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Abstract 15 

The air-sea exchange of heat and carbon in the Southern Ocean (SO) plays an important role in 16 

mediating the climate state. The dominant role the SO plays in storing anthropogenic heat and carbon is 17 

a direct consequence of the unique and complex ocean circulation that exists there. Previous 18 

generations of climate models have struggled to accurately represent key SO properties and processes 19 

that influence the large-scale ocean circulation. This has resulted in low confidence ascribed to 21st 20 

century projections of the state of the SO from previous generations of models. This analysis provides a 21 

detailed assessment of the ability of models contributed to the sixth phase of the Coupled Model 22 

Intercomparison Project (CMIP6) to represent important observationally-based SO properties. 23 

Additionally, a comprehensive overview of CMIP6 performance relative to CMIP3 and CMIP5 is 24 

presented. CMIP6 models show improved performance in the surface wind stress forcing, simulating 25 

stronger and less equatorward-biased wind fields, translating into an improved representation of the 26 

Ekman upwelling over the Drake Passage latitudes. An increased number of models simulate an 27 

Antarctic Circumpolar Current (ACC) transport within observational uncertainty relative to previous 28 

generations, however, several models exhibit extremely weak transports. Generally, the upper SO 29 

remains biased warm and fresh relative to observations, and Antarctic sea ice extent remains poorly 30 

represented. While generational improvement is found in many metrics, persistent systematic biases are 31 

highlighted that should be a priority during model development. These biases need to be considered 32 

when interpreting projected trends or biogeochemical properties in this region. 33 
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Introduction. 34 

 The sequestration and ventilation of heat and carbon that occurs in the Southern Ocean (SO) 35 

plays a key role in global climate change. Observational and modeling studies over the last several 36 

decades continue to highlight the dominant role that the SO plays in the oceanic uptake of heat and 37 

carbon in present day climate (Frölicher et al. 2015; Roemmich et al. 2015; Talley et al. 2016; Meredith 38 

et al. 2019). The disproportionate role that this region plays in the planetary heat and carbon budget is 39 

linked to the unique and complex physical circulation that exists in the SO. Coupled models that 40 

contributed to previous generations of the Coupled Model Intercomparison Project (CMIP) have shown 41 

large disagreements in their ability to represent the large-scale circulation and associated properties and 42 

processes in this region (e.g., Russell et al. 2006a; Sen Gupta et al. 2009; Kuhlbrodt et al. 2012; 43 

Meijers et al. 2012; Bracegirdle et al. 2013; Heuzé et al. 2013; Sallée et al. 2013a,b; Meijers 2014; 44 

Frölicher et al. 2015; Shu et al. 2015; Ivanova et al. 2016; Hyder et al. 2018; Russell et al. 2018; 45 

Beadling et al. 2019). This has led to low confidence ascribed to CMIP model-based projections of 46 

future trends in the SO (Meredith et al. 2019). Given the vital role that this region plays in moderating 47 

climate globally, such a large disagreement in model performance is alarming and has implications for 48 

interpreting projected trends not just in the SO, but globally. 49 

 The coordinated multi-model experiments forced by observed changes in the Earth system from 50 

~1850 through the early 21st century, “twentieth-century control” (20C3M) in CMIP3 and “historical” 51 

simulations in CMIP5-6, allows climate and Earth System Models (ESMs) to be scrutinized for how 52 

well they simulate key aspects of the climate system relative to observable quantities over the 53 

instrumental record. Through this process, a large number of systematic model biases pertaining to the 54 

simulation of the SO have been identified and discussed at length in the IPCC-AR5 report (Flato et al. 55 

2013) and summarized by Meijers (2014). Given the persistence of particular biases from one 56 

generation to the next, one of the three major scientific questions in the design of CMIP6 was to 57 
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“investigate the origins and consequences of systematic model biases” with important and long-58 

standing biases in the SO simulation highlighted as an area that needs to be addressed (Stouffer et al. 59 

2017). A review by Meijers (2014) painted the CMIP5 SO simulation as a ‘better CMIP3’ but lacking 60 

dramatic advancements that may have been expected given the larger ensemble and much more 61 

sophisticated models that participated relative to CMIP3.  62 

 One well known example of a persistent bias in the Southern Hemisphere climate is the 63 

equatorward-biased westerly jet position (Russell et al. 2006a; Sen Gupta et al. 2009; Bracegirdle et. al 64 

2013, Beadling et al. 2019). Beadling et al. (2019) showed how different combinations of biases in the 65 

strength and position of the jet across the CMIP5 ensemble result in very different patterns of 66 

integrated wind stress curl (WSC) over the SO. This is important because the pattern and strength of 67 

the WSC forcing exerts a strong control on the resulting properties in the SO through its influence on 68 

the SO meridional overturning circulation (MOC), water mass structure, and the strength and position 69 

of the Southern Hemisphere subtropical and subpolar gyres that provide the meridional boundaries of 70 

the Antarctic Circumpolar Current (ACC). Additionally, energy imparted to the ocean by the wind field 71 

feeds the formation of mesoscale eddies through baroclinic instability (Olbers et al. 2004; Rintoul 72 

2018). Thus, biases in the location and intensity of the momentum forcing from the overlying winds 73 

may lead to inaccuracies in ocean mixing. The bias in westerly jet position has also been identified as 74 

an emergent constraint, where models with weak and more equatorward biased Southern Hemisphere 75 

westerly jets tend to exhibit the largest increase and poleward shift under increased warming (Kidston 76 

and Gerber 2010; Bracegirdle et al. 2013). Mean state representation and warming driven changes in 77 

midlatitude westerly winds have important ramifications for the ventilation of heat and carbon in the 78 

Southern Hemisphere (Russell et al. 2006b; Waugh et al. 2019). 79 

 Coupled models have also consistently simulated upper-ocean temperatures in the SO that are 80 

too warm relative to modern observations (Russell et al. 2006a; Sen Gupta et al. 2009; Sallée et al. 81 
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2013a,b; Beadling et al. 2019; Hyder et al. 2018). This influences geostrophic ocean circulation, 82 

surface heat fluxes and water mass transformations, surface carbon fluxes, and the ability to accurately 83 

represent Antarctic sea ice extent (SIE). The properties of the upper ocean are influenced by a complex 84 

interplay between oceanic, atmospheric, and ice processes. This makes the upper ocean properties 85 

highly sensitive to biases in individual model components (i.e., the atmosphere, ocean, or sea ice 86 

models used in the coupled configuration). For example, Hyder et al. (2018) provided strong evidence 87 

that sea surface temperature (SST) biases in the region 40°S – 60°S across the CMIP5 ensemble are 88 

primarily the result of net flux biases in the stand-alone atmospheric model linked to poor 89 

representation of clouds, cloud properties, and shortwave radiation errors. 90 

 The historical representation of the properties and large-scale circulation in the SO may play a 91 

role in determining a model’s projected response to increased radiative forcing. Thus, a reduction in 92 

uncertainty of future trends in the SO and globally may be achieved through improvement and detailed 93 

understanding of mean state biases. Furthermore, as arguments grow against the idea of considering 94 

the results of all model projections equally viable (“model democracy”), whereby uncertainties of the 95 

trajectories of the climate system are assessed from a simple multi-model-mean approach (Knutti 2010; 96 

Knutti et al. 2017; Eyring et al. 2019), it is vital to assess and interpret projected trends among models 97 

with knowledge of biases in their historical simulations.  98 

 The evaluation presented here provides a robust and comprehensive assessment of key 99 

observable metrics of SO properties and circulation in the historical simulations across a large 100 

ensemble of CMIP6 models. Observable metrics assessed include surface momentum forcing, ACC 101 

transport, density, salinity, and temperature patterns and gradients, and representation of Antarctic 102 

seasonal SIE. The analysis has been done in a way that allows consistent assessment across model 103 

generations from CMIP3 (Russell et al. 2006a; Sen Gupta et al. 2009) to CMIP5 (Beadling et al. 2019) 104 

highlighting areas of model improvement and areas where systematic biases persist.  For cohesiveness, 105 
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for each results section we first provide a discussion of the performance of that particular metric across 106 

model generations and then present the CMIP6 results. We bring all of our results together in an overall 107 

evaluation of cross generational performance, and suggest next steps in the conclusions and summary 108 

section. As the results from the 21st century projections under various shared socio-economic pathways 109 

(SSPs) for the CMIP6 scenarios have recently come online, it is urgently important to provide 110 

comprehensive documentation of model biases in this climatically important region.  111 

Methods. 112 

a) CMIP6 model output 113 

 Thirty-four CMIP6 models are included in this assessment based on the availability of output 114 

provided for each model’s “historical simulation” in the Earth System Grid Federation (ESGF) CMIP6 115 

data archive at the time of publication. In CMIP6, the historical simulation spans 1850 to 2014 and is 116 

forced by observed anthropogenic and natural sources of atmospheric composition changes and time-117 

evolving land cover (Eyring et al. 2016). The first ensemble member for each model’s historical 118 

simulation is analyzed. In some cases, the “r1i1p1f1” member was not provided and another 119 

appropriate member was analyzed. Table 1 lists the models, ensemble members, and additional details 120 

regarding their ocean component. The analyses for all metrics presented here are performed on the 121 

model’s native grid unless otherwise noted and follow the same exact computational methods as that 122 

summarized in the methods section of Beadling et al. (2019). All metrics are computed as a time-123 

average of all monthly data spanning January 1986 to December 2005. 124 

b) Observational metrics 125 

 Several observational metrics have been updated from Beadling et al. (2019). The World Ocean 126 

Atlas 2018 (WOA18) product (Locarini et al. 2018; Zweng et al. 2018) is used to assess biases in the 127 

density, salinity, and potential temperature differences across the ACC relative to those estimated from 128 

observations. For comparison to the 1986 – 2005 time period simulated in the models, the 1985-94 and 129 
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1995-2004 decadal climatologies are averaged from the WOA18 product. For assessment of the surface 130 

momentum exchange from atmospheric wind stress, the European Centre for Medium-Range Weather 131 

Forecasts (ECMWF) ERA5 atmospheric reanalysis product is used (https://cds.climate.copernicus.eu/). 132 

The ERA5 product, with increased spatial and temporal resolution and other improved features, is con-133 

sidered to be an improvement to ERA-Interim which ended production in August 2019 (https://conflu-134 

ence.ecmwf.int/display/CKB/ERA5+data+documentation). ERA-Interim was used in the assessment of 135 

SO surface momentum forcing by Beadling et al. (2019) given its proven reliability in representing 136 

wind fields over the SO relative to other contemporary reanalysis products (Swart and Fyfe 2012; 137 

Bracegirdle and Marshall 2012; Bracegirdle et al. 2013). For the model analysis, monthly atmospheric 138 

tauu and tauv or ocean tauuo and tauvo output are used. If tauu and tauv are used, values over land are 139 

masked out prior to computations.  140 

 For the assessment of Antarctic SIE, the monthly Sea Ice Index version 3 data product 141 

(https://nsidc.org/data/G02135/versions/3) provided by the National Snow and Ice Data Center 142 

(NSIDC; Fetterer et al. 2017) is used. This data is derived from satellite passive microwave data and 143 

spans the time period 1978 to present day. In our assessment, we present the time-averaged monthly 144 

data from 1986 to 2005. To be consistent with the NSIDC data product, we only consider grid cells 145 

with a sea ice concentration greater than 15 % since satellite passive microwave instruments cannot ac-146 

curately measure concentrations below this value. To be consistent for comparison with Beadling et al. 147 

(2019), after masking out values below 15%, the sea ice concentration data (siconc) is regridded to a 148 

standard 1° horizontal resolution grid for models which have non-standard curvilinear horizontal grids. 149 

This was done in Beadling et al. (2019) due to a lack of information about grid cell area to allow com-150 

putations on models with non-regular grids. 151 

 For the ACC transports, the net volume transport through the Drake Passage (DP; closest grid 152 

cells to ~69°W) is computed in each model from their reported zonal velocity (uo) or mass transport 153 
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(umo) output. Velocities were only used if the mass transport output was not provided. Mass transport 154 

is preferred over velocity for a number of reasons discussed in detail in Beadling et al. (2019) and ulti-155 

mately provides for a better representation of the true time-averaged flow. If mass transport was used, 156 

the total transport was divided by a constant density of 1035 kg m-3. For the observational benchmark, 157 

we use the 173.3 ± 10.7 Sv estimate from the cDrake array experiment which was carried out from 158 

