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ABSTRACT Similarity measure is a critical tool for time series analysis. However, currently established
methods, for instance, dynamic time warping (DTW) and its variants, are still facing some issues such as
non-maximum-to-maximum alignment and pathological alignment, etc. Despite many attempts to improve,
these issues remain stubborn because they are directly caused by the intrinsic mechanism of DTW. Thinking
out of the context of DTW based methods, we propose in this paper a new time series similarity measure
framework which we call Time Adaptive Optimal Transport (TAOT). As its name implies, TAOT is based
on optimal transport, a powerful distance measure for histograms and probability distributions, and TAOT
inherits several promising properties from optimal transport to tackle the problems of classic DTW based
methods. We make optimal transport capable of handling time series data by considering both observed
values and their corresponding time coordinates simultaneously. TAOT can generate a many-to-many
alignment between time series that further releases the search space for a more correct result. Experimental
results show that TAOT can outperform other widely used similarity measures on classification tasks on
multiple datasets. We also introduce the parameter extracting and visualization strategies of TAOT in this
paper.

INDEX TERMS Optimal transport, time series, similarity measure, Sinkhorn distance, classification.

I. INTRODUCTION

S IMILARITY measure is fundamental to many machine
learning and data mining tasks, such as classification

[1]–[4], clustering [5]–[7], indexing [8]–[11], etc. In the con-
text of time series analytics, similarity measure has long been
a research hotspot and many methods have been proposed
[2], [12]–[16]. These similarity measures can be roughly
categorized into: time-rigid measures (Euclidean distance),
time-flexible measures (dynamic time warping) [15], [17],
feature-based measures (Fourier coefficients) [18]–[20], and
model-based measures (auto-regression and moving average
model) [14], [21]. Among these methods, dynamic time
warping (DTW) [17] and its variants [22]–[27] are probably
the most popular and established ones [12], [21], [28]. How-
ever, this kind of DTW-based methods still exhibit several
intrinsic alignment problems:

a) Pathological alignment: A critical job for similarity
measure of time series is to tackle time distortions. DTW

screens most time distortions by realigning data points in
the two time series to be compared, and that helps DTW
outperform Euclidean distance in many scenarios [28]. How-
ever, the intrinsic rules used by DTW to generate the new
alignment can lead to pathological alignment, where a single
point in one time series links to a large subsection of another
time series [23], as shown in Fig. 1(a). In order to avoid this
undesirable alignment, various constraints for DTW [29]–
[32] have been proposed, for instance, Sakoe-Chiba band and
Itakura parallelogram. But most of these constraints are rigid
such that they take a risk of preventing the correct alignment
from being generated.

b) Pairing of maximum values: In some applications, the
maximum value of a time series is of overwhelming impor-
tance, and thus it is decisive to guarantee that the maximum
value of one time series aligns to the maximum value of
another time series. Unfortunately, DTW and its existing
variants provide no such guarantee, and to some extent this
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requirement even conflicts with the underlying mechanism of
DTW. A mandatory pairing of maximum values can break the
time-monotonicity of DTW and prevent DTW from finding
the optimal alignment with the lowest global cost. Other
common similarity measures, such as Euclidean distance and
Minkowski distance, can only succeed in a certain situation
when two peaks happen at the same time point, because they
obey a time-rigid alignment rule.

c) Many-to-many alignment: From the perspective of ty-
pology, there should be three categories of alignments be-
tween time series, one-to-one, one-to-many, and many-to-
many, as illustrated in Fig. 1(b-c-d) respectively. Among
the three categories, the potential of one-to-one alignment
and one-to-many alignment has already been exploited; for
instance, time-rigid methods employ one-to-one alignment
and DTW-based methods employ one-to-many alignment.
However, the use of many-to-many alignment is still an open
direction. In theory, many-to-many alignment has a larger
capacity and a higher flexibility. Therefore, many-to-many
alignment based methods deserve to be developed.

d) Privilege of time ordering: The similarity between time
series is measured mainly from two aspects: observed values
and time ordering. To some extent existing methods always
consider time ordering in the first place. For instance, DTW
first sets a rule of time ordering (continuity, monotonicity,
etc), and then finds the minimum accumulated cost of ob-
served values under the given time ordering rule. Euclidean
distance simply follows a time-rigid ordering. This privilege
of time ordering narrows the search space and as a result
forfeits the opportunity to find a more correct alignment. In-
stead, a new method that considers observed values and time
ordering simultaneously may further release the capacity and
lead to a more accurate similarity measure.

