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Abstract

In non-destructive evaluation (NDE), ultrasound plays an important role in physical structure
characterization. However, by application of such methods, a little crack cannot be easily detected
due to sub-band noises or attenuation in the material. By using of high excitation power source,
cracks in the material resonate and generate nonlinear effects on the propagation of the acoustic
waves. This feature of the crack response is used for its study by nonlinear NDE methods. The
proposed application is the optimization of the excitation parameter using the feedback of the
measured system. FEnergies of harmonic components of the received signal were taken as cost
functions. The derivative-free algorithm was applied to find the optimal excitation parameter
which gives the maximum of a cost function. The optimization has been done for the 2D sample of
the duralumin plate simulated by a pseudo-spectral wave solver. The optimal values of excitation
frequencies for different reference stresses have been found. For reference stress of 800 kPa, a gain
of 5 dB can be reached in comparison with excitation at the central frequency of the transducer.
The importance of an automatic frequency finding was considered to be more privileged compared
to the empirical frequency scanning.

1 Introduction

Over the years the traditional nondestructive evaluation (NDE) techniques have been constantly used
in mechanical structures characterization (high-quality linear acoustics, electromagnetic, radiologic,
visual inspective methods). However, these techniques are not sufficiently sensitive to the presence
of progressive damages at the early stages. Thereby, due to the feature of the defect reaction in a
nonlinear manner under specific conditions (e.g. amplitude of the wave) the nonlinear parameter
calculated from the received information gives possible malfunction finding.

The techniques that allow to explicitly interrogate the material mechanical behavior and its effect
on wave propagation by investigation the amplitude dependence of certain macroscopically observable
properties are termed Nonlinear Elastic Wave Spectroscopy (NEWS) techniques [17] as nonlinear
wave modulation spectroscopy [1, 16, 19], nonlinear reverberation analysis [15, 18] and nonlinear wave
propagation spectroscopy [11, 7]. The sensitivity of these previous nonlinear methods to the detection
of microscale defects was found to be far greater than that obtained with linear acoustic methods [12].

High stress influences the stress-strain relation at the microscale. Thus, the nonlinear response can
come out from the microstructure material features or be produced by the damage (crack). In the case
of the microdamage, it appears earlier at smaller amplitudes than traditional material nonlinearity,
with the generation of odd harmonics, with hysteresis effect [6]. In this case, a small cracked defect
(transparent in a linear ultrasonic NDE) behaves as an active radiation source of new frequency
components rather than a passive scattered in conventional ultrasonic testing [14].

Defect detection by the nonlinear energy emanating from the medium depends on the frequency
changes of an input signal. Thus, it is possible to optimize the excitation frequency to get a better
nonlinear effect. In biomedical imaging, Ménigot et al. have proposed the solutions for finding of opti-
mal excitation frequency [10, 8], as well as the form of excitation signal [9]. Houhat et al. has adjusted
the method for the Vibro-acoustic modulation (VAM) technique for CODA wave interferometry and
optimized pump frequency [4].



However, there are no automatic methods used to optimize the parameters of excitations dedi-
cated to the non-destructive evaluation of solids. The goal of this paper is to show its efficiency in
maximization of the nonlinear answer of the system, thus microdamage detection. We will simplify
the complicity of the problem by reducing the number of parameters in the optimization. The sim-
plest parameter is the transmit frequency. For this, we will adapt the previous techniques of optimal
command for the study of solids.

2 Closed Loop Optimisation
The method involves measuring a cost function in an NDE closed loop system. The algorithm is

implemented to find the optimal value of a cost function at each iteration. The solution of a waveform
parameter then optimized. The closed loop system is presented in Fig. 1.
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Figure 1: Block diagram of the NDE system. A waveform parameter of x(¢) is optimized through
closed system. In order to find an optimal value of a cost function, the waveform parameter of () is
optimized for each measurement.

2.1 Cost function

As previously explained in the introduction, the quantity of transmitting energy into the sample
converts to different harmonic components due to nonlinear effects.

In the received signal, we get the part that contains a linear harmonic component and the part that
contains a nonlinear harmonic component. The nonlinear harmonic component is the crack response
on the stress-strain violation by the wave transmitted in the sample [13]. This nonlinear harmonic
component we want to maximize and at the same time reduce fundamental harmonic component.

The nonlinear effects can be appraised with cost function implementation [3]. In our case, the
energy of harmonics is a parameter to estimate the nonlinear answer of the system.

If we put the energy of the linear component as the linear cost function Ep;, and the nonlinear
component as the nonlinear cost function Fy, which are both the energies calculated in a time
domain as follow:
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where Y is the received signal; T is the number of received samples; ¢ discrete time.

The final cost function F'C' is the nonlinear linear energies ratio, which is the normalized coefficient

between nonlinear and linear responses of the system
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In particular, the nonlinearity of the crack generates odd harmonics. Consequently, the cost
function takes the form of the ratio of the odd harmonic to the fundamental harmonic energies.

If Y is filtered by adjusted digital Butterworth band-pass filter to the initial incident frequency fy
the fundamental harmonic component Y7 ;, will be extracted. Similarly, the 3rd harmonic component
YN can be extracted by the adjusted Butterworth band-pass filter to the frequency of 3fy. The
orders of the filters have their lowest values with a passband ripple of no more than Rp = 3 dB and
a stopband attenuation of at least Rs = 10 dB.

2.2 Algorithm

A Nelder-Mead Simplex Method algorithm has put into use for the cost function exploration.

It is widely used method for nonlinear unconstrained optimization.The Nelder-Mead method at-
tempts to minimize a scalar-valued nonlinear function of n real variables using only function values,
without any derivative information (explicit or implicit). The Nelder-Mead method thus falls in the
general class of direct search methods [5].

