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Abstract 

Global change affects species by modifying their abundance, spatial distribution and activity 

period. The challenge is now to identify the respective drivers of those responses and to 

understand how those responses combine to affect species assemblages and ecosystem 

functioning. Here, we correlate changes in occupancy and mean flight date of 205 wild bee 

species in Belgium with temporal changes in temperature trend and interannual variation, 

agricultural intensification and urbanization. Over the last 70 years, bee occupancy decreased 

on average by 33%, most likely because of agricultural intensification, and flight period of bees 

advanced on average by 4 days, most likely because of interannual temperature changes. Those 

responses resulted in a synergistic effect because species which increased in occupancy tend to 

be those that have shifted their phenologies earlier in the season. This leads to an overall 

advancement and shortening of the pollination season by 9 days and 15 days respectively, with 

lower species richness and abundance compared to historical pollinator assemblages, except at 

the early start of the season. Our results thus suggest a strong decline in pollination function 

and services.  
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Introduction 

Global change drivers, such as climate warming, agricultural intensification and 

urbanization, strongly affect pollinators, decreasing their occupancy and advancing their flight 

periods (Bartomeus et al., 2011; Potts et al., 2010; Roy & Sparks, 2000). Because pollinators 

provide key ecosystem functions (Ollerton et al., 2011) and services (Klein et al., 2007), 

concerns about a pollination crisis have increased over the last decades (Potts et al., 2010). 

Lower pollinator occupancy and diversity can indeed translate into lower pollination 

performance (Biesmeijer et al., 2006; Potts et al., 2010), while shifts of flight periods can induce 

a temporal mismatch with their mutualistic partners (Gérard et al., 2020; Memmott et al., 2007). 

However, despite a sustained research effort on the topic, our understanding of both causes and 

consequences of the pollination crisis is still limited. 

First, a good understanding of the mechanisms responsible for observed differences in 

species responses to global change is currently missing. Recent studies have shown that global 

change can drive species thrives or declines, making winner and loser species, respectively. 

Estimated occupancy trends for British pollinators over the last decades show that while 

populations of most species declined, populations of a few species increased (Powney et al., 

2019). Similar heterogeneity holds for phenological changes: while most European pollinators 

advanced their flight period, some others delayed it or appeared unaffected (Duchenne et al., 

2020). While heterogeneity in species response is often overlooked, a better understanding of 

it, in particular by studying species traits that could explain these distinctive responses, can 

provide insights on both the drivers and mechanisms impacting species (Biesmeijer et al., 

2006).  

Second, we still know very little about how different species responses, such as changes in 

pollinator occupancy and flight period, affect pollinator assemblages when they are combined. 

A pioneering study suggests that species persistence and phenology are not independent, as 

pollinators flying later in the summer have higher rates of extinction than do early-flying 

pollinators (Balfour et al., 2018). We also know that pollinators flying earlier in the season tend 

to advance more their flight period than do pollinators flying latter (Bartomeus et al., 2011; 

Duchenne et al., 2020). As a consequence, joint changes in occupancy and in flight period could 

affect the seasonal structure of pollinator assemblages, thereby altering pollination networks 

(Memmott et al. 2007, Encinas-Viso et al. 2012). The joint study of occupancy and phenological 

species responses is thus key to gain insights on how pollinator assemblages and related 

function and services are and will be affected by global change. 
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Finally, understanding of the respective impacts of several global change drivers on species 

also remains limited, due to a lack of long time series of protocoled data for many species and 

difficulties to disentangle the effects of correlated environmental changes. Long-term 

monitoring schemes only exist for a few groups of insects, such as butterflies (Pollard & Yates, 

1994). For most species, the study of how each global change driver affects pollinator 

occupancy mainly comes from spatial comparisons among areas with distinct levels of 

disturbance (Pickett, 1989; Winfree et al., 2009). Spatial comparisons have shown that 

agricultural intensification decreases pollinator occupancy and richness (Grab et al., 2019; 

Kremen et al., 2002; Le Féon et al., 2010) but have yielded contrasting results regarding the 

effect of urbanization on pollinator occupancy or/and richness  (Bates et al., 2011; Deguines et 

al., 2012; Fortel et al., 2014). However, space-for-time substitution often neglects local 

adaptation and site history, which can lead to opposite trends in spatial and temporal patterns 

(Adler & Levine, 2007; Isaac et al., 2011; White & Kerr, 2006). This stresses the need to study 

temporal series to unambiguously identify the drivers of temporal variations (Dornelas Maria 

et al., 2013). One potential source of long time series of data come from museum and private 

collections (Bartomeus et al., 2019). Such data are increasingly used to assess shifts in flight 

periods (Bartomeus et al., 2011; Hassall et al., 2017) or changes in occupancy of pollinators 

(Powney et al., 2019). 

The drivers of temporal changes in species responses are difficult to identify because several 

drivers might exhibit correlated temporal trends but nonetheless can have independent impact 

on species responses. For example, climate warming, which is generally suspected to be driving 

the observed shifts in flight period of pollinators, correlates with urbanization that also affects 

the phenology of pollinator activity (Luder et al., 2018). Similarly, agricultural intensification 

and climate warming have been shown to affect the persistence of bumblebees (Goulson et al., 

2008; Soroye et al., 2020) and they both increased in recent decades. This points out the 

importance of simultaneously testing several potential drivers if one wants to identify the main 

threats for pollination. 

Here we tackled the three points presented above: (i) identify the species traits related to 

positive and negative occupancy and flight date shifts, (ii) assess how these species responses 

combine themselves thereby affecting wild bee assemblage, and (iii) quantify the independent 

effects of four global change drivers – i.e. agricultural intensification, urbanization, temperature 

trend and inter-annual temperature changes – on the shifts in species occupancies and species 

flight dates. We based our analysis on the estimation of the temporal trends in occupancy and 

mean flight date over the last 70 years for 205 bee species in Belgium, using relevant statistical 
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methods to correct bias associated with historical opportunistic data, such as temporal variations 

in sampling pressure and temporal autocorrelation. By investigating these three points using a 

unique dataset, we show how several drivers of global change affect biodiversity from 

individual species to species assemblage and discuss associated risks for the related function 

and services. 

