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Modal and nonmodal stability of a stably stratified boundary layer flow
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The modal and nonmodal linear stability of a stably stratified Blasius boundary layer
flow, composed of a velocity and a thermal boundary layer, is investigated. The temporal
and spatial linear stability of such flow is investigated for several Richardson, Reynolds,
and Prandtl numbers. While increasing the Richardson number stabilizes the flow, a more
complex behavior is found when changing the Prandtl number, leading to a stabilization
of the flow up to Pr = 7, followed by a destabilization. The nonmodal linear stability
of the same flow is then investigated using a direct-adjoint procedure optimizing four
different approximations of the energy norm based on a weighted sum of the kinetic
and the potential energies. No matter the norm approximation, for short target times an
increase of the Richardson number induces a decrease of the optimal energy gain and
time at which it is obtained and an increase of the optimal streamwise wave number,
which considerably departs from zero. Moreover, the dependence of the energy growth
on the Reynolds number transitions from quadratic to linear, whereas the optimal time,
which varies linearly with Re in the nonstratified case, remains constant. This suggests
that the optimal energy growth mechanism arises from the joint effect of the lift-up and
the Orr mechanism, that simultaneously act to increase the shear production term on a
rather short timescale, counterbalancing the stabilizing effect of the buoyancy production
term. Although these short-time mechanisms are found to be robust with respect to the
chosen norm, a different amplification mechanism is observed for long target times for
three of the proposed norms. This strong energy growth, due to the coupling between
velocity and temperature perturbations in the free stream, disappears when the variation
of the stratification strength with height is accurately taken into account in the definition of
the norm.

I. INTRODUCTION

Stratified shear flows occur in many hydrodynamical, industrial, and geophysical applications,
some common examples being atmospheric boundary layers and oceans, volcanic plumes, under-ice
convection, chimney exhausts, saline jets, and lifted flames. All these flows are characterized by a
variation of density along a cross-stream direction, which can be modeled by a buoyancy force in
the momentum equations. This buoyancy effect can be generated as a consequence of low-density
fluid injected into a high-density fluid, or due to a phase change or chemical reactions, or, as in
oceans, it can be originated by the presence of salinity and traces of carbon and nutrients. When
the buoyancy forces overcome the dissipative ones due to thermal and viscous diffusion, these flows
may become linearly unstable by means of a mechanism similar to that triggering natural convection
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cells in a stationary fluid layer heated from below. A typical example of such a linear instability is
the formation of cloud streets in the atmospheric boundary layer, characterized by convection rolls
aligned with the direction of the flow [1]. This peculiar fluid motion is commonly encountered
in geophysical flows, but also in industrial ones such as heat exchangers, provided that the flow
is characterized by an unstable stratification, i.e., that the buoyancy force is directed opposed to
temperature gradient. The hydrodynamic instability arising in these conditions is characterized by
the asymptotic growth of wavelike perturbations on the steady laminar base flow, which exponen-
tially grow, eventually leading the laminar flow to a turbulent state. Gage and Raid [2] were among
the first to study the linear stability of a thermally stratified shear fluid, in which the instability
arises from interaction between the convection mechanisms due to thermal stratification and the
Tollmien-Schlichting mechanism due to the shear.

In the inviscid limit, it is known that a parallel shear flow remains asymptotically stable to small-
amplitude disturbances when the gradient Richardson number Rig is larger than 0.25; whereas, for
Rig below this value, asymptotic modal instability may occur. In the case of viscous flow with
unstable stratification, there is an abrupt transition between the thermal mode, which sets in at a
certain value of the Rayleigh number, independently of the shear, and the Tollmien-Schlichting
mode, which appears at high shear rates. This transition occurs at a small negative value of the
Richardson number, and for Ri lower than this threshold, Squire’s theorem is no longer valid.

The influence of buoyancy on nonmodal stability, such as on the transient energy growth
phenomenon which arises as a consequence of the non-normality of the Navier-Stokes operator, has
been investigated in several parallel shear flows. In the presence of unstable stratification [3], the
optimal energy growth of plane Couette and Poiseuille flows increases slowly with the Prandtl and
Rayleigh numbers, although its maximum value is always attained for streamwise-homogeneous
perturbations which produce large streamwise streaks and Rayleigh-Bénard convection rolls. In the
short-time limit, the amplification is governed by the classical lift-up mechanism, with a negligible
influence of buoyancy. Whereas, in the long-time limit, as anticipated for an asymptotically unstable
flow, the optimal perturbation is given by the adjoint of the dominant eigenmode.

Many studies have been conducted to investigate the effect of stable stratification on the linear
stability of classical parallel shear flows. For instance, in Ref. [4], a plane Couette flow stably
stratified in the wall-normal direction is considered. The flow becomes asymptotically unstable
when shear and stratification become of the same order and for sufficiently high values of the
Reynolds number (Re > 700). The result is confirmed by nonlinear direct numerical simulations and
experiments providing an evidence of the development of linear modal instabilities in a vertically
stably stratified plane Couette flow. Biau and Bottaro [5] studied the effect of buoyancy on the
stability of a plane Poiseuille flow in the presence of a constant positive thermal gradient. By
means of linear stability analyses in the modal and nonmodal frameworks, they found that positive
thermal stratification is found to stabilize the shear flow, marginally affecting the shape and main
features of the unstable modes and optimal disturbances. A similar flow case has been considered
in Ref. [6], although the transient growth optimizations were performed with a different norm and
the case of unstable stratification was considered as well. It was found that, increasing the Prandtl
number to values of order 1, causes a growth of disturbances of one order of magnitude higher with
respect to the unstratified case, giving rise to spanwise-independent optimal perturbations, instead
of streamwise vortices found at Pr = 0. Linear transient-growth analysis around the mean velocity
and density flow profiles in a stably- tratified turbulent channel showed that the perturbations
experiencing the optimal transient growth consists of spanwise stripes, confined within the core
region [7]. Remarkably, similar homogeneous spanwise stripes have been also found [8] by direct
numerical simulation at the center of a turbulent stably stratified channel, suggesting that the
dynamics of the stably stratified turbulent flows is considerably different from that of nonstratified
ones, and that nonmodal stability analysis may succeed at characterizing them. More recently,
studies have been conducted to investigate the effect of buoyancy in destabilizing the flow fields
of buoyant jets and plumes in a laminar setting before they undergo transition to turbulence. The
local [9] and global [10] stability analysis of a helium jet injected vertically into quiescent air is



considered and the interaction between the inertia force imparted at the inlet and the buoyancy
force due to the low density of the helium injected in the air is investigated varying the Richardson
number.

The role of stable stratification on the Kelvin-Helmholtz instability that can be triggered in
mixing layers such as those encountered in the ocean [11] has been recently investigated by
linear optimization procedures [12,13]. For short target times, the optimal perturbations are three
dimensional, while for long target times and small values of the Richardson number, they are
related to Kelvin-Helmholtz instability, consistent with analogous calculations in an unstratified
mixing layer. Large transient growth occurs even when the Richardson number is sufficiently high
to stabilize all modal instabilities, linked to the onset of internal waves at some distance from the
shear layer.

Apart from the classical parallel flows such as shear layers, Couette and channel flows, a stratified
flow of wide-ranging practical interest is the boundary layer flow. The characterization of the
dynamics of stratified boundary layer flows is of fundamental importance nowadays, being the
development of large-scale coherent structures in atmospheric boundary layer flows intrinsically
inherent in weather prediction, climate-change assessment, as well as in the modeling of turbine
wakes in wind farms. Early investigations of the stability of such flows considered mean profiles
corresponding to certain atmospheric conditions (see [14], among others). Restricting the analysis
to the inviscid limit, they found linearly unstable Kelvin-Helmholtz (KH) type modes with wave-
lengths comparable with the width of the background shear layer, localized in correspondence with
the critical layer, i.e., the region where the base-flow velocity equals the phase speed. However,
instability waves are often observed in atmospheric boundary layers whose velocity profiles are
devoid of an inflection point, which are expected to be stable to inviscid instabilities [15]. The
stability of an inflection-free compressible stratified boundary layer flow [16] was investigated in
the inviscid limit, establishing that this flow becomes unstable with respect to inviscid perturbations
when the boundary surface is inclined with respect to the isodensity levels. The first study tackling
viscous modal instabilities in a stably stratified boundary layer [17] made use of the triple-deck
theory in a spatial and temporal formulation, showing that stable stratification may increase the
growth of temporal instabilities. In Ref. [18] the modal stability of a stably stratified boundary layer
flow on a vertical wall is studied, taking into account viscous effects. Even in the presence of strat-
ification, the most unstable mode is a Tollmien-Schlichting wave, which remains two dimensional
and independent of the Froude number. A radiative instability is observed as well, which is three
dimensional, inviscid, and associated with buoyancy effects. Although these studies have unveiled
the asymptotic behavior of stratified boundary layer flows with respect to small-amplitude wavelike
perturbations, it is known that, at moderate Reynolds numbers, the boundary layer is extremely
sensitive to external noisy perturbations, which can transiently grow, leading to turbulent transition
bypassing the asymptotic growth of wavelike modes [19]. The knowledge of these transient growth
mechanisms is fundamental for an accurate modeling of the flow. In fact, the onset of turbulence
and the resulting mixing strongly affect key processes such as atmospheric and oceanic circulation
processes which have a strong impact on weather and climate. How the transient energy growth
mechanisms often observed in shear flows are influenced by stable stratification and compete with
the asymptotic instability remains an interesting issue which is at the moment still open. Moreover,
in the case of a stratified flow consisting of a thermal and a velocity boundary layer, nonmodal stabil-
ity analysis is not straightforward from a methodological point of view, due to the nonobvious choice
of an appropriate norm which should correctly take into account the contribution of the potential
energy. As discussed by many authors in the past [20–22], a correct and positive-definite expression
of the potential energy of small-amplitude perturbations to a stratified base flow should take into
account the variation of the stratification strength with height. To model this effect, the potential
energy is usually characterized by a height-dependent Brunt-Väisälä frequency in the denominator.
In the case of a thermal boundary layer, the Brunt-Väisälä frequency is null in the free-stream region,
inducing a peculiar divergent behavior of the energy in that particular region. This makes the choice
of a meaningful norm to optimize an interesting problem per se in the case of thermal boundary
layers.



