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Abstract 19 

In everyday life, we are continuously struggling at focusing on our current goals while at the same 20 

time avoiding distractions. Attention is the neuro-cognitive process devoted to the selection of 21 

behaviorally relevant sensory information while at the same time preventing distraction by 22 

irrelevant information. Visual selection can be implemented by both long-term (learning-based 23 

spatial prioritization) and short term (dynamic spatial attention) mechanisms. On the other hand, 24 

distraction can be prevented proactively, by strategically prioritizing task-relevant information at 25 

the expense of irrelevant information, or reactively, by actively suppressing the processing of 26 

distractors. The distinctive neuronal signature of each of these four processes is largely unknown. 27 

Likewise, how selection and suppression mechanisms interact to drive perception has never been 28 

explored neither at the behavioral nor at the neuronal level. Here, we apply machine-learning 29 

decoding methods to prefrontal cortical (PFC) activity to monitor dynamic spatial attention with an 30 

unprecedented spatial and temporal resolution. This leads to several novel observations. We first 31 

identify independent behavioral and neuronal signatures for learning-based attention prioritization 32 

and dynamic attentional selection. Second, we identify distinct behavioral and neuronal signatures 33 

for proactive and reactive suppression mechanisms. We find that while distracting task-relevant 34 

information is suppressed proactively, task-irrelevant information is suppressed reactively. 35 

Critically, we show that distractor suppression, whether proactive or reactive, strongly depends on 36 

both learning-based attention prioritization and dynamic attentional selection. Overall, we thus 37 

provide a unified neuro-cognitive framework describing how the prefrontal cortex implements 38 

spatial selection and distractor suppression in order to flexibly optimize behavior in dynamic 39 

environments. 40 

  41 
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Introduction 42 

Focusing on current behavioral goals while at the same time avoiding distraction is critical for 43 

survival. Attention is the neuro-cognitive system devoted to the filtering of incoming information so 44 

that behaviorally relevant events are selected at the expense of behaviorally irrelevant events and 45 

distractors. Subjects accomplish this task by leveraging selective and suppressive attentional 46 

mechanisms, the effect of which is to optimize visual resources to ongoing behavioral demands and 47 

environmental constraints. The selection of visual information takes place through two distinct top-48 

down mechanisms (1–4). Task-relevant items can be prioritized because subjects have learned the 49 

specific contingencies of the ongoing task, resulting in a biased processing of relevant task items 50 

relative to irrelevant task items, and defining a so-called spatial priority map (5–7). Task-relevant 51 

items can also be prioritized by a voluntary allocation of the attentional spotlight (AS - (8, 9)). This 52 

voluntary allocation of attention, also referred to as covert or endogenous attention, is highly 53 

dynamic in time and space (10–14), and is distinct from learning-based spatial prioritization that 54 

operates on a larger time scale (15). How these two prioritization mechanisms interact in order to 55 

drive perception is unknown. 56 

These top-down mechanisms of visual selection also proactively prevent distraction, by directing 57 

attentional resources towards task-relevant visual information at the expense of irrelevant stimuli 58 

(16–19). These proactive strategies are thought to contribute to optimal behavioral performance, as 59 

they avoid the unnecessary processing of behaviorally irrelevant information (20, 21). However, in 60 

daily life irrelevant stimuli still often succeed in capturing our attention and our visual resources. 61 

The reactive suppression of their visual processing and the related decision-making processes need 62 

to be implemented in order to interrupt inappropriate responses. This mechanism is distinct from 63 

proactive distractor suppression. Despite the fact that proactive and reactive mechanisms of 64 

suppression are well established from a behavioral point of view ((20, 21) see (22) for an extensive 65 

review), their neuronal substrates are still largely debated (21, 23–26). In particular, two major 66 

knowledge gaps are identified. First, it is unclear whether proactive (26, 27) and reactive 67 

suppression are implemented by common neuronal mechanisms. Second, how these suppressive 68 

mechanisms precisely depend onto the top-down information selection mechanisms described 69 

above is also unknown.  70 

In the following, we specifically record from the frontal eye field (FEF) in the prefrontal cortex 71 

(PFC). This cortical region is thought to act as a spatial priority map that integrates task goals and 72 

stimuli characteristics (28–31). This brain area also plays a key role in the voluntary (32, 33) and 73 

dynamic allocation of spatial attention (14, 34) towards the behaviorally relevant incoming visual 74 

information. Neural recordings were performed while monkeys were engaged in a forced choice 75 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 26, 2020. ; https://doi.org/10.1101/2020.03.25.007922doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.25.007922


4 
 

cued visual detection task, in the presence of task-relevant and task-irrelevant visual stimuli. 76 

Importantly, we use machine-learning methods in order to decode the dynamic AS from the 77 

ongoing prefrontal cortical activity with an unprecedented spatial and temporal resolution. This 78 

allows us to unambiguously dissociated between learning-based spatial prioritization and dynamic 79 

spatial attention allocation. We provide behavioral and neural evidences demonstrating that 1) 80 

learning-based spatial prioritization is implemented independently from dynamic spatial attentional 81 

selection; 2) proactive and reactive suppression are implemented by two distinct neuro-cognitive 82 

mechanisms; 3) reactive suppression is specific of irrelevant distractors, and depends on the 83 

interplay of both learning-based and dynamic spatial prioritization mechanisms. Overall, we thus 84 

provide a unified neuronal framework of how the prefrontal cortex implements spatial selection and 85 

distractor suppression in order to flexibly optimize behavior in dynamic environments. 86 

 87 

Results 88 

We recorded bilaterally from the frontal eye fields (FEF) of two macaque monkeys while they were 89 

required to perform a 100% validity endogenous cued luminance change detection task (Fig. 1AB; 90 

monkeys’ overall performance in the task is described in the supplementary note 1). In order to 91 

make sure that monkeys used the visual cues to orient their attention, two types of (to be ignored) 92 

distractors were also presented. Task-relevant distractors (Ds, ~17% of the trials) were displayed in 93 

uncued target landmarks (LMs), while task-irrelevant distractors (ds - the size of which was adapted 94 

so as to account for the cortical magnification factor, ~33% of the trials) were presented randomly 95 

in the visual workspace. These two types of distractors shared the same shape and same relative 96 

visual contrast. They only differed in where they could be expected to be presented: either at task 97 

relevant LM or at task-irrelevant locations. Supplementary figure S1 and supplementary note 2 98 

describe the attention orientation and target detection neuronal response properties in the recorded 99 

signals. Importantly, and in contrast with previous studies, behavioral and neuronal responses are 100 

analyzed either, 1) as a function of the physical configuration of the task, thus defining the task-101 

based spatial priority map, or 2) as a function of the position of the AS from the FEF population 102 

activity, just prior to stimulus presentation, at an unprecedented spatial and temporal resolution, 103 

thus defining the dynamic spatial filtering of visual information by the AS. This approach is based 104 

on machine-learning decoding procedures applied to the PFC activity (13, 14), and allows to 105 

estimate the position of the AS in the visual workspace. 106 

 107 
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 108 

Figure 1. Task. A) Behavioral task. Monkeys were required to produce a manual response to a cued 109 

target luminosity change, while ignoring distractors presented at uncued landmarks (D) or elsewhere in 110 

the workspace (d). Central cross: fixation point. Green square: spatial cue. Dotted clouds: attention as 111 

cued by task instructions. B) Recording sites. On each session, two 24-contact electrodes were placed in 112 

the right and left frontal eye fields (FEFs). 113 

 114 

Behavioral and neuronal correlates of the task-based spatial priority map 115 

The processing of stimuli located in the vicinity of the expected target location is enhanced (27, 35). 116 