A review of literature shows a lack of method effectively
responding to the aforementioned issues, and one reason is
that these alignment problems are closely related to the core
mechanism of DTW. Thinking outside the context of classic
DTW-based methods, we find Optimal Transport (OT) [33],
also known as the Earth Mover’s Distance (EMD) [34] or
Wasserstein Distance, is a successful method to compare
probabilities or histograms [35]–[37], and theoretically it has
several promising properties [38] to solve the aforementioned
alignment problems of DTW. For example, OT does not
rely on the time order of data points and it always aligns
maximum values with each other. In the past the utility of
OT was greatly limited by its high computational complexity,
but fortunately this issue has been largely alleviated by one
of its variants, Sinkhorn distance [38], which transfers OT
into a problem with a fast solution by adding an entropic
regularization term and ends up making the computation
several orders of magnitude faster. Another barrier to the
use of OT on time series data is that OT only considers
the observed values while ignores the corresponding time
coordinates.

In this paper, we propose a time-adaptive version of OT
(TAOT) to serve as a new similarity measure framework

(a) pathological alignment (b) one-to-one

(c) one-to-many (d) many-to-many

FIGURE 1. Examples of different categories of alignments between time
series.

between time series. We make Sinkhorn distance capable
of handling time series data by considering both observed
values and their corresponding time coordinates simultane-
ously. Classification experiments on multiple real-world and
synthetic datasets are conducted to show the accuracy of
TAOT and how the aforementioned alignment problems of
DTW are coped with. Other closely related topics such as the
parameter extracting strategies and the visualization of TAOT
will also be discussed.

The rest of the paper is structured as follows. Section II
briefly revisits related works on dynamic time warping
(DTW), optimal transport (OT), and their major variants.
Section III details the proposed new similarity measure,
namely TAOT. Section IV evaluates the performance of
TAOT with classification experiments on UCR time series
datasets and discusses several practical issues. Finally, Sec-
tion V summarizes our main conclusions.

II. BACKGROUND
A. DYNAMIC TIME WARPING
DTW was first introduced in the field of speech recognition in
the influential work by [17] and soon become widely used be-
cause it can cope with time distortions effectively. DTW aims
at finding the optimal alignment between time series that can
achieve the minimum accumulated cost. Given two time se-
ries, A = a1, a2, ..., ai, ..., am and B = b1, b2, ..., bj , ..., bn,
DTW first constructs an m-by-n cost matrix D. Each matrix
cell (i, j) contains the distance d(i, j) between the two data
points ai and bj . Squared Euclidean distance is normally
used when calculating the cost matrix, and thus d(ai, bj) =
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(ai − bj)2. Then DTW tries to find the optimal alignment
that leads to the minimum accumulated cost. The alignment
is represented by a warping pathW = w1, w2, ..., wk, ..., wK
that consists of a continuous set of matrix cells. Each matrix
cell, for instance, wk = (i, j) corresponds to a pairing of
points ai and bj , and the cost between them d(i, j) is added
to the final accumulated cost. Fig. 2 shows an example of
the cost matrix and warping path. Eq. 1 defines the above-
described DTW distance:

FIGURE 2. Warping path and cost matrix of DTW.

dtw(A,B) = min
W

K∑
k=1

d(wk) (1)

DTW satisfies three time ordering rules: boundary condi-
tion, continuity, and monotonicity [23]. The boundary con-
dition restricts the warping path to start at the lower-left
corner of the warping matrix w1 = (1, 1) and finish at the
upper-right corner wK = (m,n). The continuity restricts the
allowable steps to adjacent cells. The monotonicity prevents
all steps in the warping path from turning backward in any
circumstances.

In practice, DTW distance can be efficiently calculated
by the following recursive formula: dtw(i, j) = d(i, j) +
min{dtw(i− 1, j − 1), dtw(i, j − 1), dtw(i− 1, j)}, where
dtw(i, j) is the accumulated cost found in current cell (i, j)
and the final DTW distance is dtw(m,n).

B. VARIANTS OF DTW
Despite its popularity, DTW was proposed decades ago and
its pathological alignment problem has long been noted. In
order to alleviate the problem, different variants of DTW
have been proposed and we briefly review them here. These
methods can be classified into two major categories.

The first category sets constraints on DTW. The most com-
mon and straightforward constraint is windowing [29]–[32],
where allowable elements of warping path must be located
within a warping window, as illustrated by the dashed line
in Fig. 2. Different warping windows have been proposed,
among which Sakoe-Chiba band and Itakura parallelogram
are two most commonly used ones. In recent years, some
researchers suggest to learn adaptive-shaped windows [39],
[40] from the data instead of fixed-shaped windows. An-
other frequently used type of constraints is weighting. For
example, Weighted DTW (WDTW) [24] is a representative
method of weighting which applies different weights to
temporally adjacent points when computing DTW. By pe-
nalizing further points, WDTW prevents minimum distance
distortions caused by outliers and enhances the detection
of similarity between two time series. Besides windowing
and weighting, recently proposed LDTW [27] constrains the
maximum allowable length of the warping path based on
the observation that pathological alignment always happens
concurrently with an unusually long warping path. SP-DTW
and its kernelization version SP-KrDTW [41] address the
sparsification of the alignment path search space for DTW-
like measures to improve their efficiency without loosing
accuracy.

