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Abstract
Modeling of energy recovery systems, Heat Exchanger Networks (HEN) as an example,
are complex processes due to many parameters involved and the lack of knowledge on the
impact of operational variables on the response. These variables are often affected by dif-
ferent types of uncertainty as to measurement errors, computation errors, or imprecision
related to the underlying method. The uncertainty in the data may be treated by consider-
ing, rather than a single value for each variable, the interval of values in which it may fall,
histograms, or other multivalued data: symbolic data. This work aims to use, when possi-
ble, the symbolic data analysis to adapt the classical mathematical HEN models. It deals
with the study of continuous interval data through suitable Principal Component Analy-
ses and Regression for two purposes: clustering exchanges (i) classification of exchangers
to detect those impacted by uncertainty factors and (ii) evaluation of the relationship be-
tween the different process parameters (inlet temperature, heat transfer coefficient, etc.)
on interval data. The new method has been tested on a real data set and the numerical re-
sults are reported. The symbolic approach provides a simple way to study a great number
of scenarios.

Keywords: Machine Learning for Symbolic Data, Interval-valued data, Flexibility and
Robustness, Heat Exchanger Networks (HEN)

1. Introduction

Energy saving is an important issue for both industries and society. In the industrial chem-
ical process, Heat Exchanger Networks (HEN) are widely used techniques for reducing
external heating and cooling utilities. Data generated by those complex systems has in-
creased drastically over the past few years. Suppose we have 20 exchangers on which 4
variables are measured (2 input and 2 output hot and cold input streams). If we assume
that we have hourly values of these variables for 1 year, then each exchanger is described
by 35040 data. If, on the other hand, certain characteristics of the exchangers (let’s say 3)
vary over time, then a tabular representation conventionally used in data analysis would
contain 2 102 400 values (35040 × 20 × 3). This is not very large compared to what could
be provided by the industry in real-time.

Even such data is ubiquitous for a larger scale of HEN systems, data-oriented based ap-
proaches are often analyzed with simplified models by aggregating data. During this
operation, some information on the variability aspects is lost. The robustness assessment
of HEN is therefore affected since its flexibility is conditioned by the variability of the
uncertain parameters. When the size n of entries (exchangers) and p number of variables
(features) are very large, classical analysis can be problematic.
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To address this problem, we use a more complex object description to capture the variabil-
ity of measured parameters on each exchanger. When dealing with quantitative variables,
complete information can be achieved by describing a set of statistical units in terms of
interval data, histogram, ... rather than a single-valued variable. Mathematically, interval-
valued data with measurements on p random variables, are p-dimensional hyperrectangles
in Rp. Such data need to be visualized, synthesized, and compared on factor spaces.

This paper is in a complementary perspective to Floquet et al’s work (Floquet et al., 2016).
They have initiated the robustness analysis of a simple exchange networks using interval
arithmetic. They pointed out the "butterfly effect" of the alteration of characteristics of
some heat exchangers on the operation of the HEN. Indeed, a maintenance operation
of an exchanger, alter the variability of the other parameters of the network. Reducing
fouling would imply variations in pressure and shift flows between parallel branches, all
changing over time in a way that is difficult to predict (Macchietto et al., 2018). The
purpose of this paper is to check whether there are groups of exchangers characterized
by the same properties in terms of their responses to external fluctuations. Following the
same idea (interval-valued data), the Symbolic Data Analysis (SDA) (Billard and Diday,
2006; Bock and Diday, 2012) is used to study how uncertainty in the output of a model
can be apportioned to different sources of uncertainty.

2. Machine Learning for symbolic data

Figure 1 outlines the design and methodological scheme of the proposed method. This
methodology draws on two main components: (B) Symbolic data through interval arith-
metic, and (C) machine learning for symbolic data. Part A corresponds to the HEN model
to be studied or simulated. The interval-valued data is then constructed in part (B).The
core function of the proposed method included in this paper is part (C). The originality of
this research lies in the combination of a traditional robustness analysis of HEN with SDA.

Figure 1: Overview of the SDA integration
and data-driven processing for HEN robust-
ness analysis.

2.1. Symbolic Data and statistics of
interval-valued variables

In classical statistics, n× p data matrix
X = Xi j is defined between n individu-
als and p variables, where each cell (i, j)
contains a unique value xi j. A symbolic
objects are more complex than a simple
valued variable description, symbolic data
can contain internal variation of the fea-
tures representing imprecise knoweledge
and can be structured. The symbolic anal-
ysis generalizes the classical data analysis,
e.g. x = c, c ∈ R is equivalent to the sym-
bolic interval ξ = [c,c]. A full conceptu-
alization of symbolic objects can be found
in Bock and Diday (2012). Let Ω be a set of individuals, D containing the descriptions
of individuals and the descriptions of classes of individuals, a, a mapping defined from Ω

into D which associates to each ω ∈Ω a description d ∈D by using intervals, histograms,
etc. More formally, symbolic object is a triplet s=(a,R,d) where R is a relation between
descriptions, d is a description, and a is a mapping defined from Ω in L depending on R
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and d. For instance L = {true, f alse} or L = [0,1] and R may be one of the relations
in {=,≡,≤,⊆,=⇒}.

