanwy | Periodic entanglement II: weavings from hyperbolic line patterns[END_REF], leading to both new mathematical formalisms [START_REF] Kolbe | Isotopic tiling theory for hyperbolic surfaces[END_REF][START_REF] Kolbe | Enumerating isotopy classes of tilings guided by the symmetry of triply-periodic minimal surfaces[END_REF] and a database of such structures [16]. These three TPMS are closely related to each other [40, Section 3.1] [START_REF] Große-Brauckmann | The gyroid is embedded and has constant mean curvature companions[END_REF] and have the same underlying hyperbolic surface S 3 , of genus 3, embedded in T 3 . Figure 1 shows a region of H 2 in the Poincaré disk model and a portion of the diamond surface in R 3 , also known as D-surface, illustrating how TPMS are covered by H 2 . The angles at which triangles meet are the same in R 3 as they are in H 2 , owing to the fact that the covering is conformal.

The flat case.

The computation of Delaunay triangulations in flat tori, which can be seen equivalently as periodic triangulations in the Euclidean space, was addressed by Dolbilin and Huson [START_REF] Dolbilin | Periodic Delone tilings[END_REF], who provided a first cornerstone for the algorithms and cgal packages handling the square/cubic periodicity [START_REF] Caroli | Computing 3D periodic triangulations[END_REF][START_REF] Caroli | 3D periodic triangulations[END_REF][START_REF] Kruithof | 2D periodic triangulations[END_REF]; the algorithms were generalized later [START_REF] Caroli | Delaunay triangulations of closed Euclidean d-orbifolds[END_REF]. Their work was used again for the recent and, as far as we know, only implementations for general periodic point sets in the Euclidean plane (or three-dimensional space) [START_REF] Osang | Generalizing CGAL periodic Delaunay triangulations[END_REF]. The idea is as follows.

Let P be a locally finite periodic point set in the plane E 2 . A finite set P f can be defined, such that the infinite Delaunay triangulation DT P can be deduced from the Delaunay triangulation DT P f ; as P f is finite, DT P f can be computed by any classical algorithm. In practice, the periodic set P is generated from a finite set of points in a fundamental domain (defined properly below) of a lattice, which one can assume to be given as a parallelogram.

The periodicity is obtained by the action of the group of translations, isomorphic to Z 2 , generated by the two vectors corresponding to the sides of the parallelogram.

Figure 2 shows the special case when the infinite set P is obtained from a unique point a; all blue points are images of a under the action the group of translations. We observe that there cannot exist a general bound on the size of P f for an arbitrary choice of parallelogram/translations. Intuitively speaking, this is because there is no bound on how stretched a fundamental domain F can appear for the same lattice points. For ever more long and thin parallelograms, an edge e in the Delaunay triangulation of P may traverse an unbounded number of copies of F, see Figure 3.

However, if choosing as fundamental domain the Dirichlet domain D x of an arbitrary point x, i.e. the Voronoi cell of x in the Voronoi diagram of Z 2 x (Figure 4), then a bound can be proved on the number of copies of D x necessary to account for the endpoints of an edge in a Delaunay triangulation [START_REF] Dolbilin | Periodic Delone tilings[END_REF][START_REF] Osang | Generalizing CGAL periodic Delaunay triangulations[END_REF]. Figure 4 

The hyperbolic case.

It is well-known that a hyperbolic surface S is homeomorphic to the quotient H 2 /Γ of the hyperbolic plane H 2 under the action of a symmetry group Γ of H 2 , i.e. a discrete subgroup of the group of isometries of H 2 . That S is a hyperbolic surface implies that Γ contains only orientation preserving isometries and has no fixed points in H 2 . The group Γ can be naturally identified with the fundamental group π 1 (S) of S (after choosing base points appropriately). The symmetry group is also known as a Non-Euclidean Crystallographic (NEC) group. The universal covering space of S is H 2 , and the projection map π : H 2 → S is a local isometry.

The projection π induces tilings of H 2 by copies of some fundamental domain for Γ. A fundamental domain F for the action of Γ is defined as a closed domain such that ΓF = H 2 and the interiors of different copies of F under Γ are disjoint. We also define an original domain as a (connected) subset F o of a fundamental domain that contains exactly one point of each orbit; then the closure F o of an original domain F o is a fundamental domain. The restriction of π to F o is then a bijection from F o to S [START_REF] Massey | A Basic Course in Algebraic Topology[END_REF].

We use the Poincaré disk model for the hyperbolic plane H 2 [3]. This is a conformal model for H 2 obtained by biconformally mapping H 2 to the interior of the unit disk in E 2 such that the biconformal mappings of the unit disk correspond exactly to the orientation preserving isometries of H 2 . This model is well suited for the study of Delaunay triangulations in H 2 as hyperbolic circles correspond to Euclidean circles, so that the combinatorial structure of a Delaunay triangulation is equivalent to the Euclidean Delaunay triangulation defined by the same set of points [START_REF] Bogdanov | Hyperbolic Delaunay complexes and Voronoi diagrams made practical[END_REF].

Given a finite point cloud P on S, P lifts to a locally finite1 point cloud P in the covering space H 2 . The Delaunay triangulation DT P defined by P in H 2 projects to a triangulation DT P on S, which serves as a definition for the Delaunay triangulation of P on S [START_REF] Deblois | The centered dual and the maximal injectivity radius of hyperbolic surfaces[END_REF][START_REF] Despré | Flipping geometric triangulations on hyperbolic surfaces[END_REF]. We do not assume triangulations to be simplicial complexes in this paper, in contrast to some previous work [START_REF] Bogdanov | Delaunay triangulations on orientable surfaces of low genus[END_REF][START_REF] Iordanov | Implementing Delaunay triangulations of the Bolza surface[END_REF]. In our setting, every finite point cloud on a hyperbolic surface has an associated locally finite Delaunay triangulation [START_REF] Deblois | The centered dual and the maximal injectivity radius of hyperbolic surfaces[END_REF]Cor 5.2][14, Prop 8].

The Dirichlet domain D Γ x of a point x can be defined as in the flat case; we will simply denote it as D x , unless there is an ambiguity. Note, however, that, unlike the flat case, the shape and even the combinatorial structure of a Dirichlet domain depends on the chosen point x (see Figure 5). This is because NEC groups are non-Abelian, in contrast to the above situation in E 2 . Indeed, for any isometry f and two points x and f ( x), there is a relation between the Dirichlet domains: Section 9.4]. The methods to treat the Euclidean case depend crucially on the fact that the involved groups are Abelian, so we need new tools to tackle the problem. 