The second category replaces the feature DTW considers.
For example, Piecewise DTW (PDTW) [42], [43] proposes to
use a compact abstraction instead of the raw data to compute
DTW, with the aim of avoiding the impact of outliers and
accelerating the computation. PDTW first splits time series
into fixed-length segments and compute the mean of each
segment. Then these mean values are used instead of raw data
points. A challenge of PDTW is the choice of the optimal
size of segments. To avoid brute-force search, Parameter Free
Piecewise DTW (FDTW) [26] proposes a heuristic search of
the size of segments for PDTW on the basis of classification
accuracy. Derivative DTW (DDTW) [23] considers the local
derivative of each data point rather than the raw value. Many
variants of DTW can have a derivative version, for instance,
WDTW and Weighted Derivative DTW (WDDTW) [24].
SC-DTW [25] views time series as 2D contours and employs
shape context, a rich shape descriptor, to compute DTW.
Local feature based DTW (LFDTW) [20] proposes a general
framework to use different type of local features to generate
the warping path.

C. OPTIMAL TRANSPORT
In the context of machine learning, OT [33], [34](also known
as Earth Mover’s Distance (EMD) or Wasserstein Distance)
has long been a powerful tool to compare probabilities or
histograms [37], [44], [45]. OT is modeled as the solution
to the transportation problem. Suppose there are a collection
of mines mining iron ores, and a collection of factories that
consume the iron ores. Given the amount of supply and
demand of each mine and factory, and the shipment cost from
each mine to each factory, OT can find the optimal allocation
plan with a minimum total shipment cost for resolving the
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FIGURE 3. An example of optimal transport. We can observe that OT
generates a many-to-many alignment.

supply-demand transports.
Given two probability distributions denoted as:

(A|pA) = {(a1|pa1), (a2|pa2), ..., (ad|pad)}
(B|pB) = {(b1|pb1), (b2|pb2), ..., (bd|pbd)}

(2)

where ai or bi is the i-th observed value in the respective
distributions and p is its corresponding probability value. Let
M = {mij} be the cost matrix, where typically mij = (ai−
bj)

2, then the OT distance can be defined as:

dM (A,B) := min
P∈U(A,B)

d∑
i,j=1

pijmij (3)

U(A,B) := {P ∈ Rd×d+ | P1d = pA, P
T 1d = pB} (4)

where 1d is the vector of ones with a dimension of d, and
U(A,B) contains all possible joint probabilities of A and
B, whose row and column sums to pA and pB respectively.
Fig. 3 illustrates an example of OT. The optimal transport
plan P ?, is thus defined as:

P ? := argmin
P∈U(A,B)

d∑
i,j=1

pijmij (5)

OT is a special case of the linear programming (LP)
problem whose worst case time complexity is O(d3logd)
[46]. Although the acceleration of OT has attracted a large
amount of research interest and various algorithms have been
proposed, the computational overhead remains high (super-
cubic). Recently a variant of OT, Sinkhorn distance [38],
successfully makes OT several orders of magnitude faster,
which greatly enhances the utility of OT. Sinkhorn distance
adds an entropic regularization to the classic OT formula
and then enforces a simple structure on the optimal transport
matrix, as defined by the following equation:

dλM (A,B) := min
P∈U(A,B)

 d∑
i,j=1

pijmij +
1

λ

d∑
i,j=1

pij log pij


(6)

where λ is the regularization coefficient. As λ increases
Sinkhorn distance converges to the classic OT distance.
When M itself is a metric matrix, Sinkhorn distance satisfies
all the three distance axioms, including the symmetry and the
triangle inequality. As its name implies, Sinkhorn distance
can be computed by SinkhornâĂŹs fixed point iteration
[47], [48]. To converge to the optimal transport matrix Pλ,
one only needs to iterate SinkhornâĂŹs update a sufficient
number of times. The algorithm can be even faster with
GPUs because it supports 1-vs-N mode where the distances
against multiple targets are computed simultaneously. The
1-vs-N mode turns vector-by-matrix operations into matrix-
by-matrix operations, which leads to a higher computing
density and makes the algorithm more suitable for parallel
computing. A flaw of Sinkhorn distance is that sometimes
it will be constrained by machine-precision limit when λ
increases beyond a problem-dependent value λmax beyond
which some elements of e−λM are represented as zeroes.