2007 to 2011 (Chereskin et al. 2012; Chidichimo et al. 2014; Donohue et al. 2016). This value is the 159 

sum of the 127 ± 5.9 Sv baroclinic transport (Chidichimo et al. 2014) and 45.6 ± 8.9 Sv barotropic 160 

component computed from the cDrake array observations (Donohue et al. 2016). Please see the de-161 

tailed discussion in section “2a. Transport of the ACC through the Drake Passage” of Beadling et al. 162 

(2019) regarding observational DP estimates over the last several decades. The larger transport com-163 

puted from the cDrake array relative to the canonical value of 134 Sv derived from hydrographic esti-164 

mates (Whitworth et al. 1982; Whitworth 1983; Whitworth and Peterson 1985; Cunningham et al. 165 

2003) is purely attributable to the higher spatial and temporal resolution observations that allowed 166 

strong barotropic currents near the bottom of the ocean to be resolved. 167 

c) B-SOSE Iteration 133 168 

 Monthly ocean fields from the Iteration 133 solution of the Biogeochemical Southern Ocean 169 

State Estimate (B-SOSE) at 1/6° horizontal resolution spanning January 2013 to December 2018 are 170 

also analyzed in this study (http://sose.ucsd.edu/BSOSE6_iter133_solution.html). This is an update 171 

from the 1/3° horizontal resolution Iteration 105 B-SOSE solution spanning January 2008 to December 172 

2012 used in Beadling et al. (2019). B-SOSE, produced as part of the Southern Ocean Carbon Climate 173 

Observational Modeling (SOCCOM) project, assimilates observations from shipboard data, profiling 174 

floats, underway measurements, and satellites into a numerical model to produce a state estimate for 175 

the SO. In B-SOSE, the MIT general circulation model (MITgcm) is fully coupled to the Nitrogen-ver-176 

sion of the Biogeochemistry with Light, Iron, Nutrients, and Gases (N-BLING) model (evolved from 177 

Accepted for publication in Journal of Climate. DOI 10.1175/JCLI-D-19-0970.1.

http://sose.ucsd.edu/BSOSE6_iter133_solution.html


 

 

9 

Galbraith et al. 2010). Given the nature of B-SOSE, where the MITgcm is brought into consistency 178 

with available observational data via an adjoint data assimilation approach, we expect B-SOSE to per-179 

form well in regions with a high density of observational measurements such as in the upper ocean and 180 

along transects with repeat ship-based observations. B-SOSE is constrained by satellite measurements 181 

of sea surface height (SSH) and mean dynamic topography, thus we expect B-SOSE to capture surface 182 

currents and geostrophic flows consistent with other independent observations. It is important to note 183 

that none of the hydrographic and velocity observations from the cDrake array (Chereskin et al. 2012; 184 

Chidichimo et al. 2014; Donohue et al. 2016) are assimilated in B-SOSE, and thus the B-SOSE 185 

transport provides an independent estimate. The momentum forcing at the ocean surface in B-SOSE is 186 

derived from hourly ERA5 atmospheric winds, which are then adjusted throughout the assimilation to 187 

achieve consistency with the ocean state. Please refer to Verdy and Mazloff (2017) for additional de-188 

tails on B-SOSE and a complete list of observational constraints used. 189 

3. Results  190 

a) ACC transport 191 

 The ACC transport is influenced by a large number of properties and processes in the SO, 192 

including momentum input at the ocean surface from the overlying winds, the meridional gradient in 193 

density across the current, interactions with bottom topography, mesoscale eddies, the position of the 194 

subtropical and subpolar gyres (Meijers et al. 2012), and internal mixing processes, etc. Owing to this 195 

complexity, achieving an accurate ACC strength has proven to be a difficult task in coupled models 196 

(Russell et al. 2006a; Sen Gupta et al. 2009; Meijers et al. 2012; Beadling et al. 2019). The CMIP3 197 

generation of models exhibited a very wide range of transports (Fig. 1, Table 2), with an inter-model 198 

spread (1σ) of 71 to 77 Sv. Only three of the CMIP3 models studied collectively by Russell et al. 199 

(2006a) and Sen Gupta et al. (2009) have mean values that fall within the observational uncertainty of 200 

the Donohue et al. (2016) cDrake array ACC estimate (Fig. 1). From CMIP3 to CMIP5 there is a large 201 
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improvement in the range of the transports, with the inter-model spread (1σ) decreasing by ~36 Sv. 202 

This improvement in ACC strength was also noted in the analysis by Meijers et al. (2012). 203 

 The spread in the ACC transport has increased in CMIP6 relative to CMIP5, ranging from 38 204 

Sv simulated by INM-CM4-8 to 197 Sv simulated by GISS-E2-1-H. While there are no longer models 205 

that have an ACC transport that is much too strong, several models exhibit an extremely weak transport 206 

(>7σ outside of the observational uncertainty; E3SM-1-0, MIROC-ES2L, CNRM-CM6-1-HR, 207 

HadGEM3-GC31-MM, INM-CM4-8), reducing the multi-model-mean (MMM) by ~10 Sv from 208 

CMIP5. Four models exhibit a transport weaker than any found in CMIP5. Interestingly, two of the 209 

models with an exceptionally weak ACC transport have 0.25° horizontal resolutions (CNRM-CM6-1-210 

HR, HadGEM3-GC31-MM), with their 1° resolution versions (CNRM-CM6-1, HadGEM3-GC31-LL) 211 

simulating transports on the order of 50 – 80 Sv stronger. Similar, but not as extreme, behavior is found 212 

when comparing the 0.25° GFDL-CM4 (132 Sv) simulation with that of the 0.50° GFDL-ESM4 213 

simulation (175 Sv). 214 

 Despite the range in ACC transport across the model ensemble increasing due to several models 215 

with extremely weak magnitudes, CMIP6 is an overall improvement from CMIP5, with a larger 216 

fraction of models falling within observational uncertainty (within 2σ of the Donohue et al. (2016) 217 

estimate). Of the 31 CMIP5 models studied by Beadling et al. (2019), 10 models (32%) fell within 218 

observational uncertainty. Of the 34 models studied here, 17 (50%) have transports within uncertainty. 219 

It is important to note the caveat, as also discussed regarding the CMIP5 models in Beadling et al. 220 

(2019), that most of the CMIP6 models analyzed here were developed before the Donohue et al. (2016) 221 

ACC estimate was known. Thus, during modeling development, transports at lower values were likely 222 

deemed reasonable. While we consider the Donohue et al. (2016) estimate as our benchmark for 223 

diagnosing the model simulations, the margin of uncertainty may be slightly larger in reality than used 224 

here given uncertainty associated with the fact that these observations were only collected from 2007-225 

Accepted for publication in Journal of Climate. DOI 10.1175/JCLI-D-19-0970.1.



 

 

11 

2011. An independent estimate from assimilation using B-SOSE suggests a slightly lower ACC value 226 

of 164 Sv (Table 2, Fig. 1). 227 

Given this caveat, we consider the five models that fall just outside of the uncertainty bounds in 228 

Figure 1 (and marked with an * in Table 2) to be simulating reasonable transports given that they only 229 

differ from the models above them in Table 2 by a few Sverdrups. These models may fall within the 230 

lower bound of the observational range if more than one ensemble member were included in the 231 

analysis. The GFDL-CM4 simulation is an example of another caveat that complicates diagnosing the 232 

accuracy of the ACC strength in coupled models, in that it exhibits significant centennial-scale 233 

variability throughout the entire historical period, on the order of 30 Sv (Table S1, Fig. S1). If another 234 

ensemble member were used, GFDL-CM4 can have an ACC value within the Donohue et al. (2016) 235 

uncertainty range (other ensemble members not shown here). The BCC-CSM2-MR model is another 236 

example which contains significant historical ACC variability and, when multiple ensemble members 237 

are used, it can have an ACC transport that overlaps with the Donohue et al. (2016) range.  238 

Several models exhibit significant decadal to multi-decadal variability in the ACC strength 239 

throughout the entire historical period, on the order of 10 – 30 Sv (Table S1, Fig. S1). Such variability 240 

may be associated with unrealistic quasiperiodic “superpolynya events” in the SO which alter the 241 

density structure of the SO through intense open ocean convection. This problem is documented in the 242 

GFDL-CM4 model (Held et al. 2019), where superpolynyas in the Ross Sea drive large centennial-243 

scale variability in the Southern Hemisphere climate. The lack of observational evidence of large 244 

polynya events in the SO, with the exception of the 1974-1976 (Gordon 1978; Carsey 1980) and 2016-245 

2017 polynyas in the Weddell Sea (Campbell et al. 2019), and no similar events in the Ross Sea, 246 

suggests that these frequent simulated “superpolynya events” are unrealistic and need to be improved 247 

upon in future model development. In addition to the extreme rarity of these events in the real world, 248 

the modeled convection, ventilation, and climate change that occurs during these simulated polynyas 249 
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bears no resemblance to observed polynya events (Gordon 1978; de Lavergne et al. 2014; Dufour et al. 250 

2016; Campbell et al. 2019). In the model, when these events occur, the formation of dense water in the 251 

subpolar SO translates into an increased ACC transport. If the simulation contains these events, the 252 

ACC assessment is sensitive to the 20-yr period in the historical simulation chosen for analysis (Fig. 253 

S1).  254 

 There is evidence of improvement at individual modeling centers with two examples being the 255 

IPSL and NASA-GISS models. In CMIP3 and CMIP5 the IPSL models had some of the weakest ACC 256 

transports amongst all models, with transports on the order of 34 Sv in CMIP3 and 94 - 108 Sv in 257 

CMIP5. In CMIP6, the IPSL-CM6A-LR transport has increased dramatically to 147 ± 6.7 Sv (2σ), 258 

falling just within 2σ of the Donohue et al. (2016) estimate. The GISS-R models were biased much too 259 

strong in previous generations (266 Sv CMIP3; 246 Sv CMIP5). The GISS-E2-G and GISS-E2-G-CC 260 

(E2-G but with interactive carbon cycle) models, which are an updated and improved version of the 261 

GISS-E2-R model used in CMIP5 now simulate ACC transports of 148 and 146 Sv, respectively. The 262 

improvement of the ACC transport in the IPSL and GISS-E2-R (now G) families of models appears to 263 

be directly due to improvement in all of the metrics summarized in Table 2 of the present study and 264 

Table 2 of Beadling et al. (2019).  265 

  In the real ocean, the ACC flow through the DP is composed of strong and narrow eastward 266 

flowing jets that extend from the surface to the bottom of the ocean. Through the passage, strong 267 

bottom eastward velocities that average 1.3 cm s-1 provide an additional 45.6 ± 8.9 Sv barotropic flow 268 

to the 127 ± 5.9 Sv baroclinic transport (Chidichimo et al. 2014; Donohue et al. 2016). The CMIP6 269 

models and B-SOSE have very different zonal velocity structures through the DP (Fig. 2, Fig. S2). The 270 

eddy-permitting 1/6° B-SOSE and the 1/4° GFDL-CM4 simulations yield very similar structures, with 271 

finely spaced jets that extend from the surface to the ocean bottom at most latitudes and increase in 272 

strength northwards within the passage. These jets correspond to the dynamical ACC fronts 273 
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characteristic of the observed flow within the DP (Lenn et al. 2007; Firing et al. 2011), with the 274 

majority of the eastward flow concentrated in the Subantarctic Front (SAF) along the northern 275 

boundary of the DP and the Polar Front (PF) just to its south. 276 

Interestingly, the GFDL-CM4, GFDL-ESM4, CNRM-CM6-1-HR, HadGEM3-GC31-MM, and 277 

INM-CM5-0 models, which all have resolutions 1/2° or finer, exhibit counterflowing westward 278 

velocities northward of 56°S at depth. This may be the result of recirculation in this region that is 279 

resolved as horizontal resolution increases. None of the coarser resolution models have significant 280 

westward flows at depth (Fig. 2, Fig. S2). There is some observational evidence that suggests some 281 

mean westward flow through the DP exists (evidenced where the transport stops accumulating or dips 282 

in Figure 10 of Firing et al. (2011) and Figure 3 of Donohue et al. (2016)). However, these observed 283 

westward transports are relatively weak and not close to the magnitude of those found in these models. 284 

The measurements used to estimate the transport through the DP from the cDrake array in Donohue et 285 

al. (2016) and from shipboard acoustic Doppler current profiler (ADCP) velocity data by Firing et al. 286 

