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A B S T R A C T

Frontal Eye Field (FEF) neurons discriminate between relevant and irrelevant visual stimuli and their response
magnitude predicts conscious perception. How this is reflected in the spatial representation of a visual stimulus at
the neuronal population level is unknown. We recorded neuronal population activity in the FEF while monkeys
were performing a forced choice cued detection task with identical target and distractor stimuli. We quantified,
using machine learning techniques, estimates of target and distractor location from FEF population multiunit
activities. We found that the FEF population activity provides a precise single trial estimate of reported stimuli
locations. Importantly, the closer this prefrontal population single trial estimate is to the veridical stimulus
location, the higher the probability that the target or the distractor is reported as perceived. We show that
stimulus perception is rescued by the estimate of attention allocation specifically when the latter is close enough
to the actual stimulus location, thus indicating a partial independence between attention and perception. Overall,
we thus show that how and what we perceive of our environment depends on the spatial precision with which this
environment is coded by prefrontal neuronal populations.
1. Introduction

Perception is often defined as the ability to become aware of one’s
environment through the senses. How we perceive our surroundings is
influenced both by internal voluntary top-down processes, whereby
higher priority is given to relevant aspects of the environment relative to
irrelevant aspects, and by external involuntary bottom-up processes,
whereby intrinsically salient items impose themselves onto our percep-
tion. The outcome of perception may be veridical, whereby reality is
perceived consciously, or it may be erroneous, misrepresenting parts of
reality or not reaching consciousness.

The dorsolateral prefrontal cortex, including the frontal eye fields
(FEF), is proposed to play a key role in conscious perception (Thompson
and Schall, 1999, 2000; Libedinsky and Livingstone, 2011; Panagiotar-
opoulos et al., 2012; Vugt et al., 2018). Specifically, the magnitude of FEF
neuronal responses to a target stimulus has been shown to correlate with
the behavioral outcome, with higher magnitude during hit and false
alarm trials as compared to miss and correct rejection trials, respectively
(Thompson and Schall, 1999, 2000). These results point towards the
involvement of FEF in generating the contents of visual perception that
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subsequently lead to the production of overt behavioral report. This is
further supported by evidence from electrical micro-stimulation of the
macaque FEF leading to enhanced perception (Moore and Fallah, 2004)
and inactivation of the FEF that induces deficits in visual search target
detection independent of search difficulty (Wardak et al., 2006).

However, perception does not only involve selecting a target, but also
filtering out competing distractors. It has long been established that FEF
activity demonstrates this ability. Specifically, in pop-out visual search
tasks, i.e. in tasks in which the target can easily be distinguished from the
distractors, neuronal responses to a distractor presented in the neuron’s
receptive field are suppressed (Schall and Hanes, 1993; Thompson et al.,
1996). As the distractor becomes more similar to the target (in more
difficult visual search tasks), the neuronal activity in the FEF becomes
less reliable at discriminating the target from the distractor (Sato et al.,
2003). Furthermore, the degree of distractor suppression as assessed
from overt behavior has been shown to correlate with the degree of
neuronal suppression in the FEF and inactivation of the prefrontal cortex
induces a significant increase in distractibility, i.e. in the production of
undesired responses to intervening distractors (Suzuki and Gottlieb,
2013). The erroneous selection of a distracter in the FEF has been shown
en University, H€ogskoleplan 1, 721 23, V€asterås, Sweden.
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to correlate to errant allocation of covert attention prior to the saccade
(Heitz et al., 2010), suggesting that attentional orienting guides stimulus
selection.

In addition to FEF’s involvement in the selection of relevant stimuli
and the construction of perception, neurons in the FEF are also shown to
be selective to the spatial location of a target stimulus (Thompson et al.,
2005). By comparing the latency of FEF spatially selective responses in
Local Field Potentials (LFPs) and single-unit spiking activity, results from
Monosov et al. (2008) indicate that the spatial selection of a visual
stimulus is locally computed in the FEF most probably by using fast
non-spatially selective activity relayed from earlier visual areas. In a cued
visual search task, Monosov and Thompson (2009) link spatial selectivity
in the FEF to visual perception by showing that the magnitude of the
spatially selective neuronal response is significantly correlated with the
accuracy and speed of target identification (Monosov and Thompson,
2009). In this study, monkeys had to use spatial information relayed by
the cue and the target but were rewarded for reporting target identity.
The authors argue that the spatially selective activity in the FEF plays a
causal role in the enhancement of visual object-related perceptual pro-
cessing and is associated with spatial attention. This study, using
single-unit neuronal activity, is further corroborated by showing that
simultaneously recorded multi-unity activities from the FEF (and lateral
prefrontal cortex) encode covert spatial attention and is predictive of
behavior (Tremblay et al., 2015; Astrand et al., 2016). However, it re-
mains unknown whether the spatially selective neuronal activity in the
FEF after target presentation, is associated with perception (i.e. perceived
stimulus location) or merely reflects reorienting or reinforcement of
spatial attention.

