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Half-minimizers and Delaunay triangulations on closed

hyperbolic surfaces

Vincent Despré*� Benedikt Kolbe*� Monique Teillaud *§

Abstract

Given a finite point cloud P in a Dirichlet fundamental domain F with respect to a fundamental
group Γ of a closed hyperbolic surface S, we derive an explicit way to construct a set of copies of
F that accounts for all points incident to points of P in the Delaunay triangulation of ΓP. We
also compute precise bounds on the size of this set that only depend on the genus of S and are
thus independent of the hyperbolic metric under consideration. The results in this paper lay the
foundations for a practical algorithm to compute Delaunay triangulations on an arbitrary hyperbolic
surface, akin to existing implementations for periodic sets of points in Euclidean space.

1 Introduction and motivation

1.1 Closed hyperbolic surfaces, covering spaces, and symmetry groups

The aim of this paper is to lay the foundations for a practical algorithm for the construction of Delaunay
triangulations on arbitrary hyperbolic surfaces. We define a hyperbolic surface to be a closed orientable
topological surface equipped with a hyperbolic metric of constant curvature −1. It is well-known that
a hyperbolic surface S is covered universally by the hyperbolic plane H2, such that the projection map
π : H2 → S is a local isometry. Including flat tori, all surfaces of interest to us are isometric to the
compact quotient space X/Γ with induced metric from X, where Γ is a symmetry group of X, i.e. a
discrete subgroup of the group of isometries of X. The space X is either E2, or H2, and we call the
surface Euclidean or hyperbolic, accordingly. In case X = H2, the symmetry group is also known as a
Non-Euclidean Crystallographic (NEC) group. That S is a hyperbolic surface implies that Γ contains
only orientation preserving isometries and has no fixed points in X. The group Γ can be naturally
identified with the fundamental group π1(S) of S (after choosing base points appropriately).

1.2 Hyperbolic surfaces in other sciences and nature

One of the motivations for this paper, and also the guiding example we use to illustrate our results and
approach is the hyperbolic surface associated to the family of triply-periodic minimal surfaces (TPMS)
that contains the gyroid, the primitive, and the diamond surface. A TPMS is a minimal surface in R3

that is moreover invariant under three linearly independent translations, i.e. a rank 3 lattice L3 [43]. To
associate to a TPMS a closed surface, one considers the closed surface Sg of genus g embedded in the
3-torus T3 = R3/L3, which corresponds to glueing the equivalent faces of a unit cell of the TPMS, i.e.
the smallest block out of which the TPMS can be reassembled through translations. It turns out that
such a surface is always intrinsically hyperbolic [32]. The gyroid, the primitive, and the diamond TPMS
are arguably the most prominent and simple [39] examples of TPMS and have received considerable
attention in the mathematical, physical, chemical and biological as well as interdisciplinary literature,
see, for example, [20, 25, 22, 23, 12]. More recently, TPMS have also found a role in the materials sciences
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as a scaffold for crystallographic structures [15, 16], leading to both new mathematical formalisms [27, 26]
and a database of such structures [1].

Figure 1 shows a region of H2 in the Poincaré disk model and a portion of the diamond surface in
R3, illustrating how TPMS are covered by H2. Notice that the angles at which triangles meet are the
same in R3 as they are in H2, owing to the fact that the covering is conformal.

(a) Fundamental domain for the fundamental group of
S3 in the Poincaré disk model.

(b) A section of the D-surface in R3, together with
its smallest asymmetric triangle patches.

Figure 1: The covering of the diamond TPMS by H2.

Very recently, the edge flip algorithm for the computation of a Delaunay triangulation was shown to
work for hyperbolic surface [13]. However, robust and efficient software to compute Delaunay triangu-
lations on hyperbolic surfaces, and particularly TPMS, does not exist to date, as far as we know. This
paper attempts to help fill this gap by establishing fundamental theoretical results in the hyperbolic case
similar to those that have led to such software in the Euclidean setting.

1.3 Set-up and motivation

Given a finite point cloud P on a hyperbolic surface S = H2/Γ, P lifts to a locally finite1 point cloud P̃ in

the covering space H2. The Delaunay triangulation DTP̃ defined by P̃ in H2 projects to a triangulation
DTP on S, which serves as a definition for the Delaunay triangulation of P on S [6, 11, 24]. We do not
assume triangulations to be embedded simplicial complexes in this paper, in contrast to some previous
work [6, 24]. In our setting, every finite point cloud on a hyperbolic surface has an associated locally
finite Delaunay triangulation, see [9, Corollary 5.2], [13, Proposition 8].

Using the Poincaré disk model of H2, where Euclidean circles correspond to hyperbolic circles, one
sees that the combinatorial structure of a Delaunay triangulation is equivalent to the Euclidean Delaunay
triangulation defined by the same set of points in the unit disk. For algorithms to determine the Delaunay
triangulation DTP , it is essential to limit oneself to a finite set of points P̃f ⊂ P̃ that contains all the

information needed to construct the triangulation on S by projecting part of the triangulation of P̃f

in H2. Our goal is to deduce bounds for the size of P̃f , for a practical algorithm to compute the
Delaunay triangulation on an arbitrary hyperbolic surface. Our results are the first of their kind for
general hyperbolic surfaces, but Euclidean analogs exist [14], have received attention in the literature
in different fields [8, 46, 18], and provide the foundation for the recent and, as far as we know, only
implementations of algorithms that compute the Delaunay triangulation of general infinite, locally finite,

1A collection of points P in a topological space S is locally finite if every point s ∈ S admits a neighborhood Us such
that P ∩ Us is finite, which implies that if D is a compact disk in S, P ∩D is finite.
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periodic point sets in the Euclidean plane [35] (although solutions to special cases do exist). In [35],

a set P̃f like above is found for a periodic, infinite set of points P̃ ⊂ E2 with the help of bounds on

P̃f that depend only on the structure of the group of translations that generates the periodicity of P̃.

After having found P̃f , classical algorithms for the construction of the Delaunay triangulation are used

to compute the triangulation DTP̃f
of P̃f in E2, which is then projected to the quotient torus. Note for

this that the edges of the convex hull of P̃f , contained in DTP̃f
, are the only edges of DTP̃f

that are

not necessarily a part of DTP̃ .
Our focus is on generalizing the results of [35, 14] to the more complicated case of hyperbolic surfaces.

The proofs in [14] that make possible the algorithms of [35] depend crucially on the Abelian nature of
the symmetry groups involved. Since hyperbolic symmetry groups are inherently non-Abelian we need
new tools to tackle the problem.

We picture the setup more concretely as follows. Recall that a tesselation or tiling is a countable
collection of closed topological disks in a metric space that cover the whole space and whose interiors
are disjoint. One can think of the projection map π : H2 → H2/Γ = S as giving rise to tilings of H2 by
copies of some fundamental domain for Γ. A fundamental domain V for the action of a symmetry group
Γ is a connected subset V ⊂ X, equal to the closure VO of a connected set VO that intersects each orbit
in exactly one point, or, equivalently, such that the restriction of π to VO is a bijection from VO to S [31].

In DTP̃ , some points in P̃ ∩VO become adjacent to points inside a translate of VO under an element of
Γ. We will define a number, the combinatorial length of an edge, which relates to the number of copies
of V an edge traverses. The objective of this paper is to find a bound, independent of the hyperbolic
metric on S, on the combinatorial distance between any point in V and its neighbors in DTP̃ , given a
reasonable choice for the tesselation.

We remark that even in the Euclidean case there cannot exist a bound as discussed in the previous
paragraph for an arbitrary choice of fundamental domain, even if the Delaunay triangulation is defined
by just one point on S. Intuitively speaking, this is because there is no bound on how stretched a
fundamental domain can appear for an Abelian symmetry group of E2, necessarily isomorphic to Z2.
Assume for simplicity that the group is Z2 with its natural action on E2 by translations. For ever more
long and thin parallelograms that serve as a fundamental domain V, an edge in a Delaunay triangulation
may traverse an unbounded number of copies of V. We illustrate the situation in Figure 2, which shows
one edge ẽ, thick and in cyan, connecting ã to b̃, of the Delaunay triangulation defined by Z2.ã in two
different situations. The Figure shows ẽ in a portion of two different tilings of E2 by parallelograms
that serve as fundamental domains for Z2 with their boudnaries in green. Proposition 5 shows that a
similar situation occurs for hyperbolic surfaces. We note that in Euclidean spaces, the celebrated LLL
algorithm [28] can be applied to eliminate such problems by finding well-behaved generators of lattices
in polynomial time, but this does not work for NEC groups.

(a) Tiling of E2 by sheared parallelograms, invariant
under Z2.

(b) Dirichlet domains in E2 for the green marked
points, for the action of the symmetry group Z2 on
E2.

Figure 2: Fundamental domains and the boundary edges, in green, of parts of their associated tesselations
in E2. The thick cyan edge is an edge in the Delaunay triangulation defined by Z2.ã, the set of red points.

Another way to resolve the issue for E2 is to choose for V a Dirichlet fundamental domain Vx̃ for
a point x̃, which corresponds to the Voronoi cell of x̃ in the Voronoi diagram of Z2x̃, as in Figure 2b.
In fact, in this case, the shape of the Dirichlet fundamental domain Vx̃ does not depend on the point
x̃ and is a unit square, by the Abelianity of the group of translations in E2 and the general relation
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Figure 3: Dirichlet domain w.r.t. different base points. Images from [6, Figure 9].