D Γ f ( x) = f (D f -1 Γf x ) [1,

Notation.

Throughout the paper, we use the same notation as above: S = H 2 /Γ is a (closed orientable) hyperbolic surface; the group Γ is a NEC group with no fixed point; the projection map is π : H 2 → S. We denote objects in H 2 with a tilde, and those on S = H 2 /Γ without; P always denotes a finite set of points on S, and P the corresponding lifted point set in H 2 .

Results.

Let F o denote a fundamental domain (more precisely an original domain, as defined in Section 2). Consider the Delaunay triangulation DT P of the lifted point set P. Some edges are incident to a point in P ∩ F o and a point lying in a translate of F o under an element of Γ. In Section 3, we define the combinatorial length of an edge, which relates to the number of translates of F o an edge traverses. For a general fundamental domain, the combinatorial length is unbounded.

Our main result, stated as Theorem 19 in Section 5, is an explicit upper bound when a Dirichlet domain is chosen as a fundamental domain. The bound is purely topological and depends linearly on the genus of S. Furthermore, we provide a discussion for why an optimal upper bound on the combinatorial length should depend linearly on the genus. We also give bounds on the number of copies of a domain within a given combinatorial distance of that domain and show that this number increases exponentially with the distance.

Our results rely on intersection properties of edges of Delaunay triangulations and Dirichlet domains, studied in Section 4.

To the best of our knowledge, our results are the first of their kind for general hyperbolic surfaces.

Dirichlet domains and Delaunay triangulations

Let us briefly recall a few definitions and basic properties. We refer the reader to textbooks for the background on hyperbolic geometry [START_REF] Ratcliffe | Foundations of Hyperbolic Manifolds[END_REF][START_REF] Thurston | Geometry and Topology of Three-Manifolds[END_REF]. We denote by d H 2 the hyperbolic metric on H 2 . For a locally finite point set P ⊂ H 2 and y ∈ P, we denote the closed Voronoi cell of y by V P The Dirichlet domain D x can also be defined equivalently as

D x = { y ∈ H 2 | d H 2 ( x, y) ≤ d H 2 ( x, Γ y) } = { y ∈ H 2 | d H 2 ( x, y) ≤ d H 2 (Γ x, y) }.
The equality is true since Γ acts as isometries w.r.t. d H 2 . In particular, we see that

z ∈ D x ⇐⇒ x ∈ D z . ( 1 
)
Dirichlet domains and more generally Voronoi cells in H 2 and E 2 are bounded by geodesics, which is why they are also known as Dirichlet and Voronoi polygons, respectively. A Dirichlet domain D x is a fundamental domain for Γ and since S is compact, D x is also compact. Therefore, D x has a finite number of edges and the tesselation ΓD x associated to D x , called the Dirichlet tesselation w.r.t. x, is a locally finite tesselation.

A Delaunay triangulation DT P of a locally finite point set P ⊂ H 2 is combinatorially a Euclidean Delaunay triangulation with vertex set P, but with geodesic edges [START_REF] Bogdanov | Hyperbolic Delaunay complexes and Voronoi diagrams made practical[END_REF]. Note that the circumcircles of faces in DT P are all compact [START_REF] Deblois | The Delaunay tessellation in hyperbolic space[END_REF][START_REF] Despré | Flipping geometric triangulations on hyperbolic surfaces[END_REF]. Though we use the term triangulation, we also consider the case where more than three cocircular points form a non-triangulated polygonal face. In such a case, we observe that such a face has vertices on a circle and is thus geodesically convex in H 2 (since any interior angle is less than π). We can thus triangulate it arbitrarily in a Γ-invariant way. The Delaunay triangulation DT P of a finite point set P ⊂ S on a surface S is defined as the projection, to S, of the Delaunay triangulation in H 2 of the lifted point set P := π -1 (P). Let us also recall the following result: When a fundamental domain F is a polygon, its edges are identified pairwise under the action of Γ. We fix one representative of each equivalence class of open edges of F under the action of Γ to obtain a set E of edges. We also choose one representative of each vertex orbit to obtain a set V of vertices. Let int(M ) denote the interior of a set M . Definition 3. Let F ⊂ H 2 be a polygonal fundamental domain for Γ. An original domain F o associated to F is defined as a subset of F consisting of int(F) ∪ E ∪ V . Special cases of Definition 3 have been considered in the literature [START_REF] Caroli | Delaunay triangulations of closed Euclidean d-orbifolds[END_REF][START_REF] Iordanov | Implementing Delaunay triangulations of the Bolza surface[END_REF].

Combinatorial length

The tiling of H 2 formed by fundamental domains and its copies under Γ can be decomposed into layers, giving rise to a combinatorial notion of distance associated to a tiling:

Definition 4. Let F ⊂ H 2 be a polygonal fundamental domain for Γ. Let x be a point in a fixed original domain F o . Consider the set {F i 1 } i of nontrivial copies, under the action of Γ, of F with F i 1 ∩ F = ∅. Each F i 1 corresponds to a nontrivial f i 1 ∈ Γ such that f i 1 F o ⊂ F i 1 . We call N 1 := i f i 1 F o the first neighborhood layer of F o . For a point y ∈ N 1 , the combinatorial distance d c Fo ( x, y) from x to y is equal to 1. We repeat this process inductively. Consider all copies {F i n } i of F such that F i n ∩ F j n-1 = ∅ for some i, j but such that F i n is not contained in any mth neighborhood layer N m for m ≤ n -1. Each F i n corresponds to a nontrivial f i n ∈ Γ such that f i n F o ⊂ F i n .
The nth neighborhood layer is defined as

N n = i f i n F o . The combinatorial distance from x to a point y ∈ N n is d c Fo ( x, y) = n. The combinatorial length d c Fo ( e)

of a geodesic segment e designates the combinatorial distance between its endpoints. The (maximal) combinatorial length of a triangulation T w.r.t. F o is d c

Fo (T ) = max x∼ y d c Fo ( x, y), where x ∼ y if they are joined by an edge in the triangulation.

Remark that two different neighborhood layers have empty intersection.