The prefrontal neural correlates of perception and distractor filtering
have most often been studied from the perspective of the response of
single neurons. Cohen et al. (2010) investigated neuronal functional in-
teractions during target perception. They show specific functional
cooperative interactions between neurons with overlapping receptive
fields and competing interactions between neurons with non-overlapping
receptive fields. This suggests complex integrative mechanisms at the
level of the population but doesn’t provide a quantification of population
information. Some studies have investigated the impact that a neural
population has on perception by artificially reconstructing a population
from single neurons recorded independently (Bichot et al., 2001; Astrand
et al., 2015). While this approach does allow to capture stable informa-
tion across trial population coding schemas, single trial population in-
formation is lost.

To address whether perception is spatially encoded in the FEF
neuronal population, we use simultaneously recordedMulti-Unit Activity
(MUA) and apply machine learning techniques to identify how targets
and distractors are represented by the FEF population on a given trial and
how this representation is predictive of overt behavior. We use a forced
choice cued target detection task, in which trained monkeys are required
to respond as fast as possible to a low saliency target presented at a cued
location while at the same time ignoring distractors identical in all re-
spects to the target and presented at other uncued locations. We show
that when a stimulus is reported, whether this stimulus is the target of
behavior or a distractor, the neuronal FEF population precisely encodes
its location. In other words, the population constructs an accurate rep-
resentation of the stimulus in space. In contrast, when a stimulus is not
reported, whether this stimulus is the target of behavior or a distractor,
its spatial representation, as encoded by the FEF, does not match its real
location. We describe a strong correlation between the error in the esti-
mation of the position of the visual stimulus in space as coded by the
neuronal population with respect to its actual physical location, and overt
behavior. Finally, we further show that the spatial estimate of the visual
stimulus is partly independent from the spatial estimate of the cued
location prior to the stimulus onset, and that each monkey relies differ-
ently upon the spatial encoding of the cue and target in their behavioral
optimization. Overall, we propose that the visual percept of a reported
stimulus is not only accounted for by the strength of the visual
2

representation but also by how accurately its spatial location is encoded
in the neuronal population.

2. Methods

2.1. Surgical procedure and FEF mapping

All experimental procedures were identical to those used in Astrand
et al. (2016). One head fixation post and two MRI compatible PEEK
recording chambers were placed over the FEF, one in the left and one in
the right hemispheres of two male rhesus monkeys (Macaca mulatta)
weighing between 6 and 8 kg. During the surgery, gas anesthesia was
provided to monkeys using Vet-Flurane, 0.5–2% (Isofluranum 100% at
1000 mg/g) followed by an induction with Zol�etil 100 (Tiletamine at 50
mg/ml, 15 mg/kg and Zolazepam, at 50 mg/ml, 15 mg/kg). Post-surgery
pain was controlled with a Morphine pain-killer (Buprecare, buprenor-
phine at 0.3 mg/ml, 0.01 mg/kg), 3 injections at 6 h interval (first in-
jection at the beginning of the surgery) was administered post-surgey and
a full antibiotic coverage was provided with Baytril 5% (a long action
large spectrum antibiotic, Enrofloxacin 0.5 mg/ml) at 2.5 mg/kg, one
injection during the surgery and thereafter one each day during 10 days.
In order to have a precise localization of the arcuate sulcus and sur-
rounding gray matter underneath each of the recording chambers, a 0.6
mm isomorphic anatomical MRI scan was acquired post surgically on a
1.5T Siemens Sonata MRI scanner, while a high-contrast oil-filled
1mmx1mm grid was placed in each recording chamber, in the same
orientation as the final recording grid. The FEF was defined as the
anterior bank of the arcuate sulcus and sites were specifically targeted in
which a significant visual and/or oculomotor activity was observed at
10� to 15� of eccentricity from the fixation point during a memory guided
saccade task. In order to maximize task-related neuronal information at
each of the 24-contacts of the recording probes, we only recorded from
sites with task-related activity observed continuously over at least 3 mm
of depth. All procedures were approved by the local animal care com-
mittee (C2EA42-13-02-0401-01) in compliance with the European
Community Council, Directive 2010/63/UE on Animal Care.

