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Highlights  

 We use machine learning to decode attention spotlight from prefrontal MUA & LFP. 

 We achieve high decoding accuracy of (x,y) spatial attention spotlight.  

 (x,y) attention spotlight position accuracy is maximal from LFP gamma frequency range. 

 MUA and LFP decoded attention position predicts behavioral performances.  

 Selecting high information signals improves decoding and behavioral correlates. 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 9, 2020. ; https://doi.org/10.1101/2020.09.07.286195doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.07.286195
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 

 

Abstract 1 

The ability to access brain information in real-time is crucial both for a better understanding of cognitive 2 

functions and for the development of therapeutic applications based on brain-machine interfaces. Great 3 

success has been achieved in the field of neural motor prosthesis. Progress is still needed in the real-time 4 

decoding of higher-order cognitive processes such as covert attention. Recently, we showed that we can track 5 

the location of the attentional spotlight using classification methods applied to prefrontal multi-unit activity 6 

(MUA) in the non-human primate (Astrand et al., 2016). Importantly, we demonstrated that the decoded (x,y) 7 

attentional spotlight parametrically correlates with the behavior of the monkeys thus validating our decoding 8 

of attention. We also demonstrate that this spotlight is extremely dynamic (Gaillard et al., 2020). Here, in order 9 

to get closer to non-invasive decoding applications, we extend our previous work to local field potential signals 10 

(LFP). Specifically, we achieve, for the first time, high decoding accuracy of the (x,y) location of the attentional 11 

spotlight from prefrontal LFP signals, to a degree comparable to that achieved from MUA signals,  and we show 12 

that this LFP content is predictive of behavior. This LFP attention-related information is maximal in the gamma 13 

band. In addition, we introduce a novel two-step decoding procedure based on the labelling of maximally 14 

attention-informative trials during the decoding procedure. This procedure strongly improves the correlation 15 

between our real-time MUA and LFP based decoding and behavioral performance, thus further refining the 16 

functional relevance of this real-time decoding of the (x,y) locus of attention. This improvement is more 17 

marked for LFP signals than for MUA signals, suggesting that LFP signals may contain other sources of task-18 

related variability than spatial attention information. Overall, this study demonstrates that the attentional 19 

spotlight can be accessed from LFP frequency content, in real-time, and can be used to drive high-information 20 

content cognitive brain machine interfaces for the development of new therapeutic strategies. 21 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 9, 2020. ; https://doi.org/10.1101/2020.09.07.286195doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.07.286195
http://creativecommons.org/licenses/by-nc-nd/4.0/


3 

 

Introduction 22 

Accessing cognitive functions in real time, using machine learning methods applied to ongoing brain signals is 23 

considered as one of the major challenges of modern neurosciences, in order to enhance and restore human 24 

brain capacities (Astrand et al., 2014; Cinel et al., 2019; Dresler et al., 2018). Indeed, the ability to decode brain 25 

information in real-time is expected to allow for a better characterization of cognitive functions and 26 

development of therapeutic applications based on brain-machine interfaces. While great success has been 27 

achieved in the field of neural motor prosthesis (Prochazka, 2017), real-time decoding of higher-order cognitive 28 

processes such as spatial attention is still hampered by the complexity of these mechanisms.  29 

One major issue in this respect is the fact that cognitive functions are mostly covert and can only be inferred 30 

transiently through subjects’ behaviors. Another crucial issue is the fact that cognitive processes are highly 31 

dynamic, irrespectively of behavioral goals or instructions (Gaillard et al., 2020).  32 

In the last years, we have recorded multi-unit activity (MUA) signals from prefrontal frontal eye fields (FEF), a 33 

cortical region at the core of attention selection (Buschman and Miller, 2007; Ekstrom et al., 2008; Gregoriou et 34 

al., 2009; Ibos et al., 2013; Moore and Fallah, 2004; Wardak et al., 2006). We report real-time access to the 35 

(x,y) coordinates of attentional spotlight from these ongoing prefrontal neuronal population spiking activity, at 36 

high spatial and temporal resolution (Astrand et al., 2020; Di Bello et al., 2020; Gaillard et al., 2020). 37 

Importantly, we show a strong correlation between the decoded (x,y) attentional spotlight  in real-time and 38 

subjects’ behavioral performance on a complex perceptual task.  39 

In the following, we extend this (x,y) decoding of the attentional spotlight to local field potential (LFPs) signals, 40 

moving a step closer to real-time EEG based decoding of the attentional function. Indeed, LFP signals reflect 41 

the spiking activity that are summed over a large population of neurons while MUA refers to the activity of 42 

individual neurons or of a local population of neurons. While MUA activity is often best analyzed in the time-43 

amplitude domain, LFPs are often analyzed in the time-frequency domain. Besides, we present a novel two-44 

step decoding procedure optimizing correlation between decoded information and ongoing behavior. 45 