Since F is compact, the combinatorial length of a geodesic segment e is finite if and only if e crosses only a finite number of copies of the fundamental domain F. In particular, since a Dirichlet tesselation is locally finite, the combinatorial length of a triangulation with locally finite point set and finite vertex degrees, such as the Delaunay triangulation, is always finite. Assume that the tesselation induced by F and Γ features only vertices of degree 3, which is the generic case [START_REF] Beardon | The Geometry of Discrete Groups[END_REF]Theorem 9.4.5]. Then the combinatorial distance between points is equal to the graph distance in the 1-skeleton of the dual triangulation, between the copies of the original domain F o that the points lie in.

Let us look back at our objective, as described in the introduction. Using an original domain F o , DT P can be reconstructed by considering the points P ∩ F o and the edges in DT P that connect to these. One question is how many fundamental domains an edge can intersect. Unfortunately, as in the flat case above, there is no bound on this number of intersections (Corollary 23 in Appendix A), which motivates the use of Dirichlet domains.

The following lemma generalizes a result known in the flat case [START_REF] Dolbilin | Periodic Delone tilings[END_REF]. In particular, when 

P = Γ x,
C ∆ . However, if ω ∆ is contained in int(V P y ) for some y = x, then d H 2 (ω ∆ , y) < d H 2 (ω ∆ , x), i.e. y ∈ int(D ∆ ), in contradiction to P ∩ int(D ∆ ) = ∅.

Half-minimizers

At the heart, our approach is based on the fact that two paths that minimize the distance between points cannot intersect too many times. Edges of a Delaunay triangulation or of a Voronoi diagram do not generally have this feature, but they do have related properties. Definition 6. A distance path between two points on a surface S is a path, i.e. the image of a continuous map from [0, 1] to S, that has the minimum length out of all paths on S with the same endpoints. We also call a lift c in H 2 of a distance path c in S a distance path.

A distance path γ is necessarily a geodesic on S, but in general geodesics only locally minimize distances and are not distance paths. Furthermore, the property of being a distance path is inherited by subarcs. A distance path is also necessarily simple.

Definition 7.

A path c from x to y ∈ S is a half-minimizer if it is the concatenation of at most two distance paths. We call the point m where the two distance paths join a half-point of c. We also call a half-minimizer in H 2 the lift of a half-minimizer in S.

A half-minimizer is smooth except that it may have a kink at the half-point m. If there is such a kink then m is uniquely defined, otherwise this is not necessarily the case.

Let us study intersection properties of distance paths or half-minimizers. The proofs of the following two lemmas can be found in Appendix B. Lemma 8. Two distinct distance paths on S that do not have a subarc in common cannot intersect each other more than once in their interior. If an intersection occurs at an endpoint, then there cannot be an intersection in the interior. Moreover, a distance path is necessarily simple.

Note that two distance paths can still share the same two endpoints.

Lemma 9. A half-minimizer can intersect a distance path at most 2 times, or the halfminimizer and the distance path have a common subarc.

We now show that the edges of Delaunay triangulations and Dirichlet domains are either half-minimizers or isotopic to a half-minimizer. Lemma 10. Let x be a point in H 2 . For any point y in D x , the geodesic segment γ that joins x to y projects to a distance path in S. Conversely, if a geodesic γ from x = π( x) to y is a distance path on S, then the lift γ of γ based at x is contained in D x .

Proof. As D x is convex, a geodesic γ between x and y ∈ D x is contained in D x . Assume, for the sake of contradiction, that there is a simple geodesic γ on S joining x = π( x) and y = π( y), shorter than γ = π( γ). Since geodesics connecting points are uniquely determined by their endpoints in their homotopy class in S [6, Theorem 1.5.3], γ is not homotopic to γ. So, the lift γ of γ based at x is not equal to γ and therefore joins x to a point y = y, equivalent to y under the action of Γ. Moreover, γ is shorter than γ because π is a local isometry and therefore the length of a geodesic in H 2 and its projection in S are equal [START_REF] Gallot | Riemannian geometry[END_REF]Proposition 2.109], a contradiction.

For the converse statement, simply observe that if the endpoint y of γ was not contained in D x , then it would be strictly closer to another point x ∈ Γ x. This contradicts the minimality of γ, by the first part of the proof, since then there is a distance path γ in D x that projects to a distance path γ shorter than γ. Remark 11. A Delaunay edge e is not always a half-minimizer (Figure 7a). Indeed, consider the set Γ x, for a point x ∈ H That c = π( c), if closed, is nontrivial is clear, and simple follows from Proposition 2 for DT P and the fact that c is isotopic to the projection of e. Definition 13. Let e be an edge of either DT P or V P . The edge e is said to be centered if it intersects its dual edge.

The concept of centered edges has been studied before [START_REF] Deblois | The centered dual and the maximal injectivity radius of hyperbolic surfaces[END_REF], restricted to Voronoi edges. Proposition 14. Each centered edge of D x is a half-minimizer and each non-centered edge is a distance path.

Proof. Let e be an edge of D x , with endpoints by a and b, and let D x1 be the other domain in ΓD x that is also incident to e. The group of conformal transformations of the unit disk acts transitively on triples on the boundary of the unit disk, so, we can choose to map the geodesic in H 2 containing e to the real axis by mapping its intersections with the boundary to the points 1 and -1 on this axis. Furthermore, we can assume that the points x and x 1 lie on the imaginary axis.

For any point z ∈ e, the geodesic segments γ z ⊂ D x and ( γ z ) 1 ⊂ D x1 , from x and x 1 to z respectively, together form a half-minimizer, by Lemma 10.

We consider first the case that e is non-centered and assume, without loss of generality, that d H 2 ( a, x) ≤ d H 2 ( b, x). See Figure 8 Consider now the case where e is centered. See Figure 8(Right). Projecting x (and x 1 ) to its nearest point on e, we obtain a point m ∈ e between a and b. We claim that m is a half-point of the half-minimizer e, which will finish the proof. , which shows that the subarc of e from m to b is a distance path. Consider now the disks bounded instead by the dashed circles, centered at x and x 1 , respectively, and passing through a. One deduces, similarly to above, that the cyan dashed circle centered at m passing through a bounds a disk not containing any points of Γ a. Therefore, the subarc of e from m to a is a distance path.

Main result

There are several definitions of convexity on a surface in the literature. We choose the following definition, adapted to our case study.

Definition 15.

A simply connected subset K ⊂ S is convex if for every two points x, y ∈ K, there is a unique distance path in K with endpoints x and y. Proposition 16. A (closed) triangle in S whose edges are distance paths is convex.