In current research, we are looking to find an optimized parameter of the initial excitation frequency
f- Successively after k iterations the algorithm gives the maximum value of the nonlinear response of
the system following :

fopt = arg H}%X(FO) (3)

2.3 Waveform

At the iteration k, the excitation waveform zj of a Gaussian-modulated sinusoidal pulse with the
relative fractional bandwidth of 40% is generated by the transducer at frequency f%.

n _ _L ?
_M .Sin(ﬁ.gﬂ.fk) (4)

T = A-exp
(;F )? F

where Fy is sampling frequency; n - vector of points; A - amplitude; fr -excitation frequency; L -
duration of total excitation; & - discretized time; % - initial point of Gaussian pulse.
The amplitude of the applying stress is adjusted at each excitation frequency, thus the excitation

power stays constant.

3 Simulation

The solver calculates the wave propagation in stress-strain states. The simulator applies nonlinear
wave equation by a pseudospectral / staggered A-B method, including attenuation model with two
relaxation mechanisms of hysteretic behaviour. This behavior, described by the “PM space” represen-
tation, characterized by the density distribution, leads to generation of odd harmonics of the initial
frequency. The solver has been developed based of the work of O. Bou Matar et al. [2]. The classical
non-linearity of elastic propagation of 2nd and 3rd order has been added to the program.

To limit the computation time, the size of the sample is 128 by 64 points, which physically rep-
resents 100 mm by 50 mm. The crack was located in the middle of the sample with a size of 8 by 8
mm. The piezoelectric transducers were placed one in front of the other in the middle of the lateral
axis, one at the top and the other at the bottom of the sample.

The initial wave excitation signal at the k-iteration xj propagates through the sample with a
crack inside. The crack creates the third harmonic components. The two transducers, Tx on the
transmission at 1 MHz and Rx on the reception at 3 MHz filter the signal by their transfer functions.

The parameters of 2D sample correspond to the duralumin material properties presented in Table
1:

where P-wave is the speed of sound of the pressure wave and S-wave is the speed of sound of the
shear wave.

In the middle of the sample, crack is presented as the points of the elementary hysteretic units,
which generate odd harmonics. The crack properties are in Table 2:

3



P-wave speed [m/s] | 6398
S-wave speed [m/s] | 3030
Density [kg/m?] 3122

Table 1: Material physical properties

Young modulus [Pa/m?] | 70-10°
Poisson ratio 0.33
Density [kg/m?] 2966

Table 2: Crack physical properties

4 Results

The optimisation process was done for different reference stresses A at the step of 100 kPa. Results
are presented in Figure 2.
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Figure 2: The optimal nonlinear ratio and optimal frequency for different stresses A.

Figure 2(a) represents the optimized frequency (f,p¢) values for the excitation signal for reference
stresses A. It can be seen that the decrease in the varied optimal frequency are not linear after the
amplitude of the emission stress exceeds 400 kPa.

Figure 2(b) represents the optimal values of the cost function to reference stresses A (blue line). The
optimal values of the cost function are compared with the cost function values on the central frequency
(fc) of the transducer that is equal to 1 MHz (green dashed line). As we can see in the Figure 3 the
gain of the cost function between the excitation on the optimal frequency and the excitation on the
central transducer frequency can be from 3.5 to 6 dB depending on reference stress.

By way of illustration, the iterative process of excitation frequency optimization is shown for the
reference stress of 800 kPa in Figure 4.

The optimal frequency finding is illustrated and compared to the empirical scanning at the 25 kHz
step in the Figure 4(a). The algorithm was capable to reach a global maximum of the cost function
for 3 iterations at 16.55 dB (Fig.4(c)) near a frequency of 800 kHz (Fig.4(b)).

The gain of nonlinear linear ratio between optimal excitation frequency and the excitation fre-
quency at the central frequency of the transmission transducer Tz is 5.15 dB.

4




Nonlinear Linear Ratio Gain
I I I

o
» (3]

&
3]

o~
o

Optimal Nonlinear-Linear Ratio {dB)
s [8)]

|
200 400 600 800 1000 1200 1400

w
)]

Reference Stress (kPa)

Figure 3: The gain of nonlinear linear ratio between optimal frequencies and central frequency of the
transducer.

5 Discussion and Conclusions

Optimisation process was first presented and applied for the propagation ultrasound experiment in
solids. The optimal values of the nonlinear linear energy were calculated for different stresses A from
100 kPa to 1.5 MPa. We can notice that the optimization converges to different optimal frequencies
depending on the stress levels A, which is not taken into account in the usual selection for an excitation
frequency.

From this, it follows that the maximums of the cost function do not derive from the choice of
the excitation on the transmission transducer central frequency, e.g. at 800 kPa of reference stress,
the gain for optimal excitation frequency to the excitation central frequency of the transducer is at
5.15 dB. At the same example, the algorithm finds the maximum of the cost function for 3 iterations
compared to empirical scanning that finds the maximum at 5th iteration.

Another important advantage of using the optimal command for real experiments is that it takes
into account the imperfections of the transducer and the properties of the explored medium. Usually,
this information is ignored when choosing the setting of the excitation parameter.

The frequency optimization method presented in this paper demonstrates that it is applicable in the
case of a homogeneous medium with one crack inside by using system objective features, e.g. nonlinear
linear energies ratio. We suppose that the frequency optimization by our method under selecting the
appropriate cost function can step over the unknowns from more complex explored mediums.

The application of automatic methods to a nonlinear nondestructive evaluation of solids can in-
crease the response of the defect in the studied sample. Automation algorithm tunes the system
response and can be used for more complex mediums in order to reduce the time of inspection as well
as to reduce tuning errors.
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