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Collision-free formation tracking of multi-agent
systems under communication constraints

Syed A. Ajwad, Emmanuel Moulay, Michael Defoort, Tomas Ménard and Patrick Coirault

Abstract— This paper deals with the problem of collision-
free formation tracking of second-order Multi-Agent Sys-
tems (MAS) under communication constraints. It is as-
sumed that an agent can only transmit its position to its
neighbors at asynchronous and aperiodic discrete time
instants. Velocity and acceleration of the agents are not
available. Moreover, the dynamics of the leader can be
controlled through an external input. Using continuous-
discrete time observers, an output feedback formation con-
troller is designed to drive the agents to a desired formation
shape and to ensure that the formation tracks the leader
trajectory under directed communication topology. A po-
tential function based mechanism is incorporated into the
proposed formation tracking algorithm to avoid collision
between agents. The simulation results have shown the
efficacy of the proposed algorithm.

Index Terms— Artificial potential function, Continuous-
discrete time observer, Formation tracking, Nonuniform
and asynchronous sampling

I. INTRODUCTION

FORMATION patterns produced by natural organisms to
deal with different situations have attracted the attention

of the research community. For instance, ants generate differ-
ent patterns to move large chunks of food from a source to
their underground nest and some birds fly in a V shape to
reduce flying efforts. Other examples of formation producing
tasks in nature are bacteria swarming and fish schooling. Mo-
tivated by these examples, formation control of Multi-Agent
Systems (MAS) has been widely studied in the past decades
and applied in various fields like surveillance, exploration,
target localization, satellite formation flight and robotics [1].

The goal of formation control is to drive all the autonomous
agents to reach and maintain a desired geometric shape.
Sometimes, the whole formation is required to track a desired
trajectory while maintaining the geometric shape, which is
known as formation tracking. The cooperative control of the
agents can be achieved through centralized or distributed
schemes. The latter has obvious advantages which include
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but are not limited to efficiency, scalability, robustness and
reliability [2].

The research devoted to formation tracking of MAS gen-
erally falls into three categories namely, leader-follower ap-
proach [3], virtual structure method [4] and behavior based
approach [5]. Another interesting approach to achieve forma-
tion tracking is through distributed consensus protocols by
choosing an appropriate state deviation from the consensus
value. Moreover, all the aforementioned techniques can be
incorporated in consensus based formation tracking methods
[6] and usually provide a more reliable and robust solution
even if some of the agents are subject to a failure [7].

Many formation control techniques have been proposed
in the literature, for instance [8]–[10] etc. It is commonly
assumed that the states of an agent is available to its neighbors
either continuously or at regular time instants. Nevertheless,
this assumption is not always valid in real-world scenarios. In-
deed, in practical applications, measurement and transmission
of the whole state are often impossible due to the compact
size of the agent or the cost. In such cases, it is necessary
to estimate the unavailable states from the available informa-
tion. Moreover, due to the digital nature of the computation
and transmission equipment, nonuniform sampling periods
are inevitable in real-world scenarios. Furthermore, to avoid
clock synchronization, each agent transmits its information
at asynchronous time instants. The problem of asynchronous
communication in MAS has been widely discussed in the liter-
ature, e.g. [11], [12]. Asynchronous transmission is sometimes
also advantageous in a sense that it could reduce the communi-
cation load on the network since each agent in MAS transmits
at different time instants. Therefore, some researchers have
proposed event-triggering based techniques where information
among the agents is communicated in a controlled asyn-
chronous manner [13], [14]. In fact, in event-triggered based
consensus protocols, information is communicated only when
a particular event occurs. However, in this type of algorithm,
pre-information of the event-triggering mechanism or function
is required. Furthermore, in [13], [14], it is considered that
all the states are available to the agent and its neighbors. To
cope with the aforementioned communication constraints, a
leaderless (resp. leader-following) scheme has been proposed
for second-order MAS in [15] (resp. in [16]). These control
algorithms were based on continuous-discrete time observers
[17] which reconstructed position and velocity in continuous-
time from the discrete position data. Recently, an attempt to
deal with the formation tracking problem under communica-
tion constraints has been proposed in [18]. However, in this



paper, collision avoidance is not considered which is another
important issue in the formation tracking problem. It is vital
to avoid collision between the agents while they converge
to the desired geometric shape. Among various techniques
for collision avoidance, the Artificial Potential Field (APF)
method has been widely used for MAS due to its efficiency
and simplicity [19], [20].