In this work, we investigate the modal and nonmodal instabilities of a Blasius boundary layer flow
with stable stratification due to the presence of a thermal boundary layer, whose thickness is linked
to that of the velocity profile by the Prandtl number. Considering this model flow is a first attempt
toward the investigation of the stability of the complex case of the stably stratified atmospheric
boundary layer, characterized by a higher positive thermal gradient near the ground that decreases
toward neutral conditions with height, as in night-time conditions, when the radiative cooling makes
the near-the-surface air cooler than the air above. Although atmospheric boundary layers are often
turbulent, in nocturnal conditions they remain most of the time in a laminar state, interrupted by
short outbursts of intermittent turbulence [23], making our approach appropriate for qualitatively
characterizing the waves that develop and amplify over the laminar state, probably being at the origin
of such turbulent bursts. In such a laminar base flow, modal and nonmodal stability analyses are
carried out for different values of the Richardson, the Prandtl, and the Reynolds numbers, in order
to unveil how buoyancy affects the stability of the flow. Nonmodal stability analysis is performed
with respect to four different approximations of the energy norm, taking into account or not the
variation of the stratification strength with height. The instability and energy growth mechanisms
are identified and discussed by analyzing the evolution of the different production terms in the
equations governing the energy exchange.

The paper is organized as follows. In Sec. II, we present the problem formulation and describe the
base flow and the modal and nonmodal stability frameworks. In Sec. III A we present the results of
the modal stability analysis, whereas those related to the nonmodal stability approach are presented
in Secs. IIIB1 and IIIB2 in the case of short [O(10)] and long [O(103)] timescales, respectively.
Conclusions are provided in Sec. IV.

II. PROBLEM FORMULATION

The dynamics of an incompressible boundary layer flow in the presence of temperature stratifi-
cation in the wall-normal direction can be described by the Navier-Stokes (NS) equations with the
Boussinesq approximation:

∇ · Ǔb = 0, (1)

ρ̌0
∂Ǔb

∂ ť
+ ρ̌0(Ǔb · ∇)Ǔb = −∇P̌b + μ̌∇2Ǔb − ρ̌bǧey, (2)

∂Ťb

∂ ť
+ (Ǔb · ∇)Ťb = κ̌∇2Ťb, (3)

ρ̌b = ρ̌0[1 − α̌T (Ťb − Ť0)], (4)

where Ǔb = (Ǔb, V̌b,W̌b)T is the velocity vector, Ťb is the temperature, μ̌ the dynamic viscosity, ρ̌b

and p̌b represent the density and the pressure, respectively, ǧ is the gravitational acceleration acting
along the wall-normal direction y̌, represented by the unit vector ey, κ̌ is the thermal diffusivity
coefficient, ρ̌0 and Ť0 are the standard density and temperature, respectively, α̌T is the thermal
expansion coefficient, and the ·̌ symbol indicates dimensional quantities.

Nondimensional quantities are obtained with respect to the free-stream velocity Ǔ∞, the dis-
placement thickness of the boundary layer δ̌∗

v , and the temperature variation �Ťb between the free
stream and the wall (see the sketch in Fig. 1). Throughout the paper, variables with the superscript ·̌
are dimensional, whereas nondimensional ones are those without superscripts.

Let us now consider a steady solution Qb = (Ub, Pb, Tb) of the NS equations (1)–(3) (i.e.,
with all time derivatives set to zero), and a perturbation of this base state, q = (u, p, T ), where
u = (u, v,w)T is the perturbation velocity vector, T is the temperature disturbance, and p
represents the pressure disturbance. Being interested in the behavior of infinitesimal three-



FIG. 1. Stratified Blasius base-flow sketch. (a) Streamwise velocity and temperature profiles of the an-
alytical Blasius solution with Pr = 0.7. (b) Ratio between the temperature and the velocity boundary layer
thicknesses versus the Prandtl number.

dimensional perturbations, we write the nondimensional perturbative linearized NS equations as
follows:

∇ · u = 0, (5)

∂u
∂t

+ (u · ∇)Ub + (Ub · ∇)u = −∇p + 1

Re
∇2u + RiT ey, (6)

∂T

∂t
+ (u · ∇)Tb + (Ub · ∇)T = 1

Re Pr
∇2T, (7)

where Re = Ǔ∞δ̌∗
v/ν̌ is the Reynolds number, Pr = μ̌/(ρ̌κ̌ ) = ν̌/κ̌ the Prandtl number, defined as

the ratio of momentum diffusivity to thermal diffusivity, and Ri is the bulk Richardson number,
representing the ratio of the buoyancy effect to the flow shear one, defined as follows:

Ri = α̌T ǧ�Ťbδ̌
∗
v

Ǔ 2∞
. (8)

Since we are interested in weakly or moderately stratified boundary layer flows, we use rather
low values of the Richardson number (Ri � 10−1), and Prandtl numbers ranging from 10−2 to 100
(where Pr = 0.7 corresponds to air and Pr = 7 to water).

A. Stratified Blasius flow

To carry out a local stability analysis, it is necessary to define a base flow homogeneous along
the streamwise (x) and the spanwise (z) directions, such as

Ub = (Ub(y), 0, 0)T , Tb = Tb(y), (9)

where Ub(y) and Tb(y) are the velocity and thermal boundary layers developing in a fluid flowing
over an isothermal surface having a different temperature with respect to the free-stream one. The
velocity and thermal boundary layer profiles are found as solutions of the Blasius system of ordinary
differential equations:

f ′′′(η) + 1
2 f (η) f ′′(η) = 0, θ ′′(η) + 1

2 Pr f (η)θ ′(η) = 0, (10)



where the prime indicates differentiation with respect to η = y/δ(x), δ being the boundary layer
thickness, f (η) is the normalized stream function, θ (η) is the normalized temperature function. To
ensure a stable stratification the following boundary conditions are imposed:

f (0) = f ′(0) = 0, f (∞) = 1, θ (0) = 0, θ (∞) = 1. (11)

The velocity and the temperature of the base flow are reconstructed in the following way:

Ub(y) = f ′(η), Tb(y) = T∞ − θ (η), (12)

where T∞ is the nondimensional free-stream temperature. Figure 1 reports the velocity and tem-
perature base-flow profiles for the stratified Blasius flow with Pr = 0.7 (left frame) as well as the
variation of the ratio between the velocity displacement thickness and the temperature one with
respect to the Prandtl number (right frame). The ratio of the displacement thicknesses of the velocity
and thermal boundary layers depends on the Prandtl number [24] as follows:

δ̌∗
T

δ̌∗
v

= Pr−
1
3 . (13)

When Pr < 1 (for instance, Pr = 0.7 for air at standard conditions), the thermal boundary layer
is thicker than the velocity boundary layer, whereas when Pr > 1, the thermal boundary layer is
thinner than the velocity boundary layer.