VΓ
T (x̃) = T (VT−1ΓT

x̃ ) [3, Section 9.4], where we make explicit the dependence of a Dirichlet domain VΓ on
the symmetry group Γ, and T is any isometry. One readily sees that for a Delaunay triangulation defined
by a single arbitrary point ỹ ∈ Vx̃, it is sufficient to use all copies of Vx̃ with nonempty intersection with
Vx̃ to account for all vertices adjacent to ỹ. Indeed, choosing for ỹ the center of the unit square results
in the tiling by squares, shown in Figure 2b, with a choice of diagonals and any other choice of ỹ is a
translated version. See [14] for a complete discussion of the case of Euclidean symmetry groups generated
by translations.

The main result of this paper is that there is a bound on the number of domains one has to consider
to account for all adjacent vertices of a point in a Dirichlet domain in a Delaunay triangulation, for
closed hyperbolic surfaces S, depending only on the genus, when we restrict our choice of fundamental
domain to Dirichlet fundamental domains; also we explicitly compute a bound. Note that it is far from
clear that this works, a priori, because the shape, combinatorial structure, and group presentation a
Dirichlet fundamental domain for Γ gives rise to depends on the chosen point in its construction in H2,
since NEC groups are non-Abelian, in contrast to the above situation in E2. See also Figure 3, which
depicts different Dirichlet domains for the same group.

We present a result valid for hyperbolic surfaces that presupposes a metric, but will remain valid
for all hyperbolic metrics. Note that the diameter of a Dirichlet fundamental domain for a hyperbolic
surfaces can become arbitrarily large, even when the genus is fixed, so there is no bound on the number of
copies of Dirichlet fundamental domains an empty disk in a Delaunay triangulation intersects. Together
with algorithms that compute a Dirichlet fundamental domain in H2 [44], this lays the foundation for
a practical algorithm to compute the Delaunay triangulation of a finite set of points on a hyperbolic
surface, in the same way as [35].

A hallmark of our approach is that some of its techniques are actually valid in greater generality,
for many Riemannian manifolds. In particular, our ideas and approach based on half-minimizers remain
valid in a more general setting.

2 Dirichlet fundamental domains and Delaunay triangulations

For the remainder of this paper, S is a hyperbolic surface, with universal cover π : H2 → S, and
fundamental group Γ, as described in the introduction. To simplify the notation in the following, we
denote objects in H2 with a tilde, and those on S = H2/Γ without, P will always denote a finite set of

points on the hyperbolic surface S, and P̃ its lifted point set to H2. We will again (implicitly) treat H2 as a
subset of E2, which makes sense when making use of the Poincaré disk model for the hyperbolic plane [4].
This is a conformal model for H2 obtained by biconformally mapping H2 to the interior of the unit disk
in E2 such that the conformal mappings of the unit disk correspond exactly to the orientation preserving
isometries of H2. This model is well suited for the study of Delaunay triangulations in hyperbolic spaces,
because in it, circles in H2 correspond to circles in E2.

We briefly recall the relevant definitions for our setup. For more details, see, for example, [7] for
the Euclidean case, [11] or [6, 5] for Delaunay triangulations of hyperbolic spaces and [3] for Dirichlet
domains. See [37] or [42] for a general introduction to hyperbolic geometry. Let X be a metric space
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with distance function dX . We consider Voronoi diagrams where every cell is topologically a closed disk.
For a locally finite point set P ⊂ X and x ∈ P, we denote the Voronoi cell of x by VPx and the whole
Voronoi diagram by VP . In the cases X = E2,H2, the Voronoi diagram is a locally finite collection of
convex subsets of X [11, Lemma 5.2]. In particular, if a Voronoi cell is compact, then it only has a finite
number of edges.

Definition 1 ([3]). For X = E2,H2, let Γ be an NEC group with no fixed points in X and x̃ ∈ X. The
cell VΓx̃

x̃ of x̃ in the Voronoi diagram of the orbit Γx̃ in X is called the (closed) Dirichlet fundamental
domain of x̃, and is denoted as Vx̃ for short.

The Dirichlet fundamental domain Vx̃ can also be defined equivalently as the sets

Vx̃ = { y ∈ X | dX(x, y) ≤ dX(x,Γy) } = { y ∈ X | dX(x, y) ≤ dX(Γx, y) }

where the equality is true since Γ acts as isometries w.r.t. dX . In particular, we see that

z̃ ∈ Vx̃ ⇐⇒ x̃ ∈ Vz̃. (2.1)

Dirichlet domains and more generally Voronoi cells in H2 and E2 are bounded by geodesics, which
is why they are also known as Dirichlet and Voronoi polygons, respectively. A Dirichlet domain is a
fundamental domain for Γ. Since S is compact, Vx̃ is compact in H2 and therefore, as above, it has only
a finite number of edges and the tesselation ΓVx̃ associated to Vx̃, called the Dirichlet tesselation w.r.t.
x̃, is a locally finite tesselation.

We now collect relevant definitions and results on Delaunay triangulations. A Delaunay triangulation
DTP̃ of a locally finite point set P̃ ⊂ H2 is combinatorially a Euclidean Delaunay triangulation with

vertex set P̃, but with geodesic edges. Though we use the term triangulation, we consider that more than
three cocircular points form a non-triangulated polygonal face. Such faces can always be triangulated in
any way when needed. To preserve the duality between Voronoi diagrams and Delaunay triangulations,
one removes edges that lead to triangles in DTP̃ with non-compact circumcircles, i.e. those not contained
in H2. We will see below that this technicality is not necessary for our purposes because all triangulations
we consider have compact circumcircles in H2.

The Delaunay triangulation of a finite point set P ⊂ S on a surface S is defined as the projection, to
S, of the Delaunay triangulation in H2 of the lifted point set P̃ := π−1(P), where P̃ is necessarily locally
finite.

A Delaunay edge in H2 cannot have a hyperbolic length greater than 2 dia(S), where dia(M) denotes
the diameter of the set M . Indeed, the circumcircle C of a triangle with such an edge has a diameter
greater than 2 dia(S), which would cover all of S, since the length of a geodesic in H2 and its projection
in S are equal [19, Proposition 2.109]. Therefore, there exists at least two points inside C that are
equivalent under the action of Γ. In particular, each circumcircle of a cyclic polygon, i.e. a polygon with
geodesic edges and concircular vertices in DTP̃ is compact [11, 13].

Proposition 2. ([13, Proposition 8],[9, Corollary 5.2]) The 1-skeleton of the Delaunay triangulation
DTP on S is an embedded graph on S.

Definition 3. Let F ⊂ H2 be a fundamental domain for Γ. The edges of F are identified pairwise under
the action of Γ. We fix one representative of each equivalence class of open edges of F under the action of
Γ to obtain a set E of edges and also one representative of each vertex orbit to obtain a set V of vertices.
An original fundamental domain FO associated to F is a subset of F consisting of int(F)∪E∪V , where
int(M) denotes the interior of a set M , such that E ∪ V is connected.

Let x ∈ FO and y ∈ H2. Consider the set {F i
1}i of copies of F with F i

1 ∩ F 6= ∅ and γi1 ∈ Γ such
that γi1FO ⊂ F i

1. We call N1 :=
⋃

i γ
i
1FO the first neighborhood layer of FO. If y ∈ N1 for some i and

y 6∈ FO, then y has combinatorial distance from x equal to 1. Repeating this process inductively, to find
the nth neighborhood layer Nn, we find all copies {F i

n}i of F such that F i
n ∩F

j
n−1 6= ∅ for some i, j but

such that F i
n is not contained in any mth neighborhood layer for m ≤ n− 1. We furthermore find group

elements γin such that γinFO ⊂ F i
n. Then, if y ∈ Nn and y 6∈ Nm for m ≤ n − 1, y has combinatorial

distance to x equal to dCFO
(x, y) = n.

The combinatorial length of a geodesic segment designates the combinatorial distance between its
endpoints. The (maximal) combinatorial length of a triangulation w.r.t. FO is dCFO

= maxx∼y dCFO
(x, y),

where x ∼ y if they are adjacent in the triangulation.
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Remark 4. Original domains always exist, for any NEC-group, by [29, Theorem 4.1]. Assume that the
tesselation induced by F and Γ features only vertices of degree 3, which is the generic case [3, Theorem
9.4.5]. Then the combinatorial distance between points is equal to the graph distance in the 1-skeleton
of the dual tesselation, between the copies of the original domain FO that the points lie in.

Special cases of the above definition of original fundamental domains have been considered in the
literature [8, 24]. Using an original fundamental domain FO, DTP̃ can be reconstructed by considering

P̃ ∩FO and edges in DTP̃ that connect to these.

See Figure 4b for an illustration of the definition of neighborhood layers, which shows a blue colored
fundamental domain surrounded by its red colored closed first neighborhood layer. The translations that
induce opposite edge identifications of the hyperbolic octagon in the center generate a group ΓB , the
fundamental group of the Bolza surface [24].

(a) Translations that identify opposite edges generate
a group ΓB , under which all vertices of the Dirichlet
fundamental domain are equivalent.

(b) The first neighboring layer built around a blue
colored Dirichlet fundamental domain in the center.

Figure 4: Dirichlet fundamental domain and tesselation of an NEC group, along with the second neigh-
borhood layer.

Since F is compact, the combinatorial length of a geodesic segment ẽ is finite if and only if ẽ crosses
only a finite number of copies of the fundamental domain F . In particular, since a Dirichlet tesselation
is locally finite, the combinatorial length of a triangulation with locally finite point set and finite vertex
degrees, such as the Delaunay triangulation, is always finite.

For a proof of the following proposition, reminiscent of the situation in E2 described in the introduc-
tion 1 and which motivates the use of Dirichlet fundamental domains for our purposes, see Proposition 25
in the appendix.