In this article, a novel distributed formation tracking al-
gorithm with collision avoidance is proposed for double-
integrator MAS under communication constraints which in-
clude: (i) availability of position state only to the neighbors
which means that the agent velocity and acceleration (input)
are not available at all, (ii) the measured position state is
transmitted at arbitrary nonuniform and irregular time instants,
(iii) the sampling instants of each agent are asynchronous and
completely independent from the other agents in the system
and (iv) the communication topology is directed. The reference
trajectory is produced by an active leader and only small
portion of agents have access to the leader position. It must
be noted that [16] only deals with consensus tracking problem
while the current research work focuses on the design of
collision-free formation tracking algorithm. To the best of the
authors’ knowledge, our article is the first attempt that deals
with the problem of collision-free formation tracking of MAS
under the above mentioned communication constraints (e.g.
asynchronous and aperiodic sampled position data).

II. PRELIMINARIES AND PROBLEM STATEMENT

A. Preliminaries
A directed graph G is a pair (V, E), where V is a nonempty

finite set of nodes and E ⊆ V × V denotes a set of edges.
An edge represents an ordered pair of distinct nodes. An edge
(i, j) of graph G means that node j can receive data from
node i. A graph has a directed spanning tree if there exists a
directed path from the root to all other nodes. The adjacency
matrix A = (aij) is an N ×N matrix of graph G with N
nodes, where aij = 1 if node i can receive data from node j
and aij = 0 otherwise. The Laplacian matrix L ∈ RN×N is
defined as lii =

∑
j 6=i aij , lij = −aij for i 6= j. Let a diagonal

matrix B = diag(b1, b2, . . . , bN ) represent the connectivity
between the leader and the N followers. If follower j can
receive information from the leader then bj = 1, otherwise
bj = 0. The communication graph combining both the leader
and the followers is denoted by Ḡ. More details on graph
theory can be found in Appendix B of [21].

Assumption 1: The directed graph Ḡ has a directed span-
ning tree with the leader as a root.
Matrix H = L + B is a nonsingular M-matrix due to
Assumption 1 [22]. Furthermore, there exists a diagonal matrix
Ω = diag(ω1, . . . , ωN ) such that HTΩ + ΩH > 0 [23]. Let

ωmax = max{ω1, . . . , ωN} (1)
ρ = λmin(HTΩ + ΩH) (2)

where λmin(.) represents the smallest eigenvalue.
Lemma 1: [16] Suppose that v1(t) and v2(t) are real

valued functions verifying d
dt

(
v21(t) + v22(t)

)
≤ −av21(t) −

bv22(t) + c
∫ t
t−δ v

2
2(s)ds + k for t ≥ 0, where a, b, δ > 0 and

c, k ≥ 0. There exists % > 0 and ᾱ ≥ 0 such that if δ < %,
then v21(t) + v22(t) ≤ ᾱe−σt + k

σ , ∀t ≥ 0 where σ is given by
σ = 1

2 min (a, b).

B. Problem statement
Consider a MAS consisting of followers 1 . . . N with the

following second-order dynamics

ẋi(t) = Axi(t) +Bui(t), yi(t) = Cxi(t) (3)

for i = 1, . . . , N , where xi(t) = [pi(t)
T , vi(t)

T ]T with
pi(t) and vi(t) ∈ Rm are the position and the velocity
respectively while ui ∈ Rm represents the input of agent i.

A =

(
0m Im
0m 0m

)
, B =

(
0m
Im

)
and C =

(
Im 0m

)
are the

system input and output matrices, respectively. The dynamics
of the leader is given by

ẋ0(t) = Ax0(t) +Bu0(t), y0(t) = Cx0(t) (4)

The input of the leader u0 is independent and is not affected
by other agents in the network. It can be designed to achieve
any required reference trajectory for the followers. Only the
following assumption is made.