III. TIME ADAPTIVE OPTIMAL TRANSPORT (TAOT)
The motivation of TAOT is to migrate OT from probabili-
ty distributions (one-dimensional) to time series data (two-
dimensional), which means except for the difference in ob-
served values, TAOT also need to capture the difference in
time coordinates. An intuitive solution is to consider both
observed values and their corresponding time coordinates
when calculating the cost between data points in respective
time series. In this setting, the one dimensional data point, for
example ai, is extended by another time dimension, (ai, ti),
and then a straightforward cost matrix can be defined as
M(i, j) = (ai − bj)2 + w ∗ (ti − tj)2, where w is a weight
parameter to balance the two parts.

Originally the OT algorithm copes with probability dis-
tributions and each input value must have its corresponding
probability. Here we assume all observed values of a time
series share an equal probability based on the fact that these
values come from independent observations. As a result, the
input time series can be denoted by:

(A|pA) = {((a1, t1)|
1

d
), ((a2, t2)|

1

d
), ..., ((ad, td)|

1

d
)}

(B|pB) = {((b1, t1)|
1

d
), ((b2, t2)|

1

d
), ..., ((bd, td)|

1

d
)}

(7)
Since each observed value shares an equal probability, the

Sinkhorn iteration [38] can be further simplified. Algorithm 1
summarizes the simplified TAOT algorithm. Basically it con-
tains two phases, where it first prepares the cost matrix and
then iterates the simplified Sinkhorn update until the stopping
criterion or the maximum iteration number is reached. Note
that the time coordinates are normalized into z-score before
calculating the cost matrixM . We can get not only the TAOT
distance from the algorithm, but also the optimal transport
plan, which is significant to the visualization of the results
and the execution of other analysises.
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Algorithm 1 Computation of Time Adaptive Optimal Trans-
port
Input: A,B, λ,w,maxIter = 5000, tolerance = 0.005
Output: distance, plan
1: d = |A|
2: t = zscore(linspace(1, d, d))
3: for i = 1 : |A| do
4: for j = 1 : |B| do
5: M(i, j) = (ai − bj)2 + w ∗ (ti − tj)2
6: end for
7: end for
8: M =M/median(M(:))
9: K = exp(−λ ∗M)

10: curIter = 0
11: u = ones(d, 1)/d
12: while curIter < maxIter do
13: v = 1./(d ∗K ′ ∗ u)
14: u = 1./(d ∗K ∗ v)
15: curIter = curIter + 1
16: if mod(curIter, 20) == 1 then
17: criterion = sum(abs(v. ∗ (K ′ ∗ u)− 1/d))
18: if criterion < tolerance then
19: break
20: end if
21: end if
22: end while
23: distance = sum(u. ∗ ((K. ∗M) ∗ v))
24: plan = bsxfun(@times, v′, (bsxfun(@times, u,K)))

The general idea of TAOT is to integrate temporal dissim-
ilarity between time series to the final distance measure. For
Sinkhorn distance based algorithm, the temporal dissimilari-
ty is usually contained in how we construct the cost matrix,
and we can observe from Algorithm 1 that any kind of cost
matrix can easily fit into this algorithm framework and lead
to a new distance measure. In this paper we just employ the
most straightforward way to construct our cost matrix. Other
definitions of cost matrix is still an open direction for future
work.

As for the computational efficiency, given two time series
of length N , the time complexity of Euclidean distance
is O(N). The time complexity of DTW-based methods,
for example, DTW, derivative DTW, or weighted DTW, is
O(N2). The time complexity of TAOT is relatively tricky
because it is not as straightforward as the Euclidean distance
or most DTW-based methods. TAOT involves a stopping
criterion for its iteration and the criterion is calculated based
on the current state of the iteration. According to a study on
the complexity of multimarginal optimal transport [49], the
time complexity of TAOT is approximately O(N2 logN).
Note that TAOT is based on Sinkhorn distance [38], which
is a faster version of optimal transport. The naive optimal
transport is a computational heavy method, whose cost of
computing scales at least in O(N3 logN).

IV. EXPERIMENT

A. 1NN ACCURACY REPORT

In this section, we evaluate the classification accuracy of
TAOT on 63 datasets of the UCR time series classification
archive [50], which has the largest and most widely used
collection of public benchmark datasets of time series. These
datasets include both real-world time series and synthetic
time series from various application domains. The length
of time series varies between 60 (Synthetic Control) and
1639 (CinC_ECG_torso), and the number of classes varies
between 2 (Gun-Point) and 60 (ShapesAll).

In order to ensure fair comparisons between different
similarity measures, we employ the one nearest neighbor
classifier (1NN), because the classifier itself does not involve
any parameter, and thus the accuracy depends only on the
similarity measure. Six most well-established methods, Eu-
clidean distance, DTW, DTW with Sakoe-Chiba constraint,
DDTW, WDTW, and FDTW are selected for comparison.