Proposition 5. Let n ∈ N. There is a fundamental domain for Γ in H2 such that there exists an edge
in DTP̃ the combinatorial length of which is greater than n.

3 Half-minimizers

This section is dedicated to introducing one of the central concepts in this paper.

Definition 6. A distance minimizer between two points on the surface S is a curve that has the minimum
length out of all curves on S with the same endpoints.

We call a closed curve c based at a point x in a surface S a half-minimizer if the distance in S between
x and any point on c is realized as the length of the shortest arc in c that connects these two points.
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More generally, a curve c from x to y ∈ S is a half-minimizer if the distance from any point z ∈ c to x
or y is realized by the length of a subarc of c that connects z to x or y.

We also call a curve c̃ in H2 a half-minimizer if it is the lift of a half-minimizer c in S.

Remark 7. A distance minimizer is necessarily a geodesic on S, but in general geodesics are not distance
minimizers on S, since geodesics only locally minimize distances. Furthermore, a distance minimizer
contains an arc minimizing the length of all curves that join any two points lying on it. A half-minimizer
c between x and y on S necessarily has at least one distinguished point m ∈ c, such that the two distinct
arcs between x and m, and y and m are distance minimizers. Indeed, observe that if cxz is the subarc
of c realizing the distance of z ∈ c to x, then cxz′ is contained in cxz for z′ ∈ cxz . Since a similar relation
holds for subarcs of c that realize the distance to y, c can be expressed as the union of subarcs of the
form cxm and cym for some point m ∈ c. Moreover, if c is not a distance minimizer between x and y, then,
by Lemma 10 below, the point m is uniquely determined. We shall call m a half-point. If c is a closed
half-minimizer, the half-point m coincides with the midpoint of c. A half-minimizer is smooth except
that it may have a kink at m and, if closed, also at the base point, so it makes sense to call the two
geodesic parts of a half-minimizer halves. See the violet curve from x1 to y1 in Figure 5 for an example
of a non-closed half-minimizer and the blue curves for closed half-minimizers, where the curve based at
x2 has two kinks, one at x2 and the other at m2. Note that the curve based at x4 has no kinks and
one can easily imagine the base point in this case to not be significant, as the curve is a half-minimizer
based at all points lying on it. However, the closed geodesic based at x3 illustrates that there may be
half-minimizers that are smooth everywhere but do not allow the base point to be chosen freely, if, for
example, the green curve between x′3 and m′3 depicts a distance minimizer.

The concept of closed half-minimizers has been studied before in the literature [2], in different contexts
and using a more restrictive definition, under the name half-geodesic.

x2

m2

m4
x4

x1

m1

y1 x′
3

m′
3

m3x3

Figure 5: Examples and counter-examples of half-minimizers.

Lemma 8. (Lemma 28 in appendix) Let Vx̃ be a Dirichlet domain. Then the geodesic segment g̃ that
joins x̃ to any ỹ ∈ Vx̃ projects to a distance minimizer in S. Conversely, if g from x = π(x̃) to y is a
distance minimizer in S, then the lift g̃ of g based at x̃ satisfies g̃ ⊂ Vx̃.

As a consequence of Lemma 8, we see that two geodesics c1, c2 in Vx̃, both incident to x̃, give rise to
a half-minimizer c by concatenation.

Recall that two curves c1, c2 ⊂ H2 are Γ-equivariantly isotopic if and only if their projections are
isotopic in S = H2/Γ. The relevance of half-minimizers for Delaunay triangulations comes from the
following proposition.

Proposition 9. Let x̃ ∈ P̃. Then any edge ẽ in DTP̃ based at x̃ is Γ-equivariantly isotopic, with fixed
endpoints, to a curve c̃ that is a half-minimizer based at x̃. The projection c of c̃ to S is simple and, if
closed, nontrivial.

Before we present a proof, we discuss the situation. Note that it is possible in general that an edge ẽ
in DTP̃ is not itself a half-minimizer. Figure 6 provides an example of this. The figure shows a Dirichlet
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tesselation from a Voronoi diagram, constructed from the red points, which are all equivalent under
the action of the group Γ generated by the translations that induce opposite edge identifications of the
hyperbolic octagon in Figure 4a above. Since every vertex has degree 3, the dual tesselation DTP̃ is a

triangulation and the geodesic edge ẽ shown in Figure 6b in cyan connecting the points ã and b̃ is an
edge of DTP̃ , with a combinatorial length of 1. Moreover, ẽ intersects two edges in the Voronoi diagram
in their interiors.

In general, if an edge ẽ′ in a Delaunay tesselation incident to x̃ and some copy of x̃ is a closed half-
minimizer, then it follows straight from the definition of Vx̃ and Lemma 8 that the midpoint of ẽ′ must
be contained in Vx̃. Said in another way, such a half-minimizer intersects the interior of exactly two
Dirichlet domains. Therefore, the edge ẽ in DTP̃ cannot be a half-minimizer. On the other hand, the

curve in blue in Figure 6b, connecting the points ã and b̃, is a half-minimizer, isotopic to the cyan curve,
by Proposition 9.

(a) The isotopy in the proof of Proposition 9 moves
the edge ẽ over the shaded region to the curve c̃.

(b) A generic Dirichlet fundamental domain and a
geodesic, in cyan, connecting points ã and b̃,

isotopic to the half-minimizer in blue.

Figure 6: Dirichlet domains and tesselations for the fundamental group of the Bolza surface.

With that, we turn to the proof of Proposition 9.

Proof. Consider the curve c̃ that connects the two vertices x̃ and ỹ of a triangular face F̃ in DTP̃ consisting

of the two geodesic segments from the center ωF̃ of the circumcircle CF̃ of F̃ to either endpoint. The
situation is illustrated in Figure 6a. The point ωF̃ lies in Vx̃ (by Lemma 26 in Appendix B). Together
with Lemma 8, this implies that c̃ is a half-minimizer based at either endpoint, with half-point ωF̃ .
Consider the Dirichlet fundamental domain VωF̃

, which contains x̃ and ỹ, by (2.1). Since VωF̃
is convex,

it also contains the geodesic edge ẽ in F̃ joining x̃ and ỹ. Now, c̃ and ẽ form a bigon B completely
contained in VωF̃

, so there is an isotopy inside every copy of VωF̃
from the copies of ẽ to c̃, which fixes

points equivalent to x̃ and ỹ. Note also that B does not contain any points of P̃ by definition of DTP̃
and convexity of CF̃ . Since VωF̃

contains only one representative of every point moved in the isotopy
and the tesselation of H2 by copies of VωF̃

is Γ-invariant, one obtains a Γ-invariant isotopy of H2.
That c, if closed, is nontrivial is clear, and simple follows from Proposition 2 for DTP and the fact

that c is isotopic to the projection of ẽ.

The situation illustrated in Figure 6 motivates the following definition. The Voronoi diagram dual
to a Delaunay tesselation DTP̃ has edges joining the circumcenters of the polygons in DTP̃ . We call
an edge of either tesselation that intersects its dual edge a centered edge. This makes sense because the

dual of the dual of DTP̃ is the same tesselation of H2 as DTP̃ , and the same is true for VP̃ , so an edge is
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centered if and only if its dual is. The concept of centered edges has been studied before [9], restricted
to edges of a Voronoi diagram.

In the remainder of this section we study the number of intersections that two half-minimizers can
have.

Lemma 10. (Lemma 29 in appendix) Two distinct distance minimizers that are not subarcs of one
another on S cannot intersect each other more than once in their interior. Moreover, if an intersection
occurs at an endpoint, then there cannot be an intersection in the interior.

Remark 11. Note that it is possible for two distance minimizers to intersect more than once, at end-
points, as the existence of closed half-minimizer shows.

Lemma 12. (Lemma 30 in appendix) A half-minimizer can intersect a distance minimizer at most 2
times, or at least half of the half-minimizer is a subarc of the distance minimizer.

Lemma 13. (Lemma 31 in appendix) Two half-minimizers cannot intersect each other more than 4
times, as long as their halves are distinct.

We illustrate the machinery developed thus far in the context of Delaunay triangulations of the prim-
itive, diamond, and gyroid triply-periodic minimal surface (TPMS) family discussed in the introduction.

Let S3 denote the closed hyperbolic surface that gives rise to the gyroid TPMS family by lifting,
to R3, embeddings of S3 into the three-torus T3. Consider the fundamental polygon D containing the
origin 0 and its tesselation in Figure 7a, under the symmetry group ΓS3

generated by the translations
that identify opposite edges of D. It is well-known that D is a fundamental domain for ΓS3 and that
H2 → H2/ΓS3 = S3 corresponds to the universal (conformal) covering of S3 [38].

Lemma 14. (Lemma 32 in appendix) The dodecagon D depicted in Figure 1a is the Dirichlet fundamental
domain V0 ⊂ H2 for ΓS3

.

It is straightforward to see that the boundary of D consists of 6 inequivalent edges and that all
corners are equivalent, under ΓS3

, since ΓS3
identifies opposite edges of D. Therefore, by Lemma 14 and

Lemma 8, the straight lines through the origin depicted in Figure 7c in blue also give rise to closed half-
minimizers based at the origin. Moreover, by Lemma 8, one can combine any two of the line segments
li from the origin to the corners, to obtain many more half-minimizers based at the origin. Denote the
set of these line segments by L and the set of all possible half-minimizers that can be formed from L by
LH .

(a) Tesselation of H2 by Dirichlet
dodecagons.