Material and methods 

Methods overview 

Our goal was threefold: (1) estimate temporal trends in occupancy and flight date of 

numerous bee species as well as identify traits related to the variation among species, (2) 

quantify the changes in the seasonal structure of the bee assemblage between 1950 and 2016, 

and (3) estimate the independent effects of global change drivers on occupancy and mean flight 

date over the last 70 years. The first step, common to the three goals, consisted in computing 

unbiased national and annual estimates of  occupancy and mean flight dates from historical data 

(Fig. 1). For the first goal, we estimated linear temporal trends of occupancy and mean flight 

date and we identified species traits associated with those trends, while controlling for species 

phylogenetic dependence (Fig. 1). For the second goal, we combined the annual estimates of 

occupancy and mean flight date to reconstruct the seasonal structure of the bee assemblage by 

decades (Fig. 1). For the third goal, we correlated yearly changes in occupancies and mean 

flight dates with yearly changes in the four potential drivers (Fig. 1), i.e. agricultural 

intensification, urbanization, temperature trend and inter-annual temperature changes. 

Analyzing yearly changes decreases the expected correlation among potential drivers and their 

correlation with time (Fig. S1), allowing a better insight into the size effects of the potential 

drivers on the species responses. 

Dataset and species selection 

Records of bees from Belgium were compiled from the database Banque de Données 

Fauniques de Gembloux et Mons. This dataset contains about 269,000 records from 1810 to 

2017, for 412 bee species within or at the margins of Belgium (Table S1; Fig. S2). Here we 

used occurrence records, constituted by a species name, a sex, a date of collection, and a 

location, providing latitude, longitude and elevation. Because we want to estimate flight period 

shifts and occupancy trends over a period relevant for the study of the effects of global change 

and because bee records from the first part of the century are sporadic, we trimmed the dataset 

to restrict it to records pertaining to the period 1950-2016, and retained wild bee species with 
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at least 30 records for the 1950-2016 period and spread all along the time period studied: with 

more than one record before 1980, between 1980 and 1990 and after 1990. These filtering steps 

led to a dataset of 179,948 records belonging to 205 wild bee species (Fig. S2). 

 

Figure 1: Statistical steps applied on the bee dataset. Red boxes correspond to statistical models, 

black text to raw data or intermediate estimates and blue boxes to the goals. MFD stands for mean 

flight date. 

 

 

Annual estimates of occupancy probability and mean flight date  

We estimated a national mean flight date (MFD) for each year of the time period and each 

bee species using the occurrence data. We used the predictions from a linear mixed-effects 

model for each species to get mean flight date estimates that account for variations in space and 

time of collection location. This model explains variation in the collection dates of a bee species 

by a polynomial relation with year, to model the temporal trend of mean flight date, and by 

latitude, longitude and altitude to account for collection location. We also added a random year 

effect, to account for inter-annual variation in mean flight dates, and a random sex effect to 

control for its expected effect. For some records, information about the sex was missing and 

thus inferred (cf. supplementary method 1).  
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𝐹𝐷𝑖𝑗𝑠 = 𝛽0 + 𝛽1 × 𝑦𝑒𝑎𝑟𝑠𝑗 + 𝛽2 × 𝑦𝑒𝑎𝑟𝑠𝑗
2 + 𝛽3 × 𝑦𝑒𝑎𝑟𝑠𝑗

3 + 𝛽4 × 𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒𝑖                         

+ 𝛽5 × 𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒𝑖 + 𝛽6 × 𝑎𝑙𝑡𝑖𝑡𝑢𝑑𝑒𝑖 + 𝜑𝑗 + 𝜃𝑠 + 𝜀𝑖𝑗𝑠                            (1) 

where 𝐹𝐷𝑖𝑗𝑠 is the day of the year of observation i belonging to sex s and year j, 𝛽0 is the 

intercept, 𝛽1, 𝛽2 and 𝛽3 are polynomials coefficients of the year effect, 𝛽4, 𝛽5 and 𝛽6 are the 

respective coefficients for latitude, longitude and altitude effects. 𝜑𝑗 and 𝜃𝑠 are random year 

and sex effects respectively, and finally 𝜀𝑖𝑗𝑠 is an error term; random terms are all expected to 

be independent, identically distributed, and homoscedastic. 

We used the Bayesian method from Powney et al. (2019) to get estimates of national and 

annual probabilities of occupancy for each species separately. Such method, developed for 

opportunistic data, accounts for temporal variation in detection probability, thereby taking into 

account changes over time in the species targeted by collectors. This method also infers non-

detection events, as required for opportunistic data. We aggregated records spatially using a 

grid cell with a cell size of 0.01° of latitude/longitude and temporally by the day of the year, 

excluding grid cells with data from a single year. We defined a species detection in a given grid 

cell and day as the collection of the targeted species at this location and date. Conversely, we 

defined non-detection for a species in a given grid cell and a given day as the absence of the 

targeted species while at least  another wild bee was collected at this location and date. We used 

the following occupancy model independently for each species: 

𝐒𝐭𝐚𝐭𝐞 𝐦𝐨𝐝𝐞𝐥:  𝑧𝑖𝑗~ Bernoulli(𝜓𝑖𝑗) ; 𝑙𝑜𝑔𝑖𝑡(𝜓𝑖𝑗) = 𝑏𝑗 + 𝑢𝑖                    (2) 

𝐃𝐞𝐭𝐞𝐜𝐭𝐢𝐨𝐧 𝐦𝐨𝐝𝐞𝐥:   𝑦𝑖𝑗𝑣|𝑧𝑖𝑗~ Bernoulli(𝑧𝑖𝑗 × 𝑝𝑖𝑗𝑣) ; 

𝑙𝑜𝑔𝑖𝑡(𝑝𝑖𝑗𝑣) = 𝛼𝑗 + 𝛿 × log(𝑁𝑆𝑖𝑗𝑣) + 𝛾3 ×
1

𝛽2 × √2𝜋
𝑒

−
(FD−𝛾1)2

2𝛾2
2

           (3) 

where 𝑧𝑖𝑗 is the true (unknown) status of the species (0 absent or 1 present) and 𝜓𝑖𝑗 is the 

probability of occupancy of grid cell i at year j, and which is modelled as a fixed year effect bj 

and a random grid cell effect 𝑢𝑖. 𝑦𝑖𝑗𝑣 represents the detection status for the same species (1 or 

0) at grid cell i, year j, and visit v defined by the collection date. 𝑝𝑖𝑗𝑣 is the estimated probability 

of detection at grid cell i, year t and visit v, is conditional upon zij = 1 and modeled as a random 

year effect 𝛼𝑗, accounting for variation in detectability among years. 𝛿 is the effect of the 

sampling effort, approximated by the logarithm of the number of species (NSijv) detected in the 

cell i on year j and visit v . Because we log transform the number of species collected, this effect 

captures whether during a visit, one, few or more species were detected, which mainly depends 

on the sampling pressure and not so much on the species richness of the site which should be 
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captured by the grid cell effect ui (Isaac et al., 2014). 𝛾1, 𝛾2 and 𝛾3 are effects of the day of the 

year of the visit (FD), with a bell-shaped function modelling the flight period. 