(2011) are not collected along a single meridional cross-section (as the CMIP models are analyzed at 287 

69°W) but generally span the longitudes of ~66°W to 60°W. To assess the accuracy of these large 288 

westward velocities found in the higher resolution models, the models need to be sampled in a fashion 289 

that is more aligned with the manner in which the measurements were collected. 290 

 In most models, the majority of the ACC flow is concentrated in a single broad jet on the 291 

northern side of the passage, rather than being distributed among several finely resolved jets as 292 

observed in the real ocean. Many of the CMIP6 models exhibit shallow flow, with strong zonal jets that 293 

do not extend to the seafloor. The diversity in vertical extent of the flow may have important 294 

implications for the varied ACC strength found across models given the influence that interactions of 295 

the mean flow with bottom topography have on the ACC structure and strength through topographic 296 

steering, and dynamics such as momentum dissipation via bottom friction, etc. The degree to which 297 
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topography and surface forcing impacts the mean flow likely differs markedly across models. For 298 

example, models with shallow jets are less likely to be influenced by interactions with bottom 299 

topography, i.e., less bottom drag will be exerted on the large-scale flow than models which have 300 

strong jets that extend to the sea floor. It appears that many of the errors in the ACC structure are 301 

related to the model’s horizontal resolution since only the highest resolution models begin to capture 302 

the observed jets and vertical extent.  303 

 The ACC strength is influenced by the competition between wind-driven surface divergence 304 

which acts to steepen isopycnals across the DP channel and baroclinic eddies which act to reduce the 305 

isopycnal slopes. The parameterized mixing schemes and coefficients employed in model simulations 306 

exerts a strong control on the resulting ACC strength and its vertical structure (Gent et al. 2001; Ragen 307 

et al. 2020). The ~1° resolution CMIP6 models all employ various subgrid-scale mixing schemes with 308 

different coefficients for parameterized eddy fluxes (Table 1), likely explaining a large portion of the 309 

diversity found across the CMIP6 models, as was the case in previous model generations (Kuhlbrodt et 310 

al. 2012). With the large diversity in sophisticated mixing schemes and magnitudes of eddy-induced 311 

advection coefficients employed across these models (Table 1), we do not attempt to quantify the role 312 

of subgrid-scale mixing on the model diversity in these simulations. We note that in the 0.25° 313 

resolution models (GFDL-CM4, HadGEM3-GC31-MM, and CNRM-CM6-1-HR), there are no 314 

parameterizations of mesoscale eddy transports and mesoscale eddies are explicitly, yet incompletely 315 

resolved at high latitudes (Table 1). We refer readers to Adcroft et al. (2019) for a detailed discussion 316 

on the effect of representing versus parameterizing mesoscale eddies on the ACC structure and other 317 

features of the SO circulation in the GFDL-CM4 (explicitly resolves mesoscale eddies) and GFDL-318 

ESM4 (parameterized mesoscale eddy transport) models. 319 

 b) Surface momentum forcing of the Southern Ocean and near-surface properties 320 

1) SURFACE MOMENTUM FORCING FROM WIND STRESS   321 
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 The surface momentum forcing from the overlying wind stress provides a frictional force at the 322 

ocean surface in the SO, “pushing” the ACC, while also “pulling” dense water from the deep ocean to 323 

the surface through strong wind-driven surface divergence determined by the WSC magnitude. 324 

Equatorward of the westerly wind stress maximum (𝜏𝑚𝑎𝑥
(𝑥)

), buoyant surface waters are pushed 325 

northward in the Ekman layer and subsequently dowelled into the interior ocean as a result of strong 326 

positive WSC. These waters are subducted northward into the Southern Hemisphere subtropical gyres 327 

as Subantarctic Mode Water (SAMW) and Antarctic Intermediate Water (AAIW) (Hanawa and Talley 328 

2001). Poleward of 𝜏𝑚𝑎𝑥
(𝑥)

, the surface divergence results in steeply sloped isopycnals which drive 329 

dense, deep water from the interior ocean polewards and toward the sea surface around Antarctica via 330 

Ekman upwelling. These dynamics set up a strong meridional density gradient across the latitudes of 331 

the ACC, providing the conditions to drive a strong eastward geostrophic flow.  332 

 Previous generations of models have struggled with achieving accurate wind stress forcing at 333 

the ocean surface, with many models typically having relatively weak and equatorward biased 𝜏𝑚𝑎𝑥
(𝑥)

 334 

values (Russell et al. 2006a; Sen Gupta et al. 2009; Meijers et al. 2012; Bracegirdle et al. 2013; Flato et 335 

al. 2013; Russell et al. 2018; Beadling et al. 2019) (Table 2, Fig. 3c,e). In CMIP3, several models had 336 

𝜏𝑚𝑎𝑥
(𝑥)

 values on the order of 0.10 – 0.11 N m-2 (Russell et al. 2006a), relative to the ERA5 value of 337 

0.1788 N m-2 used here as our observational benchmark. The CMIP5 generation showed improvement 338 

with a minimum 𝜏𝑚𝑎𝑥
(𝑥)

 value on the order of 0.14 N m-2 and most models simulating values within 339 

observational uncertainty (Beadling et al. 2019). This improvement is noted in the shift from a CMIP3 340 

MMM 𝜏𝑚𝑎𝑥
(𝑥)

 value of 0.1591 N m-2 to 0.1829 N m-2 in CMIP5 (Table 2), fewer models outside the 341 

lower bound of the ERA5 range in Fig. 3c, and a better agreement in the pattern of the zonally-342 

averaged wind stress over the SO (compare Fig. 3a to Fig. 2 of Beadling et al. 2019). The CMIP6 343 

ensemble tends to exhibit stronger 𝜏𝑚𝑎𝑥
(𝑥)

 than CMIP5, yielding a slightly increased MMM value (Table 344 
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2). Considering the mean and associated standard deviation (2σ) over the 20-yr period, only two 345 

models have 𝜏𝑚𝑎𝑥
(𝑥)

 values that do not overlap with the ERA5 range. The BCC-ESM1 and MIROC-346 

ES2L models exhibit too strong and too weak 𝜏𝑚𝑎𝑥
(𝑥)

 values, respectively. The BCC-CSM-MR and 347 

NESM3 models have strong wind stress relative to ERA5, with the lower bound of their standard 348 

deviations (2σ) barely overlapping with that of ERA5. 349 

 The latitudinal location of 𝜏𝑚𝑎𝑥
(𝑥)

 (~52°S) is another metric that has been consistently analyzed 350 

across model generations and has improved. Yet, a systematic equatorward bias has persisted. The 351 

CMIP3 ensembles studied by Russell et al. (2006a) and Sen Gupta et al. (2009) had models with 𝜏𝑚𝑎𝑥
(𝑥)

 352 

locations ranging from ~42°S to 54°S (Fig. 3e), with 63% (10 out of 16) to 78% (14 out of 18) of the 353 

models having their mean 𝜏𝑚𝑎𝑥
(𝑥)

 located north of 50°S. The CMIP5 models showed a clear 354 

improvement, with only 36% (11 out of 31) of models studied exhibiting locations north of 50°S and a 355 

narrowing inter-model spread (Fig. 3e).  The CMIP6 models show even more improvement, with only 356 

5 out of 34 (15%) models having their 𝜏𝑚𝑎𝑥
(𝑥)

 north of 50°S. MIROC-ES2L, with its 𝜏𝑚𝑎𝑥
(𝑥)

 at 46.11°S 357 

barely overlaps with the ERA5 mean and standard deviation (2σ) and is a clear outlier amongst the 358 

other CMIP6 models with respect to its zonal wind structure across the SO (Fig 3a,e). The MMMs 359 

across generations summarized in Table 2, clearly indicates an improvement in both the mean location 360 

of 𝜏𝑚𝑎𝑥
(𝑥)

 and in the inter-model spread, going from 47.57 ± 2.80°S to 51.29 ± 1.68°S from CMIP3 to 361 

CMIP6. 362 

 The poleward shift in the location of 𝜏𝑚𝑎𝑥
(𝑥)

 from CMIP5 to CMIP6 has resulted in an increase 363 

in the total wind stress forcing (both from 𝜏(𝑥)  and WSC) over the open DP latitudes (Table 2). The 364 

structure of the zonally-integrated WSC over the SO has improved from CMIP5 to CMIP6 (compare 365 

Fig. 3b to Fig. 2 of Beadling et al. 2019). The CMIP6 models are generally getting an accurate 366 

magnitude of Ekman suction / pumping over approximately the right locations, with the exception of 367 

Accepted for publication in Journal of Climate. DOI 10.1175/JCLI-D-19-0970.1.



 

 

17 

MIROC-ES2L. The region south of 55°S yields the largest disagreement in the magnitude of the 368 

zonally-integrated WSC among models, likely linked to diverging representation of the polar easterlies 369 

along the Antarctic margin. Noting this disagreement, we considered two additional metrics in this 370 

analysis to characterize the WSC field, the magnitude and location of the minimum WSC in the SO, 371 

corresponding to the magnitude and location of the maximum Ekman suction. Nine CMIP6 models 372 

yield a minimum zonally-integrated WSC that is too weak, and five models have their latitudinal 373 

location too far equatorward relative to ERA5 (Table 2). Given that these WSC metrics are tied to the 374 

magnitude and location of where dense, carbon-rich water from the deep ocean is being pumped to the 375 

sea surface, the divergence in performance here may be linked to divergence in the simulated SO 376 

carbon budget in the CMIP6 ensemble. This is a topic of future study. 377 

 Given the fact that the magnitude and location of the wind stress plays an important role in 378 

setting the isopycnal slopes across the ACC as discussed at the start of this section, one may expect  379 

𝜏𝑚𝑎𝑥
(𝑥)

 to be significantly correlated with the strength of the ACC. However, a statistically significant 380 

relationship between 𝜏𝑚𝑎𝑥
(𝑥)

 and ACC strength is not found when considering the entire model ensemble 381 

in CMIP3 or CMIP5 models (Kuhlbrodt et al. 2012; Meijers et al. 2012; Beadling et al. 2019). A 382 

statistically insignificant relationship is also found between the latitudinal location of 𝜏𝑚𝑎𝑥
(𝑥)

 and ACC 383 

strength in CMIP5 (Beadling et al. 2019). This lack of strong correlation between these wind metrics 384 

and the ACC strength suggest that, while the momentum forcing by the Southern Hemisphere westerly 385 

winds is undoubtably a major driver of the ACC, other factors are exerting a strong influence on ACC 386 

strength. The buoyancy forcing across the current also influences the meridional tilt of the isopycnals 387 

in this region. Thus, the temperature and salinity properties from the surface to the interior ocean plays 388 

a major role in setting the ACC strength. In CMIP5, several models simulated exceptionally strong 389 

(weak) ACC flow with weak (strong) 𝜏𝑚𝑎𝑥
(𝑥)

. In some of these cases, errors in the buoyancy structure of 390 

the SO compensated for the wind stress forcing, allowing steep isopycnal slopes to be maintained in 391 
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the absence of strong wind forcing or vice versa. Examples from CMIP5 included the GISS-E2-R-CC 392 

and HadGEM3 models with ACC transports in excess of 240 Sv stemming from excessive density 393 

gradients driven by large errors in the SO temperature and salinity structure (see detailed discussion in 394 

Beadling et al. 2019). 395 

 The CMIP6 ensemble exhibits a stronger relationship (yet still not statistically significant, 396 

p=0.15) relative to previous model generations between the ACC and 𝜏𝑚𝑎𝑥
(𝑥)

 (Fig. 4a). No statistically 397 

significant relationships are found between ACC strength and the other wind stress metrics in Table 2 398 

(not shown). The MIROC6 model has one of the weakest 𝜏𝑚𝑎𝑥
(𝑥)

 magnitudes with a position that is 399 

slightly equatorward shifted relative to ERA5, yet one of the strongest ACCs out of the ensemble. The 400 

E3SM-1-0, HadGEM-GC31-MM, INM-CM4-8, and CNRM-CM6-1-HR models all have reasonable 401 

representation of both the position and strength of 𝜏𝑚𝑎𝑥
(𝑥)

, yet yield extremely weak ACC transports. 402 

In addition to the buoyancy structure, explicitly resolved (in the case of HadGEM3-GC31-MM, 403 