Proof. For a triangle ∆ in S, fix a lift ∆ ⊂ H 2 . The triangle ∆ is obviously convex in H 2 ; it contains a unique geodesic joining any two points in it. We will prove that, if the edges of ∆ are distance paths, any such geodesic is also a distance path. Denote the geodesic connecting two points z 1 and z 2 in H 2 by γ z1 z2 .

We first prove that the (unique) geodesics in ∆ from corners to arbitrary points on its edges are distance paths. Denote the vertices of ∆ by x, y, and z. Consider w.l.o.g. the corner y. The edges γ y z and γ y x of ∆ are distance paths so z, x ∈ D y by Lemma 10. Since D y is convex, γ x z ⊂ D y and therefore, again by Lemma 10, there is a distance path from y to any point on the edge γ x z .

Assume that there are two points p 1 , p 2 ∈ ∆ such that γ p 1 p 2 is not a distance path. The geodesic through p 1 and p 2 that is inside ∆ crosses the boundary of ∆ in two points p 1 and p 2 such that the part of the geodesic between p 1 and p 2 contains p 1 and p 2 . This geodesic cannot be a distance path between p 1 and p 2 if its subpath between p 1 and p 2 is not a distance path. For the proof of the proposition, it is therefore enough to show that geodesics in ∆ that connect two points of the boundary are distance paths. So, assume that p 1 ∈ γ x z and p 2 ∈ γ y z , as in Figure 9, and consider the geodesic γ p1 y ⊂ ∆.

Since y is a corner of ∆, γ p1 y is a distance path and therefore the triangle ∆ ⊂ ∆ with vertices p 1 , y, and z is a triangle with distance paths as edges. The geodesic γ p1 p2 connects a corner of ∆ to a point on its edge, so it is a distance path by the first part of the proof.

We can partition a Dirichlet domain into triangles whose projections to S are convex. The notation is illustrated in Figure 10a in the case of a dodecagon. Let { v i } k-1 i=0 , with v k = v 0 , denote the k corners of D x , indexed counter-clockwise, and let s i denote the side with endpoints v i and v i+1 , for i = 0, . . . , k -1. We know by Proposition 14 that s i is a half-minimizer or a distance path; in the first case we denote as m i a half-point of s i ; in the second case we choose an arbitrary point m i in the interior of s i . The two subarcs of s i obtained in this way are distance paths; let us denote them as σ 2i , with endpoints v i and m i , and σ 2i+1 , with endpoints m i and v i+1 , respectively. Denote now as γ z the geodesic segment between x and z for any point z ∈ ∂D x ; by Lemma 10, γ vi and γ mi are distance paths, for i = 0, . . . , k -1. Let us denote the closed triangle formed by x and σ 2i as ∆ 2i and the triangle formed by x and σ 2i+1 as ∆ 2i+1 ; the triangles ∆ j , j = 0, . . . , 2k -1 partition D x . By Proposition 16, the projection ∆ j of each ∆ j on S is convex.

v i v i+1 s i+1 x m i ∆ 2i ∆ 2i+1 v i+2 σ 2i+1 σ 2i ( 

Lemma 17. Let D x be a Dirichlet domain with k edges. The combinatorial length of a distance path with an endpoint in the original domain

(D x ) o is at most k/2.
Before we prove the result, let us observe that a geodesic path γ in H 2 that projects to a path γ on S can be represented as a sequence of geodesic segments in a Dirichlet domain, as illustrated in Figure 10b. Let p ∈ (D x ) o be an endpoint of γ. If γ ⊂ (D x ) o then the sequence is reduced to { γ}. Otherwise, denote as γ 0 the intersection γ ∩ (D x ) o . The path γ exits D x at the intersection point p 1 : { p 1 } = γ ∩ ∂D x . The path γ continues in a Dirichlet domain D x1 . By using the appropriate element of f 1 ∈ Γ, one can map γ ∩ (D x1 ) o back into D x and obtain another geodesic segment γ 1 , which may again exit D x . Repeating this process until we reach the other endpoint of γ yields a collection { γ n } r-1 n=0 of geodesic arcs in D x . If we keep track of the order of the paths, then they project to a sequence {γ n } r-1 n=0 of paths in S whose concatenation corresponds to γ. Note that the geodesic arcs are disjoint in D x if and only if γ projects to a simple path on S. We denote with γ <l the concatenation of the l first arcs γ 0 , . . . , γ l-1 and with γ <l the lift of γ <l to H 2 , starting at p. Observe that γ <r = γ.

Proof. Let γ be a distance path with endpoint p ∈ (D x ) o . We can represent γ by a sequence of subarcs { γ n } r-1 n=0 in D x as above. Assuming that γ consists of more than one segment, every γ n is incident to two points on ∂D x , except possibly γ 0 and γ r-1 .

Observe that since γ is a distance path, the intersection γ ∩ int(∆ j ) is connected for all j. Indeed, if it were not connected, then there is a distance path that connects two connected components of the intersection by the convexity of the triangles ∆ j in S (Proposition 16). This distance path would intersect the distance path γ more than once, which is impossible by Lemma 8. We similarly see that the only way γ ∩ ∆ j is not connected is if γ intersects one triangle in only two points on the boundary, at the start and endpoint of γ. Therefore, aside from the start and endpoint, if γ n intersects a triangle ∆ j for some n, then γ l cannot intersect the same ∆ j for l = n.

Recall the definition of neighborhood layers (Definition 4) and Figure 6b: if after leaving the (red) central Dirichlet domain, a path intersects consecutive sides of Dirichlet domains sharing the same corner of this red domain, then it stays in the blue layer. More generally, if the two endpoints of a segment γ l lie on two adjacent sides of D x , then the combinatorial length d c ( γ <l+1 ) is the same as the combinatorial length d c ( γ <l ). So, as we want to find an upper bound on the combinatorial length of a Delaunay edge, we will assume that the two endpoints of each segment γ n , n = 1, . . . , r -2 lie on non-consecutive sides of D x , so that the combinatorial length of γ is r -1.