Table 1 summarizes the 1NN classification error rate of
TAOT and other competing methods on all datasets. If any
parameter is involved, for instance, the width of Sakoe-Chiba
band, we choose the optimal one found by cross validation
on the training set. From these error rates we can observe
that in general TAOT outperforms all the other measures
on 28 datasets (Synthetic Control, Swedish Leaf, 50Words,
ECG200, Adiac, etc), and achieves leading accuracy together
with one or more other measures on another 7 datasets
(Wafer, Face(four), Lightning-7, Plane, Coffee, ECGFive-
Days, and BirdChicken).

TAOT encounters the aforementioned machine precision
limit problem on four datasets (Face(all), Lighting2, Fish,
LargeKitchenAppliances) of the original UCR time series
classification archive, and therefore there is no accuracy
report on these datasets. This is harmless for the classification
task since we can find the problem during the early training
phase and then change for another alternative method.

Fig. 4(a-b-c-d-e-f) shows the pairwise comparisons be-
tween TAOT and the six competing methods, respectively. In
Fig. 4, each dot represents a dataset, whose x-coordinate and
y-coordinate are respectively the accuracy generated by the
competing method and TAOT. In this setting, a dot falling
above, on, or below the diagonal indicates that the pro-
posed TAOT outperforms, ties with, or lose to the competing
method. The numbers of dots in each different region are la-
beled on these figures. We can observe that TAOT achieves a
better performance in all of the six pairwise competitions. To
demonstrate whether TAOT is statistically significant differ-
ent from other methods, the p-value generated from Friedman
test is shown the in lower-right corner of each figure. The p-
value ranges from 0 to 1, and a smaller p-value indicates a
more significant difference between methods. Note that all
these p-values are smaller than 0.05 and it proves that TAOT
performs significantly better than the six competing methods.
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TABLE 1. Comparisons on 1NN Error Rate