GFDL-CM4, and CNRM-CM6-1-HR) or parametrized mixing associated with mesoscale eddies also 404 

plays a role in explaining the lack of a linear correlation between wind stress forcing and the ACC 405 

strength in the CMIP6 models. Stronger wind forcing acts to enhance the meridional isopycnal tilt 406 

across the ACC. However, in a regime of eddy saturation (Munday et al. 2013), this isopycnal tilt can 407 

be counterbalanced by the production of eddies which then act to minimize the meridional density 408 

gradient. Given that many of the CMIP3 models employed fixed eddy-induced advection coefficients, 409 

Kuhlbrodt et al. (2014) showed that the sensitivity of the ACC transport to the magnitude of the eddy-410 

induced advection coefficient was larger than to the zonal wind stress maximum in CMIP3 models. As 411 

discussed in the previous section, the implementation of parameterized sub-grid scale mixing 412 

associated with eddy fluxes differs widely across the CMIP6 models (Table 1), likely contributing to 413 

the lack of a strong relationship between the wind stress metrics and the ACC. 414 

2) NEAR-SURFACE BIASES 415 
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 The near-surface (0 – 100 m) thermal structure of the SO is characterized by a large meridional 416 

gradient in temperature ranging from less than -1°C near the Antarctic coast to ~ 20°C in the 417 

subtropical gyres at 30°S (Fig. 5a, Fig. 6a). Achieving accuracy in representing the near-surface 418 

temperature structure in the SO, particularly south of 40°S, has proven to be a significant challenge for 419 

the climate modeling community, with significant warm biases persisting across model generations. 420 

Generally, above 200 m, the MMM CMIP3 and CMIP5 temperatures were biased slightly cold in the 421 

global ocean with the exception of the SO where the upper ocean has been characterized by consistent 422 

excessive warm biases (Flato et al. 2013). When considering the zonal-mean upper ocean temperature 423 

distribution, CMIP3 and CMIP5 models generally represented the structure well (Russell et al. 2006a; 424 

Sen Gupta et al. 2009; Beadling et al. 2019) with biases generally within ~1°C of that observed at a 425 

given latitude. However as noted by Sen Gupta et al. (2009), zonal-averaging obscures regional biases 426 

in upper ocean temperature that in some cases exceed 5°C. In CMIP3, major biases in the upper ocean 427 

were found south of ~45°S in the region of the ACC and along the eastern boundaries of the basins, and 428 

were attributed to poor representation of eastern boundary currents (Sen Gupta et al. 2009). Across the 429 

CMIP5 ensemble, excessive surface temperatures translated into consistent warm biases found in 430 

ventilated layers of the SO including surface subtropical, mode, and intermediate waters (Sallée et al. 431 

2013b).  432 

 Excessive SO surface temperatures in CMIP5 originated to some extent from excessive 433 

downward shortwave radiation related to poor representation of clouds and cloud properties, with a 434 

strong correlation found between shortwave cloud forcing and the modeled spread in SO surface air 435 

temperatures (Ceppi et al. 2012; Schneider and Reusch 2016). Work by Hyder et al. (2019) on the 436 

CMIP5 ensemble showed that these biases in cloud-related shortwave radiation were mostly due to 437 

errors in the stand-alone atmospheric model components used. Additionally, inaccuracies in the 438 

representation of the large-scale ocean circulation in the SO including the location of the ACC, strength 439 
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and location of subtropical gyre boundary currents, wind-driven upwelling and associated mixing of 440 

interior ocean waters with the sea surface, as well as eddy-induced transports and their 441 

parameterizations, all play a role in explaining regional temperature biases. Propagation of deep ocean 442 

warming to the sea surface related to climate model drift present in some model simulations also 443 

contributes to the near-surface temperature biases. An example of this from the CMIP3 and CMIP5 444 

ensemble was the GFDL-CM3 simulation with excessively warm biases in the abyssal ocean that 445 

impacted the SO surface climate in the historical simulations (Griffies et al. 2011). 446 

 Noting that large local errors can be obscured by only assessing models according to their 447 

zonal-mean properties, we present the upper 100 m temperature and salinity biases (Fig. 6) for the 448 

entire SO. For comparison to previous studies (Russell et al. 2006a; Sen Gupta et al. 2009; and 449 

Beadling et al. 2019), we also provide the zonally-averaged structure (Fig. 5). With the exception of 450 

four models (MIROC6, MIROC-ES2L, GISS-E2-1-H, and EC-Earth3-Veg), the CMIP6 zonal-mean 451 

temperature structure shows improved agreement across all latitudes relative to the spread found across 452 

models in CMIP3 and CMIP5 (Fig. 4c in Beadling et al. 2019 and Fig. 4a in Russell et al. 2006a). 453 

Model agreement tightens up north of 50°S. The MIROC6, MIROC-ES2L, GISS-E2-1-H, INM-CM4-8 454 

and EC-Earth3-Veg models stand out in Fig. 6a and Fig. S3 with excessive warm biases that dominate 455 

the entire circumpolar SO south of 40°S. Many other models exhibit regions with biases in excess of 456 

3°C that are mostly concentrated within or just north of the ACC region, with the warmest biases 457 

appearing mostly in the South Atlantic and Indian basins. All CMIP6 models tend to exhibit some 458 

degree of temperature bias along the southern margin of the subtropical gyres or along the boundary 459 

current regions such as the Brazil – Malvinas confluence zone and Agulhas retroflection. Regional 460 

temperature biases along the ACC margin and in the boundary current regions are likely related to 461 

discrepancies in model representation of the pathways of these large-scale currents as was the case in 462 

CMIP3 (Sen Gupta et al. 2009). The B-SOSE and GFDL-CM4 simulations are very similar, with the 463 
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exception of more intense cold biases in the subtropical regions in GFDL-CM4. These patterns and 464 

magnitudes of biases in near-surface temperatures have implications for the accurate representation of 465 

surface heat fluxes, SO ventilation of heat and carbon, water mass characteristics, and on the ability to 466 

accurately represent the Antarctic SIE. 467 

 The near-surface SO salinity structure is characterized by relatively fresh water in the latitude 468 

band of the ACC where buoyancy is gained at the ocean surface via precipitation and sea ice meltwater 469 

is entrained into the Ekman drift (Fig. 5b, Fig. 6b). The upper ocean is slightly more saline south of the 470 

ACC particularly in the Weddell and Ross Seas and along the Antarctic coast. North of the ACC, high 471 

salinity subtropical waters dominate the upper ocean. In CMIP3 and CMIP5, models showed  472 

very wide discrepancies in the representation of upper ocean salinity, even in the zonal-mean (Russell 473 

et al. 2006a; Sen Gupta et al. 2009; Beadling et al. 2019). On average, both the CMIP3 and CMIP5 474 

ensembles yielded fresh biases throughout the entire SO (Sen Gupta et al. 2009; Beadling et al. 2019), 475 

with the largest fresh biases in the upper ocean north of 50°S. CMIP5 models generally agreed with 476 

one another (but with a significant fresh bias) north of ~50°S where precipitation minus evaporation 477 

dominates the freshwater budget. Much larger inter-model spread was found in the zonal-mean upper 478 

ocean salinity in the seasonal sea ice zone (Beadling et al. 2019). In CMIP5, the fresh biases in 479 

combination with the warm biases discussed above resulted in water masses that were too light in the 480 

ventilated layers of the SO (Sallée et al. 2013b).  481 

 In CMIP6, the near-surface zonal-mean salinity structure (Fig 5b) shows improvement in the 482 

inter-model spread across all latitudes relative to previous generations (Fig. 4d in Beadling et al. 2019 483 

and Fig. 4b in Russell et al. 2006a). However, the systematic bias of models generally being too fresh 484 

in the upper ocean persists into CMIP6. Many models exhibit intense fresh biases exceeding 0.50, 485 

concentrated mostly north of 45°S in the subtropical zones (Fig. 6b, Fig S4), however several models 486 

have fresh biases of these magnitudes along the Antarctic coast. Several models exhibit large saline 487 
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biases along Antarctic margin or within the ACC region. The circumpolar nature of many of these 488 

saline biases suggest they may be linked to the upwelling of saline North Atlantic Deep Water 489 

(NADW) within the ACC. These near-surface salinity biases combined with those of near-surface 490 

temperature (Fig 6) suggest the water mass characteristics in the ventilated layers of the SO may differ 491 

widely among models, similar to CMIP5 (Sallée et al. 2013b). Given that the formation and properties 492 

of SO water masses are intimately tied to global ocean heat and carbon uptake, the substantial biases in 493 

the near-surface properties in CMIP6 are potentially worrying from a global climate modeling 494 

perspective. 495 

c) Interior ocean properties and gradients across the ACC region 496 

 The strength and structure of the ACC is largely determined by the meridional density gradient 497 

according to thermal wind balance. Thus, the ACC simulation is highly sensitive to biases in the 498 

interior ocean properties from the surface to the abyssal ocean. In coupled models the ACC generally 499 

spans the latitudes ~65°S to 45°S and the meridional difference in properties across these latitudes has 500 

been used as a metric to assess model performance (Russell et al. 2006a; Farneti et al. 2015; Beadling 501 

et al. 2019). We note that this is a crude simplification given that the meridional boundaries of the ACC 502 

are highly dependent on longitude and differ across models (Sen Gupta et al. 2009; Meijers et al. 503 

2012). While not a precise computation according to thermal wind, where meridional gradients in 504 

density are vertically integrated to solve for baroclinic velocities, the zonally-averaged and depth-505 

averaged density contrast from 65°S to 45°S used as a model metric serves as a proxy for the intensity 506 

of the isopycnal slopes across the current, which generally reflect the strength of the ACC. 507 

 Russell et al. (2006a) considered the zonally-averaged and depth-averaged (0 to 1500 m; above 508 

the sill depth of the DP) difference in meridional potential density (∆𝜌�) from 65°S to 45°S for the 18 509 

CMIP3 models studied. Relative to the WOA 2001 value of 0.58 kg m-3 (this value remains the same 510 

when calculated from the WOA18 product) used as the observational benchmark, a range from 0.18 kg 511 

Accepted for publication in Journal of Climate. DOI 10.1175/JCLI-D-19-0970.1.



 

 

23 

m-3 to 0.97 kg m-3 was found across models. Considering a window of error of 25% on either side of 512 

the WOA 2001 value, 39% of the models simulated a ∆𝜌� within the observational range, 50% had a 513 

weak ∆𝜌�, and 11% had excessively strong ∆𝜌� across the ACC. The UKMO-HadCM3 model, which 514 

yielded the most excessive ∆𝜌� at 0.97 kg m-3 did so as the result of a very large meridional difference 515 

in salinity (∆S). The GISS-E2 model was an example of a model that yielded an excessive ∆𝜌� due to a 516 

large meridional difference in temperature (∆T) and a weak and opposite sign ∆S. Beadling et al. 517 

(2019) considered the zonally-averaged and full-depth averaged ∆𝜌� (referenced to the surface) across 518 

65°S to 45°S in 31 CMIP5 models, yielding a range of 0.13 kg m-3 (BNU-ESM) to 0.47 kg m-3 519 

(HadCM3) relative to the 0.25 kg m-3 value from the WOA 13 product. Considering this metric in 520 

CMIP5, 55% of the models fell within the WOA13 25% error margin, 23% were too weak and 23% 521 

were too strong. Similar to CMIP3, the IPSL models produced some of the weakest ∆𝜌�, while the 522 

HadCM3 and GISS models produced some of the strongest, with these biases driving errors in ACC 523 

strength, despite accuracy in the wind stress forcing at the ocean surface (Beadling et al. 2019).  524 

 Following Beadling et al. (2019), the full-depth averaged, zonally-averaged ∆𝜌� (referenced to 525 

the surface), ∆T, and ∆S across 65°S to 45°S are computed for the CMIP6 models. The ensemble 526 

exhibits a slightly smaller spread in simulated ∆𝜌� relative to CMIP5, ranging from 0.13 kg m-3 527 

(MIROC-ES2L) to 0.39 kg m-3 (GISS-E2-1-H, ACCESS-CM2). Considering a 25% error margin 528 

relative to the WOA18 ∆𝜌�, 71% of the models simulate a ∆𝜌� within error, 23% are too strong, and 6% 529 

are too weak (Table 2). Comparing the percentage of models that simulate a ∆𝜌� within the 25% 530 

