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L2TI, Université Sorbonne Paris Nord,

Villetaneuse, France
hoan.le@univ-paris13.fr

Khaled Boussetta
L2TI, Université Sorbonne Paris Nord,

Villetaneuse, France
khaled.boussetta@univ-paris13.fr

Nadjib Achir
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Abstract—The prominence of Internet of Things (IoT) devices
is characterized by a wide diversity of network access tech-
nologies, including Wi-Fi, Cellular, Lo-Ra, ZigBee, or Bluetooth.
Dealing with such heterogeneity is still very challenging in terms
of devices, communication technologies, protocols, data formats,
and semantics. Data generated from diverse sources use different
semantics and models. It makes semantic interoperability as one
of the outstanding issues in provisioning seamless communica-
tion and services over various IoT platforms. Semantic models
are a useful approach for exchanging semantically annotated
information between such heterogeneous applications. Seamless
communication between different types of applications is usually
achieved by using middleware, ontology, semantic web technolo-
gies, and there are no unified storage and management methods
for information on IoT devices. In this paper, we propose a
solution for handling IoT data’s heterogeneity and facilitating
interoperability and contextual information management. The
solution comprises a semantic data model for the generic de-
scription of elements in our proposed fog computing platform,
namely Fog Services Provider (FSP), to support IoT. Besides,
this data model is designed for managing any device using
different communication technologies that are fully described and
formalized in an ontology format called FSPontex.

Index Terms—Internet of Things, heterogeneity management,
semantic, context information, data model, ontology.

I. INTRODUCTION

Internet of Things (IoT) is a collection of connected phys-
ical objects accessible through the internet. It enables the
connection of things that can be monitored and remotely
controlled via a wireless infrastructure. They can be assigned
IP addresses and can transmit data over a network without
human intervention to gather data from the environment that
better perceives nature. The importance of IoT is increasing
in all fields over the years. The number of connected devices
on the Internet will exceed 50 billion by 2020, this according
to Cisco [6]. By 2022, 1 trillion networked sensors will be
embedded in the world and up to 45 trillion in 20 years.
Therefore, the automated device monitoring reduces human
interaction and improves productivity.

IoT devices are widely diverse primarily because of the
different hardware and operating systems used. The hetero-
geneity of the information provided by the underlying devices
is one of the most highlight features of the IoT domain. These
heterogeneous devices communicate through a variety of pro-
tocols at low power networking (ZigBee, ZWare, LoRaWAN,

and Bluetooth), or traditional networking protocols (Ethernet,
Cellular, WiFi), and even application protocols such as CoAP
(constrained application protocol), MQTT (message queu-
ing telemetry transport), XMPP (extensible messaging and
presence protocol), and AMQP (advanced message queuing
protocol). These protocols are designed for domain-specific
applications with particular features. Moreover, these devices
are expected to be deployed in different areas of applica-
tions to observe the environment and generate enormous data
continually—differences in the data formats, types, or syntax
results in interoperability issues between the applications.
Due to the lack of common understanding between different
devices and platforms with resource constraints in IoT, it is
not easy to understand the exact meaning (semantics) of the
exchanged content. Thus, much work has to be done to ensure
interoperability.

The traditional IoT service model’s paradigm provides the
software agent with raw sensor data collected by the devices.
This raw data does not contain semantic annotation and
requires a high manual overhead to implement practical appli-
cations. This diversity raises several interoperable issues. Be-
cause of these service providers’ approaches, the IoT domain
can be viewed as vertical silos of different IoT applications
without horizontal connectivity between them. This lack of
interoperability with independent services, poses a threat to the
overall adoption and acceptance of the IoT domain, especially
for applications that can profit from multiple devices. One
possible solution is to achieve semantic interoperability in a
heterogeneous IoT environment is to use semantic annotation
of raw sensing data using; for instance, the ontology approach.
In general, all features of the semantic model are deployed
centrally in the cloud. While the computing capabilities of
the cloud are essential, the response time for user requests is
not always as fast as required by the applications. Besides,
the use of semantic annotation algorithms to such amounts of
data at the centralized layer leads to significant consumption
of resources, which probably affects their performance. Con-
sequently, a high-level fog computing architecture is required
to cope with heterogeneous IoT devices generating large and
diverse data types. Concurrently, providing a unified data
model to support interoperability in IoT by using Semantic
Web (SW) technologies.



Fig. 1: Core concepts for IoT domains [8]

In the literature, fog computing-based architectures and
applications are available and can be considered as potential
solutions to the heterogeneity problems [11], [14]. However,
semantic-based approaches are not commonly applied in the
fog computing architectures.