B. Modal stability analysis

Modal stability analysis in a local framework implies searching for solutions of the linearized
system (5)–(7) of the following form:

q(x, t ) = q̂(y)ei(αx+βz−ωt ) + c.c., (14)

where q̂ is the Fourier-Laplace transform of q(x, t ) = (u, p, T )(x, t ), c.c. is its complex conjugate,
ω is the complex pulsation, and α, β are the wave numbers in the x, z directions, respectively.
Replacing the base-flow profiles (12) and the fluctuation form (14) in the linearized system (5)–(7),
the following equations are obtained:

iαû + d v̂

dy
+ iβŵ = 0, (15)

i(αUb − ω)û + v̂
dUb

dy
+ = −iα p̂ + 1

Re

(
d2û

dy2
− (α2 + β2)û

)
, (16)

i(αUb − ω)v̂ = −d p̂

dy
+ 1

Re

(
d2v̂

dy2
− (α2 + β2)v̂

)
+ RiT̂ , (17)

i(αUb − ω)ŵ+ = −iβ p̂ + 1

Re

(
d2ŵ

dy2
− (α2 + β2)ŵ

)
, (18)

i(αUb − ω)T̂ + v̂
dTb

dy
= 1

Re Pr

(
d2T̂

dy2
− (α2 + β2)T̂

)
. (19)

These equations are completed by the following boundary conditions:

û = v̂ = ŵ = T̂ = 0, (20)

at the wall and at the far-field boundary. The stability problem thus assumes the following matrix
formulation:

L(α, β, ω, Ub, Tb)q̂(x, α, β, ω) = 0, (21)

where q̂ = (û, v̂, ŵ, p̂, T̂ ) and L is the linear operator of the eigenvalue problem that can be solved
using a temporal or spatial approach. In this work the spatial problem, which consists of the analysis



of the base-state response to time-harmonic forcing with real frequency ω and complex streamwise
wave number α, is solved as

[C2α
2 + C1α + C0]q̂(x; α, β, ω) = 0 (22)

to find α for given values of ω and β. If the imaginary part of α is greater than zero, the flow is
defined as spatially stable.

To solve the spatial stability problems defined above, we discretize the derivative operators using
a spectral collocation method in order to build the Jacobian matrix of the linearized system. Spatial
discretization in the wall-normal direction is accomplished using Chebyshev polynomials on the
Gauss-Lobatto points. A conformal mapping is then used to transform the Chebyshev interval in
the physical domain y ∈ [0, ymax], using Ny = 100 grid points. The boundary conditions given in
Eq. (20) are imposed in an implicit way. The resulting discrete counterpart of Eq. (22) is solved using
MATLAB. The obtained eigenvalues and eigenvectors have been validated with respect to the case of
the (unstratified) Blasius flow, as well as with the stratified channel flow computed in Ref. [5],
finding a very good agreement.

C. Nonmodal stability analysis

Nonmodal stability analysis focuses on the finite-time behavior of small-amplitude disturbances,
which may experience transient energy growth due to the non-normality of the linear operator L [see
Eq. (21)]. This problem results in an optimization of an appropriate energy norm, aiming at finding
the initial condition allowing for the maximum growth of the chosen energy at a given time t . When
dealing with unstratified shear flows, the chosen energy norm to be optimized is usually the kinetic
energy of the perturbation [25] although other norms [26] or seminorms [27,28] have been also used
in the literature. For stratified flows, the appropriate norm may include the potential energy term.
Therefore, in the case of small-amplitude perturbations and using the Boussinesq approximation,
the global energy norm to be optimized reads as [20,21]

Ě (t ) =
∫

V
(ěK + ěP )dV =

∫
V

(
ρ̌0

2
|ǔ(x, t )|2 − ǧ

2ρ̌ ′
b

ρ̌2(x, t )

)
dV, (23)

where the prime indicates the derivative with respect to the y direction, V is the volume of the
computational domain, ěK and ěP indicate the local kinetic and potential energies of the perturbation,
respectively. Using Eq. (4), the following expression is obtained,

Ě (t ) = 1

2

∫
V

(
ρ̌0|ǔ(x, t )|2 + ǧρ̌0α̌T

Ť ′
b

Ť 2(x, t )

)
dV. (24)

Finally, reverting to nondimensional variables, one has

E (t ) = 1

2

∫
V

[|u(x, t )|2 + φ(y)T 2(x, t )]dV, (25)

where

φ(y) = Ri/T ′
b (y). (26)

Previous works have employed for transient growth analysis a formulation of the global energy
of a similar form with the coefficient φ equal to a constant. For instance, in Ref. [3], the nonmodal
stability of plane Poiseuille and Couette flows with constant temperature gradient, solution of the
Oberbeck-Boussinesq equations, are studied using an equivalent of the previously defined norm with
φ = RabulkPr, where Rabulk is the bulk Rayleigh number. In Ref. [5], the transient energy growth of
the stratified plane Poiseuille base flow with constant temperature gradient has been studied using
the norm (25) with constant value of φ = 2 Ri/T ′

b and scaling the spanwise, and wall-normal kinetic
energy contributions with the inverse of Re2. In Ref. [6], the nonmodal stability of the stratified
plane Poiseuille flow has been studied by analyzing only the behavior of the kinetic energy of



FIG. 2. Values of φ(y) for the different approximations of the energy norm.

the perturbation (φ = 0) or considering φ = 2. It is noteworthy that the coefficient φ reduces to a
constant when the considered base flows are characterized by a constant temperature gradient, which
is not the case for the thermal boundary layer considered here. Moreover, in the present case of the
Blasius boundary layer, the potential energy value in Eq. (25) has a peculiar divergent behavior
in the free-stream flow region since the derivative of the base-temperature (density) profile with
respect to the y coordinate T ′

b is zero. Therefore, it is interesting to discuss how this singularity can
be overcome and how the different possible approximations of the potential energy term influence
the transient energy growth for the case of the Blasius boundary layer. For this purpose, in this
work, three approximations of the energy norm have been considered as objective functions of the
optimization procedure:

(i) E1, considering only the contribution of the kinetic energy (φ = 0);
(ii) E2, in which the derivative of the base-flow temperature field is approximated by a constant

value equal to �Ťb/δ̌
�
T , which gives, using Eq. (13) and nondimensionalizing φ = Ri Pr−1/3;

(iii) E3, in which φ(y) is given by Eq. (26) with T ′
b equal to the base-flow temperature derivative

up to a given wall-normal position y, whereas, for y > y, it is fixed to a (small, although nonzero)
constant value.

The coefficients φ for the three approximations of the energy are plotted in Fig. 2, where, in order
to overcome the singularity due to the temperature derivative in the free stream, the minimum value
of T ′

b for the evaluation of the E3 norm has been limited to the value of the derivative at y = δ∗
T or

y = δT,99, δ∗
T and δT,99 being the displacement and 99% thicknesses of the thermal boundary layer,

respectively. The corresponding norms are denoted as E δ∗
3 and E δ99

3 , respectively. Notice that, while
in the former case φ shows comparable values at the wall and far from it, in the latter case, the value
of the coefficient in the free stream is two orders of magnitudes higher than the corresponding value
at wall.

Once the energy norm has been defined as in Eq. (25), it should be maximized at a given target
time t under appropriate constraints. The Lagrange functional can be set up by adding Eqs. (5)–(7)
as constraints by means of the Lagrange multipliers, as follows:

L(u, p, T, u†, p†, T †, u(0), u(t ), T (0), T (t ), λ)

= E (t ) −
∫ t

0

∫
V

p†∇ · u dV dt



−
∫ t

0

∫
V

u†

(
∂u
∂t

+ (u · ∇)Ub + (Ub · ∇)u + ∇p − 1

Re
∇2u − RiT ey

)
dV dt

−
∫ t

0

∫
V

T †

(
∂T

∂t
+ (u · ∇)Tb + (Ub · ∇)T − 1

Re Pr
∇2T

)
dV dt − λ[E (0) − E0]. (27)

Notice that, for numerical purposes, the initial energy of the perturbation E (0) is fixed to a given
value E0. To maximize the objective function subject to the imposed constraints, the variation of
the Lagrange functional with respect to all variables is set to zero. In particular, forcing to zero
the variation with respect to the Lagrange multipliers (or adjoint variables q†, λ), provides the
imposed constraints. Whereas, nullifying the variation with respect to the direct variables yields,
after integration by parts, the following adjoint equations:

∂L
∂u

= 0 → −∂u†

∂t
+ (∇Ub)T u† − (Ub · ∇)u† − ∇p† − 1

Re
∇2u† + T †∇Tb = 0, (28)

∂L
∂ p

= 0 → ∇ · u† = 0, (29)

∂L
∂T

= 0 → −∂T †

∂t
− (Ub · ∇)T † − 1

Re Pr
∇2T † − v†Ri = 0. (30)

Finally, posing to zero the variation with respect to q(t ), q(0) provides the compatibility and
gradient conditions, respectively:

∂L
∂u(t )

= 0 → u(t ) − u†(t ) = 0;
∂L

∂T (t )
= 0 → φT (t ) − T †(t ) = 0, (31)