Remark now that such a segment γ n , n ∈ {1, . . . , r -2} must intersect at least four triangles ∆ 2j-1 , ∆ 2j , ∆ 2j+1 , and ∆ 2(j+1) for some j, where the indices are taken modulo 2k. (Note that in the special case when γ n passes through a corner of a Dirichlet domain, the number of triangle orbits intersected by γ n is at least 6 as the triangles ∆ j are closed.) There are 2k triangles ∆ j in total, and a triangle cannot be intersected by more than one segment γ n , n ∈ {0, . . . , r -2}. Moreover, γ 0 intersects at least one triangle. Thus, r -2 ≤ (2k -1)/4 = k -1/4, as k = 2k is even. Since r and k are integers, in fact r -2 ≤ k -1, and the combinatorial length r -1 is thus at most k/2.

The previous lemma gives an upper bound, depending only on the genus, in the restricted case where all its edges are distance paths on S. Note that this case corresponds to the framework of previous work [START_REF] Iordanov | Implementing Delaunay triangulations of the Bolza surface[END_REF][START_REF] Bogdanov | Delaunay triangulations on orientable surfaces of low genus[END_REF][START_REF] Osang | Generalizing CGAL periodic Delaunay triangulations[END_REF]. Indeed, the condition there is that each Delaunay edge is smaller than half the length of the smallest noncontractible loop on S; then any path in S joining two points of P not homotopic to a Delaunay edge e between these points is strictly longer than e, which implies that all edges in DT P are distance paths.

Corollary 18. Let S = H 2 /Γ be a genus g hyperbolic surface and D x be a Dirichlet domain for the NEC group Γ. For a set of points P on S, if the edges of DT P are distance paths, then the maximal combinatorial length of edges of DT P in H 2 is at most 6g -3. As a consequence, if the combinatorial length of e were larger than the sum of the combinatorial lengths of two distance paths, then it could not be isotopic to the concatenation of two such paths. However, the projection to S of a Delaunay edge e in H 2 is isotopic to a half-minimizer by Proposition 12. The result now follows directly from Lemma 17.

Proof. The number of edges of a

Corollary 20. Let S = H 2 /Γ be a genus g hyperbolic surface and D x be a Dirichlet domain for the NEC group Γ. For a set of points P on S, the maximal combinatorial length of edges of DT P in H 2 is at most 12g -6.

In light of the discussion below, it seems likely that our linear bound on the combinatorial distance is of the optimal order.

Using our results, we can produce a natural set of lifts of points on the surface that are sufficient for the construction of all Delaunay edges: the union of all domains in the first 12g -6 neighborhood layers. However, this set would also contain points leading to nonsimple geodesics and the number of domains is exponential in the genus. Precise expressions for bounds are given in Appendix C.

Discussion on the optimality of our bounds

We could not exhibit a sequence of Dirichlet domains for which the combinatorial length of Delaunay edges is linear in the genus and indeed, there there are many open questions surrounding the structure of Dirichlet domains for surfaces. However, we can give arguments why such domains should exist.

The boundary of a fundamental domain projects to a graph G on S. General results on the structure of G state that it may be obtained through the following process. Select 2g simple closed curves that cut the surface into a disk and are pairwise disjoint except at a point p ∈ S. Choose a neighborhood of p that intersects the 2g curves in 4g points on the boundary and replace the part of the curves in the neighborhood with an embedded tree T that spans these 4g points. The graph G is the union of a choice of 2g curves and T [31, Theorem 5.1]. Furthermore, any such embedded graph appears, up to homeomorphisms of S, as the edgegraph of some Dirichlet polygon [START_REF] Macbeath | Generic Dirichlet polygons and the modular group[END_REF]Theorem 8.1] for a group of isometries isomorphic to Γ. There are thus no restrictions on the embedded graph, up to homeomorphisms of S, when restricting to fundamental domains that appear as Dirichlet domains for Γ. The most common case is that where every vertex of the Dirichlet tesselation has degree 3, in which case T has 4g -2 vertices, as follows from a computation using the Euler characteristic.

The structure of G is closely related to the arrangement of neighborhood layers around a central domain. Figure 11 shows an example of a vertex of a Dirichlet domain and the tree associated to it. Furthermore, the domain D x shown in Figure 11(left) is a slight perturbation of the domain in Figure 6a. The length of the edges of a Dirichlet domain D x depend continuously on x, so that the edges of the tree can be made arbitrarily small. In particular, the geodesic shown in Figure 11(right) can be made arbitrarily small, while maintaining a combinatorial length of 3. For a related phenomenon occuring in the flat case, see Figure 4.

Figure 12(left) shows the effect of adding two vertices of degree 3 to a particular branch of the tree and the combinatorial distance between D x and the indicated copies, illustrating the passage from the flat case to the genus 2 case. We observe that the insertion operation depicted in Figure 12(left) increases the maximal combinatorial distance between two points in the shown neighborhood, as exemplified with the points v 1 and v 2 in Figure 12(right). To see this, assume, by induction, that the combinatorial distances are as indicated in Figure 12(left) before the insertion. Recall that, since all vertices are of degree 3, the combinatorial distance between two points located inside two copies of D x corresponds to the distance in the dual graph of these two copies. If there was another path in the dual graph from v 1 to v 2 that is shorter then d + 2 then it would have to avoid copies of D x with a vertex incident to the tree, by the induction hypothesis. However, since each domain has 12g -6 edges, any such path must be longer than the path along copies incident to the tree, since the tree has at most 4g -2 vertices. We have thus illustrated a process that yields fundamental domains that admit geodesics contained in a neighorhood of a vertex with a combinatorial length of g + 1. To summarize, if the edges of T can be made to be sufficiently small in a Dirichlet domain, then the combinatorial distance between two points that are very close generally depends at least linearly on the genus. Furthermore, this phenomenon occurs even for Dirichlet domains of the most well-behaved surfaces, such as the Bolza surface in Figure 11(left), by a slight shift of the point x for the construction of D x . A good candidate for further investigations would be the class of hyperbolic surfaces of genus g defined by a regular polygon with 4g edges centered around the origin, with Dirichlet domains of points close to the origin.

The above discussion shows one way in which the combinatorial length of short geodesics can depend linearly on the genus. What is missing from this is a demonstration that the combinatorial structure of the tree can be obtained as a tree with very short edges, as in the genus 1 and genus 2 examples above. In light of the above analysis, we conjecture that the combinatorial length of Delaunay edges depends linearly on the genus g. Note that the above analysis stays true in the case where we require the point x to be part of P, as the distance from v 1 to x is much larger than the distance between v 1 and v 2 . In particular, we observe that adding points to a Delaunay triangulation can increase the combinatorial length of the resulting Delaunay triangulation.