This is thought to result from top-down contingent selection mechanisms (36–38). However, by 117 

virtue of trial configuration, repetition and learning, uncued target placeholders are also prioritized 118 

with respect to the background, this irrespective of current trial cueing information (39, 40). This 119 

results in the spatial prioritization of portions of space against other portions of space (Biased 120 

competition model - (5)). Spatial prioritization is probed by measuring FA rates produced by 121 

distractors presented in the vicinity of the key items of the task.  122 

In this first section, we characterize the behavioral and prefrontal neuronal signatures of task-based 123 

spatial prioritization, at both the cued and uncued LMs. We measure FA rates to d distractors, 124 

presented randomly throughout the visual workspace. For data analysis, on each trial, we flip the 125 

visual space such that target location coincides with the upper right visual quadrant, and the uncued 126 

quadrant ipsilateral to the target falls in the lower right visual quadrant. We compute FA rates at a 127 

3°x3° spatial resolution, cumulating behavioral data over all trials and all sessions (figure 2a). 128 

Expectedly, FAs are significantly enhanced around the cued target location (figure 2a, top right 129 

quadrant, *, beyond the 95% confidence interval defined by a one-tail random permutation test). 130 

FAs are also significantly enhanced around the uncued LMs (figure 2a, top left and bottom left and 131 

right quadrants). Visual space in the vicinity of the uncued LMs (figure 2b – left panel; light gray 132 

area, FA rate = 14,0%) show higher FA rates compared to areas with equivalent Td distance 133 

(6,92%, dark gray area, Kruskal–Wallis non-paramteric test, p < 0.05) or shorter (7,14%, brown 134 
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area, Kruskal–Wallis non-paramteric test, p < 0.05), but located away from these locations. In other 135 

words, both the cued and the uncued LMs are prioritized on any given trial. This is in agreement 136 

with the demonstration that rewarded spatial contingencies exert a powerful influence on the 137 

attentional control deployment (39, 41), such that uncued target location might assume a high 138 

behavioral relevance including when not currently used as a target. Due to cue benefit, on any 139 

single trial, the cued landmark is more prioritized than the other landmarks (see next section). 140 

 141 

 142 

Figure 2. Behavioral and neuronal spatial priority map. A) Spatial map of FA rates as a function 143 

of the location of distractor (d) in the workspace. In order to cumulate behavioral responses over trials of 144 

different spatial configurations, trials are flipped such that target location coincides with the upper right 145 

visual quadrant, and the ipsilateral uncued quadrant falls in the lower right visual quadrant. False alarm 146 

rates (%, color scale) are computed independently for distractors (d) presented in (3° x 3°) adjacent 147 

portions of the workspace. Black asterisks indicate FA rates significantly higher than chance, as estimated 148 

by a one-tail random permutation test (< 95% confidence interval). B) FA rates as a function of the 149 

distance between the target and distractor d (Td, left) or distractor D (TD, right). Black line corresponds 150 

to the third order polynomial regression best fit. Horizontal colored lines indicate the FA rate for trials in 151 

which d happened in specific areas of the visual scene as shown in the inner panel left (light gray, around 152 
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the ipsilateral or the contralateral LM (LMd = 0° ± 2°); dark gray: at Td= 20° ± 2°, excluding distractors 153 

d close to LMs (± 2°); light brown: around the fixation cross (Fd = 0° ± 2°)). Right panel: FA rates 154 

elicited by distractors D, for each of the three possible locations. C) Neural FAs responses as a function 155 

of the distance between distractor d and Target (Td), and associated performance. Left panel: 156 

Normalized neural response to d as a function of Td. Four ranges of Td were considered for the trials’ 157 

selection from 0° (dark orange) to 12° (light orange) in Td steps of 3° (intermediate shades of orange). 158 

The inset panel represents the averaged neuronal response to FAs when 0° < Td < 12°. Right panel: 159 

Demeaned peak neuronal responses (orange) and behavioral performance (black), as a function of Td. Td 160 

categories and colors as in left panel. Error bars represent mean +/- s.e. D) Neural FAs responses as a 161 

function of D position, and associated performance. Left panel: Normalized neural response to D as a 162 

function of TD, for the ipsilateral (dark red, ipsi), the contralateral (medium red, contra) and the opposite 163 

LM (light red, opp).  Right panel: Demeaned peak neuronal responses (red) and behavioral performance 164 

(black), as a function of TD. TD categories and colors as in left panel. Error bars represent mean +/- s.e. 165 

 166 

FA rates drastically decrease as the distance between distractors and expected target location 167 

increases (Fig. 2B, all sessions cumulated and binned as a function of Td - from 0° to 22°, step 0.5°, 168 

reproducing previous observations, e.g., (27). This relationship is best fit by a third order 169 

polynomial function characterized by a steep initial decrease in FAs away from the target and a 170 

small rebound for Td beyond 14° (see Methods, r² adjusted = 0.972, AIC = 1068.9). This rebound is 171 

probably driven by the observed spatial prioritization around the ipsilateral and contralateral uncued 172 

LMs (figure 2b, left panel, light gray shaded bar).  173 

Similar to the behavioral prioritization of task relevant locations, the evoked visual neuronal 174 

response to d on FA trials strongly depends on Td (figure 2c, left panel), reproducing prior 175 

observations (e.g., (27). This neuronal tuning curve as a function of Td follows the same shape and 176 

is highly correlated to the FA rate as a function of Td (r = 0.99, P < 0.001, figure 2c, right panel), 177 

suggesting a tight functional link between these two measures. Likewise, the evoked visual 178 

neuronal response to D distractor on FA trials strongly depends on TD (figure 2d, left panel, note 179 

though that for equal TD, neuronal response to ipsilateral D is higher than for contralateral D). 180 

Similarly, the neuronal tuning curve and the FA rate as a function of TD are correlated each other (r 181 

= 0.98, p < 0.05, figure 2d, right panel). Overall, we thus show that FEF neuronal responses to 182 

visual stimuli of equalized contrast and visual energy are modulated by task-related contingencies 183 

in close correspondence with the behavioral characterization of the spatial priority map. 184 

 185 

The attentional spotlight dynamically implements target selection independently of 186 

the spatial priority map 187 
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Spatial attention is hypothesized to act as a spatial filtering ‘in’ mechanism, that enhances the 188 

selection of incoming visual stimuli depending on their distance to its focus (22, 42, 43). This 189 

attention-based spatial filtering is often equated with spatial prioritization by cue instruction. 190 

However, recent studies demonstrate that spatial attention is not stable and samples space 191 

rhythmically including following a spatial cue (14, 44–46). In the following, we demonstrate the 192 

existence of a dynamic prioritization of space by the attentional spotlight, independently of the task 193 

driven trial prioritization by cue instruction described in the previous section. To this effect, we use 194 

machine learning to access the time-resolved readout of the (x,y) position of the AS from the FEF 195 

population activity prior to target presentation (13, 14), and we analyze normalized FEF neuronal 196 

responses to target presentation as a function of the distance of the AS to the target.  197 

 198 

Figure 3. Neural responses to the target as a function of the distance between the target and 199 

the decoded attentional spotlight (TA). A) Normalized MUA population response to the target, on 200 