To achieve semantic interoperability, we proposed a simple
fog-based unified and semantic data model in our previous
work [15]. In this extended version, we have improved that
by developing a semantic-based annotation approach to handle
such large-scale heterogeneous data and process for latency-
sensitive applications by using a common unified ontology.
It should describe the core concepts common to all IoT
applications (i.e., horizontal) and concepts that are specific
to applications (i.e., vertical), as illustrated in Fig 1, and
is defined by using the 4WH1 methodology [8]. The rest
of the paper is organized as follows: Section II presents
related works. Section III introduces our proposed fog services
provider (FSP) architecture for IoT and manages IoT devices
through defining concepts, properties, and relationships be-
tween data objects with the help of ontology. Section IV
provides more detailed data information to model elements
with ability semantic data annotations in the FSP platform.
Section V summarizes this paper and discusses some of our
prospects.

II. RELATED WORK

In this section, we investigate some of the existing works
on data models for IoT. The W3C Semantic Sensor Networks
Incubator Group (SSN-XG) [4] addresses the issues of het-
erogeneity in sensor networks with concepts mentioned to
describe sensors, observations, and related concepts. However,
it does not describe domain concepts, time, location and real-
time data collection issues, etc. To overcome the spatial and
temporal problem, Xue et al. [20] proposed an ontology to
describe heterogeneous sensors with concepts sensor types
included Advanced Sensor and Normal Sensor, along with
sensor capabilities static, or dynamic. They also introduce
concepts to solve issues of the sensor management and data
sharing in a sensor network. However, their ontology supports
only a small number of sensors and provides semantic support
for a limited number of sensor features. Furthermore, their
concept of location is limited to building rooms and floors.

IoT-O ontology [18] defines modular extensible ontologies
for modeling some of the main concepts in IoT. They focus
on two sets of requirements Conceptual and Functional to

form the core of any IoT-related ontology. Where the concepts
are based on the description of devices, data, services, and
life cycle. Moreover, Functional requirements are defined
to enable the semantic community, which can follow best
practices. IoT-O is one of the first approaches towards the
unification of IoT ontologies by reusing concepts from SSN
[4], (SAN, DUL, QUDT) [1], oneM2M and define some new
concepts. However, it lacks a complete view of context and
leaves out another important concept related to the monitoring
and management of IoT devices. Bermudez-Edo et al. [9]
introduced IoT-Lite by extending concepts from SSN ontol-
ogy [4]. This ontology also added interoperability between
sensor data among heterogeneous platforms while keeping the
semantics lightweight. Besides, IoT-Lite mainly focuses on the
minimum concept discovery and relationships that can respond
to a maximum number of application queries. It also follows
the linked data approach for data and knowledge. However,
it has not included actuator and RFID, which are an integral
part of today’s IoT application.

M3 ontology proposed by Gyrard et al. [13] is an effort
to integrate different IoT-related concepts from different on-
tologies into a unified taxonomy that describes concepts such
as Domain of Interest, Physical Phenomena, and Units of
Measurement. However, M3 is heavy; a lightweight version
of M3 is M3-Lite [2] and has proposed to complement device
modeling and service concepts. But, it lacks several aspects
related to context and policy. The Light-weight Ontology
(LiO-IoT) takes up a challenge in the range of IoT ontologies
by introducing sensors, actuators, and RFID as IoT concepts
[17]. It borrowed some concepts like Sensors, Objects, and
Coverage from existing ontologies (SSN and IoT-Lite) to
help in the provision of semantic interoperability. The authors
have performed experiments to evaluate the LiO-IoT ontology
to verify the round trip time of a query and compare it
with both IoT-Lite and SSN. The results have shown that
it has a similar response time with IoT-Lite and a better
performance than SSN. However, it is not mentioned to the
context information and architectural components related to
communication technologies.

Our work aims at designing a unified data model with
the capability of context information sharing and facilities
that manage IoT heterogeneous devices using different tech-
nologies. We also investigate interoperability between devices
instead of data and the Semantic Web to facilitate sensor
discovery.

III. OUR PROPOSED FOG SERVICES PROVIDER (FSP)

As mentioned in our previous work [15], some basic notions
related to entities such as Producer, Consumer, and FSP
(Fog Services Provider) node are core elements to form our
proposed fog computing architecture as shown in Fig. 2.
Where, Producer and Consumer elements are objects that
directly interact with the FSP node via some protocols (MQTT,
HTTP, or WebSockets, etc,.). The Producer can be physical
(sensors, actuators, smartphones) or non-physical entities (vir-
tual device, web services) that uses to generate data and need



to be addressable in the network. The Consumer has a play
role as a software entity that enables the analysis and process
of data generated from Producer. The FSP node element is
the heart of fog architecture. It enables rapid development,
management, and scaling of IoT projects. The FSP platform
is built based on the advantages of a micro-services model
(self-discovery, loose coupling, and high cohesion) with a
components-based architecture and are divided into several
their functionalities.