Assumption 2: The input of the leader u0(t) is bounded by
a constant δ0 ≥ 0, i.e. for all t ≥ 0 one has ‖u0(t)‖ ≤ δ0.
Following are the considerations in this article: (a) each agent
in the network including the leader can only measure its
position pi; (b) an agent cannot measure its velocity vi and its
input ui; (c) each agent transmits its position information to
its neighbors at irregular time intervals, the sampling instants
for data transmission of each agent are totally independent
from all other agents; (d) the leader can send its position data
to only a few agents in the network; (e) The communication
among the neighbors is one-way and is modeled through the
directed graph Ḡ. Let ti,jk be the instant when agent j transmits
its position information to agent i where i = 1, . . . , N , j =
0, . . . , N (j 6= i) and k ∈ N such that 0 < ti,jk+1 − t

i,j
k < τM

where τM is the maximum allowable sampling time. The
formation shape can be specified by a desired formation vector
F = [fT1,p . . . f

T
N,p] where fi,p ∈ Rm is the corresponding

position offset of agent i with respect to the leader. It is worth
noting that the formation information is communicated to the
agents beforehand and is not transferred during the tracking
process.

Definition 1: The formation tracking of MAS (3)–
(4) for a given input u0(t) is practically achieved if
lim supt→+∞ ‖(xi(t)− fi − x0(t))‖ ≤ ε, for i = 1 . . . N ,

where ε > 0 is a positive constant and fi = [fTi,p 01×m]T .
The objective of agent i is to achieve and maintain the desired
position in the formation pattern while avoiding collision
with other agents. Let each agent have a circular safety disc
around it with radius r. Then collision avoidance means that
no intersection should occur between the agents’ discs i.e.
‖pi − pj‖ > 2r for all i, j, i 6= j at each time instant.

III. FORMATION TRACKING AND COLLISION AVOIDANCE
PROTOCOL DESIGN

In this section, first we propose a consensus based formation
tracking algorithm by introducing position offset fi,p in the



consensus law of [16]. If a proper formation matrix F is cho-
sen, the agents do not collide with each other once the desired
formation is achieved. However, during the transition phase,
one still needs a collision avoidance mechanism. Therefore, in
the second step, we update the proposed formation tracking
algorithm and introduce a collision avoidance term in it to
ensure that the agents do not collide while converging to the
desired formation. The stability analysis of the collision-free
formation tracking algorithm becomes more complicated since
the overall dynamics of the controller are changed due to the
additional terms for collision avoidance. Hence, it cannot be
achieved via a simple extension of the results of [16].

A. Formation tracking control
The control input for formation tracking is given by

ufi (t) = −c̄φ2
 N∑
j=1

aij [p̂i,i(t)− fi,p − p̂i,j(t) + fj,p]

+bi[p̂i,i(t)− fi,p − p̂i,0(t)]

]
− c̄2φ

 N∑
j=1

aij [v̂i,i(t)

−v̂i,j(t)] + bi [v̂i,i(t)(t)− v̂i,0(t)]

]
(5)

where φ and c̄ denote the controller gain and coupling strength
respectively while p̂i,j and v̂i,j are the estimated position and
velocity of agent j by agent i and are given by

˙̂xi,j(t) =Ax̂i,j(t)− θ∆−1θ Koe
−2θ(t−κi,j(t)) [p̂i,j(κi,j(t))

−pj(κi,j(t))] (6)

with x̂i,j(t) = [p̂Ti,j , v̂
T
i,j ]

T , ∆θ =

(
Im 0m
0m

1
θ Im

)
, Ko =[

2Im Im
]T

while θ represents the observer tuning parameter.
κi,j(t) = max

{
ti,jk | t

i,j
k ≤ t, k ∈ N

}
is the last instant when

agent i receives the position data of agent j. The above
expression (6) represents a high-gain continuous-discrete time
observer which estimates position and velocity of an agent
as well as its neighbors in continuous time from discrete
position data. The dynamics of the observer is nonlinear
due to time-varying exponential gain. Observers with time-
varying gains are specially useful for the state estimation of
irregular sampled-data system [24], [25]. Therefore, the overall
dynamics of the closed-loop system with controller (5) and
observer (6) becomes nonlinear.