A

There is no bound on the combinatorial length for an arbitrary fundamental domain (Section 3)

The purpose this section is to present a proof of the fact that the combinatorial length of an edge in a Delaunay triangulation is unbounded, as alluded to in Section 3.

Proposition 21.

Let n ∈ N and c a simple nonseparating path on S. There is a fundamental domain for Γ in H 2 such that the combinatorial length of the lift c of c is greater than n.

Proof. We construct a fundamental domain F 1 with one vertex orbit for Γ such that there is a single edge c 1 of F 1 that intersects c, and does so transversally, both in their interiors, as we now explain. By assumption c is a simple path on S. Extend c arbitrarily to obtain a simple nontrivial nonseparating closed path c C ⊂ S if necessary. Since c C is nontrivial, we can find another simple closed nontrivial non-separating path c 1 ⊂ S that intersects c C exactly once, somewhere in the interior of e. By applying a homeomorphism f of S, we map c C ∪ c 1 to the paths on S shown in Figure 13a 

. . f (c C ) f (c 1 ) f (c) v (a) . . . v f (c 1 ) c 2 c 3 c 4 c 5 c 6 c 2g-1 f (c) f (c C ) c 2g (b) 
Figure 13 The graph G in the proof of Proposition 21.

disk, as G yields the standard presentation of the fundamental group of a surface [22, p. 5].

Any graph Ĝ such that S -Ĝ is a disk gives rise to a fundamental domain in H 2 for Γ, by taking as interior of the domain a connected component of the preimage π -1 (S -Ĝ) [START_REF] Lučić | Fundamental domains for planar discontinuous groups and uniform tilings[END_REF]Theorem 5.1]. Therefore, G := f -1 (G ) gives rise to the sought-for fundamental domain ] means that these intersections cannot be eliminated by using homotopies. In H 2 , c then intersects M distinct copies of t M (c 1 ). Therefore, the combinatorial length of the edge c can be made arbitrarily large by successive application of the Dehn twist t.

F 1 ⊂ H 2 , with G ∩ c = c 1 ∩ c. Thus, c ∩ ∂F 1 = c ∩ c 1 ,
Remark 22. The statement of Proposition 21 remains valid if one drops the assumption that the simple path is nonseparating, as long as the path is non-trivial. The proof of this statement with the above methode would entail different cases according to the genera of the two parts of the surface resulting from cutting it along the given path. For our purposes, the more restricted version the proposition suffices.

Corollary 23.

There is no bound on the combinatorial length of an edge in DT P for arbitrary fundamental domains.

Proof. Fix an edge e of DT P whose projection e to S is not closed, or, if closed, is nonseparating. To see that such an edge exists, observe that the only case where all edges are closed is the case where P = Γ x. In this case, since DT P is a triangulation, the closed paths in DT P generate the fundamental group Γ. By Hurewicz' theorem [START_REF] Hatcher | Algebraic Topology[END_REF]Theorem 2A.1], the paths in DT P are a basis of the homology group of S, and therefore cannot all be separating, because separating paths are homologically trivial. By Proposition 2, e is simple, and Proposition 21 concludes the proof.

B

Proofs of Lemmas 8 and 9 (Section 4) Lemma 8

Proof. Let c 1 and c 2 be distance paths between the points x and y 1 , and x 2 and y 2 , respectively. Assume that c 1 and c 2 intersect each other at least 2 times in their interiors, at points z and z . Note that the intersection of geodesics not sharing a subarc has to be transversal, meaning that their tangent vectors cannot be parallel at the point of intersection. This can be seen using a general argument concerning geodesics in Riemannian manifolds. If two geodesics γ 1 , γ 2 intersected nontransversally at some point p, then γ 1 = γ 2 locally, after reparametrization. This is because geodesics are the solution of a second-order differential equation, and these are uniquely determined by their initial values, i.e. the point p and their tangent vectors at p, so after rescaling the tangent vector if necessary, the geodesics agree [START_REF] Barrett | Semi-Riemannian geometry : with applications to relativity[END_REF]Chapter 3].

Since both c 1 and c 2 are distance paths, the portion of both c 1 and c 2 connecting z to z realize the distance between these points as geodesic arcs. Therefore, we can connect x 1 to z along c 1 , then connect z to z along c 2 , and z to y 1 along c 1 to obtain a path c 3 connecting x 1 to y 1 with the same length as c 1 . However, since the intersections of c 1 and c 2 are transversal, c 3 is not a geodesic, as it features kinks at z and z . By the Hopf-Rinow theorem [START_REF] Barrett | Semi-Riemannian geometry : with applications to relativity[END_REF]Theorem 5.21], we can then further shorten the path c 3 by applying a homotopy with fixed endpoints and obtain a path connecting x 1 and y 1 , homotopic to c 3 and shorter than c 1 , a contradiction.

The second statement of the lemma corresponds to the situation where either x 1 = z or y 1 = z . The same argument also shows that a distance path is simple.

Lemma 9

Proof. The only case that is not immediate from Lemma 8 is the case where a distance path γ intersects a half-minimizer c at both endpoints x and y and at the half-point m of c. Let γ join x to y, passing through m, and let c x m , c y m be the two distance paths on c, connecting x to m and m to y, respectively. Now, if c x m intersected γ at m nontransversally, then c x m would be included in γ, similarly to the proof of Lemma 8 above. If we exclude such cases, then we find a contradiction to γ being a distance path by considering the geodesic in the homotopy class with fixed endpoints of the path that follows first c x m from x to m and then γ from m to y.

C Number of copies

This appendix is devoted to proving the following result:

Proposition 24. The number N of copies D x that have a combinatorial distance of at most 12g -6 from D x satisfies, for g ≥ 2,

g 12g-5 -1 g -1 ≤ N ≤ 4g (4g -2) 24g-10 -1 4g -3 .
We first prove lemmas for two different cases -the worst case, where all vertices of the fundamental domain are equivalent, and the generic case, where all vertices have degree 3.

Lemma 25. In the generic case, where all vertices of ΓD x have degree 3, the number |N ≤n | of copies copies of D x that have a combinatorial distance of at most n ≥ 1 from D x is 1 + 3n(n + 1) for g = 1 and satisfies

g n+1 -1 g -1 ≤ |N ≤n | ≤ (12g -10) n+1 -1 12g -11 for g ≥ 2.
Proof. The proof consists of inductively counting the copies in the first few layers until a pattern emerges.