Dataset Euclidean DTW DTW DDTW WDTW FDTW TAOT
distance (r%)a (g)b (λ and w)c

Synthetic Control 0.120 0.007 0.017 (6) 0.433 0.010 (0.30) 0.007 0.003 (195 4)
Gun-Point 0.087 0.093 0.087 (0) 0.007 0.027 (0.20) 0.020 0.027 (50 0.3)
CBF 0.148 0.003 0.004 (11) 0.408 0.009 (0.08) 0.001 0.006 (145 1)
OSU Leaf 0.479 0.409 0.388 (7) 0.120 0.479 (0.60) 0.409 0.450 (160 3)
Swedish Leaf 0.211 0.208 0.154 (2) 0.115 0.173 (0.03) 0.208 0.107 (175 0.9)
50Words 0.369 0.310 0.242 (6) 0.308 0.253 (0.10) 0.268 0.233 (150 2)
Trace 0.240 0.000 0.010 (3) 0.000 0.000 (0.01) 0.000 0.020 (200 0.3)
Two Patterns 0.090 0.000 0.002 (4) 0.003 0.000 (0.01) 0.000 0.010 (5 6)
Wafer 0.005 0.020 0.005 (1) 0.022 0.003 (0.30) 0.008 0.003 (70 8)
Face(four) 0.216 0.170 0.114 (2) 0.375 0.125 (0.10) 0.102 0.102 (40 5)
Lightning-7 0.425 0.274 0.288 (5) 0.425 0.274 (0.10) 0.301 0.274 (10 0.9)
ECG200 0.120 0.230 0.120 (0) 0.170 0.130 (0.50) 0.180 0.110 (130 3)
Adiac 0.389 0.396 0.391 (3) 0.414 0.366 (0.10) 0.414 0.289 (185 0.1)
Yoga 0.170 0.164 0.155 (2) 0.180 0.153 (0.10) 0.154 0.159 (75 0.2)
Plane 0.038 0.000 0.000 (6) 0.000 0.000 (0.01) 0.000 0.000 (125 0.5)
Car 0.267 0.267 0.233 (1) 0.267 0.217 (0.19) 0.367 0.283 (160 0.8)
Beef 0.333 0.367 0.333 (0) 0.333 0.300 (0.20) 0.367 0.333 (100 6)
Coffee 0.000 0.000 0.000 (0) 0.071 0.000 (0.01) 0.000 0.000 (85 2)
OliveOil 0.133 0.167 0.133 (0) 0.133 0.167 (0.01) 0.100 0.133 (200 0.6)
CinC_ECG_torso 0.103 0.349 0.070 (1) 0.289 0.075 (0.08) 0.317 0.084 (195 10)
DiatomSizeReduction 0.065 0.033 0.065 (0) 0.065 0.036 (0.10) 0.033 0.020 (10 0.2)
ECGFiveDays 0.203 0.232 0.203 (0) 0.314 0.138 (0.60) 0.117 0.117 (20 5)
FacesUCR 0.231 0.095 0.088 (12) 0.157 0.078 (0.03) 0.095 0.067 (30 3)
ItalyPowerDemand 0.045 0.050 0.045 (0) 0.086 0.043 (0.10) 0.033 0.038 (15 7)
MedicalImages 0.316 0.263 0.253 (20) 0.337 0.263 (0.08) 0.280 0.296 (40 4)
MoteStrain 0.121 0.165 0.134 (1) 0.284 0.142 (0.30) 0.165 0.107 (20 1)
SonyAIBORobotSurface 0.305 0.275 0.305 (0) 0.270 0.255 (0.50) 0.304 0.166 (95 2)
SonyAIBORobotSurfaceII 0.141 0.169 0.141 (0) 0.142 0.154 (0.05) 0.178 0.134 (105 10)
Symbols 0.101 0.050 0.062 (8) 0.029 0.049 (0.03) 0.060 0.062 (115 0.8)
TwoLeadECG 0.253 0.096 0.132 (4) 0.005 0.111 (0.05) 0.112 0.070 (35 0.1)
Cricket_X 0.423 0.246 0.228 (10) 0.369 0.210 (0.03) 0.269 0.267 (30 3)
Cricket_Y 0.433 0.256 0.241 (17) 0.441 0.238 (0.01) 0.244 0.277 (145 3)
Cricket_Z 0.413 0.246 0.254 (5) 0.444 0.246 (0.05) 0.233 0.287 (105 5)
InsectWingbeatSound 0.438 0.645 0.415 (1) 0.757 0.431 (0.20) 0.591 0.429 (75 10)
ArrowHead 0.200 0.297 0.200 (0) 0.223 0.183 (0.50) 0.223 0.177 (150 3)
BeetleFly 0.250 0.300 0.300 (7) 0.250 0.300 (0.01) 0.350 0.100 (10 0.3)
BirdChicken 0.450 0.250 0.300 (6) 0.150 0.250 (0.01) 0.300 0.150 (45 0.1)
Ham 0.400 0.533 0.400 (0) 0.524 0.429 (0.20) 0.432 0.371 (40 0.7)
Herring 0.484 0.469 0.469 (5) 0.500 0.453 (0.01) 0.562 0.297 (60 0.2)
ProximalPhalanxOAG 0.215 0.195 0.215 (0) 0.180 0.195 (0.01) 0.195 0.185 (15 0.1)
ProximalPhalanxOC 0.192 0.217 0.210 (1) 0.182 0.213 (0.10) 0.216 0.196 (40 0.7)
ProximalPhalanxTW 0.293 0.244 0.244 (2) 0.270 0.260 (0.03) 0.288 0.215 (15 0.7)
ToeSegmentation1 0.320 0.228 0.250 (8) 0.215 0.219 (0.01) 0.276 0.171 (35 0.1)
ToeSegmentation2 0.192 0.162 0.092 (5) 0.315 0.115 (0.03) 0.154 0.077 (5 0.8)
DistalPhalanxOAG 0.374 0.230 0.374 (0) 0.240 0.225 (0.40) 0.223 0.185 (5 1)
DistalPhalanxOC 0.283 0.283 0.275 (1) 0.220 0.237 (0.03) 0.238 0.213 (45 0.4)
DistalPhalanxTW 0.367 0.410 0.367 (0) 0.273 0.268 (0.30) 0.278 0.245 (5 0.5)
Earthquakes 0.288 0.281 0.273 (6) 0.276 0.292 (0.03) 0.276 0.174 (5 7)
MiddlePhalanxOAG 0.481 0.500 0.481 (0) 0.255 0.260 (0.05) 0.283 0.238 (60 0.2)
MiddlePhalanxOC 0.234 0.302 0.234 (0) 0.278 0.292 (0.30) 0.257 0.227 (20 0.5)
MiddlePhalanxTW 0.487 0.494 0.494 (3) 0.444 0.414 (0.08) 0.416 0.381 (70 0.4)
ShapeletSim 0.461 0.350 0.300 (3) 0.461 0.244 (0.03) 0.122 0.439 (60 2)
Wine 0.389 0.426 0.389 (0) 0.481 0.426 (0.10) 0.370 0.296 (55 9)
ar is the radius of best Sakoe-Chiba band, measured in percentages of time series length. Optimal values of r are published along with the
datasets.
bg is a parameter of WDTW, which controls the level of penalization for the points with larger time gap. Optimal values of g are reported by
the paper proposing WDTW [24]
cOptimal values of λ and w are extracted from cross validations, the details of which will be introduced in Section IV-B.
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TABLE 2. Comparisons on 1NN Error Rate (Continued)