Hits (blue) and Misses (yellow). Shaded error bars represent +/- s.e.  B) Normalized neural 201 

responsiveness to the target, on Hit trials, as a function of TA (inset in panel A). Six ranges of TA were 202 

considered for the trials’ categorization from 0° (dark blue) to 24° (light blue) in TA steps of 4° 203 

(intermediate shades of blue). C) Demeaned peak responses and behavioral performance as a function of 204 

TA. TA categories and colors as in panel B. Error bars represent +/- s.e. 205 

 206 

Figure 3a shows the average normalized neuronal responses to the target (target selective MUA 207 

channels, normalized activities, n=1448, see Methods), on Hits (blue) and Misses (yellow). On Hit 208 

trials, a marked response to target presentation is observed, peaking at 285ms following stimulus 209 

onset (figure 3a, blue curve). On Miss trials, the neuronal response was significantly weaker (figure 210 

3a, yellow curve, Kruskal–Wallis non-parametric test, p < 0.001). This confirms the well-known 211 

critical contribution of FEF to sensory selection for perception (47–49). Importantly, we show a 212 

direct modulation of both the behavior and the evoked neuronal response to target processing by the 213 

position of the AS. Specifically, we categorize neuronal responses (figure 3b, all sessions cumulated 214 

and binned as a function of AT, from 0° to 24° - step 4°, figure 3c, blue curve and scale) as well as 215 
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behavioral performance (figure 3c, black curve and scale) as a function of the distance between AS 216 

and target (AT). The strength of the neuronal response to detected targets decreases as AT increases 217 

(figure 3b, figure 3c, blue curve, Kruskal-Wallis non-parametric test, p < 0.001). Likewise, the 218 

behavioral performance constantly decreased as AT increased (figure 3c, black curve, Kruskal-219 

Wallis non-parametric test, p < 0.001). The effect of AT onto neuronal peak responses to detected 220 

targets and behavioral performance were highly correlated (figure 3c, r = 0.85, p = 0.03), both 221 

showing significantly higher values when the AS was close to the target. Overall, this is, to our 222 

knowledge, the first direct neurophysiological evidence for an attentional spatial filtering ‘in’ or 223 

attention selection neuronal function centered onto the AS, based on the real-time task-independent 224 

readout of AS (50). Most importantly, this AS spatial filter is independent from the spatial priority 225 

map described above, and can only be accessed through a direct estimate of covert AS at an 226 

appropriate temporal resolution.  227 

 228 

The attentional spotlight dynamically implements both the selection of task relevant 229 

items and the suppression of task irrelevant items 230 

A major question in the field is whether distractor suppression is implemented by the same neuronal 231 

mechanisms as target selection, whereby vicinity of the AS to the incoming sensory stimulus 232 

defines the degree of selection/suppression that is applied (26, 27). In the following, we 233 

demonstrate that the prefrontal AS can both select (filter ‘in’) or suppress (filter ‘out’) incoming 234 

sensory information depending on task configuration. Specifically, we analyze the behavioral 235 

performance and the FEF neuronal response on FA responses to D (task-relevant distractors) or d 236 

(task-irrelevant distractors), as a function of their distance to AS location in space just prior to their 237 

presentation (resp. AD and Ad, figure 4, all sessions cumulated and binned as a function of AD and 238 

Ad respectively - from 0° to 12°, step 3°). The closer the AS to D, the higher the probability of FAs 239 

(figure 4a, right panel, gray curve, Kruskal-Wallis non-parametric test, p < 0.001). This relationship 240 

is best modeled by a linear fit (figure S1a, r² adjusted = 0.85, p < 0.001, best-fit achieved by the 241 

linear model, AIC = 41.65), reproducing our previous observations on a different dataset ((13). 242 

Mirroring the relationship between behavioral performance and AD, the neuronal response to D 243 

also increases as AD decreases (figure 4a, middle panel, dark-light red curves, Kruskal-Wallis non-244 

parametric test, p < 0.001). The relationship between average peak neuronal response to D and AD 245 

on the one hand, and FA rates and AD on the other hand show a trend towards correlation (figure 246 

4a, r = 0.92, p = 0.08). These observations are remarkably similar to those reported for target 247 

selection whereby visual information close to AS is filtered “in” while visual information far away 248 

from AS is suppressed and filtered “out”.   249 
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 250 

 251 

Figure 4. Neural responses to distractor as a function of the distance between D distractors 252 

and the decoded attentional spotlight (AD, panel A) and d distractors and the decoded 253 

attentional spotlight (Ad, panel B). Both AD (intermediate shades of red) and Ad distances 254 

(intermediate shades of orange) ranged from 0° to 12° (step = 3°). All else as in Figure 3.  255 

 256 

D distractors are, by definition, presented in a prioritized position of the spatial priority map 257 

(uncued target landmarks – figure 2c). An important question is thus whether the spatial 258 

prioritization filtering ‘in’ process described above for D distractors also generalizes to d distractor 259 

presented at irrelevant locations. These d distractors could unpredictably appear anywhere onto the 260 

visual scene, and had the same shape and the same contrast as D distractors, and their size was 261 

adjusted to compensate for the cortical magnification factor (see Methods). Trials were sorted as a 262 

function of the distance between AS and d distractors (figure 4b – lower panel, all sessions 263 

cumulated and binned as a function of Ad - from 0° to 12°, step 3°). To avoid possible confounds 264 

due to the heterogeneity of the spatial priority map, this analysis is restricted to d distractors 265 

presented in the cued quadrant. In contrast with the D prioritization process described above, we 266 

found that the closer the AS to d, the lower the FA probability, indicating that the AS suppresses d 267 

distractors rather than enhances them. The attentional profile that characterizes this d suppression is 268 

not linear. Rather, best fit is achieved by a third-order polynomial model (figure S1b, r² adjusted = 269 

0.18, AIC = 47.94). Specifically, FA rates were marginally lower when Ad < 3° than when 3° < Ad 270 

< 6° (figure S1c, black curve, all sessions cumulated and binned as a function of Ad - from 0° to 271 

12°, step 3°, post-hoc Friedman rank sum test, p = 0.097) and significantly lower than when 6° < 272 

Ad < 9° (post-hoc Friedman rank sum test, p < 0.01). Beyond Ad of 9°, FA rates dropped instead of 273 

increasing (post-hoc Friedman rank sum test, p < 0.05), thus roughly defining an inverted Mexican 274 
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hat shaped function. This filtering profile was drastically different from the one reported for D. 275 

Importantly, this filtering profile did not result from an interaction with the spatial priority map and 276 

Td. Indeed, the same statistical trends emerged both when d distractors were close (Td < 7°) or far 277 

(7° < Td < 14°) from the target (Figure S1c, gray curves - Kruskal-Wallis, main Ad distance effect, 278 

p < 0.05). The relationship of the neuronal response with Ad mirrored that of the behavioral 279 

performance (figure 4b, middle panel, dark-light red curves, Kruskal-Wallis non-parametric test, p 280 

< 0.001). Peak neuronal responses to d distractors for Ad < 3° trials were significantly lower than 281 

for 3° < Ad < 6° and for 6° < Ad < 9°, but higher than those within 9° < Ad < 12° (post-hoc 282 