2.2. Behavioral task

A 100% validity cued luminance change detection task with temporal
distractors (Fig. 1A) was used. With their head fixed, the monkeys were
placed in front of a computer screen (1920x1200 pixels and a refresh rate
of 60 Hz). To initiate a trial, they had to hold a bar in front of the animal
chair, thus interrupting an infrared beam. On trial initiation, a blue fix-
ation cross (0.7 � 0.7�) appeared in the center of the screen and the
monkeys were required to hold fixation throughout the entire trial until
the manual response, within a fixation window of 2� � 2�. Break of fix-
ation aborted the trial. After correct manual responses, both monkeys
tended to produce a saccade towards the reward dispenser.

Four gray square landmarks (0.5� � 0.5� for monkey M1, 0.68� �
0.68� for monkey M2) were presented simultaneously with the fixation
cross and were placed at an equal distance from the fixation point, in the
upper right, upper left, lower left and lower right quadrants of the screen,
thus defining the corners of an imaginary square. To ensure that the
recorded neurons represented the cued spatial location, we adjusted the
eccentricity of the landmarks from day to day between 10� and 15�, as
inferred from the neurons’ response to a memory-guided saccade task
with saccadic targets placed at variable locations in this range. After a
variable delay from fixation onset, ranging between 700 and 1900 ms, a
green squared cue was presented for 350 ms, indicating to the monkey in
which of the four landmarks the rewarding target change in luminosity
would take place. The cue was small (0.2� � 0.2� for monkey M1 and
0.3� � 0.3� for monkey M2) and it was presented close to the fixation
cross in the same direction as the landmark to be attended (at 0.3� for
monkey M1 and at 1.1� for monkey M2, from the fixation point). As a
result, the cued target detection task was more difficult than if the cue



Fig. 1. (A) Task description. A trial was
initiated by the simultaneous onset of a fix-
ation point and 4 Gy landmarks. Monkeys
were required to hold a bar and fixate the
fixation point throughout the trial. After a
variable delay ranging from 700 to 1900 ms,
a small green square was presented near the
fixation point, indicating the location in
which the target will be presented. During a
variable delay, ranging from 500 to 2800 ms,
monkeys were required to orient their
attention to the cued landmark to detect a
small change in luminosity. During the delay,
a change in luminosity could occur on any of
the other three landmarks and monkeys were
required to ignore them. A liquid reward was
distributed to the monkeys for releasing the
bar 200–700 ms after target luminosity
change. (B) Recording sites. On each ses-
sion, two 24-contact recording probes were
placed, one in each FEF. (C) Behavioral
performance. Median across sessions (n ¼
15) of the proportion of hit trials (dark gray
bars), misses (light gray bars), and false
alarms (intermediate gray bars) are depicted
for each monkey separately. Error bars
correspond to median absolute deviation
across sessions.
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had been presented at expected target location, thus resulting in more
error trials. After cue presentation, the monkeys needed to orient their
attention to the target landmark in order to monitor it for a brief change
in luminosity (100 ms) while maintaining eye fixation on the central
cross. The change of luminosity was set independently for each position
to generate a near-threshold perceptual change for each target location,
as estimated from the behavioral performance. The change in target lu-
minosity could occur anywhere between 500 and 2800ms from cue onset
according to a uniform probability distribution. In order to receive a
water or juice reward, the monkeys were required to release the bar (thus
restoring the infrared beam) in a time window of 200–700 ms following
the change in target luminosity (hit trial). In order to make sure that the
monkeys were correctly orienting their attention towards the cued
landmark, unpredictable changes in the luminosity, identical to the
awaited target luminosity change, could take place at the non-cued
landmarks (distractors). On each trial, from none to three such unpre-
dictable distractor luminosity changes could take place, no more than
one per non-cued landmark position. The monkeys had to ignore these
distractors. Responding to such a distractor interrupted the trial and was
counted as a false alarm trial if the response fell within 200–700 ms
following the distractor. Failing to respond to the target (miss trial)
similarly aborted the ongoing trial.