The first component is the IoT producers, including a set
of heterogeneous things with different multi-network access
technologies (LoRA, ZigBee, Bluetooth, Cellular, etc.). It is
data sources that emitted data with various formats. Next
is a component of Security/Authentication & Authorization
management. It provides mutual authentication and encryption
at all points of connection so that data is never exchanged
between producers and FSP Platform without a proven iden-
tity. The Access component enables IoT producers to connect,
authenticate, and exchange messages with this FSP platform
using the MQTT, HTTP, CoAP, or WebSockets protocols.
The Registry & Config component establishes and manages
metadata such as the producers’ attributes and capabilities.
It assigns a unique identity to each producer that is consis-
tently formatted regardless of the type of producer or how it
connects, and it is also responsible for handling and main-
taining information hardware configuration, computation re-
quirements, and connectivity of producers requested by various
applications. The Monitoring component always keeps track of
system performance and resources, services, and responses. It
helps choose the appropriate resources during operation. The
Resources management component maintains the allocation
of resources, scheduling, and deal with energy-saving issues.
The Analytics component includes several functionalities such
as data analysis, data flow, rule engine. At the data analysis
stage, acquired data are analyzed, filtered, data trimming and
reconstruction are also done when necessary. Following the
processing of the data, the data flow component decides
whether the data needs to be stored locally or sent to the
cloud for long-term storage. The Gateway is responsible for
supporting of different type of protocols such as MQTT, CoAP,
HTTP, etc, and providing access to heterogeneous Producers
and Consumers. The functionalities of the FSP include:

• Provision and handle heterogeneous producers,
• Collect, analyze, and visualize data form producers,
• Support interoperability for different kind of producers.

Besides, the FSP can model processed data to make se-
mantic contexts and provide interoperability at data annota-
tion level through concepts, properties, and the definition of
relationships between data objects by the RDFs & OWL and
Storage components. These modeled data then are mapped into
a triplestore (a triple is a data entity composed of subject-
predicate-object) or RDF (resource description framework)
store by taking advantage of a web ontology language (OWL,
a standard of W3C [3]). To manage a different set of producers
and their different native protocols, we have experimented

Fig. 2: Microservices architecture of Fog computing

with two procedures for registering a new producer and
mapping raw data that generated from producer into semantic
data. To register, the Producer sends its profile informa-
tion (producerId, manufacturer, name, location,
model, description) to the FSP. This information is
used to map into a triplestore to store for purpose further.
However, this proposed fog computing architecture still lacks
some elements to create a unified data model with capacity
interoperability and context information sharing for various
IoT application domains. In this paper, we define a complete
data model to overcome the mentioned issues and describe
more details in the next section.

IV. PROPOSED DATA MODEL FOR FSP

This section provides more detailed data information to
model elements in the FSP platform. These elements are core
concepts to build a semantic data model that enables the
sharing of context information and interoperability criteria.

A. Core concepts

Establishing a complete unified ontology for IoT could be a
challenge, as there are more than 200 domain ontologies [12].
There are specific concepts for most ontologies inherent to
IoT application domains, while all IoT platforms share some
of the concepts used. To provide a contextual data information
model, we reuse the ontology based on the FIESTA-IoT
ontology [7], which is an existing unified ontology for IoT.
It provides most of the concepts identified in [8] with criteria
on core concepts when designing an ontology. However, it
lacks concepts for annotating context information to share
knowledge and has a limited notion for Software, Hardware,
and Communication.

We borrow the concepts of Sensor, Service, Location, Ob-
servation and build an ontology called FSPontex and extend
them with new core concepts, including Producer, Consumer,
InterfaceNetwork, Communication, Network, and ContextEn-
tity to describe objects in heterogeneous environments and the
interoperability of different IoT multi-network access domains.
The ContextEntity concept is the root entity to describe the
contextual information of a single node. It can be a context



for smart cities, smart health, or smart home, etc. It is a
superclass of Platform, which is a representative entity for
entities that can be attached. This entity is a direct superclass
of two context classes, namely Consumer, Producer.

1) Platform: is a core component of FSP architecture. It
represents a fog node or an FSP node that provides services,
components, and modules for Producer and Consumer. It is
also responsible for managing data information and sharing
context information with other entities. Moreover, this element
enable to model processed data to make semantic contexts
and provide interoperability at data annotation level through
concepts, attributes, and the relationships between data objects.