WOA18 error margin, there is a clear improvement from CMIP5 to CMIP6, with models converging 531 

towards the WOA18 value.  532 

 Similar to previous model generations, the strength of the ACC generally scales with the 533 

magnitude of ∆𝜌� across 65°S to 45°S (Fig. 4b). Upon breaking down the density difference into the 534 

contributing differences in ∆T and ∆S, a wider spread in model performance is found (Table 2; Fig. 535 
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4c,d). Of the models that exhibit an excessive ∆𝜌�, five are the result of having a much too large ∆S 536 

(GISS-E2-1-H, INM-CM5-0, SAM0-UNICON, CESM2, CESM2-WACCM), two are the result of too 537 

large ∆T (ACCESS-CM2, ACCESS-ESM1-5), and one exhibits large biases in both ∆S and ∆T 538 

(CanESM5).  539 

Three of the five models that fall into the category of yielding an excessive ∆𝜌� due to large 540 

biases in ∆S share the Parallel Ocean Program version 2 (POP2) ocean model component (Table 1) 541 

coupled with a different atmospheric model (CESM2:CAM6; CESM2-WACCM:WACCM6; SAM0-542 

UNICON:CAM5.3 with UNICON). The models with the POP2 ocean all appear to have excessively 543 

saline water seemingly originating in the deep Atlantic that penetrates the upper ocean south of the 544 

ACC region, and a thick fresh bias at the surface layer, penetrating through the upper few thousand 545 

meters in the subtropical regions in all basins (Fig. 7b). The INM-CM5-0 model with excessive ∆𝜌� due 546 

to large biases in ∆S shows a very similar pattern to the POP2 biases described above, but with more 547 

pronounced saline biases in the deep ocean and in the upper ocean south of the ACC (Fig. 7b). The 548 

GISS-E2-1-H model appears to only have a too strong ∆S due to thick fresh biases throughout the 549 

water column north of ~45°S (Fig. 7b). The two ACCESS models that fall into the category of 550 

excessive ∆𝜌� due to large biases in ∆T, which share the MOM5 ocean component, yield large cold 551 

biases in the upper ocean south of the ACC and thick layers of warm biases in the upper few thousand 552 

meters of the ocean in the subtropical regions (Fig 7a, Fig. S5). Similar to the POP2 models, the 553 

ACCESS models appear to have biases that originate in the region where NADW enters the SO. 554 

Several models simulate a ∆S in the opposite direction from WOA18, with fresh biases in the 555 

water column on the southern edge of the ACC often accompanied by saline biases in the water column 556 

on the northern edge, concentrated in the upper 1500 m in the subtropical gyre regions or NADW 557 

regions (Fig. 7b). In many cases, biases in ∆T and ∆S compensate for one another yielding an accurate 558 

∆𝜌�. Many of the model biases in the temperature and salinity structure of the SO appear to be 559 
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concentrated in the recently ventilated layers or in the deep Atlantic suggesting most stem from 560 

inaccuracies in the surface climate (reflected in the biases in Fig. 6, Fig. S3, and Fig. S4) or 561 

inaccuracies in the simulation of NADW. An interesting relationship found in this analysis is a strong 562 

correlation between ∆𝜌� and the minimum Antarctic SIE (Fig. 4e), suggesting the representation of the 563 

Antarctic SIE is important for achieving an accurate SO density structure likely through its influence 564 

on upper ocean salinity and water mass transformation processes. However, the mechanisms behind 565 

this deserve a detailed follow up study. 566 

d) Antarctic Sea Ice Extent 567 

 Antarctic sea ice exerts a strong influence on the SO through its impacts on air-sea heat 568 

exchange, local surface albedo, and the upper ocean freshwater budget. Recent work using numerical 569 

models and observations have highlighted that freshwater fluxes associated with buoyancy loss during 570 

sea ice formation and freshwater gain in the upper ocean from sea ice melt are dominant components in 571 

the transformation of water masses in the SO (Abernathey et al. 2016; Pellichero et al. 2018). Wind-572 

driven sea ice export and subsequent delivery of freshwater have played a role in determining the 573 

observed mean salinity distribution in the upper SO (Haumann et al. 2016; Cerovecki et al. 2019). The 574 

representation of Antarctic SIE in models is complicated by the fact that sea ice is highly sensitive to 575 

both atmospheric and ocean forcing. Errors in the representation of Antarctic SIE can result in or be the 576 

result of errors in biases in SO temperature and salinity structure, patterns of surface wind stress 577 

forcing, water mass properties and location of deep ocean upwelling, and geostrophic ocean circulation 578 

such as the strength and pathway of the ACC. Furthermore, the representation of Antarctic sea ice in 579 

historical simulations of coupled models has been shown to be linked to projected changes in the 580 

Southern Hemisphere westerly jet, where models with larger Antarctic sea ice area in their historical 581 

simulations exhibit more sea ice retreat and less strengthening of the jet under increased radiative 582 

forcing throughout the 21st century (Flato 2004; Bracegirdle et al. 2015; Bracegirdle et al. 2018). 583 
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Biases in Antarctic sea ice representation can translate into errors in air-sea gas exchange and simulated 584 

heat and carbon storage through its impact on water mass transformation and through its complex 585 

coupling between surface air temperature, net precipitation, and the strength of the Southern 586 

Hemisphere westerly jet.  587 

 Accurate representation of mean-state Antarctic sea ice extent, area, and distribution has been 588 

an existing challenge in the climate modeling community, with Antarctic SIE generally poorly 589 

represented (Parkinson et al. 2006; Flato et al. 2013; Shu et al. 2015). Across generations, improvement 590 

in Antarctic SIE has been marginal relative to Arctic (Mahlstein et al. 2013). CMIP3 and CMIP5 591 

models have shown errors in representing the overall Antarctic SIE and regional distributions, the 592 

seasonal cycle, and observed trends (Parkinson et al. 2006; Connolley and Bracegirdle 2007; Sen 593 

Gupta et al. 2009; Turner et al. 2012; Flato et al. 2013; Mahlstein et al. 2013; Shu et al. 2015; Ivanova 594 

et al. 2016; Roach et al. 2018). When the ensemble average of SIE is used as a metric, it appears that 595 

models perform well and that significant improvements have been made from CMIP3 to CMIP5 (Sen 596 

Gupta et al. 2009; Flato et al. 2013; Shu et al. 2015). However, this averaging is severely misleading; 597 

large biases are seen among individual models. In many cases, even when the magnitude of SIE is 598 

numerically well represented, the spatial patterns are often completely unrealistic (Connolley and 599 

Bracegirdle 2007). Using an ensemble average of SIE as a metric is also misleading due to the differing 600 

degrees of strong model internal variability in this region across models (Mahlstein et al. 2013; Deser 601 

et al. 2010).  602 

 It is difficult to make a direct “cross generational” performance conclusion of the representation 603 

of Antarctic SIE due to differing choices in sea ice metrics used in previous analysis on the CMIP3 and 604 

CMIP5 ensemble (sea ice area, thickness, volume, differing representative time periods: annual SIE, 605 

maximum or minimum SIE, September or February values, or summer / winter seasonal averages).  606 
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The analysis by Mahlstein et al. (2013) concludes that “The representations of Antarctic sea ice in 607 

CMIP5 models have not improved compared to CMIP3 and show an unrealistic spread in the mean 608 

state that may influence future sea ice behavior”. However, the IPCC-AR5 report notes that “The 609 

CMIP5 multi-model ensemble exhibits improvements over CMIP3 in simulation of sea ice extent in 610 

both hemispheres” (Flato et al. 2013). 611 

 In our analysis of the Antarctic SIE in CMIP6 models, we perform the same computations 612 

across the same metrics as in the CMIP5 analysis by Beadling et al. (2019). Similar to previous model 613 

generations, the CMIP6 models have an accurate seasonal cycle with a minimum occurring in February 614 

and a maximum in September (Table 3; Fig. 8a). The CNRM-CM6-1-HR and CNRM-CM6-1 models 615 

are the only models that simulate a maximum SIE in October rather than September. The annual SIE 616 

simulated across models ranges from 1.70 million km2 (MIROC-ES2L) to 13.29 million km2 617 

(NorCPM1). Considering the observed and modeled annual mean and standard deviation (2σ) over the 618 

20-yr period, one model (NorCPM1) simulates a too great SIE while 25 models simulate a too small 619 

annual SIE. Relative to CMIP5, the CMIP6 ensemble has fewer models with annual Antarctic SIE 620 

values that are excessive relative to observed, evidenced by fewer models falling outside of the gray 621 

shading on the righthand side of Fig. 8b. However, fewer CMIP6 models fall within the observational 622 

range than CMIP5, and the overwhelming majority of the models are still simulating much too limited 623 

annual SIE. 624 

There are some clear outliers among the models, including the MIROC6, MIROC-ES2L, EC-625 

Earth3-Veg, MPI-ESM-1-2-HAM, MPI-ESM1-2-LR, HadGEM3-GC31-MM, and INM-CM4-8 models 626 

which simulate extremely low maximum SIE values (Table 3; Fig. 8a). The MIROC-ES2L and 627 

MIROC6 models have lower annual SIE values than any CMIP5 model (Fig. 8b) skewing the CMIP6 628 

MMM toward lower values. Models with exceptionally low annual SIE values tend to have very large 629 
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upper and interior ocean temperature biases (>3°C, Fig. 6a, Fig. S3, Fig. S5, Fig. 7a), likely explaining 630 

the lack of seasonal sea ice. 631 

 The magnitude of the standard deviation (2σ) of the annual means over the 20-yr period differ 632 

widely across models and in most cases are often much larger than observed (Fig. 8b), suggesting the 633 

internal variability differs markedly across models and is different from that observed. For example, 634 

compare the large variability in GISS-E2-1H, UK-ESM1-0-LL, HadGEM3-GC31-LL, IPSL-CM6A-635 

LR, and BCC-ESM1 to that of NorESM2-LM, MIROC-ES2L, and MIROC6. This brings up the 636 

question of the representativeness of the time period chosen when making assessments of a model’s 637 

performance across Antarctic sea ice metrics since there seems to be a significant contribution of the 638 

model’s internal variability to the performance, as was the case in previous generations (Mahlstein et 639 

al. 2013; Deser et al. 2010). Additionally, the presence of any large open-ocean polynyas (see 640 

discussion in Section 3a) in a model’s simulation would significantly impact the overall sea ice 641 

representation. The CMIP5 and CMIP6 inter-model spread for all SIE metrics in Table 3 is much larger 642 

than the observed interannual variability over this time period. Overall, it appears that the 643 

representation of Antarctic SIE still remains a systematic bias from CMIP5 to CMIP6.  644 

4. Summary and conclusions   645 

 The SO is a dynamically complex region where the global ocean water masses converge and the 646 

world’s strongest current, the ACC, exchanges properties between basins. Strong wind-driven surface 647 

divergence drives deep waters to the ocean surface on the southern side of the ACC, resulting in 648 

strongly sloped isopycnals that act as a vehicle for the exchange of deep ocean properties with that of 649 

the upper ocean and overlying atmosphere. A portion of the circumpolar deep water (CDW) that is 650 

upwelled along these steeply sloped isopycnals is transformed into denser Antarctic Bottom Water 651 

(AABW) and exported northward, filling the abyssal ocean. Buoyancy gained at the ocean surface 652 

through the incorporation of precipitation, glacial runoff, and sea ice melt, transforms the remaining 653 
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upwelled CDW into lighter intermediate and mode waters that are exported northward in the upper 654 

ocean subtropical gyres. The ACC and intense water mass transformations that characterize the SO are 655 

intimately coupled together, and these complicated dynamics are directly tied to the exchange of heat 656 

and carbon with the atmosphere and the export of nutrients to the rest of the global ocean. 657 

 Lack of historical observations coupled with complex and not fully understood inter-connected 658 

processes tied to the ocean eddy field, surface wind stress forcing, air-sea heat and freshwater fluxes 659 

impacted by both the ocean circulation and overlying atmospheric properties, properties of upwelled 660 

water, and the destruction and transformation of seasonal sea ice make the SO very difficult to 661 

accurately represent in climate models. Since these dynamics are highly coupled, a well-represented 662 