Friedman rank sum test; p < 0.05, p < 0.001, p < 0.001 resp.). The relationship between average 283 

peak neuronal response to d and Ad on the one hand, and FA rates and Ad on the other hand were 284 

highly correlated (figure 4b, right panel, r = 0.98, p < 0.02). This observation is evidence for an 285 

inversed center-surround functional filtering profile by AS. Such a function can also be viewed as a 286 

suppression mechanism implemented by a classical Mexican hat AS.  287 

Overall, we thus describe two distinct filtering mechanisms implemented by the dynamic AS: a 288 

prioritizing, filtering ‘in’ process and a suppressive, filtering ‘out’ process. The implementation of 289 

one or the other does not depend on the prioritization map but rather on the sensory item’s task 290 

relevance.  291 

 292 

Neural evidence for distinct proactive and reactive suppression mechanisms 293 

The above described distractor selection and suppression mechanisms coincide with major 294 

differences in neuronal responses to correctly rejected (RJ) distractors. Figure 5a reports averaged 295 

normalized neuronal responses (target selective MUA channels, D = 873, HN = 575) on FA (red 296 

shades) and RJ trials (green shades), for D (left panel) and d distractor (right panel). Overall FAs 297 

showed a marked neuronal response for both D (figure 5a, left panel, DFAs, 0.78+/-0.12, peak 298 

latency = 267ms) and d distractors (right panel, dFAs, normalized peak response, 0.80+/-0.04, 299 

latency = 165ms). These responses are very similar to those observed to targets on Hit trials (figure 300 

3a, 0.83+/-0.006) and they coincide with a marked visual evoked potential in the LFPs (figure 5b, 301 

left panel, DFA and Hits, right panel, dFA). In contrast, neuronal responses on RJ trials show very 302 

distinct patterns for the two types of distractors (figure 5ab). RJ to D distractors barely responds to 303 

distractor presentation (figure 5a, left panel, DRJs, 0.09+/-0.06), while RJ to d distractors exhibits a 304 

clear phasic response (figure 5a, right panel, dRJs, 0.3+/-0.01, peak latency = 147ms). The average 305 

normalized MUA net response estimated as the difference between peak and pre-distractor baseline 306 

(figure 5c), showed enhanced responses on FA trials as compared to RJs to both D and d distractors 307 

(Kruskal-Wallis non-parametric test, p < 0.001). However, while there was no difference between 308 
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dFA (0.72 +/- 0.08) and DFA trials (0.83 +/- 0.09, Kruskal-Wallis non-parametric test, p = 0.32), 309 

this difference was significantly higher on dRJs trials (0.56 +/- 0.02) than on DRJs trials (0.23 +/- 310 

0.06, Kruskal-Wallis non-parametric test, p < 0.001). This coincides with a very small LFP visual 311 

evoked potential for DRJ (figure 5b, left panel) and a marked LFP visual evoked potential for dRJ 312 

(figure 5b, right panel). This strongly suggests that dRJ takes place subsequently to perception. 313 

Indeed, while MUA results from local neural processing, informing on how the sensory 314 

representations in dendritic input are transformed into cognitive signals, LFP provides a measure of 315 

both the local processing and synaptic inputs from other brain regions (51–54). 316 

  317 
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Figure 5. Neural correlates of proactive and reactive 318 

distractor suppression. A) Normalized MUA population 319 

responses to D, in DFAs (dark red) and DRJs (dark green), 320 

and to d, for dFAs (orange) and dRJs (light green). Left 321 

panel: Average normalized MUA, around distractor D 322 

onset for DFAs (dark red) and DRJs (dark green). Right 323 

panel: Average normalized MUA, around distractor d 324 

onset, for dFAs and dRJs. Shaded error bars, +/- 1 SE. B) 325 

Local field potential modulation as a function of trial 326 

types. Left panel: Average local field potentials (LFP), 327 

around target onset for Hits (blue) and Misses (yellow) 328 

and around distractor D onset for DFAs (dark red) and 329 

DRJs (dark green). Right panel: Average local field 330 

potentials (LFP) around distractor d onset, for dFAs and 331 

dRJs. Shaded error bars, +/- 1 SE. C) Difference between 332 

peak response to distractor and pre-distractor baseline, in 333 

DFAs (dark red) and DRJs (dark green), and to d, in dFAs 334 

(orange) and dRJs (light green). Error bars, +/- 1 SE. D) 335 

Neural responses to DRJ and dRJ. Left panel: “Peak+” 336 

indicates, for each signal, peak response in the [0 350 ms] 337 

time interval following target onset. Arrows indicate, for 338 

each signal, the average time of the first signal dip 339 

following the identified peak. Right panel: neural 340 

suppression measured as the difference between identified 341 

peaks and dips (mean +/- SE), for D (dark green) and d 342 

(light green) trials. Asterisks indicate statistical 343 

significance as assessed by a Wilkoxon rank sum test (**p 344 

< 0.001). 345 

 346 

In other words, the successful suppression of D 347 

is thus accompanied by a proactive suppression of the visual input to the FEF. In contrast, the 348 

successful suppression of d is accompanied by a strong visual input to the FEF, indicating that 349 

suppression takes place following sensory processing and perception. This indicates the existence of 350 

two distinct suppression mechanisms: a proactive suppression mechanism associated with D, and a 351 

reactive suppression mechanism associated with d.  352 

Several studies support the idea that reactive suppression is implemented in the prefrontal cortex 353 

and specifically in the FEF (21, 26, 55). Further supporting this point, we show here that the peak 354 

neuronal response to d distractors on dRJ trials is rapidly followed by a sharp decrease in the 355 

neuronal response (figure 5d, left panel, arrow, Ranksum test, p<0.001) that brings the neuronal 356 
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response down to the same level as in DRJ trials. This effect is hardly present on these DRJ trials 357 

(figure 5d, right panel) and is absent in FA trials as well as in Hit trials. This active suppression 358 

mechanism takes place right after peak distractor response (at an average timing of 147ms), which 359 

is compatible with an interruption of the motor response (median RT = 447ms). The latency of the 360 

suppressive dip from the d distractor peak response is of 322ms. This timing coincides with the 361 

estimated time needed to overtly reject low saliency distractors as task irrelevant (150-300ms - (20). 362 

While this timing is compatible with a polysynaptic transmission, reactive suppression is expected 363 

to be based on a perceptual decision that is known to take place in the prefrontal cortex (37, 49). In 364 

the following, we explore the functional relationship between enhanced perception by the AS and 365 

reactive suppression. 366 

 367 

The attentional spotlight dynamically implements reactive suppression 368 

Our work indicates that reactive suppression is associated with two distinct components: 1) a strong 369 

visual evoked response to the distractor, and 2) a subsequent strong suppression discriminating 370 

between RJs and FAs. A key question is thus to characterize whether suppression depends on prior 371 

perception. In the first two sections of this paper, we describe two main factors that influence how 372 

stimuli of the same visual salience are perceived: 1) the spatial priority map defined by Td and 2) 373 

the dynamic attentional selection defined by Ad. In the following, we further quantify the impact of 374 

these two task-related factors onto the degree to which the initial perceptual response is suppressed 375 

following a d distractor presentation.  376 

Figure 6 shows the average normalized MUA response to Td (figure 6a, left panel) and Ad (figure 377 

6b, left panel, specifically for Td < 3°), irrespective of pre-distractor response level. This allows to 378 

specifically estimate the impact of d onto FEF neural processing. While for Td eccentricity beyond 379 