2) Producer: is designed to perform a particular task such
as event detection or changes in its environment. It consists of
two elements: hardware, on behalf of a physical entity like
Sensor, Actuator, SmartPhone, and software is a computa-
tional data element representing a physical entity, including
API, Virtual Device, Webservice, or Microservice.

3) Consumer: is a software entity that enables analysis,
process data generated from Producers. It can be a user’s ap-
plications that provide some authentication and authorization
mechanisms to allow access from outside through a Service
concept class.

4) InterfaceNetwork: is the point of interconnection be-
tween a Producer and a private or public network. This
concept enables to manage heterogeneous communications of
Producer either both low-layer networking (ZigBee, Blue-
tooth, LoRaWAN, etc.) and high-layer networking (MQTT,
CoAP, XMPP, or AMQP) protocols.

5) Communication: describes the state of a Producer’s com-
munication via protocol stack. The state can be in terms of the
general quality, efficiency, security, frequency, or availability
of communication to provide appropriate contexts and share
information for other applications.

6) Network: this concept class provides the state of IoT
platform’s network based on exchanged Communication con-
texts as well as from deployed network management for IoT
producers. Increased awareness of the state of the network can
offer to more effective solutions. Especially those resulting
from inherent constraints (e.g., resource constraints).

B. Properties, relationships, and annotations

Handling such large-scale heterogeneous data and process-
ing it in real-time will be a key factor in building smart
applications. Ontology-based semantic approaches have been
used to solve these issues related to large-scale heterogeneity
and interoperability. Semantically annotating IoT data is a
fundamental step toward developing smarter and interoperable
IoT applications. The principal information model focuses on
modeling data generated from producers and the relationships
between elements in the FSP. Each element is described by
classes, properties, and relationships. These classes reflect the
core concepts as mentioned in the previous section.

As depicted in Fig. 3, the central class that the other classes
directly link to is the Producer. This abstraction represents
a data stream originating from an IoT data producer. It has

Fig. 3: Data model for Fog Services Provider

datatype properties, object properties, and annotation proper-
ties that capture events or changes information of the IoT data
that would mainly be used for reference rather than actual
consumption by an application.

• Datatype property: is used to assign data values for an
entity. It can be of type boolean, date, int, etc. If we denote
A as an attribute and xsdIRI(A) is the IRI (Internationalized
Resource Identifier) of the data type xsd corresponding to the
data type of attribute A. For example, a Producer entity has
attributes and datatypes such as:
producerId xsd:int,
producerName xsd:string,
producerManufacturer xsd:string,
producerModel xsd:string,
producerDescription xsd:string,
serialNumber xsd:byte,
isMobile xsd:boolean

• Object property: is made to represent relationships be-
tween objects. Unlike databases and object-oriented program-
ming languages, properties in OWL are defined independently
of classes. When they are used, objects are identified as
belonging to the class (domain) and value (range) of the
properties. For example, a described relationship between
Producer and Observation is a complementary combination
by defined object properties that are observedBy property and
madeObservation property, respectively.

• Annotation property: allows to add annotations on indi-
viduals, class names, property names, and ontology names.
It is responsible for explaining the relationship between the
classes and establishing the relations between the data required
for efficient machine processing. It may make the information
more readable for data analysts and the object of an annotation
property must be either a data literal, a URI reference, or an
individual. Fig. 4 illustrates an instance of a data model with a
combination of object properties, datatype properties, and an-



Fig. 4: An example of a data model annotated with the proposed ontology

notation properties. The example below shows the Annotation
Property for two objects Producer and Observation:

<owl:AnnotationProperty
rdf:about="&fsp;observedBy">

<rdfs:label xml:lang="en">observed
by</rdfs:label>

</owl:AnnotationProperty>

<owl:AnnotationProperty
rdf:about="&fsp;madeObservation">

<rdfs:label xml:lang="en">made
observation</rdfs:label>

</owl:AnnotationProperty>

C. Dealing with IoT Interoperability issues

To provide interconnectivity and interoperability, we divide
interoperability issues into three different interoperability lev-
els are network layer interoperability, communication interop-
erability, and interoperability at data annotation level. These
levels are performed in six steps such as data collection, data
filtering, data aggregation, data modeling, data annotation, and
data querying. Where, the first three steps are responsible for
analyzing and formulating raw data send by Producers by
filtering out redundant data, removing duplicated and unneces-
sary data. These three steps are represented for network layer
interoperability level and communication interoperability level
with attending of entities such as Producer, InterfaceNetwork,
Communication. At the data annotation level implements the
annotation process to tag data that processed previously by
concepts through three steps later. These steps model data
by the domain ontology and reference ontologies. Semantic
annotation of Producer data by utilizing a standard mecha-
nism and vocabulary can provide interoperability between IoT
vertical silos. Therefore, it can be exploited by other services.
At this level Service, Consumer, Observation, and Platform
entities have an important role to form FSPontext with the
interoperability and share context information along with their
relationships.