2.3. Neural recordings

Bilateral simultaneous recordings in the two FEF hemispheres were
carried out using two 24-contact Plexon U-probes. The contacts had an
interspacing distance of 250 μm. Neural data was acquired with the
Plexon Omniplex® neuronal data acquisition system. The data was
amplified 100 times and digitized at 40,000 Hz. The neuronal data was
high-pass filtered at 300 Hz. In the present paper, all analyses are per-
formed on the multi-unit activity recorded on each of the 48 recording
contacts. A threshold defining the multi-unit activity was applied inde-
pendently for each recording contact and before the actual task-related
recordings started. All further analyses of the data were performed in
Matlab.
3

2.4. Discrete classification procedure

Decoding analyses were performed in Matlab. A regularized linear
regression was used to investigate whether the neural population con-
tained information about target and distracter location (four possible
locations). A linear regression defines the weight matrix W that mini-
mizes the mean square error of C––W*(Rþ b), where C is the class (here,
the spatial position, amongst four possible locations), b is the bias and R
is the neural response (here, a 48 element vector representing the
neuronal multi-unit activity at each of the 48 recording contacts, at the
time of interest; for each recording channel and each trial). The multi-
unit activity was smoothed by averaging the spiking activity over 150
ms sliding windows (resolution of 1 ms); this window width corresponds
to a trade-off between decoding performance and decoding speed, as
narrower filtering windows result in a lower performance while wider
filtering windows decrease temporal resolution (Farbod Kia et al., 2011).
To avoid over-fitting we used a Tikhonov regularization which gives us
the following minimization equation: norm(W*(R þ b) – C)þ
λ*norm(W). The scaling factor λ was chosen to allow for a good
compromise between learning and generalization (Astrand et al., 2014).
Specifically, the decoder was constructed using two independent regu-
larized linear regressions, one classifying the x-axis (two possible classes:
�1 or 1) and one classifying the y-axis (two possible classes: �1 or 1).
Each regression used the following procedure. The neural data was
divided into training (70% of data, M1: average of 161 trials per session
and M2: average of 103 trials per session) and testing set (30% of data).
The training set was used to define the weight matrix, W and the testing
set was then multiplied by W, and the sign was evaluated to yield the
predicted class C, for these novel trials (�1 or 1). Final classification
performance was calculated by dividing the number of correct pre-
dictions of the classifier on test trials by the overall testing sample size. As
a result, the classification performance is a measure, ranging between
0 and 100%, of how well information in the neural population allows to
predict the quadrant in which the stimulus of interest is being presented
(i.e. target or distracter), at a specific time in the trial. When the train-
and test-sets of neuronal activities correspond to the same timing relative
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to the key events of the task, the classification performance is a measure
of the instantaneous information content of the variable of interest at
exactly that time.

2.5. Two-tailed non-parametric random permutation

Due to task configuration, absolute chance level is at 25%. However,
in order to define the statistical significance of the reported classification
performance, we defined for each classifier, the 95% confidence interval
limit as follows. For each recording channel, we reassigned random la-
bels (e.g. relative to the cue) to each trial and performed the same clas-
sification analysis as described above. This procedure was repeated 1000
times and yielded a 1000 data point distribution of chance classification
performance. Classification performance for real non-permuted data was
considered significantly above or below chance if it fell within the 2.5%
upper or lower tail of this random permutation distribution (2-tailed non-
parametric random permutation test, 0.05 alpha level).

2.6. Continuous classification procedure

As a complement to the above discrete classification procedure, we
also investigated the continuous two-dimensional (x,y) output of the
classifier that provides a more precise localization of the spatial variable
of interest, e.g. cued or target location. The training procedure is iden-
tical to that described above in that it trains the classifier to associate the
data to the cued (x,y) position, where x and y only takes�1 and 1 values.
The testing procedure is slightly different in that it tests novel data
without assigning the output of the classifier to a class (�1 or 1). Instead
the continuous output from the decoder is interpreted as coordinates in
the x/y-plane, i.e. a (x,y) position, that reflect the error to the expected
stimulus location. The result of this analysis can thus be read as the
spatial locus of the variable of interest at any point in time. The distance
between this decoded spatial position (of for example perceived target
location) and the actual physical location (of the target) is calculated and
hereafter termed “target to decoded target distance”. The decoded spatial
locus of the perceived target can also be represented as a spatial proba-
bility map, constructed by calculating the statistical significance of a
given (x,y) classifier output at each spatial location using non-parametric
random permutation test (see previous section) and visualizing these as a
color coded z-scores. Specifically, a map of p-values was constructed by
comparing the actual data with randomly permuted data. Z-scores were
then calculated from these p-values yielding the signed number of stan-
dard deviations from the normal mean probability, at each spatial loca-
tion, that is significantly over- or under-represented (p < 0.01).