SO requires accuracy to be achieved in the atmosphere, ocean, and sea ice model subcomponents and 663 

their exchanges since errors in any of these regimes can propagate into the other. An important example 664 

discussed here is that in previous model generations, errors in representation of Southern Hemisphere 665 

clouds and cloud properties in the atmospheric model led to significant errors in the SO upper ocean 666 

thermal structure. Given that the surface temperature gradient is tightly coupled to the position and 667 

strength of the surface wind stress forcing, this can propagate into surface forcing biases. Additionally, 668 

as was shown here, near-surface property biases directly impact the ability to accurately represent 669 

Antarctic SIE, where models with an exceptionally warm SO simulated extremely low SIE. The upper 670 

ocean properties can also be impacted internally by poorly represented water mass properties, such as 671 

too warm NADW or abyssal warming due to climate drift.  672 

 Despite these challenges, the analyses presented here in conjunction with those performed on 673 

ensembles of CMIP3 and CMIP5 models, show some consistent improvements across generations. We 674 

have focused on observable metrics that have been analyzed in previous model ensembles as well as 675 

included additional metrics pertaining to characterizing the wind stress forcing. The results suggest the 676 

following regarding model performance: 677 
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1) The simulation of the strength of the ACC has improved from CMIP3 to CMIP6, with 678 

modeled ACC strength converging toward the magnitude of observed net flow through the 679 

Drake Passage as estimated by the cDrake array. While there are no CMIP6 models that 680 

exhibit unrealistically strong transports like previous generations, there are still several models 681 

producing exceptionally weak transports (>7σ outside of the observational uncertainty). An area 682 

identified as a need for improvement is in the unrealistic multi-decadal variability observed in 683 

the ACC transport for a number of the CMIP6 models. This behavior may be linked to the 684 

presence of unrealistic “superpolynya events” in the pre-industrial control simulations 685 

associated with quasiperiodic episodes of intense open-ocean convection which impact the 686 

interior ocean density structure and thus the ACC. The underlying mechanisms causing these 687 

events need to be further studied to improve the simulations. The coarse resolution models (~1° 688 

or coarser) all employ various parameterization schemes and coefficient magnitudes for 689 

subgrid-scale ocean mixing and this likely plays a role in explaining such diversity in the 690 

vertical and horizontal structure of the ACC found across models. This resolution and 691 

parameterization choice dependence needs to be explored in detail across models of varying 692 

resolution. 693 

2) All metrics pertaining to the surface wind stress forcing have improved. Notable 694 

improvements are found in the strength and position of the zonally-averaged westerly wind 695 

stress maximum (𝜏𝑚𝑎𝑥
(𝑥)

) relative to the ERA5 reanalysis product. The persistent systematic bias 696 

of equatorward winds in previous model generations has improved. These improvements have 697 

yielded a much more realistic pattern of wind stress curl over the SO and a narrowing of spread 698 

across the model ensemble. Noting that the magnitude and location of where wind-driven 699 

surface divergence pulls deep carbon-rich water to the surface is potentially important for the 700 

SO carbon budget, we have further characterized the wind stress forcing in the CMIP6 models 701 
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by computing the magnitude and location of minimum wind stress curl over the SO (magnitude 702 

of maximum Ekman upwelling). These two metrics show the largest inter-model spread relative 703 

to the other wind stress metrics considered; a follow up study will identify if this plays a role in 704 

explaining model spread in biogeochemical performance here. Relative to CMIP3 and CMIP5, 705 

a stronger correlation, although still not statistically significant, is found for the relationship 706 

between ACC strength and 𝜏𝑚𝑎𝑥
(𝑥)

. Previous generations had many models that exhibited extreme 707 

biases in their temperature and salinity gradients across the ACC that allowed for compensation 708 

for errors in the surface wind stress forcing. These errors are not as prevalent in the CMIP6 709 

ensemble.  710 

3) The upper ocean remains biased too fresh and too warm relative to observed. There has 711 

not been a clear improvement in ensemble performance relative to CMIP3 and CMIP5. There 712 

are still several models with exceptionally warm upper SOs with errors that translate into very 713 

poor representations of Antarctic SIE. All CMIP6 models are generally too fresh in the upper 714 

ocean. These errors likely translate into biases in the ventilated layers of the SO; a detailed 715 

water mass analysis similar to Sallée et al. (2013b) should be performed to identify these biases 716 

and compare them to that of previous generations and to understand how they impact heat and 717 

carbon fluxes and storage. 718 

4) The representation of the difference in density across the latitudes of the ACC has 719 

improved in CMIP6. Considering the simulated zonally-averaged, full-depth averaged 720 

difference in potential density referenced to the surface (∆𝜌�) across the ACC, CMIP6 models 721 

have improved in performance relative to that observed. The majority of models (71%) simulate 722 

a ∆𝜌� within a 25% error margin of the WOA18 value. Two models yield a ∆𝜌� that is too weak 723 

and eight models yield a ∆𝜌� much greater than the WOA18 value. It still remains fairly 724 
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common for models to achieve an accurate ∆𝜌� as a result of compensating errors in the 725 

temperature and salinity structure. 726 

5) Antarctic sea ice extent (SIE) representation remains a systematic bias from CMIP5 to 727 

CMIP6. A few models appear to be performing worse than their CMIP5 predecessors, while 728 

others have improved. While SIE is well observed relative to other metrics related to the sea ice 729 

simulation such as sea ice volume, it might not be the best metric for overall model 730 

performance. Thus, a detailed analysis of the regional distribution and other sea ice 731 

characteristics should be performed to truly assess model performance. The correlation found 732 

between the density gradient across the ACC and the minimum Antarctic SIE, highlights the 733 

need for investigating how the sea ice simulation impacts the density structure and climatically 734 

relevant properties in the SO such as carbon and heat storage. Additionally, there may be 735 

important links in CMIP6 between Antarctic sea ice representation in historical simulations and 736 

21st century projected change in surface temperature, precipitation, and westerly jet position as 737 

was the case in previous generations (Flato 2004; Bracegirdle et al. 2015; Bracegirdle et al. 738 

2018). If these emergent constraint relationships still exist, a general lack of improvement from 739 

CMIP5 to CMIP6 and wide inter-model spread in simulated SIE suggests this source of 740 

projection uncertainty may be a large contributor to the model spread in the trajectory of 741 

Southern Hemisphere climate under 21st century forcing. 742 

 The analysis presented here provides critical information on improved and existing biases in 743 

observable properties in the SO for the climate models that will provide projections of the climate 744 

system for the Intergovernmental Panel on Climate Change’s Sixth Assessment Report (IPCC-AR6). 745 

Given the dominant role that the SO plays relative to other ocean basins in the oceanic storage of heat 746 

and carbon, it is important for climate models to represent this region well in order to provide 747 

meaningful simulations of transient climate change. While models have generally improved across 748 

Accepted for publication in Journal of Climate. DOI 10.1175/JCLI-D-19-0970.1.



 

 

33 

many metrics, the remaining biases associated with the temperature and salinity structure of the SO and 749 

sea ice representation may have serious implications for climate projections. The impacts of these 750 

biases on simulated ocean heat and carbon storage requires a detailed assessment.  751 

 In the conclusions outlined above, we have highlighted several paths forward for additional 752 

analysis of the simulations here including extending such analysis to the higher resolution simulations, 753 

determining the dependence of the representation of surface momentum forcing on the heat and carbon 754 

budget, carrying out a detailed water mass analysis, and performing a detailed evaluation of the role 755 

that sea ice representation plays in determining the SO density structure and in water mass 756 

transformations. Additionally, while we examine a 20-yr average period to be consistent with the time 757 

period evaluated in the CMIP3 and CMIP5 studies, studies should be performed to assess whether 758 

these models capture observed historical trends such as observed changes in the mid-latitude westerlies 759 

over the SO. We are currently working to extend this assessment to the results of the 21st century SSP 760 

experiments to investigate how these properties change under continued warming and if robust model 761 

agreement is found. In future analyses, the performance across the metrics presented here can 762 

potentially be used to develop model weighting schemes to provide a constraint on the uncertainty of 763 

global climate projections.  764 
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TABLE 1. Details of the ocean model components in the CMIP6 models used in this study. Details of the ocean component, resolu-1036 

tion, and vertical levels were obtained from the header information in the netcdf files used for the analyses. Information regarding the 1037 

eddy-induced advection coefficient was obtained from ES-DOCs (https://search.es-doc.org/), through personal communication with 1038 

the modeling centers, or from model documentation literature, as noted by the subscript next to each entry. V corresponds to a coeffi-1039 

cient that is either 2D/3D/time-varying and F corresponds to a fixed coefficient. If the required information could not be obtained or 1040 

confirmed at the time of publication, it is left blank (--). The ocean vertical coordinates are defined as follows: z, traditional depth co-1041 

ordinates; σ2, isopycnal vertical coordinates; z*, rescaled geopotential vertical coordinate for better representation of free-surface vari-1042 

ations (Adcroft and Campin 2004); sigma, terrain-following coordinates; hybrid σ2 – z*, isopycnal coordinates in the interior ocean 1043 

and a z* coordinate in the mixed layer (Adcroft et al. 2019);  hybrid z - σ2, isopycal coordinates in the interior ocean and z coordinates 1044 

in the mixed layer; hybrid z-σ2-sigma, z coordinates in the mixed layer, isopycnal coordinates in the open stratified ocean, and sigma 1045 

coordinates in shallow coastal regions; hybrid z – sigma, sigma coordinates between the sea surface and a fixed geopotential depth 1046 

(~50 m) in the upper ocean and z coordinates below this depth. The historical experiments span 1850 to 2014 and are forced by ob-1047 

served changes in atmospheric composition due to anthropogenic and natural sources over the entire historical period. These forcings 1048 

are updated from the CMIP5 historical forcings (Taylor et al. 2012) and extended to 2014. Please refer to Eyring et al. (2018) and ref-1049 

erences therein for details of the exact forcing datasets used for the historical simulations in CMIP6. The indices describing the ensem-1050 

ble member correspond to the model realization number (r), initialization method (i), physics index (p), and forcing index (f) used in 1051 

the experiment. Please see the CMIP6 guidance for data users for more documentation on this (https://pcmdi.llnl.gov/CMIP6/Guide/).  1052 
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 1053 

 CMIP6 

Model 

Ensemble 

member  

Ocean component Nominal 

ocean  

resolution 

(lon X lat) 

Ocean vertical 

coordinate and levels 

Eddy-induced  

advection  

coefficient  

(m2 s-1) 