Theorem 1: Consider the MAS (3)–(4) with formation
tracking protocol (5)–(6) and suppose that Assumptions 1–2
hold, then there exist ε ∈ (0, 1) and %̄ > 0 such that if

θ ≤ %̄

τM
(7)

c̄ ≥ ωmax
ρ

(8)

φ = εθ (9)

then
N∑
i=1

‖ei(t)‖ ≤ αe−
φ
γ t +

βδ0
φ
, ∀t ≥ 0 (10)

where ei is the formation tracking error of agent i defined as
ei = xi − x0 − fi, α, γ > 0, δ0 is the upper bound of the
leader input and β > 0 does not depend on θ, φ, c̄, τM and the
initial conditions of the agents and observers. ωmax and ρ are
defined in (1) and (2) respectively.

Proof: Denoting the tracking error as ei = xi − x0 − fi
and the estimation error x̃i,j = x̂i,j − xj for j = 0 . . . N and
i = 1 . . . N , input (5) can be written as

ufi = −c̄KcΓφ

N∑
k=1

Hikek−c̄KcΓφ

N∑
k=1

Hikx̃i,k+bic̄KcΓφx̃i,0

where Kc =
(
Im 2Im

)
, Γφ = diag(φ2Im, φIm) and Hik is

ikth element of matix H. The tracking error dynamics can be
expressed as ėi = Aei+B(ufi −u0). Similarly, the estimation
error dynamics can be re-written as

˙̃xi,j(t) = (A− θ∆−1θ KoC)x̃i,j(t)− θ∆−1θ Kozi,j(t)−Bufj (t)

where zi,j(t) =
[
e−2θ(t−κi,j(t))Cx̃i,j(κi,j(t))− Cx̃i,j(t)

]
.

Considering the new coordinates ēi = Γφei and x̄i,j = ∆θx̃i,j
and using the equalities, ∆θA∆−1θ = θA, C∆−1θ = C,
ΓφAΓ−1φ = φA, ΓφB = φB, ∆θB = 1

θB and BT∆−1θ =

θBT , one can obtain ˙̄ei = φAēi + φBufi − φBu0, ˙̄xi,j =

θ(A−KoC)x̄i,j − θKozi,j − 1
θBu

f
j and

ufi = −c̄Kc

[
N∑
k=1

Hikēk − Γφ∆−1θ

(
N∑
k=1

Hikx̄i,k + bix̄i,0

)]
Denoting ηc = [ēT1 . . . ē

T
N ]T , ηoi = [(x̄i,1)T . . . (x̄i,N )T ]T ,

i = 1 . . . N and ηo0 = [(x̄1,0)T . . . (x̄N,0)T ], it can be found
that η̇c, η̇oi and η̇o0 are similar to ones provided in [16].
Following the procedure of [16] and Lemma 1, one can achieve
inequality (10) which ends the proof.

Remark 1: Inequality (10) shows that the MAS achieves
practical stability which means that the error will remain in a
ball of an arbitrary small radius and centred at the origin. It is
worth noting that the MAS will achieve exponential stability
if leader is stationary or moving with constant velocity, i.e.
leader without external input.

Remark 2: It can be seen from inequality (10) that the final
error can be reduced by increasing controller parameter φ. It
will also increase the convergence rate. However, the controller
dynamics must be slower than the observer dynamics in order
to guarantee the stability of the closed-loop system which is
represented by (9) with the fact that ε < 1. Moreover, (7)
shows that the observer parameter θ is directly affected by the
maximum sampling time τM . θ must be chosen small enough
for the case of large τM .

Remark 3: The structure of the proposed observer-based
algorithm shows some advantages to handle communication
delays in the measurements and data packet dropouts. As each
controller is using the estimated states provided by the local
observer, by time stamping the measured position data, the
estimation can be provided as soon as the data is received,
even with a delay. Moreover, if the information packet is lost
during communication, the observer could still provide the
estimation if the next data is available within τM duration
with respect to the last available data.



B. Collision avoidance

For the implementation of the formation tracking controller,
the safety distance between agents (i.e. 2r) should be consid-
ered while agents converge to the desired position. Indeed,
without this constraint, agents could collide and be damaged.
Therefore, it is of utmost importance to include some colli-
sion avoidance mechanisms in order to achieve collision-free
formation tracking. In this paper, a repulsion force between
agents to avoid collision has been introduced using APF. It
allows agents to repel each other when the distance between
them becomes smaller than a certain value. All the agents
which are nearby and in the restricted vicinity of an agent
are considered as obstacles. Based on the practical aspects, an
ideal potential function must have the following properties:
(i) the range of the potential field must be bounded. Usually,
it depends on the range of obstacle sensors mounted on the
agent, (ii) the value of the potential field and the corresponding
repulsion must be infinity at the boundary of the obstacle and
must decrease with the increase in the distance and (iii) first
and second derivatives of the potential function must exist in
order to have a smooth repulsion force.