Specifically, we apply machine learning methods to neuronal population activities recorded from the FEF, 46 

bilaterally, while monkeys performed a cued spatial target detection task. We report for the first-time high (x,y) 47 

decoding accuracy of attentional spotlight location from LFP signals. We further show that LFPs attention-48 

related informational content is maximal in the gamma frequency band. The real-time attention decoding 49 

accuracies for LFP are comparable to what we achieved from MUA and are highly correlated with behavioral 50 

performance. Based on the observation that the (x,y) attention spotlight location estimated from both MUA 51 

and LFP signals correlate with behavior, we introduce a novel attentional position decoding method based on a 52 

distinction between trials with high and low attention related information content. We demonstrate that this 53 

procedure improves decoding accuracies obtained from LFP and MUA signals and importantly, improves their 54 

correlation with behavior. This improvement is maximal for LFP signals compared to MUA signals, suggesting 55 

that LFP signals may contain other sources of task-related variability than spatial attention information, a point 56 

that is highly relevant for attentional processes decoding. Overall, this study provides methodological bases to 57 
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drive high attention-information content cognitive brain machine interfaces from both MUA or LFP activities. It 58 

also opens the way to targeting other cognitive functions such as working memory, and possibly extend this 59 

approach to non-invasive signals such as EEG or fMRI signals.  60 

 61 

Methods  62 

Subjects and surgical procedures 63 

Two adult male rhesus monkeys (Macaca mulatta) were used in this experiment. All surgical and experimental 64 

procedures were approved by the local animal care committee (C2EA42-13-02-0401-01) in compliance with the 65 

European Community Council, Directive 2010/63/UE on Animal Care. The surgical procedures, the FEF location, 66 

and visual stimulation techniques have been described elsewhere (Astrand et al., 2016). 67 

  68 

Behavioral task  69 

The task is a 100% validity endogenous cued spatial target detection task (fig. 1A).  The animals were placed in 70 

front of a PC monitor (1920×1200 pixels and a refresh rate of 60 HZ), at a distance of 57 cm, with their heads 71 

fixed. The stimuli presentation and behavioral responses were controlled using Presentation (Neurobehavioral 72 

systems®, https://www.neurobs.com/). To start a trial, the bar placed in front of the animal’s chair had to be 73 

held by the monkeys, thus interrupting an infrared beam. The onset of a central blue fixation cross (size 74 

0.7°×0.7°) instructed the monkeys to maintain eye position inside a 2°×2° window, defined around the fixation 75 

cross. To avoid the abort of the ongoing trial, fixation had to be maintained throughout trial duration. Eye 76 

fixation was controlled thanks to a video eye tracker (Iscan™). Four gray square (size 0.5°×0.5°) were displayed, 77 

all throughout the trial, at the four corners of a 20°x20° hypothetical square centered onto the fixation cross. 78 

Thus, the four squares (up-right, up-left, down-left, down-right) were placed at the same distance from the 79 

center of the screen having an eccentricity of 14° (absolute x- and y-deviation from the center of the screen of 80 

10°). After a variable delay from fixation onset, ranging between 700 – 1200 ms, a small green square, the cue 81 

(size 0.2°×0.2°) was presented, for 350 ms, close to the fixation cross (at 0.3°) in the direction of one of the grey 82 

squares. Monkeys were rewarded for detecting a subtle change in luminosity of this cued square - i.e., the 83 

target. The change in target luminosity occurred unpredictably between 350 to 3300 ms from the cue off time. 84 

In order to receive a reward (drop of juice), the monkeys were required to release the bar in a limited time 85 

window (150 - 750 ms) after the target onset (hit trials). In order to make sure that the monkeys did use the 86 

cue instruction, on half of the trials, distractors were presented during the cue to target interval. Two types of 87 

distractors could be presented: (i) an uncued distractor (33% of trials with distractor) - that could take place 88 

equiprobably at any of the uncued locations; (ii) a workspace distractor (67% of trials with distractor) - that 89 

correspond to a small square presented randomly in the workspace defined by the four target locations. The 90 

contrast of the square with respect to the background was the same as the contrast of the target against the 91 

grey square. The monkeys had to ignore all of these distractors. Responding to any of them interrupted the 92 
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trial. If the response occurred in the same response widow as for correct detection trials (150 - 750 ms), the 93 

trial was counted as a false alarm (FA) trial. Failing to respond to the target (Miss) similarly aborted the ongoing 94 

trial. Overall, data was collected for 19 sessions (M1: 10 sessions, M2: 9 sessions). The behavioral performance 95 

of each animal is presented in figure 1B (proportion of hits over miss and FA trials).  96 

 97 

 98 

Figure 1: Task design and behavioral performance. (A) 100% validity cued spatial target detection 99 

task with distractors. Monkeys had to hold a bar and fixate a central cross on the screen for a trial 100 

to be initiated. Monkeys received a liquid reward for releasing the bar 150 - 750 ms after target 101 

presentation. Target location was indicated by a cue (green square, second screen). Monkeys had 102 

to ignore any uncued event. (B) Behavioral performance of monkeys M1 and M2 at detecting the 103 

target in the presence or absence of a distractor (median % hits +/- median absolute deviations, 104 

dot correspond to individual sessions). (C) Recording sites. On each session, 24-contact recording 105 

probes were placed in each FEF. 106 

 107 

Recording techniques  108 

Bilateral simultaneous recordings in the two frontal eye fields (FEF) were carried out using two 24- contact 109 