3°, post-evoked response suppression decreased as Td increased, all evoked responses being 380 

suppressed down to the same level, suppression was significantly reduced for shorter Td distances 381 

(Td < 3°, figure 6a, middle panel, Kruskal-Wallis, p<0.01).   382 
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 383 

Figure 6. Neural reactiveness in (d) rejection as a function of the distance between distractor (d) and the 384 

Target (Td, panel A) and distractor (d) and the decoded attentional spotlight (Ad, panel B). Both Td and Ad 385 

distances represented intermediate shades of green, and ranged from 0° to 15° (step = 3°).  386 

 387 

Hypothesizing that for shortest Td distances accurate perception is critical to disambiguate between 388 

a target and a distractor, we focused on these specific trials, and we quantified how Ad distance 389 

impacted the overall level of suppression of the evoked response. This analysis is presented in 390 

figure 6b. As seen previously for FAs, on RJs, the visual evoked response to distractor presentation 391 

was strongest for short Ad than for longer Ad (figure 6b, left panel). Importantly, suppression 392 

strength was also highest for short Ad than for longer Ad (figure 6b, middle panel, Kruskal-Wallis, 393 

p<0.05).  394 

Overall this indicates that both spatial prioritization by the spatial priority map and the dynamic 395 

attentional spotlight contribute to influence perception, stimulus selection and stimulus suppression.  396 

 397 

Discussion 398 

Overall, we thus identify, in the FEF, distinct neuronal mechanisms respectively implementing 399 

proactive and reactive suppression mechanisms (22). We further show that the implementation of 400 

both these suppressive mechanisms depends on the learned task-based priority map (2, 39, 56, 57) 401 

as well as on the dynamic spatial filtering implemented by the attentional spotlight as it dynamically 402 
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and rhythmically explores the visual scene. While the spatial priority map exclusively defines a 403 

spatial filtering “in” function, the dynamic attentional spotlight defines both a spatial filtering “in” 404 

and a spatial filtering “out” function. The top-down attention-based spatial filtering “in” is 405 

associated with the proactive suppression of task relevant distractors while the attention-based 406 

spatial filtering “out” is associated with the reactive suppression of task irrelevant distractors. This 407 

is further discussed below.  408 

Multiple mechanisms of spatial visual selection 409 

Sensory selection of visual input can be dynamically deployed at will by spatial attention (spatial 410 

orienting of attention, (13, 14) or can result from the learning of task contingencies (a task-based 411 

priority map, (56, 58). Here, we provide behavioral and neural evidences indicating that both 412 

attentional mechanisms independently contribute to stimulus selection.  413 

Task-based priority map: The filtering of irrelevant visual information is not uniform across the 414 

visual scene. Rather, distractibility, that is to say, inappropriate responses to irrelevant visual 415 

stimuli, is maximal in the vicinity of the four spatial locations at which the target can be presented 416 

on each trial, by task design. This spatial prioritization reflects the learning of the experienced 417 

rewarded-stimuli contingencies characterizing the task (39). Our observations indicate that the FEF 418 

implements a task-based spatial priority map, showing enhanced neural responses to stimuli that are 419 

closest to the prioritized spatial locations as compared to the rest of the visual scene. This 420 

prioritization roughly follows a Gaussian filtering function and almost disappears beyond 6° away 421 

from the prioritized location. This neuronal filtering function strongly correlates with behavioral 422 

distractor interference measures, suggesting a strong functional relationship between FEF 423 

prioritization map and overt behavior. 424 

An important question is whether this learned task-based spatial prioritization arises from a top 425 

down control mechanism or from long-lasting changes in the excitability of the topographically 426 

organized spatial maps. Such changes in local neuronal excitability through statistical learning and 427 

cumulative experience has already been demonstrated in the primary visual cortex (1, 59). Whether 428 

this also takes place at higher levels of the visual hierarchy, for example, in the parietal or in the 429 

prefrontal salience maps is unclear. In our hands, the selection of irrelevant visual items is weaker 430 

close to prioritized locations that are contralateral to the cued target location as compared to 431 

prioritized locations that are ipsilateral to the cued target location. This thus indicates an interaction 432 

between top-down spatial cueing information and task-based prioritization, whereby although 433 

experience with the task based contingencies has induced long lasting changes in the FEF spatial 434 

priority map, these changes are potentiated by cueing instructions on each given trial. Importantly, 435 
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this interaction is independent of the dynamic spatial orienting of attention during the cue to target 436 

interval.  437 

Spatial attention orienting. Classically, attention orientation is confounded with cuing information. 438 

Thanks to a spatially and temporally resolved decoding of the locus of the attentional spotlight, we 439 

have already shown that this attentional spotlight is highly dynamic and not constrained to the cued 440 

location (13, 14). Here, we show that the perception of a low saliency stimulus depends on the 441 

position of the attentional spotlight just prior to stimulus presentation. We provide the first direct 442 

estimate of the spatial attention filtering function hypothesized as early as the seminal work of 443 

James (1890). Importantly, and in contrast with the classical view of attention spatial filtering, we 444 

identify two distinct spatial attention filtering functions. (1) The closer the attentional spotlight to 445 

task relevant stimuli, the higher report probability, our proxy for visual perception. This 446 

corresponds to a filtering “in” attentional function, whereby sensory information is selected when 447 

presented at the center of the dynamic attentional spotlight, while the probability of visual selection 448 

decreases along a coarsely Gaussian shaped function as the sensory information is presented further 449 

and further away from the center of the attentional spotlight. This filtering function applies both to 450 

targets presented at the cued location and to relevant (target-like) distractors presented at uncued 451 

locations prioritized by the statistical learning described above (see also (34)). (2) In contrast, the 452 

closer the attentional spotlight to task irrelevant stimuli, the lower report probability. This thus 453 

corresponds to a filtering “out” attentional function, whereby sensory information is suppressed 454 

when presented at the center of the dynamic attentional spotlight. This filtering “out” attentional 455 

function is characterized by an inverted “Mexican hat” shape, defining a suppressive center around 456 

the attentional spotlight, a first surround in which this suppressive filter weakens and a final 457 

surround in which suppression increases again, probably by sheer distance from the center of the 458 

attentional spotlight, the stimulus falling outside the perceptual spatial extent of the attentional 459 

spotlight. Overall, spatial attention thus implements a dynamic spatial perceptual gating, that 460 

depends on the task relevance of the visual stimuli. Crucially, this perceptual attentional gating can 461 

be identified both at the behavioral level and on neuronal response profiles, these two measures 462 

highly correlating with each other from one session to the next. A very strong prediction is that the 463 

spatial extent of these filtering “in” and “out” filters are dynamically adjusted to trial difficulty and 464 

task contingencies.  465 

 466 

Multiple mechanisms of distractor suppression 467 

Recent behavioral evidence has posited the existence of two distinct distractor suppression 468 

mechanisms, a proactive and a reactive suppression mechanism. During proactive suppression, the 469 
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early perceptual processing of behaviorally irrelevant stimuli is suppressed. This type of 470 

suppression is coupled with a strong attentional enhancement of the perception of task relevant 471 

visual stimuli and can be viewed as a situation in which the visual system is tuned to maximize the 472 

response to expected task relevant items while ignoring all other visual items. In everyday life, this 473 

can come at a strong behavioral cost as task irrelevant items could still turn out to be behaviorally 474 

relevant. In contrast, reactive suppression would correspond to a situation in which the visual 475 

system does perceptually process task irrelevant items, and only subsequently suppress the build-up 476 

of goal-directed responses towards these irrelevant stimuli. The coupling between these two distinct 477 

mechanisms is thus theoretically crucial for a flexible adjustment to both behavioral demands and 478 

environmental constraints. Here, we provide the very first evidence for distinct neuronal 479 

mechanisms implementing proactive and reactive sensory suppression mechanisms.  480 