Assumption 3: It is assumed that agents are equipped with
proximity sensors and can detect the distance (relative posi-
tion) of any non-cooperative and cooperative entities within a
sensing range R > 0.

Remark 4: Sensing capability is required to sense the pres-
ence of any other agent in the close vicinity which may lead
to a collision. These sensors give the relative position of any
agent within its range in the local frame and do not provide
position information in the global frame. It is to note that this
assumption is used for the purpose of collision avoidance only.

Let us define the following APF [26], [27]

qij =

(
min

{
0,
‖pij‖2 −R2

‖pij‖2 − 4r2

})2

(11)

where r > 0 is the radius of the safety disc around an agent
and pij = pi− pj . From (11), one gets qij > 0 if the distance
between agents i and j is less than R. It is also clear that
qij tends to infinity if the inter-agent distance tends to r and
qij = qji. The partial derivative of the potential function is

∂qTij
∂pi

=


4(‖pij‖2−R2)(R2−4r2)

(‖pij‖2−4r2)3
pTij if 2r ≤ ‖pij‖ ≤ R

0 otherwise
(12)

and ∂qij
∂pi

= −∂qij∂pj
=

∂qji
∂pi

= −∂qji∂pj
.

The total repulsion force on one agent to avoid collision is

uri (t) = −
N∑
j=0

∂qTij
∂pi

(13)

The overall formation controller with collision avoidance is
then designed as follows

ui(t) = ufi (t) + uri (t) (14)

Assumption 4: The initial configuration of the agents is
outside of the detection radius of the others. It means that

‖pi(0)−pj(0)‖ > R for all i, j, i 6= j. Moreover, the formation
shape is chosen such that the inter-agent distance in the desired
formation remains greater than R.

Theorem 2: Consider the MAS (3)–(4) with formation
tracking protocol (14) and suppose that Assumptions 1–4 hold.
If conditions (7)-(9) are satisfied,

then the formation tracking is practically achieved without
any inter-agent collision.

Proof: Let us define the position and velocity tracking
errors as ξi = pi − fi,r − p0 and ζi = vi − v0 respectively.

Step 1: First, consider system (3) with only formation
controller (5) and choose the Lyapunov function as

V1 =
1

2

N∑
i=1

[ξTi ξi + ζTi ζi] (15)

The time derivative of V1 along the trajectories of system (3)
is

V̇1 =
N∑
i=1

[
ξTi ξ̇i + ζTi

(
ufi − u0

)]
(16)

Moreover, (15) can also be written as V1 = 1
2

∑N
i=1 e

T
i ei =

1
2

∑N
i=1 ‖ei(t)‖2. By using (10), one has for all t ≥ 0:√

2V1 ≤ αe−
φ
γ t +

βδ0
φ

V1 ≤ 1

2
(αe−

φ
γ t +

βδ0
φ

)2 (17)

Step 2: Let us now consider system (3) with controller (14)
which includes both formation tracking and collision avoid-
ance. Define the following Lyapunov function:

V2 =
1

2

N∑
i=1

([ξTi ξi + ζTi ζi] +

N∑
j=1

qij(pi, pj)) +

N∑
i=1

qi0(pi, p0)

The last two terms in the above equation are corresponding
to the potential function which are needed to guarantee the
collision avoidance. The time derivative of V2 along the
trajectories of system (3) is

V̇2 =

N∑
i=1

[
ξTi ξ̇i + ζTi ζ̇i

]
+

1

2

N∑
i=1

N∑
j=1

(
∂qij
∂pi

vi +
∂qij
∂pj

vj

)

+

N∑
i=1

(
∂qi0
∂pi

vi +
∂qi0
∂p0

v0

)

=

N∑
i=1

[
ξTi ξ̇i + ζTi

(
ufi − u0

)]
+

N∑
i=1

(
∂qi0
∂pi

vi +
∂qi0
∂p0

v0

)