Plexon U-probes (fig. 1C). The contacts had an interspacing distance of 250 μm. Neural data was acquired with 110 

the Plexon Omniplex® neuronal data acquisition system. The data was amplified 400 times and digitized at 111 

40.000 Hz. A threshold defining the multi-unit activity (MUA) was applied independently for each recording 112 

contact before the actual task-related recordings started. Local field potentials (LFP) were recorded 113 

simultaneously on the same electrodes as MUA. The neuronal properties of the recorded neuronal sample 114 

have already been described elsewhere (Astrand et al., 2020; Gaillard et al., 2020).  115 

 116 

Neuronal decoding procedure 117 

MUA and LFP signals were aligned on the target presentation time and sorted according to the monkey’s 118 

behavioral response (hits and misses). Fast Fourier transform analyses were performed on LFP signals recorded 119 

on all 48 channels to quantify signal power up to 250 Hz. Signal normalization was applied to LFP signals. 120 
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Specifically, instantaneous powers were z-scored with respect to a pre-cue baseline, by subtracting from these 121 

instantaneous power frequency series the power average of the 300 ms before the cue presentation and 122 

dividing by the standard deviation of this signal over all trials. Decoding from LFP signals was then performed 123 

either on unfiltered data or on eight independent frequency bands: δ (0-4 Hz), θ (4-8 Hz), α (8-12 Hz), low β 124 

(12-20 Hz), high β (20-30 Hz), low γ (30-60 Hz), mid γ (60-120 Hz), high γ (120-250Hz). As in Astrand et al., 125 

(2016, 2015), a regularized linear decoder was used to associate, on hit trials, the neuronal activity associated 126 

to one of the four possible target locations. 127 

Decoder input signals corresponded either to the number of spikes for MUA or to the normalized 128 

instantaneous power of all frequencies or specific frequency bands for LFPs, computed over the specified time 129 

window. On each given time interval before target presentation, the decoder was trained on a random set of 130 

70% of hit trials and then tested on the 30% remaining hit trials and all misses, with activities sampled at the 131 

same interval as the training interval. Trial positions were equalized in the training set to avoid any decoding 132 

bias. To avoid overfitting, training and testing were performed from different trials. During training, the input 133 

of the classifier was a 48-channel by N-trial matrix, corresponding to the average neuronal signal computed 134 

over the time interval of interest, for each of the 48 recording channels and each of the N training trials. As an 135 

input, the decoder also used the (x,y) coordinates of the target for each of these N training trials. During 136 

testing, for each trial, new to the classifier, the output of the classifier was estimated from a 48-channel vector 137 

corresponding to the average neuronal signal on the time interval of interest, on each of the 48 recording 138 

channels, on the considered testing trial. The output calculated by the decoder correspond to an X and Y 139 

coordinate. Thus, it could be read as an (x,y) estimation of attentional spotlight or as a quadrant category, 140 

corresponding to one of the four possible target localization (as in Astrand et al., 2016, 2015, 2014; Gaillard et 141 

al., 2020). Training and testing were performed on neuronal signals from 10 ms to 1200 ms before target 142 

presentation with a time step of 20 ms. All trials with cue-to-target intervals shorter than 1700ms were 143 

excluded from this analysis. For each interval, training and testing steps were repeated 100 times, then 144 

averaged to define a decoding performance corresponding to the number of correct classifications according to 145 

quadrant categories. We estimated the 95% confidence interval to verify the statistical significance of our 146 

decoding performance. The same decoding analyses as described above were used with a training set based on 147 

random labels. In other words, the decoder used the same neuronal signal, but the coordinates of the target 148 

were randomized and thus did not correspond to the actual condition in which the neuronal signal was 149 

recorded.   150 

 151 

Behavioral correlation  152 

In order to validate the decoding procedure, we investigated the correlation between the (x,y) attentional 153 

spotlight decoded from neuronal signals with monkey’s behavioral response (Percentage of hits over miss 154 

trials). Specifically, the relative distance between the actual target location and the decoded attentional 155 

spotlight location was calculated for each trial. Percentage of hits over miss trials was then calculated over 0.5° 156 

distance vectors. To avoid biases, total number of hits and misses were equalized and then binned - the whole 157 
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procedure was repeated 100 times. The X and Y location of attentional spotlight was calculated from a leave-158 

one-out decoding strategy (i.e., training was performed on all hit trials except one used for the testing). For 159 

misses, the decoder was trained on all hit trials and tested on all misses. Training and testing were performed 160 

on a 150 ms time window prior to target presentation. Statistical analyses were carried using linear regression 161 

model. 162 

 163 

Two-step decoding procedure 164 

In this part, we dissociate high attention-related informational spatial content trials from low attention-related 165 

informational content trials. We use the relative distance calculated between the decoded (x,y) attentional 166 

spotlight ( AS) and the real target location (T) for hit trials, as described above. Two categories of hit trials were 167 

identified from this first decoding: 1) trials in which the decoded attentional spotlight is close to target location 168 