Modeling center 

1 ACCESS-CM2 r1i1p1f1 MOM5 1.0 X 1.0 z* (50) V; 100 – 1,200pc CSIRO-ARCCSS-BoM 

2 ACCESS-ESM1-5 r1i1p1f1 MOM5 1.0 X 1.0 z* (50) V; 50 – 600a CSIRO-ARCCSS-BoM 

3 BCC-CSM2-MR r1i1p1f1 MOM4-L40 1.0 X 1.0 z (40) -- BCC-CMA 

4 BCC-ESM1 r1i1p1f1 MOM4-L40 1.0 X 1.0 z (40) -- BCC-CMA 

5 CanESM5 r1i1p1f1 NEMO3.4.1 1.0 X 1.0 z (45) V; 100 – 2,000pc CCCma 

6 CESM2 r1i1p1f1 POP2 1.0 X 1.0 z (60) V; 300 – 3,000b NCAR 

7 CESM2-WACCM r1i1p1f1 POP2 1.0 X 1.0 z (60) V; 300 – 3,000b NCAR 

8 CNRM-CM6-1 r1i1p1f2 NEMO3.6 1.0 X 1.0 z* (75) Vpc CNRM-CERFACS 

9 CNRM-CM6-1-HR r1i1p1f2 NEMO3.6 0.25 X 0.25 z* (75) Nonepc CNRM-CERFACS 

10 CNRM-ESM2-1 r1i1p1f2 NEMO3.6 1.0 X 1.0 z* (75) Vpc CNRM-CERFACS 

11 E3SM-1-0 r1i1p1f1 MPAS-Ocean 1.0 X 1.0 z* (60) F; 1,800c E3SM-Project 

12 EC-Earth3-Veg r1i1p1f1 NEMO3.6 1.0 X 1.0 z* (75) -- EC-Earth-Consortium 

13 GFDL-CM4 r1i1p1f1 MOM6 0.25 X 0.25 hybrid σ2 – z* (75) Noned NOAA-GFDL 

14 GFDL-ESM4 r1i1p1f1 MOM6 0.50 X 0.50 hybrid σ2 – z* (75) V; ~0 – 2,000pc NOAA-GFDL 

15 GISS-E2-1-G r1i1p1f1 GISS Ocean 1.25 X 1.0 z (40) -- NASA-GISS 

16 GISS-E2-1-G-CC r1i1p1f1 GISS Ocean 1.25 X 1.0 z (40) -- NASA-GISS 

17 GISS-E2-1-H r1i1p1f1 HYCOM 1.0 X 1.0 hybrid z-σ2-sigma (32) -- NASA-GISS 

18 HadGEM3-GC31-LL r1i1p1f3 NEMO-HadGEM3-GO6.0 1.0 X 1.0 z* (75) V; ≤ 1,000e MOHC 

19 HadGEM3-GC31-MM r1i1p1f3 NEMO-HadGEM3-GO6.0 0.25 X 0.25 z* (75) Nonepc MOHC 

20 INM-CM4-8 r1i1p1f1 INM-OM5 1.0 X 1.0 sigma (40) Nonepc INM 

21 INM-CM5-0 r1i1p1f1 INM-OM5 0.5 X 0.25 sigma (40) Nonepc INM 

22 IPSL-CM6A-LR r1i1p1f1 NEMO3.6 1.0 X 1.0 z*(75) VES IPSL 

23 MCM-UA-1-0 r1i1p1f1 MOM1 plus 1.88 X 2.25 z (18) NoneES University of Arizona 

24 MIROC6 r1i1p1f1 COCO4.9 1.0 X 1.0 hybrid z - sigma (62) F; 300ES JAMSTEC 

25 MIROC-ES2L r1i1p1f2 COCO4.9 1.0 X 1.0 hybrid z - sigma (62) F; 300pc JAMSTEC 

26 MPI-ESM-1-2-HAM r1i1p1f1 MPIOM1.6.3 1.5 X 1.5 z (40) F; ~94f HAMMOZ-Consortium 

27 MPI-ESM1-2-LR r1i1p1f1 MPIOM1.6.3 1.5 X 1.5 z (40) F; ~94f MPI-M 

28 MRI-ESM2-0 r1i1p1f1 MRI.COM4.4 1.0 X 0.5 z* (60) V; 300 – 1500g MRI 

29 NESM3 r1i1p1f1 NEMO3.4 1.0 X 1.0 z (46) -- NUIST 

30 NorCPM1 r1i1p1f1 MICOM1.1 1.0 X 1.0 hybrid z – σ2 (53) V; 100 – 1,500pc NCC 

31 NorESM2-LM r1i1p1f1 MICOM 1.0 X 1.0 hybrid z – σ2 (53) V; 100 – 1,500pc NCC 

32 NorESM2-MM r1i1p1f1 MICOM 1.0 X 1.0 hybrid z – σ2 (53) V; 100 – 1,500pc NCC 

33 SAM0-UNICON r1i1p1f1 POP2 1.0 X 1.0 z (60) V; 300 – 3,000ES Seoul National University 

34 UKESM1-0-LL r1i1p1f2 NEMO-HadGEM3-GO6.0 1.0 X 1.0 z* (75) V; ≤ 1,000e NERC 
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a Kiss et al. 2020. 1054 
b Danabasoglu et al. 2012, Danabasoglu et al. 2020. 1055 
c Golaz et al. 2019. 1056 
d Adcroft et al. 2019. 1057 
e Kuhlbrodt et al. 2018; and personal communication for maximum value allowed. 1058 
f Jungclaus et al. 2013 and personal communication. 1059 
g Yukimoto et al. 2019. 1060 
pc Personal communication. 1061 
ES Obtained from ES-DOCS: https://search.es-doc.org/  1062 
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TABLE 2. Metrics related to the strength of the ACC. The potential density (referenced to the surface) (∆𝜌�), salinity (∆S), and 1063 

potential temperature (∆T) differences are the zonally and full-depth-averaged difference between 65°S and 45°S. The properties are 1064 

first zonally and depth-averaged prior to computing the difference between 65°S and 45°S. The observational estimates are calculated 1065 

from the WOA18 product (averaged 1985–94 and 1995–2004 decadal climatologies). The observational estimate for the surface wind 1066 

stress parameters is the ERA5 monthly product averaged over the January 1986–December 2005 period with its associated interannual 1067 

variability (standard deviation of the annual means over the 20-yr period) (1σ). The observed ACC estimate is that reported by 1068 

Donohue et al. (2016) based on measurements from the cDrake array (Chereskin et al. 2012) over the 2007–11 period with its reported 1069 

uncertainty (1σ). Please see the methods section and additional details in Beadling et al. (2019) on how this estimate is obtained. 1070 

When computing metrics over the Drake Passage (DP) region, 55°S to 64°S is used as the latitudinal bounds. All model values are the 1071 

time-averaged output from the last 20 years of the historical simulation (January 1986–December 2005). B-SOSE values are computed 1072 

from the time-averaged output from January 2013 to December 2018 for the Iteration 133 solution. Given the likely large uncertainty 1073 

from the pre-Argo era and the output provided at only decadal resolution, we do not attempt to provide an uncertainty for the property 1074 

differences in the three columns of the table marked with an asterisk (*). For B-SOSE and the CMIP6 models, considering the mean ± 1075 

2σ (standard deviation of annual means for the time-period considered) of both the model and observational estimate, values which lie 1076 

2σ outside the observational estimate are in bold and values that lie 2σ below are bold and italicized. Considering a 25% window of 1077 

error for the WOA18 product, values are in bold if the mean is too strong and bold and italicized if the difference is too weak using 1078 

this criterion. For the salinity difference, values that have an asterisk (*) show a gradient in the opposite direction than WOA18. The 1079 
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multi-model-mean (MMM) and inter-model-spread (1σ) for the CMIP6 models and that reported from the analysis presented in 1080 

Beadling et al. (2019; B2019), Sen Gupta et al. (2009; S2009), and Russell et al. (2006a; R2006) is summarized at the bottom of the 1081 

table. Please see Section 3a for discussion of models with their ACC values labeled with an asterisk (*). 1082 
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Model ACC 

(Sv) 
𝜏𝑚𝑎𝑥
(𝑥)

 

(N m-2) 

Lat. of 

𝜏𝑚𝑎𝑥
(𝑥)

 

(ºS) 

Total 

westerly 

𝜏(𝑥)  
(1012 N) 

Total  

𝜏(𝑥)  in 

DP  

(1012 N) 

Total 

WSC in 

DP  

(106 N 

m-1) 

Min. 

zonally-

integrated 

WSC 

(N m-2) 

Lat. of 

min 

WSC 

(ºS) 

∆𝜌� 
 (kg m-3) 

* 

∆S 

* 

∆T 

 (ºC) 

* 

Observational estimate 173.3 ± 

10.7 

0.1788 ± 

0.01 

52.37 ± 

1.02 

10 ± 0.5 2.4 ± 0.3 -2.57 ± 

0.19 

-5.32 ± 

0.31 

64.14 

± 0.47 

0.25 0.06 -2.5 

            

B-SOSE 164 0.1517 53.49 8.2 2.1 -2.20 -4.20 62.84 0.28 0.06 -2.3 

            

GISS-E2-1-H 197 0.1760 52.45 9.7 2.4 -2.38 -5.13 64.63 0.39 0.20 -2.2 

CanESM5 192 0.2049 50.68 11 2.4 -3.30 -5.03 62.20 0.35 0.10 -3.1 

ACCESS-CM2 182 0.1944 50.96 11 2.2 -2.91 -4.56 61.90 0.39 0.01 -4.0 

MIROC6 176 0.1537 50.10 9.0 1.8 -2.26 -4.37 62.91 0.23 -0.08* -3.0 

GFDL-ESM4 175 0.1901 51.09 11 2.4 -2.69 -4.33 62.35 0.23 -0.001* -2.8 

INM-CM5-0 162 0.2046 51.60 11 2.6 -3.14 -5.01 63.36 0.38 0.24 -2.1 

UKESM1-0-LL 156 0.1980 51.78 11 2.6 -2.91 -4.69 62.46 0.29 0.05 -2.8 

MCM-UA-1-0 155 0.1766 50.35 9.3 1.7 -2.71 -3.34 59.10 0.23 -0.06* -3.3 

MPI-ESM-1-2-HAM 155 0.1824 51.05 10 2.2 -2.66 -3.89 62.06 0.26 -0.11* -3.7 

ACCESS-ESM1-5 153 0.2004 51.37 11 2.3 -3.22 -5.00 62.47 0.34 -0.001* -3.7 

BCC-ESM1 153 0.2263 51.86 12 2.7 -3.63 -4.65 61.22 0.27 -0.08* -3.5 

MPI-ESM1-2-LR 152 0.1997 49.16 12 2.1 -2.88 -4.02 61.56 0.24 -0.11* -3.5 

SAM0-UNICON 150 0.1910 53.35 10 2.7 -2.75 -4.54 62.92 0.32 0.15 -2.3 

NorESM2-MM 150 0.1919 53.81 10 2.9 -2.58 -5.10 63.81 0.28 -0.03* -3.7 

NorESM2-LM 149 0.1914 53.70 9.9 2.8 -2.68 -4.23 62.77 0.31 -0.005* -3.6 

GISS-E2-1-G 148 0.1923 52.20 11 2.6 -2.70 -5.34 64.63 0.22 -0.04* -2.9 

IPSL-CM6A-LR 147 0.1785 50.47 10 1.9 -2.78 -4.09 61.80 0.26 0.02 -3.0 

BCC-CSM2-MR 146* 0.2260 52.52 12 3.1 -3.14 -5.31 62.98 0.27 -0.05* -3.3 

CESM2 146* 0.2041 53.20 11 2.9 -3.15 -5.52 63.59 0.32 0.18 -1.9 

GISS-E2-1-G-CC 146* 0.1884 52.24 10 2.6 -2.71 -5.35 64.51 0.21 -0.06* -2.9 

CESM2-WACCM 143* 0.2050 53.54 11 2.9 -3.26 -5.58 63.31 0.32 0.18 -1.9 

MRI-ESM2-0 143* 0.1948 49.52 11 1.9 -3.13 -4.96 62.16 0.19 -0.002* -2.3 

GFDL-CM4 132 0.1787 50.63 11 2.1 -2.53 -4.32 61.78 0.21 0.05 -2.1 

HadGEM3-GC31-LL 132 0.1903 51.38 11 2.4 -2.82 -4.61 62.15 0.29 0.05 -2.7 

NESM3 131 0.2234 51.46 12 3.0 -2.92 -4.49 62.80 0.17 -0.13* -2.6 
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1083 

NorCPM1 122 0.1855 53.86 9.4 2.6 -2.71 -4.08 62.73 0.27 0.08 -2.2 

EC-Earth3-Veg 118 0.1790 51.21 10 2.3 -2.76 -5.20 63.80 0.29 0.02 -2.7 

CNRM-CM6-1 110 0.1635 49.65 9.3 1.6 -2.75 -4.00 61.68 0.24 0.06 -2.0 

CNRM-ESM2-1 102 0.1648 50.31 9.4 1.8 -2.71 -4.00 61.97 0.19 0.02 -1.8 

E3SM-1-0 96 0.2000 51.79 11 2.6 -2.73 -4.49 62.06 0.20 -0.04* -2.3 

MIROC-ES2L 80 0.1280 46.11 7.0 0.5 -1.91 -3.05 57.70 0.13 -0.08* -1.8 

CNRM-CM6-1-HR 59 0.1645 47.46 9.8 1.3 -2.67 -4.52 61.93 0.19 0.03 -1.7 

HadGEM3-GC31-MM 51 0.1791 50.49 10 2.1 -2.91 -5.45 62.76 0.23 0.05 -1.9 

INM-CM4-8 38 0.2090 52.58 11 2.9 -3.03 -5.16 64.28 0.30 0.20 -1.4 

R2006 CMIP3 MMM 144 ± 77 0.1591 ± 

0.03 

47.57 ± 

2.80 

NA NA NA NA NA NA NA NA 

S2009 CMIP3 MMM 142 ± 71 NA 49.44 ± 

2.84 

NA NA NA NA NA NA NA NA 

B2019 CMIP5 MMM 148 ± 38 0.1829 ± 

0.02 

50.36 ± 

2.28 

10 ± 1 1.9 ± 0.6 -2.67 ± 

0.36 

NA NA 0.27 ± 

0.08 

0.05 ± 

0.10 

-2.6 

± 0.8 

CMIP6 MMM 137 ± 37 0.1893 ± 

0.02 

51.29 ± 

1.68 

10 ± 1 2.3 ± 0.5 -2.82 ± 

0.32 

-4.63 ± 

0.61 

62.48 

± 1.4 

0.27 ± 

0.06 

0.02 ± 

0.10 

-2.7 

± 0.7 
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TABLE 3. Metrics related to the representation of Antarctic Sea Ice Extent (SIE) (million km2) 1084 

for the models considered in this study. The observed SIE metrics and their associated standard 1085 

deviation (1σ) of annual means for the January 1986 to December 2005 time period are from the 1086 

monthly sea ice extent data set (https://nsidc.org/data/g02135) from the National Snow and Ice 1087 