∂L
∂u(0)

= 0 → u†(0) − λu(0) = 0;
∂L

∂T (0)
= 0 → T †(0) − λφT (0) = 0. (32)

The system of equations (5)–(7), (28)–(30), and (31), (32) constitutes the optimization problem to
be solved for obtaining the optimal initial condition providing the maximum gain. The optimization
system is solved using a direct-adjoint looping cycle similar to that used in Ref. [29]. The flow
variables are first decomposed into a Fourier-Laplace transform in the streamwise and spanwise
directions, with α, β being the streamwise and spanwise wave numbers. The direct equations (5)–(7)
are integrated in time using a given initial condition; at time t = t the compatibility condition (31)
provides initial conditions for the adjoint equations (28)–(30), which are integrated backward in
time up to t = 0. Then, the adjoint variables at time t = 0 are used to find the new initial conditions
of the direct problem by means of gradient methods or power iteration, making use of Eq. (32),
where the λ Lagrange multiplier serves as a normalization parameter for rescaling the perturbation
to the imposed initial energy. The direct-adjoint loop is repeated until the difference between the
gain obtained in two successive iterations is smaller then the fixed threshold ε = 10−5. When
convergence for the given target time is achieved, the value of t is increased by 2 time units and
the direct-adjoint algorithm is restarted by using the previously computed initial optimal solution as
initial guess. This allows one to reduce considerably the number of iterations needed for computing
the curve of the optimal gain and does not affect the final solution. Temporal discretization of the
direct and adjoint equations is carried out using a fully implicit fourth-order accurate backward
Euler scheme [30]. The same spatial discretization described in Sec. II B is used, with Ny = 100
collocation points for the short-time optimizations, and Ny = 150 points for the long-time ones,
which require a larger domain (see discussion in Sec. IIIB2). In order to validate the numerical
code, we have compared our results with the optimal perturbations found in the literature for the
Blasius flow in the absence of thermal stratification [31] and for the stably stratified plane Poiseuille
flow [5], finding a very good agreement.



FIG. 3. Richardson and Prandtl number influence on the Blasius flow. Contours of largest growth rate αi

(continuous lines) and corresponding angular frequency ω of largest growth (dashed lines) in the (Re, Ri) plane
for Pr = 0.7 (a) and in the (Re, Pr) plane for Ri = 10−2 (b). The continuous black line is the neutral stability
curve.

III. RESULTS

A. Modal stability analysis

Figure 3 shows the influence of the Richardson and Prandtl numbers on the most unstable
spatial mode (continuous lines), which is always found for β = 0, and the corresponding angular
frequency at which the largest growth rate is found (dashed lines). Increasing the Richardson
number, the growth rate of the most unstable mode decreases, as already shown in Refs. [2] and
[5] in a temporal and spatial framework, respectively, for the plane Poiseuille flow with stable
stratification. As expected, also in the case of the boundary layer flow, buoyancy appears to stabilize
the flow, strongly influencing the critical value of the Reynolds number. In particular, Rec is
pushed to 829.3 for Ri = 10−2, and considerably increases for Ri � 10−2, apparently reaching an
asymptote for Ri ≈ 2 × 10−2. Despite the strong influence of Ri on the value of the critical Reynolds
number, the structure of the Tollmien-Schlichting wave appears to be weakly sensitive to buoyancy.
Figures 4(a) and 4(b) show the marginally unstable eigenvectors obtained with Pr = 0.7 for two
values of the Richardson number Ri = 10−4 (with pulsation frequency ω = 0.12 and Rec = 519.4)
and Ri = 10−2 (with ω = 0.1 and critical Reynolds number equal to 829.3), respectively. Both
eigenvectors present a clear Tollmien-Schlichting wave structure, with the velocity components
recalling those of the unstratified case, whereas the temperature component shows a peak near the
wall and decreases exponentially outside the boundary layer. As observed by Biau and Bottaro [5]
for Poiseuille flow, the shape of the eigenvectors as well as the critical streamwise wave number are
weakly affected by the Richardson number [for instance, αr = 0.303 in the case shown in Fig. 4(a)
and αr = 0.277 in Fig. 4(b)].

Considering the influence of the Prandtl number, Fig. 3(b) shows that this parameter plays an
important role in the stability of the Blasius flow, differently from what observed for the plane
Poiseuille flow [5]. The critical Reynolds number strongly varies with Pr, at first increasing for
0.01 < Pr < 7, and then decreasing. To explain such behavior one should notice that, for a fixed
Reynolds number, the Prandtl number affects the flow stability in two different ways. The first
effect is directly due to its presence in the temperature equation (7): increasing Pr, the diffusion term
becomes smaller with respect to the other terms, inducing a reduced stabilization of the temperature
component for increasing Pr at fixed Re and Ri, which might explain the behavior found for
Pr > 7. At the same time, however, an increase of the Prandtl number with fixed kinematic viscosity
translates into a decrease of the thermal diffusivity coefficient κ , indicating that the viscous effects



FIG. 4. Absolute value of the five components of the unstable eigenvectors for the stratified Blasius flow at
critical conditions (indicated in Table I) for different Richardson and Prandtl numbers.

become predominant with respect to the thermal ones. The unbalance between these two effects
leads to an initial stabilization of the flow when increasing Pr from very low values at fixed Re and
Ri. Then, a destabilization effect is observed, probably due to the much smaller weight of the thermal
diffusion term, when Pr is increased at values larger than 7. This is corroborated by the eigenvector
shapes provided in Figs. 4(b)–4(d) for three values of Pr and Ri = 10−2. Comparing Figs. 4(b)
and 4(c) one can observe that lowering the Prandtl number in the range 0.01 < Pr < 7 induces a
reduction of the temperature component with respect to the velocity ones, due to the predominance
of the stabilizing thermal effects. Whereas, increasing Pr to values larger than 7 results in a growth
of the temperature component with respect to the velocity ones, consistent with the decreased
weight of the diffusion term in the temperature equations which induces a destabilization of the
temperature component. In this respect, one should notice that in this case the critical Reynolds
number is decreased, but on a much lesser extent compared to the Prandtl number increase, so that
the product Re Pr is indeed increased. One can also notice that the Prandtl number influences the
wall-normal distribution of the unstable eigenvector profiles, whose peak values move toward the
wall when Pr increases, as one can clearly notice in Fig. 5, providing the temperature component
profiles of the unstable modes for four different Prandtl numbers. This behavior is most probably
linked to the influence of the Prandtl number on the ratio between the thermal boundary layer



FIG. 5. Temperature component of the unstable eigenvalues (continuous lines in both subfigures) and cor-
responding (a) temperature and (b) velocity profile of the base flow minus the phase speed of the perturbation
(dashed lines) at Ri = 10−2 and Re = Rec [see Fig. 3(b)] for four different values of the Prandtl number (see
legend). In (b) the dots indicate the peak location of the temperature component of the eigenvectors, whereas
the critical layer position corresponds to the y location for which the dashed curves have zero value.

thickness and the velocity one [see dashed lines in Figs. 5(a) and 5(b), respectively]. Figure 5(b)
shows that, for Pr = 10 and 1, the wall-normal position of the temperature peak value is very close
to the point at which the phase speed of the perturbation (vϕ) is equal to the base-flow velocity U .
This indicates that, for large values of the Prandtl number, for which the temperature and velocity
base-flow profiles have comparable thicknesses, the structure of the eigenmode is affected by the
critical layer location. Whereas, for decreasing values of Pr, for which the temperature boundary
layer is considerably thicker than the velocity one, the temperature perturbation peak departs from
the critical layer location, moving upward, where the temperature base-flow profile is still sheared,
whereas the velocity one has reached its free-stream value. It thus appears that the thermal boundary
layer thickness affects the shape and wall-normal extent of the most unstable eigenmode, although
its frequency slightly changes, as provided in Table I. The effect of the Richardson and Prandtl
numbers on the neutral curves is reported in Fig. 6, which has been plotted on a Re-F plane, with
F defined as 106ω/Re, as usually done for the study of the asymptotic spatial stability of boundary
layer flows (see, for instance, Ref. [19]) . For Ri = 10−4 the neutral curve is almost superposed
to that of the unstratified Blasius flow. Increasing this parameter, the unstable area considerably
decreases due to the increased role of buoyancy, which has a stabilizing effect in the problem under
consideration. Despite the strong decrease of the unstable area, and the considerable increase of
the critical Reynolds number, which is reported in Table I, the critical values of αr and ω do not
change much. The same weak influence on the critical wave number is observed when varying the

TABLE I. Critical parameters for different values of Ri and Pr, corresponding to the cases shown in Figs. 4
and 6, compared to the unstratified case (first line).