(i.e. HighContent trials) and 2) trials in which the decoded attentional spotlight is far from target location (i.e. 169 

LowContent trials). HighContent and LowContent trials were defined according to a threshold of 7° between 170 

real target location and decoded attentional spotlight (HighContent trials: |AS-T|<7°; LowContent trials: |AS-171 

T|>=7°). Given the high difficulty of the task, monkeys cannot succeed in the trial if they are not orienting their 172 

attention near to the target location (Astrand et al., 2016). Thus, we hypothesized that these differences 173 

between HighContent and LowContent trials was due to differences in spatial attention informational content 174 

between these two types of hit trials, and that signals were more rpresentative of the expected target location 175 

in HighContents trials that in LowContent trials. Decoding performance and behavioral correlation were thus 176 

calculated a second time as follows. In order to evaluate classification performance, training was performed on 177 

all HighContent trials and testing was performed on different percentages of HighContent trials over 178 

LowContent trials (0% to 100% ratio). The proportion 70/30 of trials used for training and testing was 179 

conserved.  Once training and testing sets were selected, the decoding procedure applied was the same that 180 

the procedure described in the previous section. In order to evaluate the correlation between decoded 181 

attention position and behavioral performance, we performed a trial by trial (x,y) estimation of attentional 182 

position. More specifically, for HighContent trials position decoding, the decoder was trained on all 183 

HighContent trials except one and tested on the remaining one (leave one out strategy). For LowContent trials 184 

and misses, the decoder was train on all HighContent trials and tested on LowContent trials and misses. 185 

Training and testing were performed 150 ms before target presentation. The relative distance between AS and 186 

T was calculated and associated with the percentage of hit trials with respect to misses. Hit trials included 50% 187 

of LowContent trials and 50% of HighContent trials. For each signal (MUA and LFP), we compared the effect of 188 

HighContent trials on decoding performance and behavioral correlation. Statistical comparisons were 189 

performed using non parametric tests (Wilcoxon rank sum test) and multiple linear regressions. 190 

 191 

 192 

Results 193 
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In order to access the location of the attentional spotlight, a linear decoder was used to estimate the (x,y) 194 

coordinates of attention based on MUA and LFP signals, recorded from the prefrontal cortex (FEF, bilaterally, 195 

Fig. 1C) while monkeys performed a cued target detection task (Fig. 1A). The readout of this linear decoding 196 

procedure can be classified in one of four possible classes indicating whether attention is correctly oriented to 197 

the cued visual quadrant (correct classification), or to one of the three other quadrants (incorrect classification, 198 

Astrand et al., 2014, Tremblay et al., 2015b). Alternatively, the readout of the linear decoding can be taken as 199 

an error to the cued location and transformed into an (x,y) continuous coordinate (Astrand et al., 2020, 2016; 200 

Gaillard et al., 2020).  In the first part of the results, we report for the first time continuous attentional spotlight 201 

position decoding from LFP signals, with performance accuracy levels similar to MUA based decoding.  We then 202 

analyze how the continuous (x,y) estimates of attentional spotlight based on prefrontal MUA and LFP signals 203 

predict behavioral performance, thus validating the decoding procedure. Finally, we develop a decoding 204 

method that optimizes the spatial decoding of attention from MUA and LFP signals and highlights qualitative 205 

variability in prefrontal attention related information. 206 

 207 

Classifying spatial attention from prefrontal MUA and LFP 208 

Figure 2A and 2B represent the classification performance based respectively on FEF recorded MUAs and LFPs 209 

(irrespective of frequency content). Neuronal activity (decoder input) was averaged just prior to target 210 

presentation, calculated across varying time windows ranging from 10ms to 1200ms. Decoding accuracy on hit 211 

trials is significantly higher than chance for both MUA (Fig. 2A, blue, mean = 77%, s.e. = 2.1%, for window size = 212 

1200ms, dashed blue line, 95% C.I, note that absolute chance level is at 25%) and LFP signals (Fig. 2B, blue, 213 

mean = 71%, s.e. = 2.1%, for window size = 1200ms, dashed blue line, 95% C.I). Thus, on hit trials, spatial 214 

attention can be successfully classified from both MUA and LFP signals. 215 

 216 
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Figure 2: Spatial attention decoding accuracies from (A) multi-unit activity (MUA) or (B) local field 217 

potentials (LFP), as a function of averaging time window size from target onset (0 ms), on hits 218 

(blue, mean +/- s.e.) and miss trials (red, mean +/- s.e.). Black dashed line (25%): absolute chance 219 

level; dashed blue and red curves: 95% C.I. for hit and miss trials. (C) Spatial attention decoding 220 

accuracy from LFP signals per LFP frequency band, as a function of averaging time window size 221 

from target onset (0 ms), on hit (left) and miss trials (right). 222 

Interestingly, decreasing time intervals before target presentation highly impacts decoding accuracies. 223 