Dataset Euclidean DTW DTW DDTW WDTW FDTW TAOT
distance (r%)a (g)b (λ and w)c

WordsSynonyms 0.382 0.351 0.262 (9) 0.320 0.249 (0.05) 0.343 0.306 (55 3)
Computers 0.424 0.300 0.380 (12) 0.332 0.416 (0.01) 0.348 0.340 (15 0.6)
Meat 0.067 0.067 0.067 (0) 0.333 0.067 (0.10) 0.067 0.017 (95 0.9)
RefrigerationDevices 0.605 0.536 0.560 (8) 0.592 0.592 (0.03) 0.536 0.469 (15 0.2)
ScreenType 0.640 0.603 0.589 (17) 0.573 0.589 (0.01) 0.603 0.565 (5 0.2)
ShapesAll 0.248 0.232 0.198 (4) 0.165 0.192 (0.05) 0.232 0.193 (165 0.8)
SmallKitchenAppliances 0.659 0.357 0.328 (15) 0.347 0.347 (0.01) 0.333 0.336 (35 4)
Strawberry 0.054 0.059 0.054 (0) 0.059 0.062 (0.40) 0.054 0.060 (95 0.2)
Worms 0.545 0.416 0.468 (9) 0.497 0.552 (0.03) 0.514 0.575 (35 1)
WormsTwoClass 0.390 0.377 0.416 (7) 0.298 0.376 (0.05) 0.354 0.359 (25 8)

(a) (b)

(c) (d)

(e) (f)

FIGURE 4. 1NN accuracy of TAOT versus the six competitors respectively.

B. EXTRACTING RELIABLE PARAMETERS FOR TAOT
TAOT involves two parameters: the regularization coefficient
λ and the time weight w. To find a reliable combination
of λ and w, we employ grid-search based leave-one-out
cross validation on the training set. We choose leave-one-out
cross validation over hold-out or k-fold validation because
sometimes the training set is too small to further divide.
Typically, grid-search is considered to be time-consuming,
but for TAOT the search spaces of λ and w are both small
and thus the efficiency is acceptable.

For w, if it is too large, for example w > 10, the difference
in time coordinates will predominate. Contrarily, if w is too
small, for examplew < 0.1, the difference in observed values
will predominate. Either way we lose the balance. Therefore
we set the search space of w to a moderate range, [0.1, 10].
Given a uniform step size to the integer and the fraction
part respectively, our candidates forw are 0.1, 0.2, ..., 0.9 and
1, 2, ..., 10.

For λ, recall that as it increases, Sinkhorn distance con-
verges to the classic OT distance. Empirically, 200 is large
enough to make Sinkhorn distance close to the classic OT
distance, and 5 is strict enough for regularizing. So we set
the search space of λ to [5, 200] with a fixed step size of 5.

During grid-search, each pair of λ and w results in an
error count, error(λ,w). There can often be multiple pairs of
parameters that all achieve the lowest error count, and these
optimal parameters on the training set may not perform as
well on the testing set. Therefore we develop another strategy
to decide the sole and most adaptable pair of parameters.
For λ, the most adaptable one should achieve the lowest
cumulative error count given every different w, as defined by
the following Eq. 8. If there are ties, we choose the smallest
λ because it leads to a faster computation.

λ? = min

{
argmin

λ

N∑
n=1

error(λ,wn)

}
(8)

After λ? is fixed, the best w should be the one to have the
lowest error count when pairing with the λ?, as defined by
the following Eq. 9. If there are ties, we choose the median.
Fig. 5 shows the real testing error counts of different w?
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(a) CBF dataset (b) FaceFour dataset

(c) Plane dataset

FIGURE 5. Performance of different candidates of w? on testing sets.

candidates that all achieve the lowest training error count. We
can observe that the medians of those w? candidates achieve
the most stable performance in general on the three datasets.

w? = median

{
argmin

w∈{w1,...,wN}
error(λ?, w)

}
(9)

C. THE TEXAS SHARPSHOOTER FALLACY
To further demonstrate the capability of TAOT, we will
test whether TAOT is capable of overcoming the Texas
Sharpshooter Fallacy. The Texas Sharpshooter Fallacy is a
common logic error that happens when comparing methods
on multiple datasets. A pervasive scenario is that as long as
a method can win on some datasets, the author then claim
the method is valuable. Because the author think since the
method can win on the datasets from some domains, it could
be useful in those domains. However, it is not enough to have
a method that can be more accurate on some datasets unless
you can tell ahead of time that on which datasets it will be
more accurate [51].