(b) The Dirichlet dodecagon along
with lines, in blue, through the ori-
gin, representing the invariant axes
of hyperbolic translations.

(c) The Dirichlet dodecagon, in
green, along with line segments that
are distance minimizers emanating
from the origin, in blue.

Figure 7: Half-minimizers in the Dirichlet dodecagon, corresponding to the Dirichlet fundamental domain
of the genus 3 hyperbolic surface that gives rise to the gyroid TPMS family.

By Proposition 9 and Lemma 13, no Delaunay edge can project to a curve in S3 that is homotopic
to a half-minimizer that intersects any other half-minimizer more than 4 times. So, to find a bound on
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the combinatorial length of Delaunay edges, we can count intersections with half-minimizers in LH . To
see if a geodesic segment ẽ emanating from D connecting two points of some P̃ is potentially a Delaunay
edge, we assign to each line segment in L the numbers of intersections, in its interior, with ẽ. Then, the
sum σ of any two of these values has to be less than five if the intersections are nontrivial, i.e. cannot be
eliminated by homotopies. Note that the origin and corners of D can only be joint intersection points of
the curves in L with ẽ, so can only add 1 each to each sum σ. When counting nontrivial intersections, it
is well-known that geodesic representatives of two curves on a hyperbolic surface minimize the number
of intersections these two curves can have in their homotopy classes (with fixed endpoints), see [17,
Propositions 1.3 and 1.9] and [17, Section 1.2.7]. Observe that the blue curves in Figure 7c cut S3

into a set of topological disks {Di}i. Therefore, for every curve emanating from D, there is a maximal
combinatorial length it can attain before violating the restriction on the sum.

There is a maximal number of edges of a Dirichlet fundamental domain for the fundamental group of
a surface of given genus [3, Theorem 10.5.1] and therefore also for the number of disks {Di}. Therefore,
with the above, it is clear that half-minimizers on hyperbolic surfaces lead to a bound on the combinatorial
length of Delaunay edges, independent of the hyperbolic metric on the surface. To improve the results
that the above method would generate, our strategy is to find as many distance minimizers within a
given Dirichlet fundamental domain as possible.

Proposition 15. (Proposition 37 in appendix) Each centered edge of Vx̃ is a half-minimizer and each
non-centered edge a distance minimizer.

For the following, we recall an extended definition of convex to apply to regions on S.

Definition 16. We call a subset K ⊂ S convex if for every two points x, y ∈ K, there is a unique
distance minimizer c ⊂ K with endpoints x and y.

Note that not all convex subsets of H2 project to convex subsets of S. Furthermore, a subset A of
S with the property that there is a unique geodesic in A that joins any two of its points is also not a
convex set in S in general. In fact, the interior of every Dirichlet fundamental domain projected to S
provides an example of such behavior.

Proposition 17. (Proposition 42 in appendix) A (closed) triangle in S with edges that are distance
minimizers is convex.

Remark 18. The generalization of Proposition 17 to polygons with more edges does not hold. For
a counter-example, consider a Dirichlet fundamental domain Vx̃ for some NEC group Γ with only one
vertex orbit and connect x̃ with two vertices incident to the same edge ẽ of Vx̃ by geodesics. By splitting
ẽ along its half-point, which exists by Proposition 15, we obtain a convex quadrilateral Q̃ in H2 with
edges that are distance minimizers w.r.t. P̃ = Γx̃. However, as two of its vertices project to the same
point on S = H2/Γ, by construction, so Q cannot be convex in S. It is easy to see that shifting Q around
a bit on S, one can also obtain examples of this type without equivalent vertices.

4 A bound on the combinatorial length of Delaunay edges

In this section, we prove the main results of this paper: bounds on the combinatorial length of Delaunay
triangulations of point sets P̃ = π−1(P), where P is finite.

We start by summarizing the situation thus far. By Lemma 8, Proposition 15 and Proposition 17,
every Dirichlet fundamental domain for Γ can be partitioned into a set of triangles each of whose projec-
tion to S = H2/Γ is convex, as illustrated for a particular Dirichlet fundamental domain for the origin,
in Figure 8a. For other symmetry groups Γ or other Dirichlet domains, the situation may be slightly
different as triangles incident to one edge of the Dirichlet polygon are not necessarily congruent. Fur-
thermore, Figure 8a shows the worst possible case in terms of the number of triangles, because in case
of the presence of non-centered edges, the triangle formed by the edge and the origin is already convex.
By Lemma 10, the intersection of a distance minimizer on S and each triangle is necessarily connected.

We first examine the recently considered, more restricted case [24, 6, 35], where the edges in the
Delaunay triangulation are distance minimizers on S. The condition adopted in these works is that no
two points in P that are connected by an edge in DTP̃ are further apart than a distance that is smaller
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(a) Every blue arc in the Dirichlet domain projects to
a distance minimizer.

(b) A distance minimizer that maximizes the combi-
natorial distance illustrated for the Bolza surface.

Figure 8: Distance minimizers in Dirichlet domains.

than half the length of the smallest noncontractible loop on S. This means that any path in S joining
points x and y in P not homotopic to the edge e in DTP̃ joining these points is strictly longer than e.
This implies that the edges in DTP̃ are distance minimizers.

Theorem 19. (Theorem 45 in appendix) Let Γ be the fundamental group of a closed hyperbolic surface S.
Let Vx̃ be a Dirichlet fundamental domain for Γ, with k edges and (Vx̃)O ⊂ Vx̃ any original fundamental
domain. Let P be a finite set of points on S and DTP̃ the Delaunay triangulation of the lifted set of

points P̃ ⊂ H2, with edges that are distance minimizers. Then the maximal combinatorial length of a
Delaunay edge is bounded by k/2.

A rigorous and detailed proof can be found in the appendix, Section C. Here, we merely present a
sketch and explain the idea.

By the discussion before the statement of the theorem, a Dirichlet domain Vx̃ can be decomposed
into triangles {∆̃j}2kj=1 as shown in Figure 8a. Since the projection of each of the triangles is convex in
S, the intersection of a distance minimizer e ⊂ S and each ∆j has to be connected. The edge e starts at
some point in Vx̃ and may exit it. We consider the part that lies in Vx̃ as the first geodesic segment c̃1.
By using an appropriate element of γ ∈ Γ, one can map the first part of e that lies outside Vx̃ back into
Vx̃ to obtain another geodesic segment, which may again exit Vx̃. Repeating this process of mapping
the beginning part of the geodesic segment that lies outside Vx̃ back into Vx̃ yields a collection {c̃i}ri=1

of pairwise disjoint geodesic arcs in Vx̃ that project to e, as illustrated in Figure 8b. To see what the
maximal possible combinatorial length is, we try to maximize it using a maximal collection of c̃i that,
when added iteratively to the others in order, each increase the combinatorial length by the maximum
possible value of 1. For this, c̃i cannot join two neighboring edges of Vx̃. Therefore, each c̃i has to
intersect at least 4 of the ∆̃j triangles. Thus, ignoring possible issues with the first and last geodesic
segments and the corners of Vx̃, the number r of arcs c̃i, and therefore the combinatorial distance, is at
most 2k/4 = k/2.

Corollary 20. Let Vx̃ be a Dirichlet fundamental domain for an NEC group Γ = π1(S), with S a genus
g hyperbolic surface. Let DTP̃ be a Delaunay triangulation with edges that are distance minimizers,
invariant under Γ. Then the maximal combinatorial length is bounded by 6g − 3.

Proof. The number of edges of a Dirichlet fundamental domain is bounded by 12g − 6 from above [3,
Theorem 10.5.1]. Note also that the case of 12g− 6 edges corresponds to the generic situation where the
Delaunay tesselation dual to VΓx is a triangulation. Theorem 19 completes the proof.

We now treat the case of general Delaunay triangulations.
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Corollary 21. Let Vx̃ be a Dirichlet fundamental domain, with k edges, for an NEC group Γ = π1(S).
Let DTP̃ be an arbitrary Delaunay triangulation, invariant under Γ. Then the maximal combinatorial
length is bounded by k.

Proof. Since a Delaunay edge ẽ in H2 is Γ-equivariantly homotopic to a half-minimizer ẽH by Proposi-
tion 9, we will use Theorem 19 as follows. Given a starting point ã ∈ Vx̃ for a curve, its homotopy class
on the surface is uniquely determined by which copy of the original fundamental domain (Vx̃)O contains
its endpoint b̃. This is a consequence of the fact that the geodesic from ã and b̃ in H2 is unique and this
projects to a geodesic on the surface which is also unique in its homotopy class [17, Section 1.2.7]. This
means that if b̃ lies in a copy of (Vx̃)O outside of where the concatenation of two distance minimizers
can reach, then the geodesic between ã and b̃ cannot be homotopic to a half-minimizer.

Corollary 22. Let Vx̃ be a Dirichlet fundamental domain for an NEC group Γ = π1(S), with S a genus
g hyperbolic surface. Let DTP̃ be an arbitrary Delaunay triangulation, invariant under Γ. Then the
maximal combinatorial distance is bounded by 12g − 6.

Remark 23. For a Dirichlet tesselation of E2 of the group Z2, with squares, Corollary 21 yields a bound
on the combinatorial length of 4, whereas the optimal bound is 2.