We fitted the occupancy model for each species separately using the Sparta R package 

(Isaac et al., 2014), with 2 chains, 50,000 iterations, a burnin of 35,000 and a thinning rate of 

3. We used the random walk half-cauchy prior formulation used by Outhwaite et al. (2018), 

which improves the convergence of the models. For some species the convergence was not 

good enough (less than 60% of occupancy estimates with Rhat<1.1). For these species, we used 

65,000 iterations with a burnin of 50,000. To estimate the annual proportion of Belgium 

occupied a given year by a given wild bee species, i.e. occupancy, we averaged its predicted 

presences (zij) over all grid cells for the corresponding year. Occupancy measured as such 

reflects the abundance of a species, due to the close relationship between both (He & Gaston, 

2003).  

Finally, the national annual mean flight date estimates correspond to the predictions from 

the equation (1), for the average longitude, latitude and altitude of records of the corresponding 

bee species, while annual occupancy probabilities correspond to the predictions from equation 

(2), averaged over all grid cells. 

Goal 1: temporal trends and correlation with species traits 

To asses if we could identify species traits related to the changes in species occupancy and 

mean flight date, we first estimated linear temporal trends for occupancy and mean flight date, 

and this for each species independently. To do so, we regressed annual occupancy and mean 

flight date estimates on years, accounting for the precision of the estimates by weighting them 

by the inverse of their associated standard errors and considering only years with records to 

estimate mean flight date temporal trend.  

Second, we built a database of species traits derived from collection materials, literature and 

data analyses based on our database and the European records of Hymenopterans from GBIF. 

This database is complete for 200 species (Supplementary Method 2, Table S3). We also built 

a phylogeny including 203 wild bee species (Supplementary Method 3). Overall, this led to 199 

bee species with complete trait data and included in the phylogeny. We considered species traits 

that have already been documented as correlated to either changes in occupancy/abundance or 

mean flight date shifts: mean flight date over years (Bartomeus et al., 2011), flight period length 

(Bartomeus et al., 2013),  species temperature index, measured by the average temperature 

preference of a species (Bartomeus et al., 2013), species continentality index, measured by the 

variability of the climatic conditions experienced by a species through its geographic range 
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(Rasmont et al., 2015), intertegular distance as a proxy of bee size (Bartomeus et al., 2013), 

overwintering location (Williams et al. 2010), sociality (Williams et al. 2010; Powney et al. 

2019), pollen diet generalism, i.e. polylectic vs oligolectic (Bartomeus et al., 2013; Williams et 

al., 2010). Details on these traits can be found in the Supplementary Method 2. 

Finally, we explained linear temporal trends in occupancy and mean flight date with species 

traits, using a phylogenetic generalized least squares model (PGLS) implemented in the caper 

R package (Orme et al. 2013), controlling for the Pagel’s λ at the maximum likelihood, a robust 

measure of phylogenetic signal (Pagel, 1999). We first checked for collinearity problems in the 

model by calculating a generalized variance inflation factor, and because we did not get values 

upper to five, we then used a backward selection of variables based on AIC. We removed traits 

one by one to get the lowest possible AIC value and we stopped to remove species traits from 

the model when it was not possible to decrease the AIC anymore. 

Goal 2: Consequences for the seasonal structure of the wild bee assemblage 

To assess how changes in occupancies and mean flight dates affect the species assemblage, 

we reconstructed the seasonal structure of the wild bee assemblage, at national scale, for each 

decade of the studied period. To do so, for each species and decade, we first modeled the flight 

phenology as a Gaussian curve, with the mean corresponding to the average of annual mean 

flight date estimates over the decade and standard deviation  (i.e. flight period length) 

corresponding to the standard deviation of the date of flight records (i.e. Supplementary Method 

2). Thus, we assumed that species flight period length was constant over decades, which is 

verified for 93% of the species, but are different among species. 

Second, to account for variation in occupancy among species and decades, we multiplied 

each Gaussian, which estimates the phenology of a species at a given decade, by the respective 

occupancy calculated as the average of annual occupancy probability estimates over the decade 

and species of interest. This gave us the daily occupancies of each species in each decade. 

Finally, for each decade, we summed over all species and separately for each day of the 

season these species daily occupancies, thereby obtaining the daily total occupancy of the 

pollinator assemblage throughout the season. We then characterized the seasonal structure of 

wild bee assemblages by its peak date and  duration, calculated as the number of days with daily 

total occupancy of the pollinator assemblage above 0.01 or 0.05. We also calculated the daily 

species richness for each decade, as the number of species with a daily occupancy probability 

above 0.002. 
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To evaluate the respective contribution of changes in occupancy and mean flight date to 

changes in the phenological structure of the wild bee assemblage, we also reconstructed the 

daily total occupancy of the pollinator assemblage when only considering changes in occupancy 

(keeping MFD constant, with the species values from 1950) or only considering changes mean 

flight date (keeping occupancy constant, with the species values from 1950). 

Goal 3: identifying the global change drivers of species responses 

We focused on agricultural intensification, urbanization and temperature changes as 

potential drivers of changes in occupancy and mean flight date of bees. Data on these drivers 

were extracted at the country level (i.e. national average value) for the period 1930-2016. These 

drivers are all strongly correlated with time, and consequently among them, and cannot be used 

in the same statistical model. We instead analyzed the relationship between yearly changes in 

occupancy and mean flight date and yearly changes in global change drivers. Indeed, the yearly 

changes in the drivers are less correlated with time and among them than raw values (Fig. S1), 

allowing to better untangle the respective effects that each potential driver have on occupancy 

and mean flight date. Finally, as we expected the drivers to affect differently the bee species, 

especially those with declined vs increased occupancy over years or those with advanced or 

delayed mean flight dates over years, we divided the  bee species into groups of increasing, 

decreasing or stable occupancy, and independently into groups of advancing, delaying or stable 

mean flight date. 