Observe that the combinatorial distance between two points in the interior of two copies of D x is equal to the graph distance between the vertices representing these two copies in the dual tesselation, as all vertices have degree 3 in the generic case. The zeroth layer is just the original domain (D x ) o . The first neighborhood layer N 1 consists of 12g -6 copies of (D x ) o , since there is one copy for each of the 12g -6 edges. Observe that every copy of (D x ) o in N 1 has two edges that are incident to N 1 itself and one edge incident to (D x ) o . In general, all edges incident to a copy of (D x ) o in the previous or current neighborhood layer do not lead to a new copy of (D x ) o in the next layer and all other edges do. Consider now an edge e incident to two copies of (D x ) o in N 1 , as illustrated in Figure 14 in the Euclidean plane.

There is a copy D e of (D x ) o in N 2 whose closure has non-empty intersection with the closed edge e. There are then exactly two edges incident to both N 1 and D e . Therefore, if we add the number 12g -6 -2 -1 of edges incident to copies of domains in N 1 and N 2 to account for the number of domains in N 2 , we will have counted 12g -6 too many, one for each edge like e in N 1 , or, in other words, one for each copy of (D x ) o in N 1 . In total, in the second layer N 2 , there are then

(12g -6)(12g -6 -2 -1) -(12g -6) = (12g -6)(12g -10)
copies of (D x ) o . The computation of the number of copies in N 3 works in largely the same way, but introduces a minor change to the above: Instead of each copy in N 2 having exactly one edge incident to N 1 , as was the case with each copy in N 1 and (D x ) o , there are some with two edges incident to N 1 . Figure 14 shows a example of a such a copy as a striped domain. By the above discussion, there is one of these for every copy of (D x ) o in N 1 . To find the edges incident to both N 2 and nb 3 , we therefore have to subtract

|N 1 | from (12g -6 -2 -1)|N 2 |.
All in all, similarly to above, we therefore obtain

|N 3 | = |N 2 |(12g -6 -2 -1) -|N 1 | -|N 2 |.
More generally and by the same reasoning, for n ≥ 2, Proof. Observe first that there are 4g(4g -2) copies of D x in the first neighborhood layer, as each of the 4g vertices of D x has degree 4g. For N n+1 , note that a vertex incident to N n accounts for either 4g -3 copies of D x in N n+1 , or 4g -2, depending on or not it is incident to one or two domains in N n , respectively. A vertex incident to N n is incident to two copies of D x in N n if and only if it is incident to an edge in N n that is itself incident to two domains in N n . Any such edge corresponds to a copy of D x (incident to that edge) in N n . Therefore, if v n denotes the set of vertices incident to both N n+1 and N n , then

|N n+1 | = |N n |(12g -10) -|N n-1 |. (2) 
|N n+1 | = |v n |(4g -2) -|N n |.
To find |v n+1 | using |v n |, recall that any vertex v ∈ v n has degree 4g, with (at least) two edges incident to N n . As a result, if v is incident to only one domain in N n , the number (4g -2)(4g -2) -1 counts the number of vertices, incident to domains incident to v, that belong to N n+1 and not to N n . If we count these many vertices for every vertex in v n , then we will have overcounted the vertices in v n+1 , by exactly |N n |(4g -2). Indeed, for every vertex incident to two domains in N n , the procedure counts (4g -2) vertices too many. Moreover, each domain in N n can be assigned one unique such vertex, by choosing (say) the counter-clockwise such vertex incident to the domain for n > 1. We therefore find 

Proof of Proposition 24

Proof. The proof follows from Proposition 27 by setting n = 12g -6, the maximal value for combinatorial length of a Delanuay edge, by Corollary 20.

( a )

 a Fundamental domain for the fundamental group of S3 in the Poincaré disk model. (b) A section of the D-surface in R 3 , together with its smallest asymmetric triangle patches.

Figure 1

 1 Figure 1 The covering of the diamond TPMS by H 2 .

  depicts 19 shaded copies of D x that are sufficient and form layers around the domain containing x, illustrating the general situation for hexagonal Dirichlet domains. Note that the shape of the Dirichlet domain D x does not depend on the chosen point x: for another point y, D y is a translated version of D x .

Figure 2

 2 Figure 2 Periodic point set P given by the orbit of a under the action of Z • u + Z • v on E 2 . A fundamental domain is shaded. The (infinite) Delaunay triangulation of P is shown in green.

Figure 3 Figure 4

 34 Figure 3The same (black) lattice points correspond to fundamental domains that can be arbitrarily elongated. The number of fundamental domains traversed by e is unbounded.

Figure 5

 5 Figure 5 Dirichlet domains of different points for the group of the genus 2 Bolza surface [5, Fig 9].

y

  and the whole Voronoi diagram by V P . The Voronoi diagram is a locally finite collection of convex subsets of H 2 [12, Lemma 5.2]. Definition 1 ([1]). The (closed) Dirichlet domain D x of a point x in H 2 is the cell V Γ x x of x in the Voronoi diagram of the orbit Γ x.

Proposition 2 .

 2 [START_REF] Despré | Flipping geometric triangulations on hyperbolic surfaces[END_REF] Proposition 8],[START_REF] Deblois | The centered dual and the maximal injectivity radius of hyperbolic surfaces[END_REF] Corollary 5.2]) The 1-skeleton of the Delaunay triangulation DT P on S is an embedded graph on S.

Figure 6

 6 illustrates the definition of neighborhood layers, in a non-generic case. In this example, the translations that identify opposite edges of the Dirichlet domain of the origin generate the group Γ B of the Bolza surface. All vertices of the Dirichlet fundamental domain are equivalent under Γ B . (a) Tesselation of H 2 formed by copies of the Dirichlet domain of the origin for Γ B [5, Fig 9]. (b) The first neighborhood layer (red) built around the Dirichlet domain of the origin (blue).

Figure 6

 6 Figure 6 Dirichlet fundamental domain and tesselation for the Bolza surface.

Lemma 5 .