Ri Pr Rec αr ω

519.4 0.303 0.120
10−4 0.7 519.4 0.303 0.120
10−2 0.7 829.3 0.277 0.101
10−2 0.1 622.5 0.302 0.115
10−2 30 500.0 0.306 0.125



FIG. 6. Isocontours of the spatial growth rate (blue for negative, red for positive values) and neutral curves
(solid lines) for different Richardson and Prandtl numbers for the stratified (continuous lines) and unstratified
(dashed lines) Blasius flow. The critical conditions are indicated in Table I.

Prandtl number, as reported in Table I. Whereas, the unstable area of the neutral curve decreases
when increasing Pr from 0.1 to 0.7, and then increases again for Pr = 30.

B. Nonmodal stability analysis

In this section, the results of the transient growth analysis are provided, focusing at first on
the short-time behavior [t ≈ O(10)], and then, in a few selected cases, also on the long-time
dynamics [t ≈ O(103)]. As will be discussed in more detail in Sec. IIIB2, the short-time dynamics
is practically independent of the definition of the energy norm introduced before, the optimal gain
being affected by less then 0.1% by the choice of the norm approximation. Thus, in Sec. IIIB1 the
influence of the energy norm on the results will not be considered; whereas, a thorough discussion
of the effect of the norm on the long-time energy growth will be provided in Sec. IIIB2.

1. Short-time energy amplification

The short-time optimizations are performed for several values of the nondimensional parameters
Ri, Re, Pr in order to unravel the effect of the different physical mechanisms that may affect the
energy growth in a Blasius flow subject to stable stratification. All these computations have been
carried out for the norm E2, although it has been verified in many of the considered cases that using
different norm approximations provides virtually the same results. At first, the influence of the



FIG. 7. Optimal gain contours Gopt as a function of the streamwise wave number α and the spanwise wave
numbers β, at fixed Reynolds number Re = 500 and Prandtl number Pr = 0.7 for different Richardson numbers
(Ri = 10−5, 10−4, 10−3, 10−2). The red cross symbols indicate the conditions of optimal growth.

buoyancy effect on transient growth mechanisms is investigated by varying the Richardson number
at fixed Re and Pr.

For each considered value of the Richardson number, we evaluate the optimal growth Gopt

and optimal time topt, defined as the smallest time at which the gain curve peaks, for several
streamwise and spanwise wave numbers, in order to identify the conditions of maximum energy
growth. Figure 7 shows the contour levels of the optimal gain Gopt for 0 < α < 0.5 and 0 < β < 1
at fixed Reynolds number Re = 500 and Prandtl number Pr = 0.7 for different Richardson numbers
(Ri = 10−5, 10−4, 10−3, 10−2). In particular, the largest considered value of the Richardson number
has been chosen so as to be comparable with that of nocturnal atmospheric boundary layer flows
in weakly stable conditions, which present Ri < 0.1 near the surface. Whereas, the other values
of Ri have been chosen so as to provide a continuous transition between this reference case and
the unstratified boundary layer flow. For the lowest value of Ri, the optimal gain (indicated by the
red cross symbol corresponding to Gopt = 361.88) is found for α = 0 and β = 0.65, matching the
optimal streamwise and spanwise wave numbers found for the unstratified Blasius flow [31]. In
this case, the initial perturbation providing the maximum energy growth of the system is a pair
of counter-rotating streamwise-independent vortices, giving rise at optimal time to elongated low-
and high-momentum regions alternating in the spanwise direction, namely, a pair of streaks, due to



FIG. 8. Optimal time contours topt as a function of the streamwise α and the spanwise β wave numbers at
fixed Reynolds number Re = 500 and Prandtl number Pr = 0.7 for different Richardson numbers (Ri = 10−5,
10−4, 10−3, 10−2). The red cross symbol indicates the conditions of optimal growth.

the so-called lift-up mechanism [32]. Increasing the Richardson number, due to the non-negligible
effect of buoyancy, the optimal streamwise wave number considerably departs from zero, reaching
α = 0.35 for Ri = 10−2. Whereas, the spanwise wave number changes more slightly with the
Richardson number, achieving the maximum value β = 0.8 for Ri = 10−3. Thus, stable thermal
stratification introduces a streamwise modulation of the optimal perturbation, with the wave number
increasing with Ri, but also induces a considerable drop of the optimal gain, which decreases to
Gopt = 75.5 for the largest considered value of Ri. A strong effect of the Richardson number is
found also on the optimal time, topt, which is provided in Fig. 8 as a function of α and β for four
values of Ri. In particular, for small values of Ri, the optimal time is barely dependent on the
value of β in the range 0.2 < β < 1, while it decreases for β < 0.2. In all cases, topt strongly
increases when α approaches zero. Whereas, for higher values of the Richardson number, topt

depends on the spanwise wave number too, showing a nontrivial behavior. This indicates that when
buoyancy effects are relevant, the amplification mechanism at work may no longer be the lift-up
effect only since thermal stratification may render other energy growth mechanisms, not relying on
the generation of streamwise-independent flow structures, more relevant.

Figures 9(a) and 9(b) show the influence of the Richardson number on the optimal gain and
optimal time for different values of the Reynolds number. The curves are obtained for Pr = 0.7.



FIG. 9. Optimal gain Gopt (a), optimal time topt (b), optimal streamwise wave number αopt (c), and optimal
spanwise wave number βopt (d) trends with the Richardson number Ri for different values of Reynolds number
Re at fixed Prandtl number Pr = 0.7.

Both the optimal energy gain and the optimal time decrease when the buoyancy effect increases.
Concerning the optimal energy gain, this effect is stronger for larger values of the Reynolds number
since the energy gain appears to decrease linearly with the logarithm of Ri, but with a slope that
increases with Re, following, for Ri > 0, a logarithmic law,

Gopt ≈ −A(Re) log10 Ri − B(Re), (33)

where A and B both increase with Re. A similar, although not identical behavior has been found
in [33], in which for stratified mixing layers the maximum perturbation gain has been found to
increase with Re and decrease with the Richardson number. Similarly, the optimal time decreases
with the logarithm of Ri. A quasilinear trend with steeper slope as Re increases is observed at low
values of Ri. On the contrary, for Ri > 5 × 10−4, the effect of the Richardson number on the optimal
time tends to be independent of Re, and the topt curves obtained for different values of Re collapse
onto each other. Figure 9(c) shows the variation of the streamwise wave number α versus Ri for
different values of Re. In all cases, α is found to increase with the Richardson number, although its
departure from zero occurs at larger values of Ri when the Reynolds number is low. Whereas, for
large values of Re the curves tend to collapse onto each other. Finally, the influence of Ri on the



FIG. 10. Optimal gain Gopt (a) and optimal time topt (b) trends with the Reynolds number Re for different
values of Richardson number Ri at fixed Prandtl number Pr = 0.7.

spanwise optimal wave number is shown in Fig. 9(d). For low values of the Reynolds number, βopt

gradually increases with Ri, peaking for Ri � 10−3. Whereas, for increasing values of Re, the value
of the spanwise wave number is found to peak at lower values of Ri. Thus, the optimal perturbation
shape appears to be nontrivially influenced by the Richardson and Reynolds numbers.

Figure 10 shows the Reynolds number influence on the optimal gain and optimal time for
different values of the Richardson number. It is known that, in unstratified shear flows such as
the Blasius boundary layer, the spanwise wave number is independent of Re [34], the optimal gain
presents a quadratic dependence on the Reynolds number, whereas the optimal time shows a linear
dependence with Re [35], associated with the lift-up mechanism [36]. Stable stratification appears
to break these dependencies on Re since the optimal gain tends to a linear behavior with respect
to the Reynolds number and the optimal time tends to be independent of Re when increasing
the Richardson numbers. This, together with the increase of the streamwise wave number with
Ri, suggests that the optimal amplification mechanism of a boundary layer in the presence of a
stable stratification is no longer the lift-up. Finally, the Prandtl number influence on the optimal
energy gain for the stratified Blasius flows is shown in Fig. 11(a). One can observe that, varying
this nondimensional parameter in the range 0.7 < Pr < 7, the optimal gain is barely affected by the
thermal effect. A similar conclusion can be drawn concerning the influence of Pr on the optimal time
provided in Fig. 11(b), although for intermediate values of Ri the optimal time is found to slightly
increase with Pr.