Data on global change drivers 

For the climatic driver of global change, we used the mean annual temperature over Belgium 

from the Brussel-Uccle observatory. As temperature exhibits both a trend and strong inter-

annual variability, both of interest, we split these data into two variables: one describing the 

trend, which corresponds to temperatures smoothed over time, and one describing the inter-

annual temperature changes, and which simply corresponds to raw temperature data. To obtain 

the temperature trend, we smoothed temperature data using a Locally Estimated Scatterplot 

Smoothing (LOESS), with a span parameter of 0.5. Note that results shown below are robust 

across a wide window of smoothing parameter values (Fig. S5).  

We based our proxy of agricultural intensity on mean wheat yield, as previously done 

(Donald et al., 2006; Storkey et al., 2012), extracted from the World in Data 

(https://ourworldindata.org). Annual wheat yield depends on both agricultural practices and 

climatic conditions. To remove the effect of inter-annual climatic variability and focus on the 

long-term trend of wheat yields, which is mainly related to agricultural intensification (Zhai et 

https://ourworldindata.org/


 

10 

 

al., 2017), we smoothed the annual mean wheat yields using LOESS with a span parameter of 

0.5 (Fig. S4).  

We based our proxy of urbanization on the total built-up area in Belgium, which was 

extracted from the HYDE database V3.2 (Goldewijk et al., 2011). The total built-up area in 

Belgium was available every 10 years before 2000 and every years after 2000. As total built-

up area in Belgium is not expected to show any inter-annual variations around the trend, we 

interpolated missing data using a LOESS with a span parameter of 0.2 (Fig. 2).  

From time series to yearly changes 

Once the time-series were obtained for the four components of global change, we computed 

their yearly changes ∆𝐷𝑗 by taking the difference between year j and j-1 for each variable D, 

and scaled that difference with the standard deviation of the ∆𝐷 time series. Standardizing ∆𝐷𝑗 

allows providing the same potential effect of each driver of global change on the response 

variables. Those yearly changes in the global change variables correspond to the global change 

drivers.  

In a similar way, we computed the yearly change for species k from year j-1 to year j in 

occupancy or mean flight date, ∆𝑂𝑗𝑘
 and ∆𝑀𝐹𝐷𝑗𝑘

, from the logit of the annual occupancy 

probabilities (O) and mean flight dates (MFD). To account for estimation errors, for each 

variable X, occupancy or mean flight date, we combined the standard errors of the two years 

used to calculate that of the yearly changes as follow: 𝑆𝐸∆𝑋𝑗 = √𝑆𝐸𝑗−1
2 + 𝑆𝐸𝑗

2. To compute 

those yearly changes, we used only occupancy rates that converged well (Rhat<1.1) and mean 

flight date predicts corresponding to years with records of the given species. Moreover, since 

some occupancy yearly changes exhibit a very high associated standard error, we removed all 

∆𝑂𝑗𝑘
 with a standard error ≥30 (n=409 on 9541) to avoid including very uncertain data in 

following analysis. In the same way, we removed the few mean flight shifts with an absolute 

value ≥50 days (n=41 on 6842), because it is very unlikely they occurred between two 

consecutive years and more likely were produced by mistakes in collection dates. 

Testing for the effects of global change drivers  

We expected distinct effects of global change drivers on species depending on their 

responses. For example, we expect agricultural intensification to affect differently bees that 

exhibit a decrease in occupancy from those exhibiting an increase. We thus classified bee 

species in three groups according to their temporal linear trends in occupancy: significantly 

increasing species (winners), significantly declining species (losers) and stable species for those 
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with non-significant temporal trend. Similarly for the mean flight date, we split species into 

three groups according to their temporal linear trends: advancing, delaying and unaffected 

species.  

We tested for the effect of scaled yearly changes in the four drivers of global change (∆𝐷𝑗), 

i.e. agricultural intensification (A), urbanization (U), temperature trend (TT) and inter-annual 

temperature changes (ITC), on yearly changes in occupancy ∆𝑂 and mean flight date ∆𝑀𝐹𝐷. We 

built two independent linear mixed models accounting for species groups and their interaction 

with the drivers. We added a random species effect to take into account that all species do not 

have the same number of ∆𝑂 or ∆𝑀𝐹𝐷, and a Ornstein–Uhlenbeck covariance structure to take 

into account temporal autocorrelation.  We included only wild bee species for which at least 25 

yearly changes could be calculated (n=168 for occupancy, n=128 for mean flight date): 

∆𝑋𝑘𝑔𝑗
= 𝛽0𝑔

+ 𝛽𝐴𝑔
× ∆A𝑗 + 𝛽ITC𝑔

× ∆ITC𝑗 + 𝛽𝑇𝑇𝑔
× ∆TT𝑗 + 𝛽𝑈𝑔

× ∆U𝑗 + 𝜑𝑗(𝑘)
+  𝜀𝑘𝑔𝑗     (4) 

Where ∆𝑋𝑘𝑔𝑗
 are the yearly changes in variable X (O or MFD) of the species k belonging to the 

group g, on the year j. 𝛽0𝑔
 is the intercept, 𝛽𝐴𝑔

, 𝛽𝑇𝑇𝑔
, 𝛽ITC𝑔

 and 𝛽𝑈𝑔
 are standardized effects of 

the drivers, depending on the group g of the species. 𝜑𝑗(𝑘)
 is a year random effect depending on 

the species k used to implement the Ornstein–Uhlenbeck covariance structure. 𝜀𝑘𝑔𝑗 is the error 

term, expected to be independent, identically distributed and homoscedastic. We implemented 

the model using the R package glmmTMB (Brooks et al., 2017). To account for statistical 

uncertainties, yearly changes were weighted in the model by the invert of their standard errors. 