2.7. Euclidian multidimensional distance

The multidimensional Euclidian distance (hereon named MDD) be-
tween multiunit activity for all stimulus position-pairs in one session can
be considered to reflect the spatial selectivity of the recorded neuronal
population to the four target/distractor positions. This measure repre-
sents how distant the population neuronal responses to each target sit in
the higher population multidimensional space. The furthest away, the
larger the MDD. It is to be noted that MDD is calculated using the aver-
aged magnitude of multiunit activity across all trials for each target/
distractor position (for each channel), meaning that reliability in the
neuronal response is neglected in favor of the magnitude, contrasting
with the decoding approach that depends on both measures. The MDD
was calculated per trial as follows:

MDDðpos1; pos2Þ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X48
i¼1

�
rpos1i � rpos2i

�2
vuut

where r corresponds to the averaged neuronal response across trials (of a
specified target position) for each channel i. The MDD for all position-
4

pairs (six pairs) were averaged to yield one MDD-value per session
which can be considered as a measure of the four-dimensional spatial
selectivity (four positions). The MDD per session is therefore in units of
MUA/s and represents the multi-dimensional MUA difference between
the four different target/distracter locations.
2.8. Relationship between target position population decoding accuracy
and single channel response statistics

All through this work, we will be quantifying the available informa-
tion about the cued and target/distractor location in the prefrontal FEF
neuronal ensembles being recorded from, using a regularized linear
regression procedure that associates bilateral neural FEF response pat-
terns at a given time from target presentation with the location of the
expected target. An important question is how this decoding accuracy
relates to the single channel response statistics. For each session, we
computed a measure of spatial selectivity that recapitulates single
channel response statistics (reflecting mainly the magnitude of MUA) in
the high-dimensional recording space and investigated its relation to the
decoding accuracy (Fig. 2C). We calculated the Euclidian multi-
dimensional distance (MDD) between average MUA responses
100–200 ms after target presentation, for each of the six possible pairs of
target locations. The average of these 6 MDDs was computed for each
session. This measure reflects the average separation in neuronal re-
sponses to distinct target locations in the high-dimensional recording
space (i.e. spatial selectivity). This measure captures the discrimination
capabilities of the neuronal population based onmean individual channel
MUA responses. The MDD is highly correlated with decoding accuracy
across sessions (Fig. 2C, mean MDD: p ¼ 0.004, r2 ¼ 0.51, Spearman’s
correlation). This indicates that the MUA response magnitude (reflected
in its mean response) has an impact on the decoding accuracy (see also,
Astrand et al., 2015, Fig. 2).
2.9. Visuomotor functional properties of the recorded FEF neuronal
population characterized by the memory-guided saccade task

In a majority of the recording sessions (n ¼ 13 out of 15), both
monkeys performed a memory-guided saccade task (for details see sup-
plementary materials) directly prior to performing the cued detection
task. In the memory-guided saccade task, visual stimuli were positioned
at the same locations as in the cued detection task. By analyzing the MUA
during this task, we categorized each channel as either pure visual (i.e. a
significant MUA change 100 ms to 300 ms after the visual cue as
compared to before the cue presentation), pure motor (i.e. a significant
MUA change during saccade initiation, 100 ms to 300 ms after extinction
of the fixation point), visuomotor (i.e. both visual and motor MUA
changes) or none. A majority of the channels were categorized as
visuomotor (49%) and only 12% and 17% as pure visual and pure motor
channels, respectively (Supplementary Fig. S1). To relate the results of
this work to the well-established functional properties of FEF neurons
(Bruce and Goldberg, 1985), we investigated the correlation between
channel categories (determined during the memory-guided saccade task)
and spatial selectivity during the cued detection task. First, we found that
the number of pure motor channels for each session does not impact
decoding accuracy of target location during the cued detection task (p ¼
0.45), indicating that these channels do not carry any spatial information
with regards to target location. Second, the number of pure visual and
visuomotor channels correlates positively with both the number of
spatially selective channels during the cued detection task (p < 0.05, r2

¼ 0.31) and with decoding accuracy of target location during the cued
detection task (S1; p < 0.01, r2 ¼ 0.76). These results strongly indicate
that channels with visual properties during the memory-guided saccade
task carries spatial information of the target in a cued target detection
task.