Performances decrease from 77% to 40% for MUA (Fig. 2A, blue, mean =40%, s.e. = 1.7%) and from 71% to 29% 224 

for LFPs (Fig. 2B, blue, mean = 29%, s.e. = 0.9%). Additionally, for LFP signals, classification significance is 225 

reached only for window sizes starting from 30 ms (Fig. 2B, blue, mean=29%, s.e.=0.9%). Compared to short 226 

time windows, longer time windows reflect average spatial attention location, and thus yield higher 227 

classification rates. On both signals, window size thus implies a trade-off between temporal resolution and 228 

overall classification accuracy.  229 

While MUA signals are processed in the time-amplitude domain, LFP signals are processed in the time-230 

frequency domain. In the following part, we segregated the different functional frequency bands of LFPs to 231 

investigate their specific impact on classification performances. Figure 2C represents the decoding accuracy in 232 

time as a function of specific LFP functional frequency band content. As observed on the overall decoding 233 

accuracy from all LFP frequency content decomposition, larger window sizes yield higher decoding accuracies 234 

in all frequency bands (Fig. 2C). However, information about spatial location of attention is mainly contained in 235 

the gamma frequency bands (30-250 Hz). Specifically, on hit trials, for the largest window sizes, decoding 236 

accuracies are below 50% for all frequency bands <30Hz (δ = 40%; θ = 42%; α = 36%; low β= 35%; high β= 39%) 237 

and reach a maximum of 54% for low γ (30-60 Hz), 66% for mid γ (60-120 Hz) and 65% for high γ (120-250Hz) 238 

(Fig.2C). In addition, full spectrum LFP decoding accuracy is higher compared to LFP band-specific decoding 239 

accuracies.  240 

For both MUA and LFP signals, decoding is significantly more reliable on hit trials than on misses at all window 241 

sizes (e.g. window size = 1200ms, MUA: Fig. 2A, blue, mean = 77%, s.e. = 2.1% vs. red, mean = 67%, s.e. =2.4%; 242 

LFP: Fig. 2B, blue, mean = 71%, s.e. = 2.1% vs. red, mean = 61%, s.e. = 2.4%). This holds true for all LFP 243 

frequency bands, although impact of negative trial outcome is stronger on higher LFP frequency bands as 244 

compared to lower (Fig. 2C). Overall, this supports that spatial attention is miss allocated during miss trials 245 

(Astrand et al., 2016, Gaillard et al., 2020), subsequently interfering with perception (Astrand et al., 2020). 246 

 247 

The decoded (x,y) attentional spotlight predicts behavior  248 

Spatial attention is a covert cognitive process. Therefore, it is not possible to verify spatial attention decoding 249 

behavioral significance by a direct single trial correlation between decoding readout of spatial attention and an 250 

observable behavioral measure other than target detection performance. It is however possible to validate the 251 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 9, 2020. ; https://doi.org/10.1101/2020.09.07.286195doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.07.286195
http://creativecommons.org/licenses/by-nc-nd/4.0/


10 

 

correlation between the decoding readout of spatial attention and behavior over multiple trials (Astrand et al., 252 

2016, Gaillard et al., 2020). In the following, attention to target distance is defined, in each trial, as the distance 253 

between expected target location and the corresponding decoded (x,y) attentional spotlight, 150 ms before 254 

target onset. This distance parameter is then correlated to a behavioral performance calculated as the 255 

percentage of hits over miss trials. For all signal types, we observe that monkeys produce more hits when their 256 

attentional spotlight is deployed closer to target location. Specifically, we demonstrate a significant linear 257 

correlation between the distance of decoded attentional spotlight to target and the hit rate, when using MUA 258 

based decoding (Fig. 3A. linear regression: r
2

= 0.48, F= 86, p-value < 0.005) as well as when using LFP based 259 

decoding (Fig. 3.B linear regression: r2= 0.65, F= 174, p-value < 0.005). This indicates that similarly to MUAs, 260 

LFPs spatial attention information predicts behavior.  261 

 262 

Figure 3: Correlation between behavioral performances & distance between the attentional 263 

spotlight and the target location from (A) multi-unit activity (MUA), (B) local field potentials (LFP), 264 

on all frequency power content or (C) as a function of specific frequency ranges ((δ (0-4 Hz), θ (4-8 265 

Hz), α (8-12 Hz), low β (12-20 Hz), high β (20-30 Hz), low γ (30-60 Hz), mid γ (60-120 Hz), high γ 266 

(120-250Hz)). Blue dots: binned data points; black line: best linear fit; gray shaded area: 95% C.I. F 267 

and p-values are indicated in the main text. Behavioral performance, y-axis: ratio between hit and 268 

miss trials in %. Distance between the decoded attentional spotlight (AS) and actual target 269 

presentation location, x-axis: normalized distance.  270 

In order to better understand which frequency bands held the most reliable spatial information, the above 271 

described correlation analysis is reproduced for each independent functional LFP frequency band (Fig. 3C). 272 

Overall, correlations are weak for the lower frequency bands and increase for the higher frequency ranges (Fig. 273 

4C:  δ: r2= 0.18, F= 0.0, p-value < 0.005/ θ: r2= 0.13, F= 0.0, p-value < 0.005/ α: r2= 0.26, F= 0.0, p-value < 0.005 274 