For occupancy these weights were elevated at power 0.2, to avoid very heterogeneous weights 

leading to convergence problems. We also checked for collinearity among variables by 

calculating a variance inflation factor values for global change drivers. We did not get values 

above five, suggesting that collinearity among driver should bias estimates. 
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Results 

Species responses 

 Across all bee species over 1950-2016 in Belgium, occupancy and mean flight date yearly 

estimates reveal that the occupancy decreased on average by about 33% (Fig. 2a) and that bees 

were active earlier, on average, by about 4 days (Fig. 2b). Linear trends in occupancy per 

species indicate that distributions have shrunk for 125 “loser” species (61%) whereas 30 

“stable” species (14%) did not exhibit any significant change, and 50 “winner” species (24%) 

had increased their distribution areas (Fig. 3a, Table S4). Turning to flight period, we find a 

significant linear advancement of the mean flight date for 83 species (40%), 96 species (47%) 

were unaffected and 26 species (13%) delayed their mean flight dates (Fig. 3a, Table S4). Note 

that over the 1950-2016 period, global change accelerated, as shown by the trends in the four 

potential drivers tested here (Fig. 2c). 

Figure 2: Occupancy and mean flight dates changes over time and trends in global change variables. 
Predicted variation of (a) occupancy probability and (b) mean flight date (MFD) across years averaged 

by species groups, and their associated CI95% interval represented by ribbons. Black lines represent the 

average value over all species. (c) scaled (centered by mean and scaled by standard deviation) values 

of the global change variables (circles) and values used to calculate drivers (lines). 
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Figure 3: traits related to the linear temporal trends in occupancy and mean flight date (MFD) over 

the study period. (a) Relationships among phylogeny, bee size measured as intertegular distance (ITD) 

and temporal linear trends in occupancy and mean flight date, for the species included in the phylogeny 

(n=203). Intertegular distances are represented by the leaf color of the phylogeny. Black leaf represent 

the species with no value of intertegular distance (n=1). Black bars represent significant trends while 

grey bars represent non-significant trends. (b) Relationships among intertegular distance, sociality 

behavior and occupancy trends (n=199). (c) Relationships among species temperature index, sociality 

behavior and mean flight date linear trends (n=199). Lines represent the prediction of the Phylogenetic 

Generalized Least Squares regressions. Values of mean flight date shifts and occupancy trends are 

shown in Table S4. 

Correlation between species responses and species traits 

We find that several species traits correlated to species responses. The social behavior of 

bees is associated with both the occupancy and mean flight date linear trends over years, with 

social bee populations declining less and advancing more their flight date than primitively 

eusocial and solitary ones (Fig. 3, Table 1). The thermal niche of species is also related to the 

linear trends in mean flight date, with southern species advancing more their flight period than 
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do northern ones (Fig. 3c). Finally, we find that bee size is strongly correlated to the occupancy 

linear trends, with larger species decreasing less their mean occupancy than smaller ones (Fig. 

3b, Table 1), this effect remaining significant when excluding bumblebees, which are especially 

large species (Table S5). 

We find a significant phylogenetic signal in the occupancy linear trends over time (Table 

1), indicating that global change affects some clades of bees more strongly, thereby increasing 

the loss of phylogenetic diversity. On average, Halictidae (-0.0036 ± 0.0005 year-1) and 

Andrenidae (-0.0034 ± 0.0007 year-1) are the most declining families while Melittidae (0.0002 

± 0.001 year-1) and Apidae (0.0008 ± 0.0006 year-1) slightly gained in occupancy over time. 

Such phylogenetic signal is likely due to strong links between occupancy trends and 

phylogenetically conserved traits, like bee size (Fig. 3a), as this phylogenetic signal disappears 

when accounting for the effect of response traits (Table 1). We do not find any significant 

phylogenetic signal in mean flight date linear trends (Table 1). 

Table 1: Estimates, standard errors and p-values for both Phylogenetic Generalized Least 

Squares models (PGLS) explaining linear trends in occupancy trends and mean flight date 

(n=199). NA (non-attributed) values indicate that the selection based on the AIC removed this 

trait for this response. Pagel’s λ values included in the PGLS (taking into account species trait 

effects) and rough Pagel’s λ values (without taking into account species trait effects) are 

indicated. Pagel’s λ equal to zero means that there is no phylogenetic signal, while a value 

significantly different from zero means that there is a phylogenetic signal. 

 

  MFD linear temporal trends 
Occupancy linear temporal 

trends 
  Estimate SDE p-value Estimate SDE p-value 

Species Temperature Index  -0.02579 0.01154 0.02657 0.00035 0.00019 0.06671 

Sociality 
(ref=Kleptoparasite) 

 - - 0.0001 - - 0.0257 

Social 

parasite 

-0.24401 
0.10322 - 

-0.00134 0.00219 
- 

Solitary 0.08148 0.04577 - -0.00135 0.00083 - 

Primitively 

eusocial 

0.24119 
0.07704 - 

-0.00226 0.00128 
- 

Social -0.08412 0.08660 - 0.00280 0.00195 - 

Mean flight date 0.00010 0.00106 0.04933 NA NA NA 

ITD NA NA NA 0.00101 0.00040 0.01222 

Pagel’s λ (PGLS) 0.00; CI95%[0.00,0.08] 0.02; CI95 %[0.00,0.18] 

Pagel’s λ 0.10; CI95%[0.00,0.34] 0.21; CI95%[0.07,0.44] 
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Figure 4: Seasonal variations of the total occupancy of pollinators over decades. (a) Reconstruction 

considering both occupancy and MFD changes, (b) reconstruction considering only MFD shifts, 

historical occupancy being fixed over decades, and (c) reconstruction considering only occupancy 

changes, historical MFD being fixed over decades. Dashed vertical lines represent the weighted mean 

of the seasonal total occupancy distribution for 1950-1959 (light green) and for 2010-2016 (dark green).  