D. Description language and query in Data Model

The most used and well-known language to describe on-
tologies is Ontology Web Language (OWL) proposed as a

standard by W3C’s Web Ontology Working Group [3]. Part
of this work is conducted using the Protégé tool [Protégé,
version 5.5.0]. It is developed by the Stanford Research Center
based on Java language. One important advantage of Protégé
is the higher compatibility with different ontology description
languages such as WebOnto [10] and OntoEdit [19]. Beside,
Protégé enables users to build, edit classes and properties,
import different ontologies, visualize ontologies in various
techniques, reasoning ability, create rules, and execute queries
using a configurable graphical user interface (GUI). Fig. 5
illustrates the relationship between classes in the FSPontex.

By providing semantic annotation to producer data, the
FSPontex ontology is stored in a single RDF or OWL file
that is light-weight and supported by SPARQL query language
[5]. This language allows users to write queries against what
can loosely be called “key-value”data or, more specifically,
data that follow the RDF specification of the W3C. Thus, the
entire database is a set of subject-predicate-object
triples. This is analogous to some NoSQL databases’ usage
of the term “document-key-value”, such as MongoDB. The
following query returns names and a serial number of every
Producer in the dataset:

PREFIX fsp:
<http://www.fsp.com/fsp/ontologies/fspontex#>

SELECT ?producerName
?serialnumber

WHERE
{

?producer p fsp:Producer .
?producer fsp:producerName ?producerName .
?producer fsp:serialnumber ?serialnumber .

}

This query joins together all of the triples with a match-
ing subject, where the type predicate, “p”, is a pro-
ducer (fsp:Producer), and the Producer has one or
more names (fsp:producerName) and serial number
(fsp:serialnumber).

E. Context information in the Modeling step

In our ontology, the ContextEntity concept is used to address
different contexts, such as a generic context and a specific



Fig. 5: A visualization functionality of the FSPontex

context. The generic context can be deployed in any smart
context-aware system, while the specific context is used for
a specific smart domain, as a smart city, smart health, etc.
The contextType property provides information to identify for
these contexts. Therefore, to provide context information, a
system must follow some steps as defined by [16], including
Acquisition, Modeling, Reasoning, and Distribution. The Ac-
quisition refers to collect the raw data from an IoT producer,
from the environment. The Modeling process transforms the
data in a specific format to turn its input for the Reasoning
step. One of the techniques for Modeling is using ontology.
The Reasoning is the main step in the context. It uses different
data enrichment methods (e.g., a set of rules, probabilistic,
data fusion). The Distribution is responsible for spreading the
context information. In this paper, we focus on the Modeling
step, and it is important to convert the context into a predefined
format. An instance to share information of Producer in a
smart home application with its profile information, as shown
in Table. I.

TABLE I: Sharing specific producer’s profile into a generic
context

Specific Producer Profile Generic context
name: raspberry
manufacturer: UK
model: B HighTempLevel
description: room temperature InsideE206Room
serialnumber:90035229 AffernoontPeriod
temperature of room: 36°C
date time: 2020-07-29T14:23:45:152Z
longitude: 41.24336
longitude: -0.593154
altitude: 2sdFloor

V. CONCLUSION

Interoperability in IoT is difficult to achieve due to its
heterogeneous nature and the lack of standard architecture.
The available IoT ontologies are not adequate for semantic
interoperability when an interaction between devices is limited
to a specific domain of IoT. However, ontologies designed in
various contexts are not able to validate the semantic inter-
operability between heterogeneous IoT devices. This article
presents a view on how to achieve interoperability at the data
and knowledge levels to support smart applications in IoT
domains. We have proposed a new semantic data model for fog

computing platform with help of the ontology, named FSPon-
tex, and defined several new concepts to build a complete
ontology, including Producer, Consumer, Communication, In-
terfaceNetwork, Network, and ContextEntity which enables
sharing contextual information between IoT applications. The
FSPontex is an easily accessible and understandable semantic
model and can apply for IoT supported platforms. In the future,
we will need to be conducted to finalize the validation of our
ontology and to investigate its more complex test scenarios.
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