In order to investigate the nature of the optimal amplification mechanisms in the presence of a
sufficiently strong stable stratification, we analyze in detail the behavior of the flow at Re = 500,
Ri = 10−3, and Pr = 0.7. In this particular case, the optimal perturbation has optimal streamwise
and spanwise wave numbers α = 0.15 and β = 0.8, respectively. Figure 12(a) reports the optimal
gain envelope (continuous line), peaking at topt = 88.62, for which the optimal gain Gopt = 180.03
is obtained, together with the time evolution of the gain G computed by time marching the optimal
perturbations obtained for three different target times (dashed lines). Clearly, smaller values of
the gain are obtained for target times smaller or larger then topt, although the overall shape of
the energy gain curve and the related optimal perturbations are very similar. A three-dimensional
view of the streamwise velocity perturbation at optimal time topt is provided in Fig. 12(b), showing
the presence of oblique elongated structures, remnants of the lift-up mechanism, but having a
finite inclination with respect to the streamwise direction. Figure 13(a) reports the wall-normal



FIG. 11. Optimal gain Gopt (a) and optimal time topt (b) trends with the Prandtl number Pr for different
values of Richardson number Ri at fixed Reynolds number Re = 500.

profiles of the initial optimal perturbation. As expected in the presence of the lift-up mechanism,
the components of largest amplitude are the spanwise and wall-normal ones, that are responsible
for the counter-rotating vortex formation. However, the streamwise velocity component is not
negligible, having almost the same amplitude of the wall-normal one. The wall-normal profiles
of the optimal perturbation at optimal time are provided in Fig. 13(b) showing that the temperature
and the streamwise velocity are the main components of the optimal perturbation, indicating the
presence of temperature-inclined streaks associated with the streamwise velocity ones. As typically
occurs in the case of the lift-up mechanism, the cross-flow velocity components v − w are small,
at least compared with the streamwise and temperature ones. However, these components present

FIG. 12. (a) Envelope of the optimal energy gain versus time (continuous line) and time evolution of the
gain for three optimal perturbations obtained for target times t = 20, 50, 150 (dashed lines from left to right,
the black dots indicate the optimal gain obtained for each of the given target times). (b) Three-dimensional view
of the streamwise velocity perturbation at the optimal time t = topt = 88.62 [red dot in (a)]. The optimizations
have been performed at fixed Richardson number Ri = 10−3, Reynolds number Re = 500, Prandtl number
Pr = 0.7, streamwise wave number α = 0.15, and spanwise wave number β = 0.8.



FIG. 13. Wall-normal profiles of the optimal disturbance at (a) t = 0 and (b) at the optimal time t = topt ,
for Richardson number Ri = 10−3, Reynolds number Re = 500, Prandtl number Pr = 0.7, streamwise wave
number α = 0.15, and spanwise wave number β = 0.8.

negative values in the near-wall region, indicating that a different amplification mechanism may be
active too.

The two-dimensional contours of u in the x-y plane are provided in Fig. 14 at four different
times during the flow evolution, showing that the streamwise velocity perturbation, initially inclined
against the shear, is tilted in the direction of the shear as time evolves. This peculiar evolution
indicates the presence of the Orr mechanism [37], which provides an increase of the spanwise
vorticity (and thus of the u-v perturbation components) due to the conservation of circulation in an
xy plane. To investigate the reasons of the presence of the Orr mechanism, we run two additional
optimizations by constraining the perturbation on an xy plane (where only the Orr mechanism is
active) and then on a yz plane (where only the lift-up is). Thus, we perform optimizations for α =
0 and then for β = 0, at different Richardson numbers, for Re = 500 and Pr = 0.7. Increasing
the Richardson number, the optimal time associated with the lift-up mechanism strongly decreases
reaching the optimal time for the Orr mechanism at Ri = 10−2, as shown in Fig. 15. This explains
the simultaneous presence of the Orr and lift-up mechanisms when the buoyancy term is sufficiently
high.

To investigate the reason why the Orr mechanism becomes “competitive” with the lift-up as
the Richardson number increases, we measure the time evolution of the production terms of the
Reynolds-Orr equation extended to the stratified flow case:

dEc

dt
= −

∫
V

u · (u · ∇)Ub dV︸ ︷︷ ︸
Shear production Ps

− 1

Re

∫
V

∇u : ∇u dV︸ ︷︷ ︸
Viscous dissipation Dv

+ Ri
∫

V
u · eyT dV︸ ︷︷ ︸

Buoyancy flux production Pb

, (34)

dEp

dt
= −

∫
V

T (u · ∇)Tb dV︸ ︷︷ ︸
Temperature production PT

− 1

Re Pr

∫
V

∇T · ∇T dV.︸ ︷︷ ︸
Thermal dissipation DT

(35)

Figure 16 shows the time evolution of the shear production (left) and buoyancy flux production
(right) terms induced by the optimal perturbations at different Richardson number for Re = 500
and Pr = 0.7. Increasing the Richardson number, the shear production, which is usually linked to the
lift-up mechanism, peaks earlier in time, suggesting that stable stratification tends to counterbalance
the production due to the lift-up mechanism. In fact, inspecting Eq. (35), we can observe that,
for inducing an increase of the potential energy due to the temperature production term (namely,



FIG. 14. Streamwise velocity evolution in xy plane of the optimal perturbation at four different times: t =
0, t = 30, t = topt = 88.62, and t = 150. At fixed Richardson number Ri = 10−3, Reynolds number Re = 500,
Prandtl number Pr = 0.7, streamwise wave number α = 0.15, and spanwise wave number β = 0.8.

FIG. 15. Richardson number influence on the optimal gain (a) and optimal time (b) for two-dimensional
perturbations with (triangles) β = 0, α = αopt3D, and (circles) α = 0, β = βopt3D for Re = 500, Pr = 0.7.



FIG. 16. Shear production (a) and vertical buoyancy flux production (b) for different Richardson num-
bers: Ri = 10−5, Ri = 10−4, Ri = 10−3, Ri = 10−2 at fixed Reynolds number Re = 500 and Prandtl number
Pr = 0.7.

for inducing the equivalent of the lift-up effect on the temperature component), the wall-normal
component of the velocity perturbation should be negative in the regions where the wall-normal
gradient of temperature is positive (namely, within the boundary layer). As a consequence, the
buoyancy flux production term in Eq. (34) becomes negative, with increasing modulus since T is
growing due to the increase of the potential energy. Therefore, as time increases, the buoyancy flux
production begins to counterbalance the shear production term in Eq. (34), hindering the increase
of the kinetic energy due to the classical lift-up mechanism. Thus, to maximize the energy growth,
the optimal perturbation tends to induce a rapid increase of the shear (and temperature) production
terms, on a timescale sufficiently short not to be counterbalanced by the buoyancy flux production.
Therefore, since on a short timescale the energy growth due to the Orr mechanism is of the same
order of that due to the lift-up, the two mechanisms are active at the same time for sufficiently high
Richardson numbers. The simultaneous presence of these two energy growth mechanisms leads
to an optimal perturbation able to exploit both effects via inclined counter-rotating vortices, tilted
against the base-flow direction. It is worth remarking that large amplification of three-dimensional
oblique wave perturbations for very short times is achieved in many plane shear flows [38] since
the wall-normal perturbation velocity produced by the Orr mechanism, active at very short times,
induces the growth of the streamwise component through the lift-up mechanism. Although this
interplay of Orr and lift-up mechanisms is found to be the overall optimal one for an unbounded
infinite-shear flow [38] and a piecewise shear flow with free surface at low Froude number [39], in
most of the shear flows it only produces a suboptimal energy growth. For instance, in the mixing
layer [13], the same synergistic mechanism, occurring at short timescales, is eventually surpassed
by the growth of two-dimensional Kelvin-Helmoltz–type perturbations. In wall-bounded shear flows
such as the Couette, the plane Poiseuille. and the boundary layer flow, of interest here, it is overcome
by the (much higher) energy growth of two-dimensional streaks occurring at larger timescales [34].
In the present case, stable stratification damps the long-time lift-up mechanism and produces a
reduction of its “optimal” timescale in order to avoid a too strong growth of the (negative) buoyancy
production term. Increasing the Richardson number, the buoyancy effects become preponderant with
respect to the shear production ones and, consequently, the Orr mechanism becomes preponderant
on the lift-up one, causing a decrease of the optimal gain and time, an increase of the streamwise
wave number, and a different dependence of these parameters on the Reynolds number, as reported
in Fig. 10.



FIG. 17. Envelope of the optimal energy gain G versus the target time t for (a) Ri = 10−2, Re = 500, Pr =
0.7, α = 0.35, β = 0.75, and domain size Ly = 100 for all the norm approximations considered (see legend
within the figure) and for (b) (case a, black line) Ri = 10−3, Re = 500, Pr = 0.7, α = 0.15, β = 0.8; (case
b, red line) Ri = 10−3, Re = 500, Pr = 0.7, α = 0.35, β = 0.75; (case c, gray line), Ri = 10−3, Re = 750,
Pr = 0.7, α = 0.15, β = 0.775; (case d, blue line) Re = 250, Ri = 10−4, Pr = 0.7, α = 0, β = 0.7.