Consequences of occupancy trends and mean flight date shifts on the bee assemblage 

The temporal linear trends in mean flight date and occupancy were negatively correlated 

(r=-0.14, p-value=0.04, Fig. S6): species that show an increase in occupancy probabilities over 

time tend to advance their mean flight date, while those that show a decrease in occupancy tend 

to delay their mean flight date. By reconstructing the seasonal structure of bee assemblages 

throughout the study period using yearly estimates of occupancy and mean flight date, we show 

that this correlation between the two species responses resulted in a synergistic effect on the 

seasonal structure. The peak of total daily occupancy is 8.97 days earlier in the recent decade 

compared to 1950-1960 when both occupancy and mean flight date changes are considered 

(Fig. 4a), while it is 5.05 days earlier when only mean flight date changes are taken into account 

(Fig. 4b), and 1.87 days earlier when only occupancy changes are considered (Fig. 4c). The 

predicted additive effect of changes in mean flight dates and occupancy thus corresponds to a 
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peak earlier by 6.92 days, which remains below the predicted change when both species 

responses are studied jointly. Overall, the average season date has advanced by about 9 days 

between 1950 and 2016 (Fig. S6), while season length has shortened by about 15 days (Fig. 

S7a). We also observe a shift from a unimodal distribution in 1950 to a bimodal distribution of 

bee total occupancy and species richness in 2016 (Fig. 4a & S7b). All along the season 

excepting at its early beginning, the total occupancy and the richness of wild bee in present time 

is lower than in 1950. 

Drivers of bee decline and flight period shifts 

To investigate the potential drivers of each species response, we correlated the yearly 

changes of occupancy and mean flight date to the scaled yearly changes of drivers of global 

change, allowing for differences among groups of species. Winner, stable and loser bee species 

all benefited from temperature increase, their occupancy being positively and consistently 

correlated to temperature trend (Fig. 5a). Agricultural intensification and urbanization 

correlated negatively with the occupancy yearly changes of declining bees but not with the ones 

of stable or increasing species (Fig. 5a & Table S5). Note that the effect size (estimates) of 

urbanization on loser species is smaller than that of agricultural intensification; changing the 

smoothing parameter for the urbanization affects the estimates of urbanization (Fig. S5). As a 

consequence, agricultural intensification was most likely the main driver of the decline of wild 

bee species in Belgium over the last 70 years. Inter-annual temperature changes did not 

significantly correlate with occupancy yearly changes (Fig. 5a, Table S6), indicating that it is 

not a main driver of wild bee occupancy in Belgium..  

Surprisingly, changes in mean flight date were solely explained by inter-annual temperature 

changes, bees being active earlier in warmer years, although not significantly for bees that delay 

their mean flight date (Fig. 5b, Table S7). Temperature trend, urbanization and agricultural 

intensification did not show correlation with mean flight date shifts (Fig. 5b). 
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Figure 5: Drivers of occupancy and mean flight date (MFD) yearly changes depending on species 

group regarding their temporal linear trends for occupancy and MFD. (a) occupancy yearly changes 

and (b) mean flight date yearly changes against yearly changes of global change variables, previously 

scaled (divided by standard deviation). The lines show the mixed-effect model predictions with their 

standard errors (ribbon). Dashed lines represent slopes that are non-significantly different from zero 

and solid lines represent slopes significantly different from zero. 

Discussion 

Changes in wild bee assemblage over time 

Our analyses indicate that 61% of the wild bee species declined and 40% advanced their 

mean flight date over the last 70 years. These patterns are consistent with the few studies using 

time-series to describe European bee population trends (Ollerton et al., 2014; Powney et al., 

2019), and mean flight date shifts (Bartomeus et al., 2011; Duchenne et al., 2020). The negative 

correlation between the linear trends over years of occupancy and mean flight date is also 

consistent with previous results (Balfour et al., 2018), and suggests that these two types of 

responses jointly contribute to the shift towards early dates of the bee assemblage in average. 

Our analysis cannot disentangle whether this negative correlation results from a causal 

relationship or from the fact that both species responses are linked to bee social behavior. A 

causal link from phenological shifts to species persistence via trophic mismatch is sometimes 

suggested (Hegland et al., 2009). Such causal relationship is not supported by our data as the 
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bee decline occurred mainly before the shifts in flight periods. However, bee decline could also 

prevent shifts in flight period, since a strong decline in the population size can decrease the 

ability to respond to an environmental change because of expected decreased adaptive potential 

(Willi et al., 2006).  

Such correlation between changes in occupancy and mean flight date led to synergistic 

effects on the seasonal structure of the pollinator assemblage, with the peak of total occupancy 

happening earlier than expected from additive effects of each response. This exemplifies how 

studying multiple species responses can benefit our understanding of the consequences of 

global change. Coupled with the overall decrease in occupancy along the season, such 

modifications of the seasonal structure of bee assemblage should lead to a decline in pollination 

function and services, especially for late flowering plants and crops. Studies on plant 

communities suggest that global change also affects the seasonal structure of flowering 

(CaraDonna et al., 2014; Diez et al., 2012), which can lead in some cases to a shift from 

unimodal to bimodal distributions of flowering abundance over the season (Aldridge et al., 

2011), mirroring the pattern we find. However, these studies have been so far restricted to local 

American plant communities and thus cannot be directly compared to our results at national 

scale, stressing the need to investigate the interplay between the changes in seasonal structure 

of plants and pollinator communities. 

Drivers of bee occupancy changes 

Our study shows that the decline of bee populations was likely driven by land-use change, 

mainly agricultural intensification, and most likely not by climate change. This result is 

consistent with the negative effect of agricultural intensification found in studies based on 

spatial comparisons (Grab et al., 2019; Kremen et al., 2002). Agricultural intensification 

includes many variables that could have a negative effect on bee occupancy. The fact that bigger 

bees decline less than did smaller ones, could support the main role of two variables already 

documented having a negative effect on bees: pesticides (Goulson et al., 2015; Park et al., 2015) 

and habitat destruction (Park et al., 2015). Bigger bees have a higher physiological resistance 

to pesticides (Rafael Valdovinos-Núñez et al., 2009; Uhl et al., 2016) and higher dispersal 

abilities and foraging distance (Greenleaf et al., 2007), allowing them to suffer less from 

agricultural intensification than smaller bees. Another interpretation of social and big bees 

suffering less from agricultural intensification could be that they are especially targeted by 

conservation plans in agricultural landscapes in Europe (Nieto et al., 2014). However, our 

results regarding the positive relationships between body size and occupancy trend strongly 
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contrast with previous results, which found that larger bees are more prone to decline than 

smaller ones (Larsen et al., 2005; Rader et al., 2014; Scheper et al., 2014). These differences 

could emerge because we accounted for changes in detection probabilities over time while 

previous temporal studies did not (Scheper et al., 2014), which can bias occupancy trends (Isaac 

et al., 2014). 