Together with the algorithm from [44] to compute a Dirichlet fundamental domain for hyperbolic
symmetry groups, the results of this section lay the foundations for implementations of practical algo-
rithms to construct the Delaunay triangulation DTP for a finite set of points on an arbitrary hyperbolic
surface. We exhibited the first known bound for the set of points P̃f in H2 one has to consider to

guarantee that there is at least one representative edge in DTP̃f
for every edge in DTP̃ . To find P̃f , it

suffices to take into account as many copies of a given Dirichlet fundamental domain as dictated by the
bounds on the combinatorial length found in this section. Note that the bound of n on the combinatorial
length of a Dirichlet domain of a genus g surface translates to a bound of order O((12g)n) for the number
of copies of a generic Dirichlet fundamental domain with 12g − 6 edges.
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A Unbounded combinatorial distance

This section is dedicated to the proof of Proposition 25 below. We explain the necessary set-up. For
NEC groups, Wilkie established a connection between tesselations with fundamental domains and group
presentations [45], which lends itself well to applications and, in particular, motivates the kind of bounds
we establish. Actually, Wilkie’s treatment is restricted to Dirichlet fundamental domains but the results
apply to the general case because any isomorphism of symmetry groups is realized as a homeomorphism
of H2 [30, Theorem 3] and for every fundamental domain there is a combinatorially equivalent Dirichlet
fundamental domain of an isomorphic symmetry group [29, Theorem 3.3]. A Dirichlet domain Vx̃ for
an NEC group Γ induces the Dirichlet tesselation ΓVx̃, which induces a presentation of the group by
introducing a Wilkie generator for every edge of Vx̃. For ẽ an edge of Vx̃, the group element [ẽ] corresponds
to traversing the edge ẽ to get to the neighboring copy of Vx̃ on the other side of ẽ. Each vertex of Vx̃
gives rise to a relation, corresponding to the sequence of edge traversals, counterclockwise, that lead
back to the original Vx̃. By connecting two points x̃1, x̃2 ∈ Γx̃ if and only if the copies of Vx̃ containing
x̃1, resp. x̃2 share an edge, we obtain an embedding into H2 of the Cayley graph corresponding to
the presentation corresponding to the fundamental domain Vx̃. Recall that a Cayley graph is a graph
representing a presentation of a group Γ with labeled edges corresponding to a set G of generators
together with their inverses, and vertices corresponding to group elements [33]. Two elements a, b ∈ Γ
are joined by an edge labelled g ∈ G if ag = b. One usually regards the edges labelled by inverse elements
of G that connect the same two vertices as a single edge with two orientations, in which case the edge
is considered as undirected. Notice that as abstract graphs, the Cayley graph and the 1-skeleton of the
Delaunay tesselation are the same. By Proposition 2, the embedding of the Cayley graph can thus be
assumed to feature geodesic edges.

Remark 24. One could hope to find restrictions for the number of edges of a Dirichlet fundamental
domain for Γ, or the structure of the group presentation induced by the Wilkie generators, as opposed
to taking any other fundamental domain, possibly simplifying our problem when restricting to Dirichlet
fundamental domains. However, it turns out that there are no obstructions of this kind that limit the
freedom of a Dirichlet fundamental domain for NEC groups [29, Theorem 3.3].

We will use use the notion of Dehn twists on S in the following, which are homeomorphisms defined
up to isotopy of the surface it acts on [17, Chapter 3]. Each nontrivial closed curve α on a surface has an
associated Dehn twist, defined by taking a regular neighborhood of α, which is topologically an annulus
A. A Dehn twist around α is defined as the isotopy class of the homeomorphism of the surface that
twists A by 2π, is supported in A and the identity on ∂A. Recently, a theory linking groups containing
Dehn twists and isotopy classes of tilings of the underlying surface has been developed [27], containing
ideas which we will use in the following.

Before presenting a general result that illustrates the difficulty of our problem, we first revisit the
example from the introduction: The Euclidean torus T, with fundamental group Γ isomorphic to Z2,
acting on E2. After an affine transformation of E2, we can assume that Γ = Z2 [Theorem 2.1][41].
The Dehn twists of T generate a group isomorphic to SL(2,Z) [17, Theorem 2.5], so the idea from the
introduction of shearing the square fundamental domain of Z2 with matrices in SL(2,Z) can be seen as
a consequence of this group having infinitely many elements.

Proposition 25. Let n ∈ N. There is a fundamental domain for Γ in H2 such that there exists an edge
in DTP̃ the combinatorial length of which is greater than n.

Proof. By compactness of S, the number of isotopy classes of geodesic edges connecting two points on
S that are shorter than a given constant is finite. Fix an edge ẽ of DTP̃ whose projection e to S is not
closed, or, if closed, is nonseparating. To see that such an edge exists, observe that the only case where

all edges are closed is the case where P̃ = Γx̃. In this case, since DTP̃ is dual to VP̃ , DTP̃ represents

the embedding of a Cayley graph for Γ w.r.t. the Wilkie generators for VP̃ and therefore induces a
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presentation of the fundamental group of S, given by the closed curves represented by edges in DTP .
By Hurewicz’ theorem [21, Theorem 2A.1], the curves in DTP are a basis of the homology group of S,
and therefore cannot all be separating, because separating curves are homologically trivial.

Given ẽ as above, we construct a fundamental domain V with one vertex orbit for Γ such that there
is an edge ẽV of V that is the only edge of V that intersects ẽ, and does so transversally, both in their
interiors, as we now explain. By Proposition 2, e := π(ẽ) is a simple curve on S, we can now choose
a way to complete the curve e to obtain a simple nontrivial closed curve eC ⊂ S. Now, since eC is
nontrivial, we can find another simple closed nontrivial curve eV ⊂ S that intersects eC exactly once,
somewhere in the interior of e. By applying a homeomorphism f of S, we map eC ∪ eV to the curves on
S shown in Figure 9a [17, Section 1.3.3] and consider the graph f(eV) ∪ v, with vertex v ∈ f(eV − eC).
Augmenting this graph by attaching 2g − 1, where g is the genus of S, closed curves e′2, ..., e

′
2g based

at v as illustrated in Figure 9b, we obtain a graph G′. Here, we understand all of the closed curves to

. . .f(eC)

f(eV)

f(e)

v

(a)

. . .

v

f(eV)

e′2

e′3 e′4
e′5 e′6

e′2g−1

f(e)
f(eC) e′2g

(b)

Figure 9: The graph G′ in the proof of Proposition 25.

be disjoint except at v. Cutting open S along the graph G′ produces a disk, as G′ yields the standard
presentation of the fundamental group of a surface [21, p. 5]. Any graph Ĝ such that S−Ĝ is a disk gives
rise to a fundamental domain of Γ [29, Theorem 5.1]. Therefore, G := f−1(G′) gives rise to the sought
for fundamental domain V ⊂ H2, with G∩e = eV ∩e and therefore ẽ∩∂V = ẽ∩ ẽV , for an appropriate lift
ẽV of eV . Consider the Dehn twist t about eC , an infinite order element, which we can interpret as acting
on the space of fundamental domains for Γ [27]. Here, it suffices to note that t has a representative that
is a homeomorphism that maps G to a similar graph and therefore gives rise to another fundamental
domain. The Dehn twist t only changes the edges of G it intersects, so by construction, it leaves invariant
all other edges but eV . The number of intersections of tM (eV) with eC , where tM = t◦t◦ ...◦t (M -times),
is equal to M [17, Proposition 3.2]. Therefore, there is a representative in the isotopy class of tM (eV)
that intersects e M times, without forming any bigons which by [17, Proposition 1.7] and [17, Section
1.2.7] means that these intersections cannot be eliminated by using homotopies. Thus, the combinatorial
length of the edge ẽ can be made arbitrarily large.

B A collection of lemmata and remarks

Lemma 26. Let x̃ ∈ P̃. Then for every triangle ∆̃ in DTP̃ with vertex x̃, the center ω∆̃ of the

circumcircle C∆̃ of ∆̃ satisfies ω∆̃ ∈ V
P̃
x̃ .

Proof. Assume that ω∆̃ is contained in some other cell of the Voronoi diagram of P̃. We have P̃ ∩ int(D∆̃) =

∅, where D∆̃ denotes the disk bounded by C∆̃. However, if ω∆̃ is contained in int(VP̃ỹ ) for some ỹ 6= x̃,

then dH2(ω∆̃, ỹ) < dH2(ω∆̃, x̃), i.e. ỹ ∈ int(D∆̃), in contradiction to P̃ ∩ int(D∆̃) = ∅.

Remark 27. In case P̃ = Γx̃, Lemma 26 asserts that the circumcenter of a triangle with vertex x̃ is
contained in the Dirichlet domain Vx̃, generalizing a similar statement for Euclidean symmetry groups
in the proof of Lemma 3.2 in [14].

Lemma 28. Let Vx̃ be a Dirichlet domain. Then the geodesic segment g̃ that joins x̃ to any ỹ ∈ Vx̃
projects to a distance minimizer in S. Conversely, if g from x = π(x̃) to y is a distance minimizer in S,
then the lift g̃ of g based at x̃ satisfies g̃ ⊂ Vx̃.
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Proof. By definition, Vx̃ consists of the points in H2 that are at least as close to x̃ as to any other point
in Γx̃. Since Vx̃ is convex in H2, g̃ ⊂ Vx̃. If the statement of the lemma were not true, then there is a
simple geodesic g′ in S joining x = π(x̃) and y = π(ỹ), which is shorter than g = π(g̃). Since geodesics
connecting points are uniquely determined by their endpoints in their homotopy class in S [17, Section
1.2.7], g′ is not homotopic to g, so the lift g̃′ of g′ based at x̃ is not equal to g̃ and therefore joins x̃ to
a point ỹ′ 6= ỹ, possibly equivalent, under the action of Γ, to ỹ. Moreover, g̃′ is shorter than g̃ because
π is a local isometry, a contradiction. For the converse statement, simply observe that if the endpoint ỹ
of g̃ was not contained in Vx̃, then it is strictly closer to another point x̃1 ∈ Γx̃, which by the first part
of the proof contradicts the minimality of g.