Data Center Sea Ice Index. All CMIP6 values are time-averaged from January 1986 to December 1088 

2005. B-SOSE values are computed from the time-averaged output from January 2013 to 1089 

December 2018 for the Iteration 133 B-SOSE solution. In all calculations, only grid cells which 1090 

had a sea ice concentration greater than 15% were included. Considering the standard deviations 1091 

of the annual means over the time period of analysis for both the observational data and model 1092 

output, values that lie 2σ outside the mean of the observational metric are in bold and values 1093 

which lie 2σ below are bold and italicized. The B2019 CMIP5 multi-model mean (MMM) and 1094 

inter-model spread (1σ) is from the analysis presented in Table S1 of Beadling et al. (2019). For 1095 

the maximum and minimum SIE, the month when this occurs is also listed. *The MCM-UA-1-0 1096 

model only provides ice thickness and concentration is either 1 or 0, preventing accurate 1097 

assessment of monthly SIE.1098 
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1099 

  1100 

Model Annual SIE 

million km2 

Maximum SIE 

million km2 

Minimum SIE 

million km2 

Max – Min 

Million km2 

Observational estimate 11.58 ± 0.26 18.42 ± 0.34, 

SEP 

3.09 ± 0.35, 

FEB 

15.32 ± 0.52 

     

B-SOSE 10.68 18.79, SEP 1.24, FEB 17.55 

GISS-E2-1-H 11.21 18.91, SEP 2.86, FEB 16.06 

CanESM5 12.10 18.23, SEP 4.12, FEB 14.11 

ACCESS-CM2 7.97 14.30, SEP 0.60, FEB 13.70 

MIROC6 1.91 4.09, SEP 0.04, FEB 4.05 

GFDL-ESM4 9.00 16.66, SEP 0.82, FEB 15.84 

INM-CM5-0 6.22 11.90, SEP 0.88, FEB 11.02 

UKESM1-0-LL 9.99 15.47, SEP 2.68, FEB 12.79 

MCM-UA-1-0 NA* NA* NA* NA* 

MPI-ESM-1-2-HAM 3.78 8.04, SEP 0.23, FEB 7.81 

ACCESS-ESM1-5 8.83 14.73, SEP 2.48, FEB 12.25 

BCC-ESM1 8.14 13.34, SEP 0.92, FEB 12.42 

MPI-ESM1-2-LR 4.89 10.73, SEP 0.39, FEB 10.34 

SAM0-UNICON 12.68 18.42, SEP 4.04, FEB 14.38 

NorESM2-MM 6.85 12.12, SEP 1.80, FEB 10.32 

NorESM2-LM 6.76 11.93, SEP 1.83, FEB 10.10 

GISS-E2-1-G 8.19 15.02, SEP 0.64, FEB 14.38 

IPSL-CM6A-LR 11.13 19.48, SEP 1.79, FEB 17.69 

BCC-CSM2-MR 7.11 12.89, SEP 0.30, FEB 12.59 

CESM2 9.79 15.35, SEP 1.81, FEB 13.54 

GISS-E2-1-G-CC 7.88  14.68, SEP 0.64, FEB 14.04 

CESM2-WACCM 10.38 15.91, SEP 2.27, FEB 13.64 

MRI-ESM2-0 13.26 21.33, SEP 3.15, FEB 18.18 

GFDL-CM4 10.33 19.00, SEP 0.68, FEB 18.32 

HadGEM3-GC31-LL 8.82 14.33, SEP 1.80, FEB 12.53 

NESM3 8.65 15.39, SEP 0.46, FEB 14.93 

NorCPM1 13.29 19.70, SEP 4.38, FEB 15.32 

EC-Earth3-Veg 4.97 10.63, SEP 0.29, FEB 10.34 

CNRM-CM6-1 9.71 18.22, OCT 0.98, FEB 17.24 

CNRM-ESM2-1 7.70 15.25, SEP 0.40, FEB 14.85 

E3SM-1-0 8.92 15.97, SEP 1.04, FEB 14.93 

MIROC-ES2L 1.70 4.11, SEP 0.04, FEB 4.07 

CNRM-CM6-1-HR 8.76 16.87, OCT 0.48, FEB 16.39 

HadGEM3-GC31-MM 6.40 10.36, SEP 1.62, FEB 8.74 

INM-CM4-8 4.47 9.07, SEP 0.27, FEB 8.80 

B2019 CMIP5 MMM 9.44 ± 3.35 16.28 ± 4.19 2.17 ± 1.97 14.11 ± 3.14 

CMIP6 MMM 8.24 ± 2.88 14.32 ± 4.10 1.42 ± 1.22 12.90 ± 3.50 
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 1101 

FIG. 1. Volume transport of the ACC through the Drake Passage (Sv) as observed from the 1102 

cDrake experiment (Donohue et al. 2016) and as simulated across multiple generations of cli-1103 

mate models. Gray shading corresponds to the observational uncertainty (2σ) of the ACC 1104 

transport reported in Donohue et al. (2016). The B-SOSE transport is computed from the Itera-1105 

tion 133 solution at 1/6th degree resolution over the January 2013 to December 2018 time period. 1106 

The CMIP6 model transports are calculated as the January 1986 to December 2005 time-aver-1107 

aged net transport through the Drake Passage. The CMIP5 values are taken from Beadling et al. 1108 

✖
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(2019). The CMIP6 transports are computed identically to that of Beadling et al. (2019), over the 1109 

same time period in the historical simulations. Error bars correspond to the 2σ standard deviation 1110 

of annual values about the mean. The CMIP3 values are taken from Table 1 of Russell et al. 1111 

(2006a) and Table 3 of Sen Gupta et al. (2009). Russell et al. (2006a) computes flow through the 1112 

Drake Passage from the last 20 years of each model’s piControl integration, while Sen Gupta et 1113 

al. (2009) computes flow from the last 20 years of each model’s twentieth century control run.  1114 
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FIG. 2. Zonal velocity (m s-1) through the Drake Passage (~69°W). Red values indicate eastward 1117 

velocities, and blue values indicate westward velocities. Velocities are contoured from -0.20 to 1118 

0.20 m s-1 at intervals of 0.05 m s-1. B-SOSE velocity is computed from the Iteration 133 solution 1119 

at 1/6th degree resolution over the January 2013 to December 2018 time period. All CMIP6 1120 

model values are averaged from January 1986 to December 2005. Additional models are shown 1121 

in the Supplemental Material.  1122 
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FIG 3. a) Zonally averaged zonal wind stress (N m-2) and b) zonally integrated annual mean 1124 

wind stress curl (N m-2) from the ERA5 global atmospheric reanalysis product time-averaged 1125 

from January 1986 to December 2005, from January 2013 to December 2018 for the Iteration 1126 

133 B-SOSE solution, and from January 1986 to December 2005 for each CMIP6 model. The 1127 

Drake Passage latitudinal band is the dark gray shading in panels A and B. The light gray shad-1128 

ing about the ERA5 mean corresponds to the interannual variability (2σ) of the zonally averaged 1129 

zonal wind stress (a) or zonally integrated wind stress curl (b) at each latitude. Panels C through 1130 

E show the performance of models from CMIP3 through CMIP6 in their representation of (c) the 1131 

maximum zonally averaged zonal wind stress, (d) the integrated wind stress curl over the Drake 1132 

Passage latitudes, and (e) position of the peak wind stress, relative to ERA5. The CMIP3 values 1133 

are those reported by Russell et al. (2006a) and Sen Gupta et al. (2009), and the CMIP5 values 1134 

are reported from Beadling et al. (2019). The CMIP6 transports are computed identically to that 1135 

of Beadling et al. (2019), over the same time period in the historical simulations. Gray shading in 1136 

panels C through D corresponds to the interannual variability (2σ) about the ERA5 mean over 1137 

the 20-year time period.  1138 
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FIG. 4. ACC transport vs. (a) zonally averaged maximum westerly wind stress, (b-d) full-depth-1140 

averaged, zonally averaged meridional potential density, potential temperature, and salinity dif-1141 

ference between 65°S and 45°S. (e) Full-depth-averaged meridional potential density difference 1142 

between 65°S and 45°S vs. minimum Antarctic Sea Ice Extent (SIE). Mean observed and mod-1143 

eled values correspond to the values reported in Tables 2 and 3. The linear regression consider-1144 

ing only the CMIP6 models and the corresponding correlation coefficient and p value (n-2 de-1145 

grees of freedom) are displayed on each panel.  1146 
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 1147 

FIG. 5. The zonally averaged and time-averaged near-surface (a) potential temperature (°C; 0–1148 

100 m average), and (b) salinity (0–100-m average). The CMIP6 model output are time-averaged 1149 

from January 1986 to December 2005. The January 2013 – December 2018 time period is aver-1150 

aged for the B-SOSE Iteration 133 solution. The WOA18 values are computed from the average 1151 

of the 1985–94 and 1995–2004 decadal climatologies. 1152 
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 1153 

 1154 

FIG. 6a. Upper ocean potential temperature (°C) (0 -100 m average) in the Southern Ocean from 1155 

the WOA18 climatological mean (large panel at top left; computed from the average of the 1156 
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1985–94 and 1995–2004 decadal climatologies). The difference between the simulated and ob-1157 

served temperature (°C) for the B-SOSE Iteration 133 solution (time-averaged from January 1158 

2013 to December 2018), and for each CMIP6 model (time-averaged from January 1986 to De-1159 

cember 2005). Positive (from yellow to red) values indicate the model is warmer than observed. 1160 

Negative (blue) values indicate the model is colder than observed. Additional models are shown 1161 

in the Supplemental Material.  1162 
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 1163 

FIG. 6b. As in 6a, but for salinity in the upper ocean (0 – 100 m average). Positive (from yellow 1164 

to red) values indicate the model is more saline than observed. Negative (blue) values indicate 1165 

the model is fresher than observed. Additional models are shown in the Supplemental Material. 1166 
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FIG. 7a. Potential temperature (°C) in the Southern Ocean from the WOA18 climatological 1168 

mean (large panel at top left; computed from the average of the 1985–94 and 1995–2004 decadal 1169 

climatologies) in the Atlantic (30°W), Indian (90°E), and Pacific Ocean (150°W) and the differ-1170 

ence between the simulated and observed temperature for the B-SOSE Iteration 133 solution 1171 

(time-averaged from January 2013 to December 2018), and for each CMIP6 model (time-aver-1172 

aged from January 1986 to December 2005). Positive (from yellow to red) values indicate the 1173 

model is warmer than observed. Negative (blue) values indicate the model is colder than ob-1174 

served. Additional models are shown in the Supplemental Material.  1175 
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FIG. 7b. As in 7a, but for salinity in the Southern Ocean. Positive (from yellow to red) values 1177 

indicate the model is more saline than observed. Negative (blue) values indicate the model is 1178 

fresher than observed. Additional models are shown in the Supplemental Material.  1179 
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 1180 

FIG. 8. (a) Seasonal climatology of Antarctic Sea Ice Extent (SIE; million km2) observed by sat-1181 

ellite and reported by the National Snow and Ice Data Center Sea Ice (NSIDC) and as simulated 1182 

in each CMIP6 model. The light gray shading about the NSIDC mean is the standard deviation 1183 
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(2σ) of the SIE for that month over the 20-year period. Data from observations and model output 1184 

are time-averaged from January 1986 to December 2005. Only grid cells which have a sea ice 1185 

concentration greater than 15% are included in the computation of SIE. (b) Annual Antarctic SIE 1186 

simulated across model generations; CMIP5 through CMIP6. The CMIP5 values are taken from 1187 

Beadling et al. (2019). The CMIP6 values are computed identically to that of Beadling et al. 1188 

(2019), over the same time period in the historical simulations. 1189 
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