One way to show whether a method can tell in advance that
it can be more accurate on a certain dataset is to test whether
the expected accuracy gain over another competing method
coincides with the actual accuracy gain. The expected accu-
racy gain and the actual accuracy gain are defined by Eq. 10
and Eq. 11, respectively. In our setting, the expected accuracy
gain is based on the best training accuracy during leave-one-
out cross validation, and the actual accuracy gain is based on
the best testing accuracy. An expected accuracy gain larger
than one indicates that we predict TAOT will perform better,
while an actual accuracy gain larger than one indicates that
TAOT indeed performs better.

expected gain =
training accuracy(TAOT )

training accuracy(competing method)
(10)

actual gain =
testing accuracy(TAOT )

testing accuracy(competing method)
(11)

As shown in Fig. 6, Texas sharpshooter plot is a convenient
tool to visualize the comparison between the expected accu-
racy gain and the actual accuracy gain on multiple datasets.
Each point represents a dataset to test and each dataset falls
into one of the following four possibilities:
• TP(True Positive): In this region we predicted TAOT

would increase accuracy, and TAOT did. Obviously,
this is the most beneficial situation for TAOT and the
majority of points fall into this region.

• TN(True Negative): In this region we predicted TAOT
would decrease accuracy, and TAOT did. This is not a
bad case. Because if we know ahead of time that TAOT
will do worse, we can choose another method to avoid
the loss of accuracy.

• FN(False Negative): In this region we predicted TAOT
would decrease accuracy, but the accuracy actually in-
creased. This is also not a bad case. We might miss the
opportunity to improve, but we will not do worse.

• FP(False Positive): In this region we predicted TAOT
would increase accuracy, but the accuracy actually de-
creased. This is the truly bad case. But not many points
fall into this region.

D. THE PAIRING OF MAXIMUM VALUES
One motivation of TAOT is that we want global maximum
values to pair with each other if such a pairing is critical
for the current problem. Classic OT, which is a special case
of TAOT when w = 0, can guarantee the pairing of global
maximum values in theory. As for TAOT, if this pairing is
decisive, then normally we will get a relatively small w from
the training phase, and that will lead to a high possibility of
generating a maximum-to-maximum alignment. Fig. 7 gives
an example to visually demonstrate that TAOT is more likely
to generate the required maximum-to-maximum alignment
than the other currently established methods.

E. VISUALIZATION OF ALIGNMENTS GENERATED BY
TAOT
The many-to-many alignment generated by TAOT, namely
the transport plan, is usually represented by a weight matrix.
As the most established and popular similarity measure of
time series, DTW visualizes its output alignment with a
warping path in a warping matrix, as shown in the previous
Fig. 2. In order to keep consistency with DTW, the visualiza-
tion of TAOT is still based on a warping matrix, but with a
fuzzy warping path or a heat map of the warping path. Fig. 8
illustrates the fuzzy version of a warping path where each
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(a) vs Euclidean (b) vs DTW

(c) vs DTW (Sakoe-Chiba band) (d) vs DDTW

(e) vs WDTW (f) vs FDTW

FIGURE 6. Texas sharpshooter plot of TAOT versus the other six competing
methods respectively.

matrix cell corresponds to a pairing between the two points
respectively indicated by the x-coordinate and y-coordinate
of the cell, and we use the transparency of a matrix cell to
represent the weight of the pairing. In this setting, a more
conspicuous area indicates more intense similarity and vice
versa. Note that although we use an alignment path matrix
here, TAOT does not have a real alignment path like other
DTW-based methods. TAOT is based on optimal transport
and the values of all transport matrix cells are updated
simultaneously during the calculation instead of a step-by-
step motion.

V. CONCLUSION
In this paper, we proposed a new time series similarity
measure framework entitled Time Adaptive Optimal Trans-
port (TAOT). It inherits the advantages of several promising
properties from the optimal transport (OT) that can greatly
alleviate some long-suffered issues with currently established
time series similarity measures. To make OT capable of

(a) Euclidean (b) DTW

(c) DTW (Sakoe-Chiba band) (d) DDTW

(e) WDTW (f) TAOT

FIGURE 7. An example where only TAOT generates the required
maximum-to-maximum alignment while the other methods fail.

FIGURE 8. A fuzzy warping path generated by TAOT.

handling time series data, TAOT takes into consideration not
only the difference in observed values but also the differ-
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ence in time coordinates. To make the efficiency of TAOT
acceptable, the calculation of TAOT is based on Sinkhorn
distance, a very fast variant of OT. TAOT further simplifies
the Sinkhorn iteration by assuming that all observed values
of a time series share a equal probability. The performance of
TAOT was demonstrated by a series of one nearest neigh-
bor classification experiments on multiple public datasets.
Compared with other currently established methods, TAOT
exhibits a better accuracy and it even has the ability to
predict whether there will be an accuracy improvement on
the majority of experimental datasets. We also introduced a
grid-search based parameter extracting strategy and a fuzzy
warping path based visualization method for TAOT. TAOT
is not just a single distance measure, but also an algorithm
framework where other kinds of cost matrix can easily fit into
and each creates a new distance measure. We believe this may
lead to some potential future work.
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