Lemma 29. Two distinct distance minimizers that are not subarcs of one another on S cannot intersect
each other more than once in their interior. Moreover, if an intersection occurs at an endpoint, then
there cannot be an intersection in the interior.

Proof. Suppose there exist 2 distance minimizers c1 and c2, connecting the points x1 and y1, and x2 and
y2, respectively. Assume further that c1 and c2 intersect each other at least 2 times in their interiors, at
points z and z′.

Note that the intersection of geodesics has to be transversal, meaning that their tangent vectors
cannot be parallel at the point of intersection. This can be seen using a general argument concerning
geodesics in Riemannian manifolds. If two geodesics g1, g2 intersected nontransversally at some point
p, then g1 = g2, after reparametrization. This is because geodesics are the solution of a second-order
differential equation, and these are uniquely determined by their initial values, i.e. the point p and their
tangent vectors at p, so after rescaling the tangent vector if necessary, the geodesics agree [34, Chapter
3].

Since both c1 and c2 minimize distances along their paths, the portion of both c1 and c2 connecting z
to z′ realize the distance between these points as geodesic arcs. Therefore, we can connect x1 to z along
c1, then connect z to z′ along c2, and z′ to y1 along c1 to obtain a curve c3 connecting x1 to y1 with the
same length as c1. However, since the intersections of c1 and c2 are transversal, c3 is not a geodesic, as
it features kinks at z and z′. This implies, by the Hopf-Rinow theorem [34, Theorem 5.21], that we can
further shorten the curve c3 by applying a homotopy with fixed endpoints to find a curve connecting x1

and y1 homotopic to c3 with length shorter than c1, a contradiction.
The second statement of the lemma corresponds to the situation where either x1 = z or y1 = z′.

Lemma 30. A half-minimizer can intersect a distance minimizer at most 2 times, or at least half of the
half-minimizer is a subarc of the distance minimizer.

Proof. The only case that presents difficulty and is not immediate from Lemma 29 is the case where a
distance minimizer c intersects a half-minimizer cH at both endpoints and at the half-point y of cH . Let
c join x to z, passing through y, and let (cH)1, (cH)2 be the two geodesic ‘halves’ of cH , connecting x
to y and y to z, respectively. Now, if (cH)1 intersected c at y nontransversally, then (cH)1 would be
included in c, similarly to the proof of Lemma 29 above. If we exclude such cases, then, similarly to
the above proof of Lemma 29, we find a contradiction to the distance minimality of c by considering the
geodesic in the homotopy class with fixed endpoints of the curve that follows first (cH)1 to y and then c
from y to z.

Lemma 31. Two half-minimizers cannot intersect each other more than 4 times, as long as their halves
are distinct.

Proof. Since the two halves of a half-minimizer consist of distance minimizers by Remark 7, Lemma 30
implies the result.

Lemma 32. The dodecagon D depicted in Figure 1a is the Dirichlet fundamental domain V0 ⊂ H2 for
ΓS3

.

Proof. First note that D is symmetric w.r.t. reflections across the axes through the origin shown in
Figure 7b and that D is the result of glueing together 96 congruent hyperbolic triangles (with geodesic
sides), each with angles π/6, π/2, and π/4, such that the triangles meet only along edges or at corners with
equal angles [36, 38]. Moreover, the tesselation of H2 by these triangles is invariant under hyperbolic
reflections in the geodesics in H2 formed by concatenating the boundaries of the triangles to obtain
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geodesics. Therefore, the tesselation of H2 by copies of D is invariant under reflections across the
boundary of D, because the boundary is made up of geodesics that correspond to such a mirror axis.
See Figure 1a for an illustration of the decomposition of D into such triangles. By symmetry, the lines
connecting the origin 0 to the corners of D have the same length. Moreover, the lines li from 0 to the
midpoints of edges intersect the edges perpendicularly, by symmetry and the values of the angles of the
triangles that decompose D. Since the edges of D are axes of reflection symmetries of the tesselation of
H2 by D, they correspond to perpendicular bisectors of 0 and points equivalent to 0. If some li were not a
distance minimizer, then int(V0) would be strictly contained in D. This would imply that int(D) contains
points equivalent under the action of ΓS3

, in contradiction to D being a fundamental domain.

Remark 33. As a further consequence of the symmetries of D used in the proof of Lemma 32, we see
that the blue straight lines through the origin shown in Figure 7b correspond to closed geodesics on S3,
or, equivalently, show the intersections of D with the invariant axes of the translations corresponding to
the side pairings that generate ΓS3

.

We analyse the situation when Delaunay edges correspond to half-minimizers.

Lemma 34. An edge ẽ of DTP̃ is a half-minimizer joining its endpoints if the two circumcenters ω1, ω2

of the circles C1, C2 of the two Delaunay polygons on both sides of ẽ lie on opposite sides of ẽ. The
circumcenters of circles containing the endpoints of ẽ lie on the perpendicular bisector of ẽ.

If either the center of C1 (or C2) lies on ẽ, necessarily a diameter of C1 (or C2), ẽ is still a half-
minimizer, but there may be multiple distance minimizers connecting a vertex of DTP̃ to the midpoint
of ẽ.

Proof. Let ã and b̃ be the endpoints of ẽ, and ỹ its midpoint. After applying an isometry of H2 we can
assume that ẽ lies on the real axis and that ỹ lies on the origin. Indeed, it is well-known that the group
of conformal transformations of the unit disk acts transitively on triples on the boundary of the unit
disk2 and therefore we can choose to map the geodesic in H2 containing ẽ to the real axis by mapping
its intersections with the boundary to the points 1 and −1 on the real axis. We obtain the desired
situation by furthermore mapping one of the intersections of the perpendicular bisector of ã and b̃ with
the boundary of the unit circle to the point i on the imaginary axis. The resulting situation is illustrated
in Figure 10. By definition, the interiors of the two circles C1 and C2 do not contain a vertex of DTP̃ .
The fact that the figure depicts the situation accurately can be seen as follows. The hyperbolic distance
from the origin of a point with Euclidean distance r from the origin is equal to arctanh(r) [40, Section
9− 2, eq. (1)], which is a monotonous function in r. In particular, points that have a greater Euclidean
distance from the origin in H2 also have a greater hyperbolic distance. Thus, as depicted in Figure 10a,
if we can show that the light blue circle Cỹ with center ỹ is contained in the union of the two closed disks
bounded by the circles C1 and C2, then ẽ is a half-minimizer based at either endpoint. We will do this
using Euclidean geometry. Consider the set, or pencil, C of circles containing the vertices ã and b̃. The
set C can also be described as the set of circles with center on the line through ỹ, perpendicular to ẽ. It
is clear that if the Euclidean center of a circle Cu ∈ C lies above ẽ, then Cu contains the upper half-disk
of Cỹ, bounded by ẽ. Similarly, a circle Cd ∈ C with center below ẽ contains the lower half-disk of Cỹ,
bounded by ẽ, so ẽ is a half-minimizer.

The last statement of the lemma is the limiting case where Cỹ equals C2.

Remark 35. Figure 10b illustrates the situation where the two circumcenters lie on the same side of ẽ.
If DTP̃ is defined by Γã, with ã ∈ Γb̃, then, using the same set-up as in the proof of Lemma 34, one sees

that the edge between ã and b̃ cannot be a half-minimizer.

Remark 36. It is worth discussing the differences between the concepts of centered edges and half-
minimizers in the context of the tesselations defined by P̃. First and foremost, there is the conceptual
difference that half-minimizers are intrinsically defined on a surface without reference to a particular
tiling or a point set. Furthermore, the property of being a half-minimizer is hereditary, since it follows
straight from their definition that subarcs of half-minimizers inherit their length-minimizing properties
and thus are half-minimizers as well. On the other hand, in the presence of a point set, by Lemma 34,

2This is also sometimes paraphrased as saying that there is only one triangle with only ideal vertices in H2, up to
isometry.
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ω̃2

(a) The situation when the circle centers lie on both
sides of the edge from ã and b̃.

Cỹ

C1

C2

b̃
ỹ

ã

ω̃1

ω̃2

(b) The situation when the circle centers lie on the
same side of the edge from ã and b̃.

Figure 10: The two situations of Lemma 34.

a centered edge of a Delaunay tesselation is a half-minimizer. Moreover, by Proposition 37 below, the
centered edges of Dirichlet domains are also half-minimizers. However, it is not true in general that half-
minimizers give rise to centered edges, even for closed half-minimizers that are geodesics everywhere. For
an example, recall the NEC group ΓB and Dirichlet fundamental domain from Figure 4a and consider
the line segments from the origin to the corners of the Dirichlet polygon in Figure 11(left), where the
line segments are shown in blue. These are equivalent, under ΓB , to the edges shown in Figure 11(right).
By Lemma 28, analogous to the discussion of Figure 7 above, these line segments can be combined
arbitrarily to yield closed half-minimizers. There are a total of four closed geodesics without kinks that
one can produce on H2/ΓB in this way, and none of these are edges of the Delaunay tesselation dual to
the shown Voronoi diagram. Moreover, it is impossible to make all of these part of a single Delaunay
triangulation with the red points as vertices. Thus, there are half-minimizers that are closed geodesics
based at a point that are not edges in a given Delaunay triangulation with that point as vertex set.

Figure 11: Closed geodesics on the Bolza surface, illustrated in a fundamental domain in H2, from line
segments through the origin.