 5 the circumcenter lies in the Dirichlet domain D x , as in the flat case [15, Lemma 3.2]. Let x be a point in P and ∆ a triangle of DT P with vertex x. The (hyperbolic) circumcenter of ∆ lies in V P x . Proof. Let ω ∆ denote the circumcenter of ∆. Assume that ω ∆ is contained in some other cell of the Voronoi diagram of P. We have P ∩ int(D ∆ ) = ∅, where D ∆ denotes the disk bounded by

  2 . If a Delaunay edge e incident to x and some x ∈ Γ x projects to a (closed) half-minimizer in S, then the midpoint of e must lie on the boundary ∂D x by Lemma 10. Said in another way, such a half-minimizer intersects the interior of exactly two Dirichlet domains. ẽ x ỹ (a) A generic Dirichlet fundamental domain and a geodesic e, in cyan, connecting points x and y, isotopic to the blue half-minimizer. The isotopy in the proof of Proposition 12 moves the edge e over the shaded bigon B to the (blue) path c.

Figure 7

 7 Figure 7 Illustrations for Remark 11 (left) and Proposition 12 (right).

Figure 8

 8 Figure 8 Proof of Proposition 14: (Left) non-centered case (Right) centered case.

Figure 9

 9 Figure 9The two triangles ∆ and ∆ in the proof of Proposition 16.

  a) The triangles partitioning D x (illustration for the special case of TMPS).

  Representation of a geodesic path γ as a sequence of segments in D x . The path γ<2 is also shown as a dashed part of γ.

Figure 10

 10 Figure 10 Partitioning into triangles and paths on the surface represented as a sequence of paths in a fundamental domain. The fundamental group identifies opposite edges of the dodecagon.

Theorem 19 .

 19 Dirichlet fundamental domain is at most 12g -6, by a direct use of the Euler characteristic [1, Theorem 10.5.1]. The result follows from Lemma 17. Let D x be a Dirichlet domain, with k edges. Let P be a finite set of points on S and DT P the Delaunay triangulation of the lifted set of points P ⊂ H 2 . The maximal combinatorial length of a Delaunay edge e is at most k. Proof. Consider any path c joining a ∈ (D x ) o and b ∈ H 2 . The geodesic from a and b in H 2 is unique; it projects to a geodesic on the surface which is also unique in its homotopy class (with fixed endpoints) [6, Theorem 1.5.3]. So, the homotopy class of c is uniquely determined by which copy of the original domain (D x ) o contains b.

2 Figure 11 2 Figure 12

 211212 Figure 11The tree around a vertex of a Dirichlet polygon for the genus 2 Bolza surface.

  [START_REF] Farb | A Primer on Mapping Class Groups (PMS-49)[END_REF] Section 1.3.3] and consider the graph f (c 1 ) ∪ v, with vertex v ∈ f (c 1 -c C ). Augmenting this graph by attaching 2g -1, where g is the genus of S, closed paths c 2 , ..., c 2g as illustrated in Figure13b, we obtain a graph G whose edges only intersect in v. Cutting open S along the graph G produces a

.

  

Figure 14 11 .2 3g 2 -5g + 2 , for g > 1 . 26 .

 141122126 Figure 14 Counting neighborhood layers in the Euclidean plane.

3 . 27 . 3 . 3 )

 32733 |v n+1 | = ((4g -2)(4g -2) -1)|v n | -|N n |(4g -2).We similarly find |v 0 | = 4g and |v 1 | = ((4g -2)(4g -2) -1)4g. Using the above relations and induction, one readily sees that we obtain the crude estimate|v n | ≤ (4g -2) 2 |v n-1 | ≤ (4g -2) 2n 4g and subsequently |N n | ≤ (4g -2) 2n+1 4g, whence |N ≤n | ≤ 4g(4g -2) (4g -2) 2n+2 -1 (4g -2) 2 -1 ≤ 4g (4g -2) 2n+2 -1 4g -Proposition The number |N ≤n | of copies of D x that have a combinatorial distance of at most n from D x satisfies g n+1 -1 g -1 ≤ |N ≤n | ≤ 4g (4g -2) 2n+2 -1 4g -Proof.The graph of boundary edges of a fundamental domain D x project to graph G on the surface S. Combinatorially, each fundamental domain is a result of a series of splitting operations of the vertices of this graph, starting from the case where G has only one vertex. A splittling operation corresponds to splitting a vertex v of a fundamental domain F into two vertices v 1 and v 2 joined by a new edge e v to obtain a new graph G, so that deg(v 1 ) + deg(v 2 ) -2 = deg(v). The preimage π -1 (G ) of the canonical projection gives rise to a fundamental domain F ev for Γ. In the associated tesselation ΓF ev , on the boundary of F ev , there are deg(v 1 ) vertices of degree deg(v 1 ) and deg(v 2 ) vertices of degree deg(v 2 ), in place of the deg(v) vertices of degree deg(v), while all other vertices stay invariant. The difference of the number of copies of F 0 in the first neighborhood layer associated to some choice of original fundamental domain F o and the same number for a choice of (F ev ) o is then(deg(v 1 ) + deg(v 2 ) -2) 2 -((deg(v 1 ) -2) 2 + (deg(v 2 ) -2) 2 ). (We show that (3) is always positive. We have, with deg(v 1 ) = a and deg(v 2 ) = b for better readability,(a -2 + b) 2 = 2(a -2)b + b 2 + (a -2) 2 ≥ (a -2) 2 + (b -2) 2 ⇐⇒ 2a -4b + b 2 ≥ b 2 -4b + 4 ⇐⇒ 2a ≥ 4,which is clearly true for a = deg(v 1 ) ≥ 3. This shows that the splitting operation decreases the number copies of domains in the first neighborhood layer and, by extension, also the number in subsequent layers. The proposition then follows by combining the previous two lemmas 25 and 26.

  for an appropriate lift c 1 of c 1 . Consider the Dehn twist t about c C . For our purposes, it suffices to note that t can be represented as a homeomorphism of infinite order that maps G to a similar graph and therefore yields another fundamental domain. The Dehn twist t only changes the edges of G it intersects, so by construction, it leaves invariant all other edges but c 1 . The number of intersections of t M (c 1 ) with c C , wheret M = t • t • ... • t (M -times), is equal to M [19, Proposition 3.2].Therefore, there is a representative in the isotopy class of t M (c 1 ) that intersects c C M times, without forming any bigons which by[START_REF] Farb | A Primer on Mapping Class Groups (PMS-49)[END_REF] Proposition 1.7] and[START_REF] Farb | A Primer on Mapping Class Groups (PMS-49)[END_REF] Section 1.2.7

A collection of points P in a topological space X is locally finite if every point x ∈ X admits a neighborhood Ux such that P ∩ Ux is finite; if K is compact in X, then P ∩ K is finite.
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