Fig. 2. Multi-unit activity (MUA) spatial
selectivity. (A) Normalized average spatial
selectivity (MUA/s; MUApreferred location –

MUAnon-preferred location) across trials for all
channels with target-related activity (signifi-
cant change in neuronal response 100–200
ms after target presentation as compared to
�200 to �100 ms before target presentation,
p < 0.05, Wilcoxon paired tests), for one
session of monkey M2. Black boxes represent
significant spatial selectivity, i.e. significantly
different between responses at the preferred
as compared to the non-preferred locations
(p < 0.05, Wilcoxon tests). Hit (gray panel),
miss (pink panel), and false alarm trials (blue
panel) are shown for the same channels of the
same session. The dashed horizontal lines
indicate which probe the channels belong to
and channel numbers are printed on the right
side of each image along with a vertical
arrow indicating the direction of depth of
both probes. The horizontal arrow on the
right side of each image indicate the channel
that is plotted in B. PSTH for average spatial
selectivity across channels are shown below,
for each of the hit, miss and false alarm trials.
(B) Average MUA per second (�s.e.) across
trials for one channel during hit (gray), miss
(pink), and false alarm trials (blue). MUA is
plotted in time around target onset (for false
alarms: in time around the distracter that
evoked the response). Solid lines (resp.
dotted) correspond to trials in which the
target appeared in the preferred (resp. non-
preferred) location. (C) For each session, the
Euclidian multi-dimensional distance (MDD),
computed in a time window of 100 ms to
200 ms after target presentation, is plotted
against decoding accuracy (%) (black, mon-
key M1, red, monkey M2). The MDD is
computed on mean MUA responses between
all pairwise locations. The line represents the
corresponding orthogonal regression for the
dataset and Spearman’s correlation statistics
are indicated.
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3. Results

3.1. Behavioral performance

Monkeys performed a spatially cued target detection task. Trials were
divided according to their overt behavior as follows. A trial was
considered correct (hit trial) if a response was produced between 200 ms
and 700 ms from the onset of target luminance change. A trial in which
the monkeys did not produce any response to a target was considered a
miss. If a response was produced 200 ms to 700 ms following a distractor
luminance change, this trial was considered a false alarm trial. M1 and
M2 achieved 64.4% and 47.9% correct responses, respectively (Fig. 1C).
Reaction times on these correct trials were on average 401 ms and 410
ms, respectively. Both monkeys produced more misses than false alarms
(M1, Miss ¼ 22.5%, FA ¼ 12.9%; M2, Miss ¼ 27.9%, FA ¼ 23.0%, p <

0.001, Wilcoxon paired test) and reaction times were notably longer on
false alarm trials compared to correct trials (p < 0.01 for both monkeys,
Wilcoxon paired test).
3.2. Spatial selectivity of recorded multiunit activity

The MUA of each session was recorded on different days and hence in
different locations within the FEF. Therefore, channel selectivity changed
5

from one session to the next. Over all sessions, a majority of channels
exhibited a significant target-related response, i.e. a significantly higher
neuronal response 100–200 ms after target presentation as compared to
pre-cue baseline (�200 to�100 ms pre-cue, Wilcoxon, p< 0.05, Monkey
1: 64% of channels; Monkey 2: 81% of channels). A large number of
channels also exhibited a significant spatial selectivity, i.e. a significantly
higher neuronal response for the preferred as compared to the non-
preferred spatial position (Wilcoxon, p < 0.05), during target presenta-
tion (100–200 ms after target presentation, Monkey 1: 50% of channels;
Monkey 2: 62% of channels). To provide a description of how the spatial
selectivity of the recorded FEF neuronal population was distributed
across the four target locations for each session we further calculated the
number of spatially selective channels for each target location, and how
many out of these were also spatially selective for the other target loca-
tions. Overall, the recorded FEF population on each session, had a
balanced spatial representation of all target locations (for details see
Supplementary Fig. S2).