/ low β: r2= 0.13, F= 0.0, p-value < 0.005/ high β: r2= 0.17, F= 0.0, p-value < 0.005/ low γ:  r2= 0.29, F= 0.0, p-275 

value < 0.005 / mid γ: r
2

= 0.42, F= 0.0, p-value < 0.005 / high γ: r
2

= 0.40, F= 59.3, p-value < 0.005).  276 

These analyses bring about two important observations. First, spatial attention LFP-based decoding correlates 277 

with behavior to the same extent as MUA-based decoding. Second, this is mostly due to the gamma frequency 278 

LFP power content. 279 

 280 
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Optimizing (x,y) access to attentional spotlight using a two-step decoding procedure 281 

From the above correlation between decoded attentional spotlight distance to expected target location and hit 282 

rate, we observe that for a proportion of hit trials, the decoded (x,y) attentional spotlight is estimated close to 283 

the expected target location, while for the rest of the trials, the decoded attentional spotlight is estimated far 284 

away from the expected target (Fig. 4A). Based on the observation that decoded location accounts for 285 

behavior, we reasoned that when training our decoder on hit trials, we are actually training it on suboptimal 286 

conditions, presenting it with both trials in which attention is close to the expected target location, and trials in 287 

which attention is farther away. We thus here define two different categories of trials: HighContent trials (Fig. 288 

4A), defined by decoded attentional spotlight to expected target distance inferior to 7° and LowContent trials 289 

(Fig. 4A), defined by decoded attentional spotlight to expected target distance superior to 7°. Running the 290 

decoder on varying proportions of HighContents trials relative to LowContent trials critically impact spatial 291 

attention decoding performance. Using an optimal 100% HighContent trials training set from MUA signal leads 292 

to an average increase in decoding of 27% (s.e.= 0.8%) between 10 ms to 600 ms pre-target averaging window 293 

sizes and an average increase of 18.7% (s.e.=0.3%) between 600 ms to 1200 ms pre-target (Fig. 4B, Wilcoxon 294 

rank sum test, p-value < 0.05). Using an optimal 100% HighContent trials training set from LFP signal leads to an 295 

average increase in decoding of 34% (s.e.=0.9%) and 25% (s.e.=0.7%), respectively for the short and long pre-296 

target averaging window sizes (Fig. 4B, Wilcoxon rank sum test, p-value < 0.05). This effect was particularly 297 

striking for smaller window sizes. A significant increase of performances with respect to a randomly distributed 298 

dataset is observed for a minimum threshold of 70% of HighContent trials in the MUA training set and 50% in 299 

the LFP training set (Fig. 4B, Wilcoxon rank sum test, p-value < 0.05). In addition, and in contrast with what is 300 

described in figure 2, decoding accuracy increment is most marked for shorter than for longer time intervals. 301 

Overall, the higher the HighContent trials rate, the higher the gain is in attention classification performance. 302 

This indicates that prior selection of a spatial information rich training dataset is crucial to optimize access to 303 

prefrontal attentional encoding and further improves classification performances on remaining trials.  304 

In contrast, the higher the LowContent trials rate, the higher the loss in overall spatial attention decoding 305 

performance. A training set of 100% LowContent trials leads to a drastic reduction of decoding performance 306 

compared to a randomly distributed training set both for MUA signals (Fig. 4B, -13% (s.e.=0.4%) between 10 ms 307 

to 600 ms and -16% (s.e.=0.1%) between 600 ms to 1200 ms, Wilcoxon rank sum test, p-value < 0.05) and LFP 308 

signals (Fig. 4B, -10% (s.e.=0.8%) and -12% (s.e.=0.6%), Wilcoxon rank sum test, p-value < 0.05). A significant 309 

decrease in spatial attention decoding accuracy as compared to a random training dataset is observed for MUA 310 

(resp. LFP) training sets starting from 80% or more LowContent trials (resp. 90%, Fig. 4B, Wilcoxon rank sum 311 

test, p-value < 0.05). Thus, LowContent trials are detrimental to spatial attention decoding accuracy.  312 

Importantly, the positive effect of HighContent trials on decoding performance is more marked for LFP signals 313 

than MUA signals (Wilcoxon rank sum test, p-value <0.005). Moreover, LFP signals are less impacted by the 314 

lower ratios of HighContent trials over LowContent trials than MUA signals - thus resulting in a lower decrease 315 

in decoding performance (Wilcoxon rank sum test, p-value <0.005). In other words, while the two-step 316 
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decoding improves attention decoding accuracies, this impact is more pronounced on LFP signals than on 317 

MUAs.  318 

 319 

Figure 4: Two-step decoding procedure improves correlation between behavioral performance & 320 

distance between the attentional spotlight and the target location. (A) Following the first 321 

decoding step, hit trials can be subdivided into HighContent and LowContent trials based on how 322 

close decoded attentional spotlight is to the actual target location (mid panel). HighContent trials 323 

consistently fall in the cued quadrant (left panel) while LowContent trials don’t. (B-C) Following 324 

the second decoding step, the higher the proportion of HighContent trials in the training set, the 325 

higher the attention decoding accuracy on novel trials. This improvement in attention decoding 326 

accuracy is more marked when decoding from LFP signals (C) than from MUA signals (B) 327 