To illustrate this point with a simple HEN example, if the outlet temperature of two ex-
changers ω1,ω2 is given by Tout (ω1) = 90

◦
C, Tout (ω2) = 120

◦
C the description of the

class D = (ω1,ω2) obtained by a generalization process can be [90,120]. The symbolic
object s is defined by a triple s = (a,R,d) where d = [90,120], R =′∈′ and a is the
mapping: Ω→ {true, f alse} such that a is the true value of Tout (ω)Rd,written a(ω) =
Tout (ω) ∈ [90,120]. An individual ω is in the extent of s if and only if a(ω) = true.
Simple statistical descriptions (mean, variance, ...) for interval-valued variables have
been defined in (Bertrand and Goupil, 2000). Let consider Yj ≡ Z be the jth interval-
valued random variable, and Z (ωu) = [au,bu] is a realization of Z for the observation
ωu over the observed interval [au,bu]. The empirical distribution function, FZ (ξ ), is
the distribution function of a mixture of m distributions {Z (ωu) ,u = 1,2, . . . ,m}. The
central and dispersion parameters of a variable all derived from a strong assumption:
the inherent fluctuation within random intervals and rectangles is uniformly distributed:
f (ξ ) = 1

m ∑u:ξ∈Z(u)

(
1

(bu−au)

)
. The symbolic sample mean for interval-valued data is

given by

Z =
1

2m ∑
u
(bu +au) , (1)

and the sample variance is given by

S2 =
1

3m ∑
u

(
b2

u +bau +a2
u
)
− 1

4m2

[
∑
u
(bu +au)

]2

. (2)

2.2. PCA for interval-valued data

A principal component analysis is designed to reduce p-dimensional observations into
s-dimensional components (where s� p) in an interpretable way, such that most of the
information in the data is preserved. Let i = 1, . . . ,n denote n objects (exchangers) de-
scribed by p features (or variable) Y1, . . . ,Yp (temperatures, ...). The symbolic data matrix

used for interval PCA is given by X =

 ξ11 · · · ξ11
...

. . .
...

ξn1 · · · ξnp

, where ξi j =
[
xi j,xi j

]
is the

interval of possible values of variable j for the exchager i, and the symbolic data vector
can be denoted by xxxi = (ξi1, . . . ,ξip) =

([
xi1,xi1

]
, . . . ,

[
xip,xip

])
. The data point is repre-

sented in Rp space by hyperrectangles Ri with 2p vertices. There are mainly two methods
to solve the algebraic mapping to lower dimension: Vertices and Centers methods. To find
the factorial axes for Centers method, a classical PCA is applied to the centers ci ∈ Rp of
the n hyperrectangles Ri. The coordinates of ith center ci is denoted by xc

i j, where xc
i j is

computed for i = 1, . . . ,n and j = 1, . . . , p. From that case, the centers of hyperrectangles
in its rows is an n× p data matrix, denoted by

˜
X and the jth column of

˜
X is denoted by

the feature Y c
j . The interval principal components values are obtained by computing first

the υ thprincipal component of the center ci is given by

ψ
c
iυ =

p

∑
j=1

(
xc

i j− xc
i j

)
·η jυ (3)
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where η jυ = (η1υ , . . . ,ηpυ) is the υ theigenvector of S (sample covariance matrix asso-

ciated with the dataset). It is possible to find an
[
ψiυ ,ψiυ

]
of the possible values of

υ thprincipal component ψc
iυ of ci (Cazes et al., 1997). For the object i :

ψiυ =
p

∑
j=1

max
xi j≤xr

i j≤xi j

(
xr

i j− xc
j

)
·η jυ (4)

ψiυ =
p

∑
j=1

min
xi j≤xr

i j≤xi j

(
xr

i j− xc
j

)
·η jυ (5)

3. Application to HEN data

3.1. Data simulation design and preliminary analysis

The starting point for this application is the data table from step B in Figure 1, which is
the result of HEN model analysis by interval arithmetic. In order to evaluate the behavior
of the exchanges on a more complex network, simulated data on the initial table were
undertaken and the simulation procedure is as follows:

1. For each variable (T h
in
[
minh

in,maxh
in
]
, T c

in [minc
in,maxc

in], T h
out
[
minh

out ,maxh
out
]
,

T c
out [minc

out ,maxc
out ]) and for all exchagers, we look for the minimum and the max-

imum.

2. Simulate 40 points (exchangers) using random variable from the uniform distribu-
tion. For example, for the exchanger No. 30 (E30), the minimum input temperature
for the cold stream is obtained by the following probabilistic simulation scheme:
T c

in (E30) ∼ U (min(minc
in) ,max(minc

in)). Retrieve the interval matrix of the 4
variables (T h

in,T c
in,T h

out ,T
c

out ).