Task-relevant distractors are suppressed proactively. Several previous reports show that the 481 

successful rejection of task relevant distractors is associated with a low neuronal response to their 482 

onset (26, 27, 60). In contrast, the attentional capture of such distractors and the production of a 483 

goal directed behavior towards them, is associated with a strong neuronal response to their onset. 484 

We reproduce these behavioral and neuronal observations. As discussed above, we further 485 

demonstrate that attentional capture is fully dependent on the locus of the attentional spotlight, 486 

which implements a filtering “in” function of task-relevant distractors. In other words, successful 487 

proactive distractor suppression is associated with trials in which the attentional spotlight is far 488 

away from the task-relevant distractor. We show that both FEF multi-unit activity and local field 489 

potentials are suppressed following task-relevant distractor presentation when behaviorally 490 

suppressed, but not when erroneously selected. Cosman et al. (2018) demonstrate that distractor 491 

suppression arises in the FEF prior to the occipital cortex. This would suggest that proactive 492 

distractor suppression is either implemented in the FEF or in an up-stream prefrontal area such as 493 

the dorsolateral prefrontal cortex. Given the fact that the FEF is at the source of attention control 494 

signals (61–64), the tight link we demonstrate between proactive distractor suppression and the 495 

spatial position of the attentional spotlight strongly suggests that proactive distractor suppression is 496 

implemented within the FEF.  497 

Irrelevant distractors are suppressed reactively. Neuronal evidence of attentional reactive 498 

suppression is to the best of our knowledge sparse if not inexistent. Here, we show that task 499 

irrelevant distractor presentation correlates with a marked phasic response in the FEF multi-unit 500 

activity as well as with a marked visual evoked potential in the FEF local field potentials, this 501 

whether the stimulus is correctly rejected or erroneously selected by the monkeys. Given the fact 502 

that visual evoked responses in the FEF are often taken as a signature of conscious perception (65–503 
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69), one can hypothesize that both correctly rejected and erroneously selected task irrelevant 504 

distractors are perceived by the monkey. This is in contrast with correctly rejected task relevant 505 

distractors that have only a weak trace in the FEF multi-unit activity and local field potentials and 506 

are thus most likely not perceived. However, as described above, the perceptual component of the 507 

irrelevant information is under the influence of a filtering “out” process centered onto the 508 

attentional spotlight. The multi-unit activity of correctly rejected task irrelevant distractors is then 509 

rapidly suppressed following the initial visually evoked response. This neuronal suppression is not 510 

present in the erroneously selected distractors and is taken as a neuronal signature of reactive 511 

distractor suppression and is compatible with a signal interrupting the ongoing perceptual and 512 

decision-making neural processes (20–22). Thus, reactive distractor suppression, involves both an 513 

attention spotlight based filtering “out” perceptual neuronal component as well as a neuronal 514 

suppressive component.  515 

Interaction between neuronal reactive suppression, priority map and attentional spotlight 516 

position in space. An important question is how much this later neuronal suppressive component 517 

depends on the spatial priority map and the attentional spotlight as described for the perceptual 518 

component. The initial evoked response to the task irrelevant distractor is stronger as the distractors 519 

are presented closer and closer to the expected target location. Except for the condition in which 520 

distractors are displayed very close to the target (within 3°), the neuronal reactive suppression 521 

brings all these neuronal activities to a same threshold. The net result of this is that reactive 522 

suppression follows the task-based learned spatial priority map and is stronger for stimuli closer to 523 

the expected target location. Reactive suppression in the FEF can thus be implemented either by a 524 

suppression command that is proportional to the initial evoked response, or by a command that 525 

brings down neuronal responses to a same threshold irrespective of the initial visual evoked 526 

response to the distractor. This is discussed next.  527 

However, very close to the expected target location (within 3°), task irrelevant distractor 528 

suppression is weaker than for distractors presented between 3° and 6° of eccentricity from the 529 

expected target location. This is possibly due to the fact that in this specific region of the visual 530 

field, distinguishing between the target and the task irrelevant distractors is more difficult (20, 27, 531 

70). In our task, target and distractors shared the same features and contrast with respect to the 532 

background. Discriminating between the two is thus expected to involve a precise evaluation of 533 

their spatial contingencies and is expected to be enhanced by the attentional spotlight (71–77). 534 

Confirming this view, the initial visual evoked response to the task-irrelevant distractor is enhanced 535 

when the attentional spotlight is close to it, while, at the same time, the extent to which the neuronal 536 
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activity is suppressed is critical. The net effect of this is a markedly stronger neuronal reactive 537 

suppression at the heart of the attentional spotlight as compared to further away from it.  538 

Overall, our results indicate that the FEF plays a central role in stimulus selection and both reactive 539 

and proactive distractor suppression. These processes are modulated by both long-term learned 540 

spatial task contingencies as well as by the dynamic attentional exploration and exploitation of the 541 

visual field. How the different FEF neuronal functional subtypes contribute to these processes and 542 

how these processes are implemented at the whole brain level will need to be further explored. 543 

 544 
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Materials and Methods  728 

Subjects and surgical procedures 729 

Two adult male rhesus monkeys (Macaca mulatta), weighing 8 kg (monkey D) and 7 kg (monkey HN), 730 

contributed to this experiment. Both monkeys underwent a unique surgery during which two MRI 731 

compatible recording chambers were implanted over the left and the right FEF hemispheres respectively, as 732 

well as a head fixation post. Gas anesthesia was carried out using Vet-Flurane, following an induction with 733 

Zolétil 100. Post-surgery pain was controlled with a morphine pain-killer (Buprecare), 3 injections at 6 hours 734 

interval (first injection at the beginning of the surgery) and a full antibiotic coverage was provided with 735 

Baytril 5%, one injection during the surgery and thereafter one each day during 10 days. A 0.6mm 736 

isomorphic anatomical MRI scan was acquired post surgically on a 1.5T Siemens Sonata MRI scanner, while 737 

a high-contrast oil-filled 1mmx1mm grid was placed in each recording chamber, in the same orientation as 738 

the final recording grid. This allowed a precise localization of the arcuate sulcus and surrounding gray matter 739 

underneath the recording chambers. The FEF was defined as the anterior bank of the arcuate sulcus and we 740 

specifically targeted those sites in which a significant visual and/or oculomotor activity was observed during 741 

a memory guided saccade task at 10 to 15° of eccentricity from the fixation point. All surgical and 742 

experimental procedures were approved by the local animal care committee (C2EA42-13-02-0401-01) in 743 

compliance with the European Community Council, Directive 2010/63/UE on Animal Care. 744 