(HighContent trials (HighC.); LowContent trials (LowC.); Shaded gray are: no significant difference 328 

in performance as assessed by Wilcoxon rank sum test; Shaded black are: time intervals excluded 329 

due to absence of HighContent trials for 5 sessions. (D-E) This two-step decoding procedure 330 

improves the correlation between overt performance and the distance of the decoded attentional 331 

spotlight (AS) to the target location (Higher R2, steeper slope) for both MUA signals (D) and LFP 332 

signals (E).  333 
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Functional validity of this two-step decoding procedure implies that exclusive training on HighContent trials, 334 

whether in MUA or LFP signals, maximizes the correlation between the decoded attentional spotlight to 335 

expected target distance and behavioral performance (Astrand et al., 2016). We thus trained a decoder using 336 

only HighContent trials and tested it on misses and remaining HighContent trials (50% of hit testing trials) and 337 

LowContent trials (50% of hit testing trials) to simulate a balanced proportion of hit trials categories and 338 

misses. As expected, HighContent trials based decoding increases the linear relationship between attentional 339 

spotlight to target distance and behavioral performance. Specifically, in the MUAs, r
2

 value increased from 0.48 340 

(Fig. 3A linear regression: r
2

= 0.48, F= 85.8912, p-value <0.05) to 0.91 (Fig. 4C, linear regression: r
2

= 0.91, F= 341 

962, p-value <0.005), and correlation slope becomes markedly more steep (Fig. 4C, linear regression: a=-0.3, vs. 342 

Fig. 3A linear regression: a=-0.12). In the LFPs, r2 values increase from 0.65 (Fig. 3B linear regression: r2= 0.65, 343 

F= 174, p-value <0.005) to 0.86 (Fig. 4D linear regression: r2= 0.86, F= 569, p-value <0.005), and correlation 344 

slope also becomes steeper (Fig. 4D linear regression: a=0.27, vs. Fig. 3B linear regression: a=0.10). Overall, this 345 

thus confirms the functional validity of this two-step decoding procedure, both for MUA-based decoding of 346 

spatial attention, as well as for LFP-based decoding of spatial attention. Crucially, we demonstrate that using 347 

spatial information enriched trials (i.e. HighContent trials) allows to better account for the relationship 348 

between observed behavior and the (x,y) decoded attentional spotlight.  349 

 350 

Discussion  351 

In this manuscript we report for the first time high decoding accuracy of the (x,y) location of the attentional 352 

spotlight based on prefrontal LFP signals, to a comparable degree to that achieved from MUA signals. We show 353 

that both decoded information (MUA and LFP signals) are predictive of behavioral content and that LFP 354 

attention-related information is maximal in the gamma band. In addition, we show that selecting maximally 355 

attention-informative trials (HighContent trials) during the decoding procedure strongly improves the 356 

correlation between our MUA and LFP based decoding and behavioral performance, thus further refining the 357 

functional relevance of this decoding of the (x,y) locus of the attentional spotlight. This improvement is more 358 

marked for LFP signals than for MUA signals, suggesting that LFP signals may contain other sources of task-359 

related variability than spatial attention information. In the following, these findings are discussed in the light 360 

of the current literature.  361 

Decoding attentional information from LFP signals 362 

The neural bases of spatial attention in the prefrontal cortex have been extensively studied based both on 363 

neuronal spiking activity, local field potentials and interferential studies (Ibos et al., 2013; Buschman and 364 

Miller, 2007; Wardak et al. 2006). In recent years, this accumulated knowledge has set the grounds for real 365 

time decoding of attention both from invasively recorded spiking activity (Astrand et al., 2014, 2016, 2020; 366 

Farbod Kia et al., 2011; Gaillard et al., 2020; Tremblay et al., 2015b) and non-invasive brain signals (Andersson 367 

et al., 2012, 2011; Thiery et al., 2016; Van Gerven and Jensen, 2009). Attentional decoding methods from MUA 368 
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signal have made substantial progress, moving from the classification of attention into subspace sectors to the 369 

actual decoding of the (x,y) position of the attentional spotlight (Astrand et al., 2016; Tremblay et al., 2015). 370 

However, progress has been much slower in the decoding of attention from non-invasive MRI or EEG signals. 371 

Decoding of attention from LFP signals and developing novel decoding strategies on this type of signals can be 372 

considered as an intermediate step towards improving the decoding of attention from less invasive signals. 373 