19



Proposition 37. Each centered edge of Vx̃ is a half-minimizer and each non-centered edge a distance
minimizer.

Proof. Given an edge ẽ of Vx̃, denote its endpoints by ã and b̃ and consider the other domain incident
to ẽ, Vx̃1

. The geodesic segments δ̃z ⊂ Vx̃ and (δ̃z)1 ⊂ Vx̃1
, from x̃ and x̃1 to a point z̃ ∈ ẽ, respectively,

together form a half-minimizer (δ̃z)h, by Lemma 28.
We consider first the case that ẽ is non-centered and assume w.l.o.g. that dH2(b̃, x̃) ≥ dH2(ã, x̃).

Notice that the circle C0(b̃) in H2 with b̃ ∈ C0(b̃) and center x̃ bounds a disk D0(b̃) the interior of which

does not contain any points in P̃, by Lemma 28. There is a similar disk D1(b̃), bounded by the circle
C1(b̃) 3 b̃ with center x̃1. Since ẽ is the perpendicular bisector of x̃ and x̃1, the radii of C0(b̃) and C1(b̃)
agree. By applying an appropriate isometry, similarly to the proof of Lemma 34, we can map ẽ to the
real axis in such a way that the situation is that of figure 12a. Note that we simplified the situation by
mapping the geodesic from x̃ to x̃1 to the imaginary axis. The edge ẽ is necessarily shorter than δ̃b, by
non-centeredness. To see this, simply note that the circles in Figure 12 are symmetric w.r.t. a reflection
along the geodesic from x̃ to x̃1. Therefore, by the triangle inequality in H2, 2l(ẽ) < 2l(δ̃b), where l(c)
denotes the hyperbolic length of a geodesic segment c. Whence, one easily sees that the light blue circle,
centered at ã with radius dH2(b̃, ã), does not contain any point equivalent to b̃, and therefore, ẽ is a
distance minimizer.

C0(b̃)

C1(b̃)

x̃

x̃1

b̃ã
ẽ

δ̃b

δ̃bδ̃a

δ̃a

(a) The edge from ã to b̃ is a distance minimizer in
case the edge is not centered.

x̃

x̃1

b̃ã
ỹ

(b) The arcs from ỹ to ã and b̃ are distance
minimizers when the edge between ã and b̃ is

centered.

Figure 12: The two cases of the proof of proposition 37.

Consider now the case where ẽ is centered. By mapping ẽ to the real axis in H2 and the points x̃ and
x̃1 to the imaginary axis, we can assume we are in the situation of Figure 12b. Projecting x̃ (and x̃1)
to its nearest point on ẽ, we obtain a point ỹ ∈ ẽ between ã and b̃. We claim that ỹ is a half-point of
the half-minimizer ẽ, which will finish the proof. For this, similarly to above, we consider the open disks
D0(b̃) and D1(b̃) around x̃ and x̃1, respectively, that do not contain any point equivalent to b̃. Their
boundary circles are shown as solid arcs in Figure 12b along with a disk D(b̃) bounded by the solid green
circle centered at ỹ, with D(b̃) ⊂ D0(b̃)∪D1(b̃). This shows that the subarc of ẽ from ỹ to b̃ is a distance
minimizer. Consider now the disks bounded instead by the dashed circles, where the red and blue ones
both have a radius of dH2(ã, x̃) and centers x̃ and x̃1, respectively. One deduces, similarly to above, that
the light blue dashed circle centered at ỹ with radius dH2(ã, ỹ) bounds a disk not containing any points
equivalent to ã. Therefore, the subarc of ẽ from ỹ to ã is a distance minimizer.

Remark 38. Notice that the statement of Proposition 37 follows immediately from Lemma 34 in case
the Dirichlet fundamental domain has only one vertex orbit, since it is then a polygon inscribed into a
circle. Therefore, Proposition 37 can be seen as a generalization of an observation for cyclic polygons. In
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view of this, we consider other possible generalizations of observations for cyclic Dirichlet fundamental
domains. A natural question is whether the edges of a maximal cyclic polygon defined by equivalent
points on the boundary are half-minimizers. Note that the equivalent vertices of a Dirichlet fundamental
domain Vx̃ have the same distance to x̃ [3, Theorem 9.4.3].

The following is a similar statement to lemma 2.5 in [9].

Proposition 39. Let C̃P x̃ ⊂ Vx̃ be the cyclic polygon obtained by joining vertices of Vx̃ equivalent under
Γ. If all edges of C̃P x̃ are half-minimizers, then C̃P x̃ is centered, i.e. the circumcenter x̃ is contained
in C̃P x̃.

Proof. Note that by Lemma 28 and the uniqueness of the Delaunay tesselation, the edges of C̃P x̃ are
part of a Delaunay triangulation DTP̃ with vertex set P̃ = Γỹ, where ỹ is a vertex of C̃P x̃. Since C̃P x̃

has embedded geodesic edges {ẽi}ni=1 in H2 since Vx̃ is convex, C̃P x̃ is contained in the half-spaces of

H2 that lie to one side of each of the full geodesics ̂̃ei containing each edge ẽi, respectively. Note for this
that since C̃P x̃ is cyclic, all interior angles must be smaller than π, so C̃P x̃ is convex in H2. Although
one can give a direct proof of the proposition, we will proceed with a proof by contradiction, because we
will employ its reasoning subsequently. If x̃ lies outside of C̃P x̃, it must lie on the other side of some
̂̃ek than C̃P x̃. We claim that ẽk with endpoints ã and b̃ is a non-centered edge in this case. Indeed, by
Lemma 34, the possible circles that contain ã and b̃ have centers lying on the perpendicular bisector of ã
and b̃. Therefore, the center of any circle not containing any other vertex of C̃P x̃ must be further away
from ẽk than x̃, see also Figure 10b. Therefore, by Lemma 34, ẽk is not a half-minimizer.

Remark 40. Proposition 39 is also valid for cyclic polygons without reference to a symmetry group
Γ, as the proof shows. If a cyclic polygon C̃P x̃ does not contain its center x̃, then the non-centered
edge ẽk with vertices ã and b̃ found in the proof, with the property that x̃ and C̃P x̃ lie to different
sides, is uniquely determined. Indeed, by arguing just like in the proof above, we see that x̃ lies on the
perpendicular bisector ẽ⊥i of each edge ẽi of C̃P x̃. However, because subsequent edges of C̃P x̃ enclose

an angle smaller than π in C̃P x̃, for ẽ⊥i for i 6= k to meet x̃, int(C̃P x̃) ∩ ẽ⊥i 6= ∅ for i 6= k. Therefore,

C̃P x̃ lies on the same side of each ẽ⊥i for i 6= k as x̃. In particular, it is straightforward to see3 that ẽk
is the unique longest edge of C̃P x̃, see also [10, Proposition 2.2] and Figure 13b below.

Remark 41. Note that it is generally not true that a centered polygon with only equivalent vertices
has only half-minimizers as edges, since if the circumcenters of two polygons sharing an edge ẽ lie on
the same side of ẽ, then ẽ is not a half-minimizer, see Remark 35. On the other hand, it follows straight
from Lemma 34 that a sufficient condition for all edges of such a centered polygon to be half-minimizers
is for it to only share an edge with other centered polygons.

Using Proposition 39, it is straightforward to find a counter-example to the proposed question of
Remark 38. We again take our example of the group ΓB from Figure 4a above and the orbit of any
of the red points and consider the Voronoi diagram. Using this definition of ΓB , one can find the edge
identifications of the Dirichlet fundamental 18-gon depicted, together with its tesselation, in Figure 13a.
The vertex orbit on the boundary of Vx̃ containing the three vertices, marked by ỹ1, ỹ2 and ỹ3 in
Figure 13b yields a cyclic triangle ∆̃B with vertices {ỹ1, ỹ2, ỹ3}. However, since x̃ is not contained
in ∆̃B , Proposition 39 (and Remark 40) implies that the geodesic between ỹ1 and ỹ3 in H2 is not a
half-minimizer.

Proposition 42. A (closed) triangle in S with edges that are distance minimizers is convex.

Proof. Triangles in S have the property that that their lift to H2 is convex and therefore contain a unique
geodesic joining any two points in them. We will prove that this geodesic is a distance minimizer, which
also shows, in particular, that no two points of ∆̃ ⊂ H2, a lift of a triangle ∆ with distance minimizers
edges in S, project to the same point on S. Denote the geodesic connecting two points z̃1 and z̃2 in H2

by g̃z̃1z̃2 . We first prove that the geodesics from corners to arbitrary points on the edges are distance

minimizers. Denote the vertices of ∆̃ by x̃, ỹ, and z̃. Consider w.l.o.g. the edge g̃x̃z̃. The geodesics g̃ỹz̃

and g̃ỹx̃ are distance minimizers so z̃, x̃ ∈ VP̃ỹ , by Lemma 28. Since Vỹ is convex, g̃x̃z̃ ⊂ Vỹ and therefore,
again by Lemma 28, there is a distance minimizer from ỹ to any point on the edge g̃x̃z̃.

3Simply observe that the angle subtended by ẽk from x̃ is the maximal angle among all chords that represent edges of

C̃P x̃ and is ≤ π.
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(a) A Dirichlet fundamental domain with 18 sides for
the symmetry group ΓB from Figure 4a above, with
edge identifications. Translations that identify edges
with the same label generate ΓB and the Dirichlet
tesselation.

(b) The Dirichlet fundamental domain Vx̃ and tesse-
lation from (a), with {ỹ1, ỹ2, ỹ3} representing a com-
plete set of equivalent points on the boundary. The
edge between ỹ1 and ỹ3 is not a half-minimizer.