Endogenous cueing detection task and Experimental setup 745 

The task is a 100% validity endogenous cued luminance change detection task (Fig 1A). The animals were 746 

placed in front of a PC monitor (1920×1200 pixels, refresh rate of 60 HZ) with their heads fixed. Stimulus 747 

presentation and behavioral responses were controlled using Presentation®. To start a trial, the monkeys had 748 

to hold a bar placed in front of their chair, thus interrupting an infrared beam. The appearance of a central 749 

fixation cross (size 0.7°×0.7°) at the center of the screen, instructed the monkeys to maintain their eye 750 

position (Eye tracker - ISCAN, Inc.) inside a 2°×2° window, throughout the duration of the trial, so as to 751 

avoid aborts. Four gray landmarks (LMs size 0.5°×0.5°) were displayed, simultaneously with the fixation 752 

cross, at the four corners of a hypothetical square having a diagonal length of ~28° and a center coinciding 753 

with the fixation cross. The four LMs (up-right, up-left, down-left, down-right) were thus placed at the same 754 

distance from the center of the screen having an eccentricity of ~14°. After a variable delay from fixation 755 

onset, ranging between 700 to 1200 ms, a 350ms spatial cue (small green square - size 0.2°×0.2°) was 756 

presented next to the fixation cross (at 0.3°), indicating the LM in which the rewarding target change in 757 

luminosity would take place. Thus, the cue presentation instructed the monkeys to orient their attention 758 

towards the target in order to monitor it for a change in luminosity. The change in target luminosity occurred 759 

unpredictably between 750 to 3300 ms from cue onset. In order to receive their reward (drop of juice), the 760 

monkeys were required to release the bar between 150 and 750 ms after target onset (Hit). To test the 761 

monkeys’ ability at distractor filtering, on half of the trials, one of two distractor typologies was randomly 762 
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presented during the cue-target delay. In ~17% of the trials (D trials), a change in luminosity, identical to the 763 

awaited target luminosity change, took place at one of the three uncued LMs. In these trials, the distractor D 764 

was thus identical in all respects to the expected target, except for being displayed in an uncued position. In 765 

~33% trials (d trials), a local change in luminosity (square) was displayed at a random position in the 766 

workspace. The size of the local change in luminosity was adjusted so as to account for the cortical 767 

magnification factor, growing from the center to the periphery (Schwartz 1994). In other words, d had the 768 

same size as D when presented at the same eccentricity as D. The absolute luminosity change with respect to 769 

the background was the same for both d and D. The monkeys had to ignore both the two distractor typologies 770 

(correct rejections – RJ). Responding to such distractors within 150 to 750ms (false alarm - FA) or at any 771 

other irrelevant time in the task interrupted the trial. Failing to respond to the target (Miss) similarly aborted 772 

the ongoing trial.  773 

Electrophysiological recordings and spike detection 774 

Bilateral simultaneous recordings in the two FEF hemispheres were carried out using two 24-contact Plexon 775 

U-probes. The contacts had an interspacing distance of 250 μm. Neural data was acquired using a Plexon 776 

Omniplex® neuronal data acquisition system. The data was amplified 500 times and digitized at 40,000 Hz. 777 

Neuronal activity was high-pass filtered at 300Hz and a threshold defining the multiunit activity (MUA) was 778 

applied independently for each recording contact and before the actual task-related recordings started. The 779 

LFPs were recorded simultaneously on the same electrodes as the spikes. LFP signals were digitized and 780 

sampled at 1 kHz and hardware filtered between 0.5 and 300 Hz and a notch filter was applied online to 781 

remove any 50Hz.  782 

LFP and MUA channels selection 783 

MUAs channels were selected based on their task-related modulation. MUA activity was smoothed using a 784 

100 ms sliding window. Specifically, for each of the four possible target locations, the mean (baseline) and 785 

the standard deviation (s.d.) preceding the corresponding target onset (time window [-200 0]) were 786 

calculated. A channel was selected for the current analyses if the signal that followed target onset ([20 400]), 787 

overcame the baseline +/- 2.5*s.d. for at least 100 ms, and at least one target position. For LFP channels 788 

selection, we included only channels that were artifact- and noise-free in the voltage domain. We focused on 789 

LFP channels that contributed to target detection, i.e. channels showing a different modulation when the 790 

animals correctly responded to the target (Hits) vs. when they didn’t (Misses). We computed the s.d. of their 791 

baseline average difference in the 200-ms epoch before target onset. To be selected, the voltage response of 792 

the considered channel had to cross a threshold of baseline average Hit-Miss difference +/- 2.5*s.d for at 793 

least 30 ms in the time window [30 – 230 ms] from target onset. Data analyses were performed using 794 

MATLAB (MathWorks, Natick, MA, USA). 795 

Decoding procedure 796 
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Training procedure. Based on our prior work indicating that the endogenous orienting of attention can be 797 

reliably decoded from the FEFs using a regularized optimal linear estimator (RegOLE) (13, 78–80), with the 798 

same accuracy as exogenous visual information, we trained a RegOLE to associate the neural responses 799 

(consisting in a vector containing the MUA signals collected at each of the 48 recording contacts) just prior 800 

to target onset ( [-220 + 30] from target onset), for the first 200 correct trials, with the attended location, i.e. 801 

with the expected target presentation LM, based on cue information. Our general objective here was to have 802 

as precise as possible an estimate of the attention position before a specific visual event, averaging activities 803 

over large enough windows to have a reliable single trial estimate of the neuronal response on this window, 804 

while at the same time a not too large time window to have a reliable estimate of where attention was placed 805 

by the subject at a specific time in the task (14, 80). 806 

The RegOLE defines the weight matrix W that minimizes the mean square error of C = W * (R + b), where 807 

C is the class (here, four possible spatial locations), b is the bias and R is the neural response. To avoid over-808 

fitting we used a Tikhonov regularization (81, 82) which gives us the following minimization equation: 809 

norm(W*(R + b) – C) + λ*norm(W). The scaling factor λ was chosen to allow for a good compromise 810 

between learning and generalization. Specifically, the decoder was constructed using two independent 811 

regularized linear regressions, one classifying the x-axis (two possible classes: -1 or 1) and one classifying 812 

the y-axis (two possible classes: -1 or 1).  813 

Testing procedure. In order to identify the locus of attention at the moment of target or distractor 814 

presentation in the 20 next new trials following the initial training set, the weight matrix defined during 815 

training was applied to the average neuronal activity recorded in the 150 ms prior to either target or D and d 816 

distractors. The described training (over 200 previous trials) / testing (over 20 novel trials) procedure was 817 

repeated after every 20 correct responses, by re-training the decoder with the new database composed by the 818 

last 200 correct trials. This continuous updating of the weight matrix W is implemented in order to minimize 819 

the impact of possible uncontrolled for changes in the recorded signal during a given recording session onto 820 

the decoding procedure.  821 

(x,y) spatial locus of the attentional spotlight (AS)  822 

As in (13), the readout of the RegOLE was not assigned to one of the four possible quadrants by applying a 823 

hardlim rule, as usually done for classification purposes. Rather, it was taken as reflecting the error of the 824 

decoder estimate to the target location, i.e., in behavioral terms, as the actual (x,y) spatial estimate of the 825 

locus of the attentional focus to the expected target location. In (13) as well as in the present manuscript, we 826 

show that this (x,y) estimate of the AS accounts for variations in behavioral responses. In order to analyze 827 

how the distance of the decoded attentional spotlight (AS) to the target or to the distractor affected both 828 

behavior and neuronal MUA responses, we computed, for each target presentation and each distractor 829 

presentation, the distance between the decoded AS and the target (AT) or the distractor (AD or Ad) as 830 

follows: AT = √((xAS - xT)² + (yAS - yT)²), AD = √((xAS – xD)² + (yAS – yD)²), or Ad = √((xAS – xd)² + (yAS – 831 
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yd)²), where x and y correspond to the Cartesian coordinates of the attentional spotlight (AS), the target (T) 832 

or the distractors (D or d).  833 

Statistical assessment of behavioral false alarm rates 834 

In order to statistically assess the dependence of FA rates onto the spatial position of d relative to both the 835 

target and attention, we estimated the 95% confidence interval limit using a one-tail non-parametric random 836 

permutation approach. For each d trial, we randomly reassigned its behavioral classification (i.e. Hit, FA or 837 