2. Long-time energy amplification

Inspection of Eqs. (34) and (35) indicates that, apart from the short-time energy growth mecha-
nism that we have discussed in the previous subsection, it is possible to induce an increase of the
kinetic energy directly via the buoyancy production term. This can be accomplished by a positive
wall-normal velocity perturbation which, coupled with the temperature disturbance, leads to an
increase of the (positive) value of the buoyancy production term. However, on a short timescale, this
effect will be counterbalanced by the lift-up and Orr mechanisms, for which a positive wall-normal
disturbance in the regions where the temperature gradient is positive translates into a decrease of the
potential energy. Nevertheless, such transient energy growth might be possible at long timescales
when the lift-up and Orr effects fade away. Thus, we have investigated such a possibility by
performing optimizations for much larger target times using the different approximations of the
energy norm introduced in Sec. II. The black continuous line in Fig. 17 provides the envelope
of the optimal energy gain, approximated as E2(t )/E2(0), at different values of the target time
t ranging from t = 10 to 1300, for Ri = 10−2, Re = 500, and Pr = 0.7. For this value of the
Richardson number, a second energy peak arises at a long time (the long-time optimal time for
this case being t l

opt = 889.16), whose value of G is larger than that of the first peak. We have to
remark that, having observed an increase of both the optimal gain and time, Gl

opt and t l
opt, with

the wall-normal domain size up to Ly ≈ 60, we have used Ly = 100 for all the computations
of this section to avoid any influence of the domain size on the results. Figure 18 shows the
wall-normal profiles of the optimal perturbation for Ri = 10−2, Re = 500, and Pr = 0.7, at initial
and optimal times. At t = 0, the streamwise and spanwise components of the velocity are close to
zero, whereas, as expected, temperature and wall-normal velocity have the same sign and peak at
the same wall-normal position, right at the center of the region where the temperature base profile
has null gradient. In fact, as previously discussed, a positive wall-normal velocity perturbation in
the region of positive temperature gradient (i.e., within the boundary layer), will induce a decrease
of the potential energy, which will reduce the growth of the objective function. At optimal time, v

and T have still the same sign, although both are negative, and u and w have increased amplitude,
presenting a negative (positive) value in the upper (lower) part of the domain. A vector plot in the x-y
plane, provided in Fig. 19, shows the presence of two counter-rotating vortices, constituted mostly
by negative wall-normal velocities pushing negative temperature perturbations toward the boundary



FIG. 18. Shape of the optimal disturbance at (a) t = 0 and (b) at the optimal time associated with the second
peak t = t l

opt = 889.16. The solution is obtained for Ri = 10−2, Re = 500, Pr = 0.7, α = 0.35, β = 0.75, and
Ly = 100.

layer region, and positive wall-normal disturbances lifting up positive temperature fluctuations. The
fact that the wall-normal velocity and temperature disturbances have the same sign confirms that the
energy growth is due to the increase of the buoyancy production term, as shown in Fig. 20 providing
the energy budget for this long-time optimal solution, compared to the short-time one computed with
the same parameters (first peak at topt = 46.1 with Gopt = 75.5, second peak at t l

opt = 889.16 with
Gl

opt = 133.24).
The exploration of the wave-number space shows that the maximum energy growth due to such

mechanism is observed for β = 0 and for a streamwise wave number α = 0.07 leading to the
emergence of circular cells in the x-y plane. In this particular case, at Re = 500, Ri = 10−2, and
Pr = 0.7, an energy gain reaching order 106 is found at t l

opt ≈ 105. Moreover, the long-time growth
weakens considerably for decreasing values of the Richardson number, completely disappearing for
Ri = 10−4.

FIG. 19. Contours of temperature, with the black arrows denoting the velocity field in the x − y plane of the
optimal disturbance at t l

opt = 889.16 on a x − y plane for Ri = 10−2, Re = 500, Pr = 0.7, α = 0.35, β = 0.75,
and Ly = 100.



FIG. 20. Energy budget comparison for the optimal perturbations associated to the long-time peak (a) and
short-time one (b) at Ri = 10−2, Re = 500, Pr = 0.7, α = 0.35, β = 0.75: shear production Ps, buoyancy flux
production Pb, and temperature production PT evolution in time.

Thus, it appears that a different energy growth mechanism is active at long times, linked to the
coupling of temperature and wall-normal velocity fluctuations mediated by the Richardson number,
and characterized by a very different timescale with respect to the energy growth mechanisms due
to the transport of shear by the perturbations. However, this mechanism appears to be strongly
dependent on the choice of the energy norm approximation, as suggested by the colored curves of
Fig. 17(a). When the kinetic energy E1 is optimized, neglecting the contribution of the potential
energy to the overall energy growth, the second peak is found to increase together with the optimal
time. Whereas, taking into account the potential energy translates into a decrease of the optimal
energy gain and time, which tends to zero when the variation of stratification strength height is
approximated in an increasingly accurate way. Notice that when the free-stream temperature gradi-
ent in the energy norm is approximated by its value at y = δ∗

T (i.e., when E δ∗
3 is optimized) similar

results to those recovered with a linear approximation of the temperature variation with height (i.e.,
for an E2 optimization) are found. Instead, when approximating the free-stream temperature gradient
with its value at y = δT 99, the second peak disappears, indicating that this long-term amplification,
although still possible, is not an optimal mechanism. The right panel of Fig. 17 shows that this
disappearance of the second peak is not due to the chosen values of Re, Ri, Pr, neither on the
choice of α and β, but is a general feature observed when optimizing E δ99

3 . This difference in the
results obtained using different norm approximations is due to the different values of φ(y) used in
Eq. (25), which is two orders of magnitude higher at the free stream for the E δ99

3 approximation
with respect to the other cases. In fact, an increase of the parameter φ results into a much larger
weight of the initial temperature disturbances with respect to the velocity ones. This effect can be
seen in Fig. 21 showing the time evolution of the temperature and wall-normal velocity components
of the long-time optimal perturbation for the three norms E1, E2, E δ∗

3 , all scaled for the same given
initial energy E0. The three curves show the same oscillating behavior linked to the streamwise
advection of the rolls shown in Fig. 19. Moreover, one can see that the initial amplitude of the
temperature perturbation decreases from E1 to E3, due to its increased weight with respect to a
velocity disturbance. This induces a reduction of the buoyancy flux production term in the energy
equations (34), which depends on the coupling between T and v, weakening the long-time energy
gain. When the E δ99

3 norm is used, the weight of a temperature perturbation placed at the free stream
becomes huge with respect to that of the velocity ones since φ increases of two orders of magnitude
from the wall to the free stream. As a consequence, the optimization algorithm places most of the
initial energy on velocity disturbances, hindering the coupling between temperature and wall-normal
velocity disturbances at the free stream, thus canceling the long-time energy peak. One should also



FIG. 21. Time evolution of the wall-normal velocity and temperature components of the long-time optimal
disturbance extracted at y = 48.8 (corresponding to their peak position, see Fig. 19), for the norm approxi-
mations E1 (a), E2 (b), and E δ∗

3 (c). The solutions are obtained for Ri = 10−2, Re = 500, Pr = 0.7, α = 0.35,
β = 0.75, and Ly = 100.

notice that the first peak is not affected at all by the different norm approximations, as shown in
Fig. 17, since the φ parameter mostly varies at the free stream, whereas the initial short-time optimal
perturbations are localized within the boundary layer.

An increase of the transient growth in a stratified channel flow with respect to the unstratified case
was reported in Ref. [6], for transient growth optimizations performed with an energy norm having
φ = 1. Also in that case the optimal perturbation was characterized by spanwise-independent rolls,
instead of streamwise vortices found at Pr = 0. In Ref. [40], an amplification mechanism has been
studied in which density perturbations advected in a shear flow are able to force the wall-normal
velocity perturbations, inducing an algebraic growth in nonstratified and weakly (stably) stratified
shear flows, and a sublinear growth in strongly stratified ones. Similarly to what observed in the
present case, the authors found that the larger the initial density (or temperature) perturbation, the
larger the kinetic energy growth, and the longer the amplification is sustained for. The present long-
time energy growth mechanism, which is indeed optimal for some of the considered approximations
of the energy, appears to be the same as that reported in [40].

Although in both cases the reported energy growth is nonoptimal in terms of the total (kinetic
plus potential) energy, it can be still relevant for atmospheric boundary layer flows, in which strong
temperature fluctuations can be induced by the presence of buildings or due to wind changes.
Growing in time and being amplified by several orders of magnitude, such perturbations may have
crucial implications for stirring up the flow toward turbulent conditions and/or generating bursts.