Figure 13: Voronoi diagrams from the points marked in red, the orbit of x̃ under the symmetry group
ΓB .

ỹ

p̃1

x̃

z̃p̃2

Figure 14: The hyperbolic triangles ∆̃ and ∆̃′.
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If there were points p̃1, p̃2 ∈ ∆̃ such that g̃p̃1p̃2
was not a distance minimizer then we may assume that

these lie on the boundary of ∆̃. Indeed, extending g̃p̃1p̃2
until it crosses the boundary ∂∆̃ would yield a

curve that is not the distance minimizer between the points on the boundary if there is a curve from p̃1

to p̃2 not contained in ∆̃. So, assume that p̃1, p̃2 ∈ ∂∆̃ and further that p̃1 ∈ g̃x̃z̃, p̃2 ∈ g̃ỹz̃. Figure 14

illustrates the situation. Then, consider the geodesic g̃p̃1ỹ ⊂ ∆̃. By the first part of the proof, g̃p̃1ỹ is

a distance minimizer and therefore the triangle ∆̃′ ⊂ ∆̃ with vertices {p̃1, ỹ, z̃} is again a triangle with
distance minimizers as edges. By the above reasoning, the geodesic g̃p̃1p̃2

must be a distance minimizer

in ∆̃′ since it connects a corner of ∆̃′ to a point on its edge, finishing the proof.

Remark 43. The generalization of Proposition 42 to polygons with more edges does not hold. For
a counter-example, consider a Dirichlet fundamental domain Vx̃ for some NEC group Γ with only one
vertex orbit and connect x̃ with two vertices incident to the same edge ẽ of Vx̃ by geodesics. By splitting
ẽ along its half-point, which exists by Proposition 37, we obtain a convex quadrilateral Q̃ in H2 with
edges that are distance minimizers w.r.t. P̃ = Γx̃. However, as two of its vertices project to the same
point on S = H2/Γ, by construction, so Q cannot be convex in S. It is easy to see that shifting Q around
a bit on S, one can also obtain examples of this type without equivalent vertices.

Remark 44. Notice that a closed half-minimizer c based at x ∈ S with the property that c is a half-
minimizer based at y for all y ∈ c has special properties, which can be used to further reduce the number
of allowed intersections of it with a half-minimizer given by Lemma 31. Such a curve is necessarily
smooth everywhere because the half-point of a closed half-minimizer is located at the point furthest
away from the base point and the base point and the half-point are the only points where a closed half-
minimizer can have kinks, see Remark 7. The converse is, however, not true for general half-minimizers,
as illustrated by Remark 7 and Figure 5.

C Proof of the main theorem

Theorem 45. Let Γ be the fundamental group of a closed hyperbolic surface S. Let Vx̃ be a Dirichlet
fundamental domain for Γ, with k edges and (Vx̃)O ⊂ Vx̃ any original fundamental domain. Let P be a

finite set of points on S and DTP̃ the Delaunay triangulation of the lifted set of points P̃ ⊂ H2, with edges
that are distance minimizers. Then the maximal combinatorial length of a Delaunay edge is bounded by
k/2.

Proof. We first set up the necessary notation. Denote the counter-clockwise cyclically ordered edges
of Vx̃ by {ẽi}ki=1, with corners {ṽi}ki=1, where ṽi and ṽi+1 (where ṽk+1 := ṽ1)) are incident to ẽi and a
half-point m̃i on every edge ẽi, using Proposition 37. In case an edge of Vx̃ is non-centered for Γx̃, we can
choose an arbitrary half-point in the interior of the edge. Note that ẽi \mi has two components, whose
closures (ẽi)1 and (ẽi)2 are distance minimizers. Denote the geodesic segments from x̃ to the corners ṽi
by c̃vi and those from x̃ to m̃i by c̃mi

. By Lemma 28, c̃vi and c̃mi
are also distance minimizers, so the

projection ∆j
i of each closed triangle ∆̃j

i with vertices {x̃, ṽi+j , m̃i} for i ∈ {1, ..., k} and j ∈ {0, 1} as
in Figure 8a is convex in S = H2/Γ, by Proposition 42. Let c̃p be a Delaunay edge that is a distance

minimizer incident to p̃ with projection p ∈ S. Consider first the case where p̃ ∈ P̃ ∩∂Vx̃.
Since c̃p is simple by Lemma 29, we can picture the projection cp of c̃p as a collection of nonintersecting

geodesic segments {c̃np}rn=1 in Vx̃, each connecting different points in Vx̃ by considering piece-wise lifts
of cp to Vx̃ as illustrated in Figure 8b for the Bolza surface. We assume that the ordering of {c̃np}rn=1

is such that the projection c≤mp to S of the first m segments of {c̃np}n is a curve on S for all m and c̃1p
emanates from p̃. We denote with c̃≤mp the lift, starting at p̃, of c≤mp to H2. Assuming that c̃1p consists

of more than one point, every c̃np is incident to two points in ∂Vx̃, except possibly c̃rp. Observe that c̃≤mp

is contained in c̃p and c̃≤rp = c̃p and that each c̃np has an orientation such that its endpoint in ∂Vx̃ maps
to the starting point of c̃n+1

p under the pairwise identification of edges under Γ for n < r.

Since c̃p is a distance minimizer, by Lemma 29 and the convexity of ∆j
i in S, cp ∩ ∆j

i has to be

connected for all i, j. Therefore, if c̃np intersects ∆̃j
i for some n, then c̃mp cannot intersect ∆̃j

i for m 6= n.
We will explain how to bound the combinatorial length of c̃p w.r.t. (Vx̃)O using the geodesic segments
in {c̃np}n.
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If c̃≤mp has a combinatorial length of l, then the combinatorial length of c̃≤m+1
p is at most l+ 1, since

c̃m+1
p is contained in Vx̃. We will now maximize the combinatorial distance that c̃p can have finding a c̃p

that has as many segments c̃np as possible. In particular, we can assume that r > 1.
For clarity of the following arguments, we have to adjust the above set-up slightly, in the following

technical way: Assume first that no c̃np is incident to a vertex ṽi. We slide the segments c̃np for 1 6= n 6= r
along appropriate lifts of c̃p slightly so they both start and end in the interior of a copy of Vx̃, so that they
intersect exactly one edge of Vx̃, the edge on which its former endpoint lay. We also extend c̃1p slightly
accordingly so it crosses over the edge containing its endpoint, and shorten c̃rp, so its starting point lies
in the interior of Vx̃. These technical adjustments mean that we do not have to consider different cases
for the combinatorial lengths of the c̃np depending on which edges of Vx̃ belong to (Vx̃)O. We call the
edge of Vx̃ where the original c̃np started its starting edge in the following.

With the above adjustment, if c̃np for n > 1 intersects no edge or a neighboring edge of its starting

edge in ∂Vx̃, then the combinatorial length of c̃≤n−1
p is equal to that of c̃≤np , since then the endpoint of

c̃np is contained in the (interior of the) same neighborhood layer as the endpoint of c̃≤n−1
p . This implies

that to increase the combinatorial distance of c̃≤n−1
p by concatenation with a copy of the segment c̃np , c̃np

has to intersect an edge of Vx̃ that is not neighboring its starting edge. In particular, such an edge must
intersect at least 4 distinct ∆̃j

i . Note that if a segment did intersect a corner, contrary to our simplifying

assumption above, then its projection to S would intersect at least 6 of the ∆j
i . This is because the

degree of a vertex in the Dirichlet tesselation associated to Vx̃ is at least 3 and at least 3 points in Vx̃
are equivalent to every corner under Γ [3, Section 9.3]. We therefore see that the assumption that each
c̃np is disjoint from the {ṽi} is without loss of generality.

The rest of the proof is now straightforward. The assumption that the first segment c̃1p consists of
more than one point means that it has a combinatorial distance of at most 2, in which case it intersects
at least 5 + 1 triangles, because p is incident to at least 2 triangles on S. For each segment c̃np with

n < r, increasing the combinatorial distance of c̃≤n−1
p by 1 by concatenation with a copy of c̃np uses up

a further 4 of the 2k triangles in {∆̃j
i}i,j . Inductively, after concatenation of the first n segments, we

obtain c̃≤np with a combinatorial length of ≤ 1 +n, and non-empty intersection with at least 6 + 4(n− 1)
of the triangles. Since k is always an even number [3], n ≤ k/2− 1 and therefore the maximum value for
the combinatorial length is k/2.

Note that the last segment c̃rp can terminate in the interior of Vx̃, without adding to the combinatorial

length of c̃≤r−1
p . In particular, this means that the maximum value of r is k/2. See Figure 8b for the

piece-wise lifts {c̃np}4n=1 of a curve that maximizes the combinatorial distance on the Bolza surface.

Lastly, observe that if there is no point on the boundary of ∂Vx̃ in P̃, then the the combinatorial
length of the first segment c̃1p is at most 1. On the other hand, the last segment may add 1 to the

combinatorial length of c̃≤r−1
p in at least one situation where this was previously impossible, so k/2

remains an upper bound for the maximal combinatorial distance.

Remark 46. Given the situation of Theorem 45 and the notation of the proof, the combinatorial distance
between two points in P̃ depends on the direction the points lie in. To see an example of this, consider
that a distance minimizer c̃p incident to a point p̃ on the edge ẽi of Vx̃ cannot intersect more than two
copies of ẽ, because then its projection would have to intersect either of the projections of (ẽi)1 and (ẽi)2

to S more than once, which is impossible by Lemma 29.
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