Miss) and then we recalculated the FAs rate (FAs / (Hits + FAs)). This procedure was repeated 1000 times 838 

and yielded a 1000 data points representing chance of FAs rate distribution, and this for each spatial 839 

discretized position of d. FA rate for real non-permuted data was considered significantly above chance if it 840 

fell within the 5% upper tail of its own spatial defined random permutation distribution. 841 

Behavioral responses model fitting procedure 842 

In order to determine the fitting model that best depicts the relationship between overt behavioral 843 

performance and the spatial position of the decoded attentional spotlight, we tested three regression models 844 

(linear, quadratic, cubic) (cftool, Curve Fitting App. MATLAB®), and selected the one that provided the 845 

lower Akaike information criterion (AIC) (83), i.e. minimizing AIC = 2k + n Log(RSS/n), where k is the 846 

number of degrees of freedom used in the regression analysis, RSS is the residual sum of squares of the 847 

actual data to the fitting function, and n is the sample size. To avoid the risk of overfitting, if two AIC values 848 

did not differ by more than 2 units, we chose the simplest model to explain the data. 849 

Effect of decoded attentional spotlight location onto target and distractor-related neuronal 850 

responses  851 

In order to estimate the effect of the position of the decoded AS onto the neuronal responses to the target or 852 

to the distractor, for all trials in which the monkeys were cued to target i (i ranging from 1 to 4), 853 

instantaneous firing rates were normalized with respect to the peak average response to this target. 854 

Normalization was performed as follows: For each trial, raw firing rates were smoothed with a Gaussian 855 

kernel convolution procedure. Each of these smoothed firing rates were then normalized as follows: Acti(Norm) 856 

= (Acti – Baselinei) / (Peaki – Baselinei), where Acti is the smoothed activity of the trial of interest in time 857 

(gaussian kernel, sigma = 25), in which attention is cued to target i (i ranging from 1 to 4), Act i(Norm) is this 858 

Acti activity normalized in time, Baselinei is the average pre-target response to target i in the [-200 0] time 859 

interval with respect to target onset and Peaki is the peak average response to target i. Trials were then 860 

categorized as a function of AT, AD or Ad distance (see above). This normalization procedure thus allowed 861 

to quantify the influence of AT, AD or Ad, irrespective of the neuron’s attention or target related spatial 862 

selectivity. 863 

 864 

  865 
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Supplementary information 866 

Supplementary note 1: General behavioral performance 867 

Both monkeys show above chance detection performance (Hit rates = Hits / (Hits + Misses + FAs)) 868 

in all trial types: No Distractor trials (DO = 50,26%; HN = 74,43%), d distractor trials (DO = 869 

58,38%; HN = 75,86%) and D distractor trials (DO = 60,05%; HN = 67,01%). D trials (FAs rate = 870 

18,07%) are characterized by a higher proportion of FAs as compared to d trials (FA rates = 871 

9,11%), confirming their higher behavioral relevance. In particular, D trials show higher probability 872 

of FAs when D was displayed ipsilateral to the target (FA rates = 20,90%, figure 1D, shaded right 873 

area) than when presented contralaterally (FAs rate = 13,25%, Kruskal–Wallis non-paramteric test, 874 

p< 0.02), or opposite to the target (FAs rate = 12,21%, Kruskal–Wallis non-paramteric test, p< 875 

0.001). The FA rates originating from these two last conditions do not differ (Kruskal–Wallis non-876 

paramteric test, p = 0.67). 877 

Supplementary note 2: Description of the neuronal population response properties  878 

The recorded receptive fields are quite large, as typically described in the FEF. Sixty-one percent of 879 

the MUA channels had a significant target related response on Hits. Of these, 23.5% of the recorded 880 

RFs encompass one visual quadrant, 24.2% encompass two ipsilateral visual quadrants, 4.6% 881 

encompass two opposing visual quadrants, 21.6% encompass three visual quadrants and 26.1% 882 

encompass 4 visual quadrants. Seventy-three percent of the MUA channels had a significant 883 

attention related response on correct trials. Of these, 14.1% of the recorded RFs encompass one 884 

visual quadrant, 14.4% encompass two ipsilateral visual quadrants, 3.6% encompass two opposing 885 

visual quadrants, 20.2% encompass three visual quadrants and 47.7% encompass 4 visual 886 

quadrants. This diverse receptive field structure of the data was critical for the success of the linear 887 

decoding approach that we are using here. Noteworthy is the fact that, in addition to significantly 888 

modulated neurons, non-significantly modulated neurons also contributed to the decoder. Fig. S1 889 

further reports the MUA spatial attention selectivity on an exemplar MUA signal, an exemplar 890 

session and across recording sessions. 891 
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Supplementary figure S1 893 

 894 

Supplementary Figure S1. MUA spatial attention selectivity. (a) Single MUA mean (+/- s.e.), when cue is 895 

orienting attention towards the preferred (black) or the anti-preferred (gray) spatial location, during the cue 896 

to target interval. X-axis represents time around the cue to target interval. (b) MUA spatial attention 897 

selectivity for a representative recording session. X-axis represents time around the cue to target interval. Y-898 

axis represents individual channels, separated in left and right hemisphere channels. Each line represents, for 899 

each individual channel, the difference between the normalized neuronal response to a cue orienting attention 900 

towards the preferred spatial location and the normalized neuronal response to a cue orienting attention 901 

towards the anti-preferred spatial location. White ticks represent the onset of statistically significant 902 

differences between these two signals (Wilcoxon, p<0.05). (c) Distribution of a spatial attention index 903 

((Preferred-AntiPreferred)/(Preferred+AntiPreferred), computed over [-200 0] ms before target onset) across 904 

all MUA of all sessions. Red histogram corresponds to channels in which the neuronal activity during this 905 

time interval was significantly different between the preferred and the anti-preferred spatial attention 906 

responses (Wilcoxon, p<0.05, gray, no significant difference). 907 
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Supplementary figure S2 913 

 914 

Supplementary Figure S2. Distinct behavioral filtering of distractors (D) and (d) as a function of 915 

distractor to decoded attentional spotlight distance (AD and Ad). A) FA rates (%) as a function of AD 916 

(schematized in the upper part of the panel). Solid black line: linear regression fit (r2= 0.85, Spearman correlation). B) 917 

FA rates (%) as a function of Ad (schematized in the upper part of the panel). Solid black line: third order polynomial 918 

regression fit (r2 adj= 0.13, Spearman correlation). C) Behavioral interaction between target to distractor d distance (Td) 919 

and attentional spotlight to distractor d distance (Ad). Top: FAs rates as a function of Ad (from 0° to 12° - step= 3°) for 920 

different Td distances (Td - gray scale, from 0° to 12° - step= 3°). Bottom: same data displayed as a map. Color scale: 921 

% of FAs. Black asterisks indicate FA rates significantly higher than chance (one-tail random permutation test (< 95% 922 

confidence interval).   923 
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