Statistical description for the interval-valued data of the initial matrix and the simulated
one, using equations 1 and 2, is presented in the following Table 1:

Table 1: Descriptive statistics (mean and standard deviation s.d) for the interval-valued
data of HEN [

T h
in
]

[T c
in]

[
T h

out
]

[T c
out ]

Initial data Mean [124.20:131.42] [46.32:61.30] [70.32:84.30] [84.68:94.95]
sd [44.47:45.42] [38.25:23.67] [20.81:12.03] [47.34:38.20]

Simulation Mean [112.14:134.02] [45.34:42.93] [68.95:81.42] [76.98:97.71]
sd [20.77:28.33] [22.91:23.85] [11.38:9.02] [33.34:25.32]

3.2. Principal Component Analysis for interval-valued data

The interpretation of the position of the interval-valued data in the principal plane is the
same as in the classical principal component analysis situation. In Figure 2, we show the
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results with respect to the first three axes, achieved by the Symbolic PCA using 4 and
5 (centers method). Notice that the 61% of the total inertia is explained by the first two
axes in the case of simulation (40 exchangers), and 98.5% of in the case of initial data (4
exchangers). In Figure 2, closeness among clusters exchanger mainly influenced by the
same descriptors.

Figure 2: Principal 3D-space with data of interval type of HEN.
Factorial for 4 Exchangers (left) and for 40 Exchangers (right).

Only one group con-
sisting of exchang-
ers 1 and 3 can be
identified. The con-
stituent elements of
this cluster are in-
fluenced by the same
main factors. Ex-
changers 2 and 4
are detached from
the cluster from a
3D perspective. This
observation is in line
with the conclusions
of the initial study
(Floquet et al., 2016).
For simulated data, the same analysis can be achieved using additional information, and
at this stage, it is also difficult to give an interpretation of the similarity in size and shape
among exchangers. In order to shed new light on the variability of outlet temperatures as
a function of input streams, we propose a linear regression on interval values.

3.3. Regression and prediction for interval-valued data

The model proposed here is based on the classical formation of HEN models. However,
a notable difference lies in the integration of symbolic objects in the model. To under-
stand how the input (cold and hot) temperature stream affects the output temperature, we
propose a regression model for interval-valued temperature. For a hot stream:

T h
out

[
minh

out ,maxh
out

]
= β0 +β1 ·T h

in

[
minh

in,maxh
in

]
+β2 ·T c

in [minc
out ,maxc

out ]+ ε (6)

The following results are obtained using the simulated data in the Table 2.

Table 2: Results of interval-valued data regression
Dependent variable

T h
out
[
minh

out ,maxh
out
]

T c
out [minc

out ,maxc
out ]

β̂0 63.22 37.46
β̂1 0.0046 0.17
β̂2 0.244 0.6

To evaluate this approach, two datasets were used: (i) training dataset which is a set
of the first 35 exchangers used to fit the parameters of the model 6 and (ii) test dataset
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which is a set of the rest 5 exchangers used to provide an unbiased evaluation of the
estimated model. The Table 3 shows the results of the predictions using the fitted model
and corresponding data test. The size of the coefficient for each independent variable
(T h

in
[
minh

in,maxh
in
]

and T c
out [minc

out ,maxc
out ]) gives the size of the effect that variable is

having on the dependent variable T h
out and T c

out . The estimated coefficients tells how much
the output stream is expected to increase when that inputs streams (hot and cold) increases
by one. For example the coefficients for the model 6, T h

in differed by 1◦C (and T c
in did not

differ) T c
out will differ by 0.17 ◦C units, on average. The estimated intercept β̂0, is the

expected mean value of T h
out and T c

out when all inputs are 0. In our experiments, the T h
in

and T c
out never comes close to 0, then intercept has no meaningful interpretation.

Table 3: The prediction results
Predictions Test

Exchangers
[
T̂ h

out

] [
T̂ c

out

] [
T h

out
]

[T c
out ]

E36 [64.21:75.01] [61.41:80.81] [73.61:67.64] [39.89:119.97]
E37 [73.25:82.21] [76.12:104.68] [69.72:89.61] [115.31:89.80]
E38 [68.06:76.77] [63.75:87.63] [57.47:91.65] [46.96:104.48]
E39 [64.73:77.73] [69.71:80.77] [88.25:85.72] [113.54:66.64]
E40 [60.93:72.54] [52.76:75.85] [52.70:88.04] [83.85:100.02]

4. Conclusion

Symbolic Data Analysis (SDA) extends statistics and multivariate data analysis to deal
with data structured in a distributional form with complex internal variations. In this
paper, comprehensive modeling via SDA has been presented that moves substantially
beyond the traditional modeling in HEN robustness analysis. It proposed some new ap-
proaches which intended to redefine the robustness of HEN based on interval data. First,
the detection of Exchangers cluster which would be affected by common factors has been
modeled by Symbolic Principal Component Analysis. Second, the relation between inher-
ent variation, expressed by intervals, of input and output temperature has been modeled
using the linear regression method for interval-valued variables. Future research should
include histogram valued-data.
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