When nonlinearity sets in, these structures might become self-sustained, in the same way as linear
optimal perturbations such as streaks are observed in turbulent flows [41,42]. Notably, coherent
structures similar to the long-time optimal perturbations found here are reported in Ref. [8] in the
centerline region of stably stratified turbulent channel flow, and as discussed by the authors, they
match the main features found by kinetic energy optimization in the same flow case [43]. It is thus
possible that in turbulent conditions, in which the fluctuations with respect to the mean flow pervade
the flow at all scales, this mechanism might be triggered.

IV. CONCLUSIONS

This paper investigates the modal and nonmodal linear stability of a stably stratified Blasius
boundary layer flow. The base flow is composed of a velocity and a thermal Blasius boundary layer
whose thicknesses scale with the cubic root of the Prandtl number. The spatial linear stability of such
a flow is investigated for different Richardson, Reynolds, and Prandtl numbers. While increasing
the Richardson number stabilizes the flow, pushing the critical Reynolds Rec to values greater than
2000 for Ri > 10−2, a more complex behavior is found when changing the Prandtl number. In
fact, increasing this parameter up to Pr = 7 stabilizes the flow for Rec < 1200; a further increase
of Pr is found to destabilize the flow, leading to a drop of the critical Reynolds number to values



even lower than that of the nonstratified case. In fact, an increase of the Prandtl number usually
translates into a stabilization of the flow since the thermal diffusivity of the flow increases with
respect to viscosity. However, the concurrent weakening of the diffusion term in the temperature
may tend to facilitate the growth of temperature perturbations. Thus, for certain values of Re and
Pr, the destabilizing effect of the reduced thermal diffusion can overcome the usually encountered
stabilizing effect, as observed in the present case. Moreover, the Prandtl number influences also
the wall-normal distribution of the unstable eigenvector profiles, whose peak values move toward
the wall when Pr increases, due to the variation of the wall-normal position of the critical layer with
the Prandtl number.

The nonmodal linear stability of the stably stratified boundary layer flow is then investigated
using a direct-adjoint looping procedure aiming at optimizing an opportunely weighted sum of
the kinetic and potential energies. In the present case of the Blasius boundary layer, the potential
energy value has a peculiar divergent behavior in the free-stream flow region since the derivative of
the base-temperature (density) profile with respect to the y coordinate is zero. Therefore, we have
tried to overcome this singularity using different approximations of the norm, showing to which
extent the choice of the potential energy terms approximation influences the study of the transient
growth for the case of the Blasius boundary layer. Thus, three approximations of the energy have
been considered as objective functions of the optimization procedure: (i) E1, considering only the
contribution of the kinetic energy; (ii) E2, in which the derivative of the base-flow temperature field
is approximated by a constant value close to the average value measured within the boundary layer;
(iii) E3, in which the variation of the stratification strength with height is taken into account and
the singularity is overcome by taking the exact base-flow temperature derivative up to a given wall-
normal position y, whereas, for y > y, it is fixed to a (small, although nonzero) constant value. The
energy optimization is carried out at first for short [O(10)] target times, recovering the same results
for all the approximations of the norm. In all cases, we have found that increasing the Richardson
number, the optimal energy gain and the time at which it is obtained decrease, whereas the optimal
streamwise wave number considerably departs from zero (i.e., its optimal value in the nonstratified
case). Moreover, increasing the Richardson number, the dependence of the energy growth on the
Reynolds number evolves from a quadratic to a linear behavior, whereas the optimal time, which
varies linearly with Re in the nonstratified case, remains constant no matter the Reynolds number.
This suggests that the optimal energy growth mechanism in the stratified case is not merely the
lift-up one, even if elongated (although inclined) high-streamwise-momentum flow structures are
found at optimal time. A closer inspection of the optimal perturbations shows spanwise vorticity
structures inclined against the mean flow direction, which tilt in the streamwise direction in time,
increasing their energy due to the Orr mechanism. Following the time variation of the different
energy-production terms, we notice that, as Ri increases, the lift-up related production term peaks
earlier in time, to avoid the counterbalancing effect of the buoyancy production term. Thus, the
optimal timescale of the lift-up mechanism collapses with that of the Orr one, leading to an oblique
optimal perturbation which exploits both mechanisms for amplifying its energy. Although large
amplification of three-dimensional oblique wave perturbations is achieved in many plane shear flows
for very short times [38], it is found to be the overall optimal only for a very few cases, such as the
unbounded infinite-shear flow [38] and a shear flow with free surface at low Froude number [39].
In most of the shear flows, such as the mixing layer [13] and many wall-bounded shear flows such
as the Couette, the plane Poiseuille, and the boundary layer flow, of interest here, this synergistic
mechanism is overcome by the energy growth of two-dimensional perturbations at larger timescales
(Kelvin-Helmoltz–type perturbations in the former case, streaks in the latter). In the present case,
stable stratification damps the lift-up mechanism and produces a reduction of its optimal timescale
in order to avoid a too strong growth of the (negative) buoyancy production term, leading to a
three-dimensional, oblique optimal structure for sufficiently high Richardson numbers.

A further analysis of the different energy-production terms shows that another transient am-
plification mechanism is active, directly linked to the increase of the buoyancy flux production
term, by the coupling of wall-normal velocity and thermal perturbations of the same sign. This



amplification mechanism is indeed observed for long [O(1000)] target times, leading to a per-
turbation characterized by counter-rotating vortices constituted of negative wall-normal velocities
pushing negative temperature perturbations toward the boundary layer region, and positive wall-
normal velocity disturbances lifting up positive temperature fluctuations. This mechanism appears
to be optimal only for some approximations of the total-energy norm, in which the potential energy
is neglected or the variation of the stratification strength with height is roughly approximated. When
the variation of stratification with height is correctly taken into account, the long-time energy peak
disappears since the relative weight of temperature perturbations, placed at the free stream with
respect to velocity ones, becomes huge. Although the reported energy growth is not optimal in
terms of the total energy, it can be still relevant for atmospheric boundary layer flows, in which
strong temperature fluctuations can be induced by the presence of buildings or due to wind changes.
Growing in time and being amplified by several orders of magnitude, such perturbations may have
crucial implications for stirring up the flow toward turbulent conditions and/or generating bursts.
Notably, coherent structures similar to the long-time optimal perturbations found here are reported
in Ref. [8] in the centerline region of stably stratified turbulent channel flow, and as discussed by
the authors, they match the main features found by kinetic energy optimization in the same flow
case [43]. It is thus possible that in turbulent conditions, in which the fluctuations with respect to

FIG. 22. Phase of the five components of the unstable eigenvectors for the stratified Blasius flow at critical
conditions (indicated in Table I) for different Richardson and Prandtl numbers.



the mean flow pervade the flow at all scales, this mechanism would be triggered. Future works will
aim at investigating such a possibility in turbulent boundary layer flows with stable stratification. In
some other cases in which a direct measure of potential energy is not possible, other measures of
optimality will need to be needed, such as the kinetic energy, for which the present mechanism is
indeed optimal. This indicates that these perturbations may be indeed relevant for the flow dynamics
in the transitional and turbulent regimes.

This paper has shown how the presence of a stable stratification in a boundary layer flow can
considerably modify the asymptotic stability of the flow, its energy amplification mechanisms,
timescales, and their dependence on the Reynolds number, as well as triggering different energy
growth mechanisms. The optimally growing perturbations are likely to represent the main features
of the coherent structures that characterize the turbulent flow, in the same way as optimally growing
streaky structures populate turbulent shear flows. Future work will aim to extend this analysis to the
case of a turbulent boundary layer in the presence of different stable stratifications (from weak to
strong). This will allow one to unravel which coherent structures may be the most representative of
the dynamics of an atmospheric boundary layer flow.

FIG. 23. Spatial structure of the unstable eigenvectors for the stratified Blasius flow at critical conditions
(indicated in Table I) for different Richardson and Prandtl numbers: contours of the temperature component
and vectors of the velocity component on a x-y plane.



APPENDIX

In this Appendix we show the phase of the five components of the unstable eigenvectors for
the stratified Blasius flow at critical conditions (indicated in Table I) for different Richardson and
Prandtl numbers. In Fig. 22, the phase evolution is observed in the wall-normal direction for the u, v,
and T components, which are directly involved in the instability mechanisms previously discussed.
In particular, for all the considered values of Ri and Pr, the phase of u and v has almost the same
wall-normal distribution typical of T S waves. Whereas, the temperature component phase appears
to be much more affected by the amount of stratification, showing a rather different distribution in
the wall-normal direction when Ri and Pr change. This results into a different spatial structure of
the temperature component, as shown in Fig. 23. In particular, the Prandtl number appears to have
a strong effect onto the wall-normal distribution and relative amplitude of T , leading to weaker
but more extended patches of temperature for lower Pr values, whereas stronger and more localized
temperature variations are observed for higher values of Pr (compare the last two frames of Fig. 23).
Instead, as anticipated, the spatial structure of the velocity components barely changes with Ri
and Pr.
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