Fig. 2A represents the spatial selectivity of individual target-related
MUA channels (i.e. with a significant evoked response 100 ms to 200
ms after target presentation as compared to �200 ms to �100 ms before
target presentation, Wilcoxon, p < 0.05) for one session of Monkey M2.
The spatial selectivity was calculated for each channel as the difference
between MUA, 100 ms to 200 ms after target presentation in the
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preferred location (target location that elicited significant MUA maximal
change from the pre-cue baseline) versus the non-preferred target loca-
tion (target location that elicited minimal MUA change with respect to
the pre-cue baseline). Spatial selectivity is shown in time from 200 ms
before target presentation to 400 ms after target presentation. It is to be
noted that target selective neurons can be identified along several mil-
limeters in a row, confirming that recordings were being performed from
the anterior bank of the arcuate sulcus. For each channel, time epochs of
significant difference between the preferred and non-preferred channels
are indicated by a black box. This information is represented for hit trials
(Fig. 2A, top panel, gray outline), miss trials (Fig. 2A, middle panel, pink
outline) and false alarm trials (Fig. 2A, bottom panel, blue outline,
alignment is in this case on the time of presentation of the distractor that
evoked the response). A substantial reduction in the evoked MUA after
target onset can be observed during miss trials as compared to hit and
false alarm trials (Fig. 2A, bottom histogram). Fig. 2B illustrates this for
one specific MUA channel (arrow in Fig. 2A). Average MUA activity
100–200 ms after target presentation at the preferred location was
significantly higher for hits (gray) and false alarms (blue) as compared to
missed (pink) but was not significantly different between hits and false
alarms. The neuronal activity was not modulated by target presentation
at the non-preferred location (dashed lines). All subsequent decoding of
single trial population spatial information is computed on this type of
neuronal responses. The relationship between target position population
decoding accuracy and single channel response statistics is described in
the Methods (last section) and Fig. 2C.

3.3. Spatial representation of the cued location prior to target presentation
(attention prioritization)

In the following, we quantify the available information about the
cued location before target presentation in the prefrontal FEF neuronal
ensembles being recorded from, as a function of the overt behavior of the
monkeys. Specifically, recorded multi-unit activity (MUA), on correct
trials, was used to train two regularized linear regressions (one along the
x-axis and one along the y-axis) to associate bilateral neural response
patterns at a given time from target presentation with the location of the
expected target, and this for successive time windows around target
presentation. Fig. 3A shows the resulting instantaneous classification
performance, in time, around target presentation across all recording
sessions. This classification performance represents the percentage of
trials for which the classifier assigned its output to the cued quadrant.
During correct trials (Fig. 3A, gray) before target presentation, classifi-
cation performance is sustained at an average of 40%, well above the
95%-confidence limit. This is in accordance with (Astrand et al., 2016) in
which we show that this increase in classification performance before
target presentation represents attentional prioritization at the cued
location. Accuracy before target presentation was sustained around 40%
and was maintained above the 95% confidence interval limit (2-tailed
non-parametric random permutation), indicating that the monkeys were
actively orienting their attention to the cued spatial location. In contrast,
for miss trials (Fig. 3A, pink) prior to target presentation, classification
performance was around chance (25%) suggesting that, in these trials,
the monkeys did not consistently orient their attention to the cued
location, thus missing the target luminance change.

3.4. Spatial representation of the target

Instantaneous classification performance after target presentation
(Fig. 3A) reflects how much information is available in the FEF popula-
tion relative to target location. On correct trials, target-related informa-
tion peaks at 200 ms, with an average of 65% correct predictions. This
increase is well beyond the 95% confidence interval, and statistically
significantly higher than the pre-target attentional orientation related
signals (comparing accuracy 100 ms to 200 ms post-target onset, with
accuracy 200 ms to 100 ms pre-target onset, average difference, 28%, p
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< 0.001, Wilcoxon paired test). On miss trials, significant increase across
sessions is also observed although it barely reaches the upper 95% con-
fidence interval limit (average difference 9%, p¼<0.001, Wilcoxon
paired test). This is in agreement with the findings that attentional
orientation towards the receptive field of FEF neurons facilitates the
detection or the discrimination of a target, showing a lower spiking rate
on miss trials than on correct trials, both in the attention orientation
period and following target presentation (Thompson and Schall, 1999;
Ibos et al., 2013).