To our knowledge, only one study to date has addressed the decoding of spatial attention from prefrontal LFP, 374 

based on a four spatial quadrant classification approach (Tremblay et al., 2015a). Here, we report, for the first 375 

time the real-time tracking of the (x,y) attentional spotlight locus from prefrontal LFPs. Crucially, we show that 376 

the extracted (x,y) locus of the attentional spotlight is highly predictive of the behavioral performance, such 377 

that the closer the attentional spotlight to the target presentation location, the higher the correct detection 378 

rate. In contrast, the further away the attentional spotlight to the target presentation location, the higher the 379 

miss rate. This is important in two ways. First, this result validates the behavioral relevance of the decoding 380 

procedure, describing a direct behavioral relationship between where the decoded attentional spotlight is in 381 

space relative to where the target is presented and the detection rate of the subject. Second, this indicates that 382 

very much like has been described from MUA-based attentional spotlight tracking, the LFP-based attentional 383 

spotlight is highly dynamic and explores space even when cued towards a specific location. Indeed, the LFP-384 

based decoded attentional spotlight is not anchored at the expected target location following cue 385 

presentation, but can be more or less close to this task-relevant location, in spite of the fact that behavioral 386 

performance is enhanced when the attentional spotlight is closest to the cued location.    387 

As previously described Tremblay et al., (2015a), we confirm that attention-related information is maximal in 388 

the LFP gamma frequency band (above 30Hz, and maximally between 60 and 120Hz). Attention-related 389 

information can still be extracted above chance in lower LFP frequency bands, though at much lower 390 

accuracies. These results are in agreement with the description of the contribution of gamma frequency bands 391 

to attentional processes (Chalk et al., 2010). From a methodological point of view, there is no benefit in 392 

classifying attention-related information from gamma frequency bands. Indeed, full spectrum LFP decoding 393 

accuracy is higher compared to LFP gamma frequency band decoding accuracies.  This result suggests that 394 

attention related information in the multiple frequency bands is not fully redundant. 395 

The correlation between decoding and behavior is further enhanced using the two-step decoding procedure 396 

that we introduce here and that is discussed below. This latter point is crucial for neurofeedback and cognitive 397 

brain-machine interfaces (Andersen et al., 2010; Astrand et al., 2014; Enriquez-Geppert et al., 2017; Jiang et al., 398 

2017; Ordikhani-Seyedlar et al., 2016), where one wants to work with information of maximal behavioral 399 

relevance. Interestingly, Salari et al., (2014) demonstrate a modulation of perception by a neurofeedback 400 

manipulation based on EEG gamma power. This is possibly in agreement with our observation that gamma 401 

frequency contains high attention-related information. However, these studies are based on direct modulation 402 

of surface gamma power, independently from behavioral performance or a global extraction of attentional 403 

spotlight locus. Our approach allows to track the dynamic attentional spotlight with a high temporal resolution 404 
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(down to 30ms). We expect this type of approach to provide subjects with more informative and reliable 405 

neurofeedback to work on.   406 

Exploiting attention dynamics to improve real-time attention decoding accuracies 407 

The fact that the attentional spotlight is extremely dynamic (Gaillard et al., 2020) suggest that not all hit trials 408 

are equivalent. Indeed, we observe that some hit trials take place when the attentional spotlight is successfully 409 

located where the target appears and other hit trials in contrast happen when attention is far away from target 410 

presentation location. This has a direct impact on decoding performances.  The more space sampled, less 411 

stable the information in the neuronal population, thus impairing resulting decoding performance. On the 412 

contrary, a trial with less exploration and a more stable spotlight will lead to a stable neuronal information and 413 

more accurate decoding. Based on these observations, we reasoned that training our classifier on all of these 414 

hit trials is suboptimal as compared to training the classifier on hit trials in which attention was properly 415 

oriented. We thus use a first decoding step to identify such good trials (i.e., high attention-related information 416 

content or HighContent trials) and specifically use them to train the decoder on a second decoding round. This 417 

significantly increases the attention decoding accuracies. Several points need to be noted. First, as expected 418 

from our initial hypothesis, the higher the proportion of HighContent trials used for the training the higher the 419 

relative gain in decoding accuracies. Strikingly, for both MUA and LFP signals, decoding improvement is higher 420 

when considering short time interval compared to longer time window. This observation could be explained by 421 

the fact that the longer the time window, the more attention is expected to explore the target position, this 422 

both on HighContent and LowContent trials. Quite importantly, this increment in decoding accuracies was 423 

more marked for the LFP decoding than for the MUA decoding. This possibly indicates that LFP signals 424 

multiplex attention related information with other sources of information, contributing to LFP signal variability, 425 

and that are more prevalent on LowContent than on HighContent trials. Last but not least, this two-step 426 

decoding procedure drastically improves the correlation between the (x,y) attentional spotlight real-time 427 

estimate and behavioral performance, whether from MUA or LFP signals. In other words, the decoded 428 

attentional spotlight better explains behavior, both as assessed from the strength of the correlation and from 429 

its slope.  430 

Overall, our work presents two major advances in the field of real-time access to the attentional spotlight 431 

locus. First we demonstrate that this spotlight location can be estimated from both MUA and LFP signals. 432 

Second, we introduce a novel two-step decoding method that further enhances the behavioral relevance of the 433 

decoded attentional spotlight. Most crucially, our work illustrates the tremendous benefit of adapting machine 434 

learning strategies to the specific functional properties of the cognitive function under study.  435 
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