We also find that urbanization significantly discriminates between losers and winners of 

global change, suggesting that loser species suffer from urbanization while winners do not. This 

is consistent with the fact that those winners, social and big bees, are more present in urban area 

than solitary bees (Baldock et al., 2015). However, as we use national average time series, 

neglecting spatial heterogeneity of global change drivers and responses, we are not able to test 

that the occupancy increase of winners occurs mainly in urban areas. This stresses the need to 

use spatio-temporal partitioning of the respective role of global change drivers in species 

responses, but that requires finding massive historical time series of data, which are almost 

nonexistent for pollinators. 

Our analysis further reveals that climate warming had a positive impact on bee occupancy 

in Belgium, even for declining bees. Such positive impact can be mediated by direct effects on 

wild bee physiology, as in temperate areas ectotherms are living in a climate cooler than their 

physiological optima in average (Deutsch et al., 2008), but also by indirect effects through 

changes in resource availability (Ogilvie et al., 2017). However, climate change could 

ultimately have an overall negative effect on bees as it involves other aspects than climate 

warming, such as extreme events, which have been shown to drive bumblebee decline (Soroye 

et al., 2020).  

Drivers of mean flight date shifts  

We do not detect any effect of the tested global change drivers on mean flight date other 

than the effect of inter-annual temperature changes. Large inter-annual temperature increases 

induce large changes for earlier mean flight date and vice-versa. This suggests that such 

response could be due to the high phenotypic plasticity of insect flight period (Sgrò et al., 2016), 

which allows fast responses to inter-annual temperature changes. However, we do not find any 

driver explaining the delay of the mean flight date that occurred for some species. This delay 

might be related to a more specific temperature index, for example an increase in winter 

temperature can delay bee emergence (Fründ et al., 2013). Also, we did not account for time-

lagged responses in our analyses, while some responses to changes in drivers could occur years 

after and for a long time. For instance, changing competition pressures along the season because 
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of abundance changes could drive changes in mean flight dates (Rudolf, 2019), including delays 

for some species. Assessing simultaneously effects with and without time lags would require 

further methodological developments, but it is a key future step to understand well the effects 

of global change on biodiversity. 

Methodological limits and perspectives 

The effects of global change drivers tested here explain only a small part of the variance of 

changes in occupancy and mean flight date, 3% and 5.5%, respectively. This is likely due to 

several limits of our analysis. First, we looked for effects at the group level, thereby neglecting 

heterogeneity of response among species within groups. Second, we neglected the spatial 

heterogeneity in the global change drivers and species responses by analyzing changes at 

national level. This most probably lower the part of variance explained but it allows 

highlighting general patterns over time. Third, as previously mentioned we neglected time lags 

in the effects of global change drivers. Instead, we focused on breaking inevitable temporal 

correlations among global change drivers and time, and decided to limit our study to 

instantaneous effects only. For example, if agriculture intensification stops, our approach 

assumes that it has no more effect on bees, species response to perturbation can take years to 

occur, such as extinction and decline (Kuussaari et al., 2009), and bees could still decline because 

of high past level of agriculture intensity. Therefore, part of the unexplained variance in the 

response variable is most probably due to time-lag effects neglected here. 

Despite such limits, our study reports an unprecedented quantitative estimation of the 

contributions of four global change drivers on the average decline and flight period shifts of 

pollinators over time. We show that the land-use changes were most likely the main drivers of 

pollinator decline over the last 70 years in Belgium. Such results can probably be generalized 

to a large part of Western Europe, where global change drivers are following the same trend as 

in Belgium. 
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Supplementary Method 1: Inferring the sex when it’s missing 

In our database, 53007 records (28.3%) have no information about the sex of the individual. For 

these records, we inferred the sex before estimating phenological shifts. To do so, we used a random 

forest classification algorithm as implemented in the R package randomForest. We used full records 

(i.e. records with sex and date) as the learning bank (71.7% of the records), and we predicted the sex 

of the 28.3% of records without any information on the sex. On the learning bank, we got 16% of 

errors in the sex prediction, almost every times when there was no phenological differences among 

sex. 

Supplementary Method 2: Species traits database 

Species traits are listed in Table S2 as well as the corresponding variable types and data sources. 

Most traits were derived either from collection material (e.g. ITD) or from literature (e.g. sociality) 

as detailed in (Gérard et al. 2018). Additionally, for each species we calculated proxy of the mean 

flight date and of the flight period length, using respectively the mean and the standard deviation of 

the Julian day of all records from our dataset. We also calculated two temperature indexes. To do that 

we used the European records from GBIF of Hymenoptera (GBIF Occurrence Download, extracted 

on the 07 September 2018 https://doi.org/10.15468/dl.92odzl). We aggregated records spatially using 

a grid cell with a unit cell size of 0.01° of latitude and longitude. For each grid cell we got two 

bioclimatic variables from Bioclim (http://www.worldclim.org/bioclim): the annual mean 

temperature and the temperature seasonality, both averaged on the period 1970-2000. Then we 

calculated a species temperature index (STI) and a species continentality index (SCI) which are the 

average of each grid cell temperature and seasonality, respectively, weighted by the number of 

records of the species divided by the number of records of hymenoptera in the given cell.  

Supplementary Method 3: Developing a phylogeny of studied bees and phylogenetic analysis 

We constructed a bee phylogeny including all studied species but Andrena sabulosa and Andrea 

varians, as no sequence was available for these two species. We extracted Cytochrome c oxidase I 

(COI) sequences for each species from GenBank (Tab. S5). Phylogeny reconstruction used a relaxed-

clock Bayesian approach implemented in Beast v1.5.4 (Drummond & Rambaut 2007). We 

constrained several sets of species that correspond to well-supported clades in two recent higher level 

phylogenies (Cardinal et al. 2010; Peters et al. 2017) (constrained nodes are indicated on Fig. S2). 

Using PartitionFinder (V. 2.1.1) (Lanfear et al. 2017), we found the best substitution model for each 

codon position. We used a pure birth tree prior and random starting tree and a GTR +  substitution 

model with invariant sites for the two first positions of codons. We assumed that substitution rate 

heterogeneity was lognormally distributed and uncorrelated, with the mean substitution rate set at 1. 