+

N∑
i=1

ζTi u
r
i +

1

2

N∑
i=1

N∑
j=1

(
∂qij
∂pi

vi +
∂qij
∂pj

vj

)

=V̇1 −
N∑
i=1

(vi − v0)T
N∑
j=o

∂qTij
∂pi

+

N∑
i=1

N∑
j=1

∂qij
∂pi

vi

+

N∑
i=1

∂qi0
∂pi

(vi − v0)



Since 1
2

∑N
i=1

∑N
j=1

(
∂qij
∂pi

vi +
∂qij
∂pj

vj

)
=
∑N
i=1

∑N
j=1

∂qij
∂pi

vi,
one obtains

V̇2 = V̇1 + vT0

N∑
i=1

N∑
j=1

∂qTij
∂pi

Furthermore, since
∑N
i=1

∑N
j=1

∂qij
∂pi

= 0, it leads to

V̇2 = V̇1

which implies that if the initial positions of the agents satisfy
Assumption 4, i.e. ∂qij

∂pi
= 0 at t = 0 for i = 1 . . . N , j =

0 . . . N , consequently

V1(0) = V2(0)

then

V2 = V1 ≤
1

2
(αe−

φ
γ t +

βδ0
φ

)2, ∀t ≥ 0.

Hence, the MAS achieves the desired formation with controller
(14) in practical sense. Also, from the the structure of (12) and
(13), one has lim‖pij‖→r qij =∞ and lim‖pij‖→r

∂qij
∂pi

=∞
for ∀i 6= j. Therefore, it can be concluded that collisions

are avoided.

IV. SIMULATION RESULTS

For simulation purposes, the considered network consists
of four followers labelled from 1 to 4 and a leader labelled
as 0. The directed communication topology among the agents
is shown in Fig. 1. One can note that the leader only sends

0 1 2

34

Fig. 1: Communication topology

its position data at random intervals to follower 1 while
follower 4 can receive information from both followers 2
and 3 at irregular and asynchronous sampling times. The
observer and controller gains are chosen as θ = 10 and
φ = 0.6 respectively. The detection region R = 2 while
the safety region r = 0.25 for each agent. The simulations
are performed for 2-dimensional space which means m = 2.
The initial conditions are chosen such that Assumption 4 is
verified. The desired formation is chosen to produce a square
geometric shape around the leader. The corresponding position
offsets for the followers are f1,p = [6, 6]T , f2,p = [6,−6]T ,
f3,p = [−6, 6]T and f4,p = [−6,−6]T . For the first scenario,
the leader is kept stationary at position coordinates (0, 0) while
the followers reach and maintain the desired square shape
around it. Fig. 2 illustrates the formation producing result
and the inter-agent distances. The inter-agent distance clearly
shows that the agents do not collide during the formation
producing. Fig 3 explains collision avoidance mechanism for
follower 1. The distance between follower 1 and the other
agents in the network is shown in Fig 3a while Fig 3b shows
the control input. It can be seen that the repulsion term in
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Fig. 3: Follower 1: (a) Distance with other agents – (b) Control
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Fig. 4: Tracking error for square formation with static leader

the controller activates when the distance between agents is
less than R = 2 otherwise remains zero. For the second
scenario, the leader is moving with constant acceleration i.e.
ux0

= 0.03 and uy0(0) = 0.02. Since the leader moves with
constant acceleration, only practical stability is achieved as
described in Remark 1. The corresponding results are depicted
in Fig. 5 and Fig. 6. An example of the sampling instants for
data transmission between the agents is shown in Fig. 7. In
all the scenarios, the MAS achieves desired formation without
any collision between agents.

V. CONCLUSION

The formation tracking problem with collision avoidance
has been studied for MAS under communication constraints. It
has been considered that the agents can only transmit their po-
sition states to the neighbors at nonuniform and asynchronous
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Fig. 5: Square formation with constant leader acceleration
input: (a) Formation tracking – (b) Inter-agent distances
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sampling instants. Using continuous-discrete time observers
and potential function based mechanism, an output feedback
formation controller has been derived. The study of formation
tracking consensus of nonlinear MAS under communication
constraints along with noise is considered as future work.
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