We conducted four runs of 20 million generations, sampling from the posterior distribution every 

1000 generations. We built a maximum clade credibility tree from the last 10000 samples of the 

posterior distribution (Figure S2).  
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Table S1: Data providers of the Banque de Données Fauniques de Gembloux et Mons. A record is 

defined by a sampling event of one or several individuals at a given site (i.e. grid cell) and date. 

Type of database  Number of records  

BDFGM (Rasmont P. & Haubruge E.)  127,779  

Waarnemingen.be/observations.be  122,708  

DEMNA (Wallonia)  6,959  

UFZ (Warncke)  6,393  

RBINS  3,529  

UGMD (Universiteit Gent)  1,058  

UNamur  230  

NMR (Netherlands)  298  

Total  268,954  

 

 

Table S2: species traits used in the study. 

Species trait origin type 

Mean flight date Calculated from dataset quantitative 

Flight period length Calculated from dataset quantitative 

Species Temperature 

Indices 

Calculated from GBIF 

dataset 

quantitative 

Species Continentally 

Indices 

Calculated from GBIF 

dataset 

quantitative 

Overwintering location Gérard et al. 2018 qualitative (2 levels: above 

ground / under ground) 

Sociality Gérard et al. 2018 qualitative (5 levels: Social / 

Social parasite / 

Kleptoparasite / Primitively 

eusocial / Solitary) 

Generalist/specialist Gérard et al. 2018 qualitative (2 levels: 

Oligolectic / Polylectic) 

Intertegular distance (ITD) Gérard et al. 2018 quantitative 
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Figure S1: Correlations among drivers and their yearly changes on 1950-2016. (a) Correlations 

among yearly changes of global change drivers and with time. (b) Correlations among raw values of 

global change drivers and with time. This figure shows that working on yearly changes allows 

decreasing temporal correlations among global change variables. 
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Figure S2: Spatial and temporal distributions of records. (a) Spatial distribution of records used 

for analyses, (b) temporal distribution of these records by bee families. 

  



 

29 

 

Figure S3: Phylogeny of the bees with Vespula germanica as outgroup. Constrained nodes (see 

methods) are indicated by filled circles. The orange branch represents the outgroup branch. Bombus 

terrestris corresponds to Bombus terrestris sensu lato. 
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Table S5: Estimates, standard errors and p-values for both Phylogenetic Generalized Least 

Squares models (PGLS) explaining linear trends of occupancy trends and mean flight date 

when exlucding Bombus (n=181). This table is similar to the Table 1 of the paper, but when Bombus 

are excluded to analysis. NA (non-attributed) values indicate that the selection based on the AIC 

removed this trait for this response. Pagel’s λ values included in the PGLS (taking into account 

species trait effects) with 95% confidence interval. Pagel’s λ equal to zero means that there is no 

phylogenetic signal, while a value significantly different from zero means that there is a phylogenetic 

signal.  

  MFD linear temporal trends 
Occupancy linear temporal 

trends 
  Estimate SDE p-value Estimate SDE p-value 

Species Temperature Index  -0.02765 0.01127 0.01514 0.00030 0.00018 0.10498 

Sociality 

(ref=Kleptoparasite) 

 - - 0.00469 NA NA NA 

Solitary 0.08152 0.04356 - NA NA NA 

Primitively 

eusocial 
0.24235 0.07334 - NA NA NA 

Mean flight date 0.00010 0.00052 0.04588 NA NA NA 

ITD NA NA NA 0.00086 0.00040 0.03606 

Pagel’s λ (PGLS) 0; CI95%[0,0.13] 0.08; CI95 %[0.01,0.28] 
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Figure S4: Smoothing of global change drivers. Representation of the smoothing trends in wheat 

yields and in temperature in function of the smoothing parameter value (span parameter of the 

LOESS).  
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Figure S5: Robustness analysis to the smoothing parameter values. Sensitivity analysis of the 

results for occupancy probability changes (a) and mean flight date shifts (b) to the smoothing 

parameter value (span parameter of the LOESS) of wheat yields and temperature as used to construct 

agricultural intensification and temperature trend drivers respectively. Full circles correspond to 

effects significantly different from zero, open circles represent effects non-significantly different 

from zero. Error bars are 95% confidence interval. 
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Figure S6: Correlation between species temporal trends in occupancy and mean flight date (MFD). 

Relationship between the linear trends along time of occupancy and mean flight date (MFD), with 

associated standard errors, and density distributions along axis for crossed species groups. For 

example, on the right, the blue density distribution represents the distribution of MFD shifts for 

species having a stable temporal trend in occupancy. 
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Figure S7: Seasonal variations of the total richness of pollinators over decades and pollination season 

duration. (a) Pollination season duration, which is the number of days for which the total occupancy of bees 

is above the given threshold, for 1950 and 2016. (b) Total daily species richness, corresponding to the number 

of species with a daily occupancy above 0.002, for each decade. 
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Table S6: Type II ANOVA of the linear-mixed-effect model explaining occupancy yearly changes 

by global change drivers. AI: agriculture intensification; Urban.: urbanization; ITC: Inter-annual 

temperature changes; TT: temperature trend. 

Variable Chisq Df Pr(>Chisq) 

AI 48.1887 1 3.871e-12*** 

ITC 0.0065 1 0.93579 

TT 51.0802 1 8.867e-13*** 

Urban. 5.8220 1 0.01583 

group 45.1857 2 1.542e-10*** 

AI:group 20.9595 2 2.810e-05*** 

ITC:group 5.1610 2 0.07574 

TT:group 0.1659 2 0.92041 

Urban.:group 6.7670 2 0.03393* 
 

Table S7: Type II ANOVA of the linear-mixed-effect model explaining mean flight date yearly 

changes by global change drivers. AI: agriculture intensification; Urban.: urbanization; ITC: Inter-

annual temperature changes; TT: temperature trend. 

Variable Chisq Df Pr(>Chisq) 

AI 0.0071 1 0.9329 

ITC 34.7197 1 3.808e-09 *** 

TT 0.0600 1 0.8065 

Urban. 0.0101 1 0.9198 

group 0.0615 2 0.9697 

AI:group 0.0099 2 0.9951 

ITC:group 0.8791 2 0.6443 

TT:group 0.0715 2 0.9649 

Urban.:group 0.0132 2 0.9934 
 

 