Whenever an item is perceived in our environment, it is implicitly
associated to a more or less precise location in space. To investigate this
aspect of target perception, the continuous output from the classifier was
used to predict the spatial location of the reported target stimulus (target
or distractor) using the same procedure that we have previously reported
to track the attentional locus from FEF neuronal activities (Astrand et al.,
2016). In the following, we focus on a time-period running from 100 ms
to 200 ms after target presentation. Fig. 3B and 3C represent the (x,y)
locations decoded from the population activities that were predicted
statistically more (i.e. over-represented locations; red color scale,
z-scores > 2.33, p < 0.01) or less frequently (under-represented loca-
tions; blue color scale, z-scores < �2.33, p < 0.01) as a function of the
position of the target with respect to chance (estimated by a 2-tailed
non-parametric random permutation test). On correct trials (Fig. 3B), a
rather large area of overrepresented decoded locations around the loca-
tion at which the target was actually presented can be observed for all
four target locations (hot colors, Fig. 3B, average over all sessions, con-
tour shows conjunction between all sessions and both monkeys). In
contrast, a smaller area of underrepresented decoded locations can be
observed around the fixation point for each target location (cold colors,
Fig. 3B), suggesting that these locations were rarely spatially encoded by
the monkeys. This is expected as neither targets nor distractors were ever
presented at this location.

Onmiss trials (Fig. 3C, decoder trained on hit trials and tested on miss
trials), only weakly overrepresented decoded locations can be identified.
These locations fall short off target location and there is no conjunction
between all sessions and the two monkeys. Underrepresented decoded
locations can be identified around the fixation location, though they are
smaller than those identified on correct trials (Fig. 3B). Overall, this in-
dicates that correct target detection correlates with a reliable decoder
localization of the target in the vicinity of its actual location. In contrast,
missed targets correlate with an unreliable localization of the target.
Overt perception, as assessed by behavior, and precise spatial informa-
tion thus seem to be tightly related. To confirm this, we further probe this
relationship between overt behavior and spatial information of distractor
location on false alarm trials.

3.5. Spatial representation prior to distractor presentation

To investigate how the distractors, presented at a random time during
the delay between cue and target presentation, were perceived in the
different types of trials, the regularized linear regression was trained to
associate MUA with the location of the target and tested onto distractor
localization. Fig. 4A shows the instantaneous classification performance
in time around distractor onset. On false alarm trials (Fig. 4A, blue),
spatial information about the upcoming position of the distractor is
significantly above the upper 95% confidence interval limit (two-tailed
non-parametric random permutation). Because distractor location was
completely pseudo-randomized across trials, there was no way for the
monkeys to predict neither distractor probability of presentation, nor
distractor time of presentation, nor distractor location. Thus, this spatial
bias rather indicates that false alarm trials arise from misorientation of
attention at the location before and at the time of presentation of the
target (see Astrand et al., 2016 for a detailed analysis of this aspect). On
correct (Fig. 4A, gray) and miss trials (Fig. 4A, pink), classification per-
formance is well below chance (25%) almost reaching the lower 95%
confidence interval limit before distractor presentation. At distracter



(caption on next column)

Fig. 3. Target perception. (A) Instantaneous classification accuracy of target
location in time, aligned on target presentation (time ¼ 0 ms). Graphs show
mean classification accuracy (%) with associated standard error across sessions
(n ¼ 15) for hits (gray) and miss trials (red). At each time point the train-time of
the classifier is the same as the test-time. The dotted horizontal line corresponds
to chance classification performance (25%) and the striped horizontal line
corresponds to the upper 95%-confidence interval determined by random per-
mutation tests. (B–C) Decoded target (x,y)-location probability maps for hit
trials (B) and miss trials (C). Maps represent z-scores of the spatial locations that
are statistically over-represented (red color-scale, p < 0.01) or under-
represented (blue color-scale, p < 0.01) with respect to the 95%-confidence
interval (determined by random permutation tests) when decoding target
location 100–200 ms after target presentation, over all sessions and both
monkeys. Locations (10� or 13� eccentricity depending on the session) are
normalized across sessions so that target locations are mapped to an eccentricity
of � 1. Each map corresponds to one of the four cued locations (e.g. upper right
quadrant representing the map of spatial perception distribution for target
appearing in the upper right quadrant). The black contour indicates the
conjunction of mean z-scores over all sessions and both monkeys (i.e. common
over- (under-, respectively) represented spatial locations across all sessions and
both monkeys).
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presentation during correct trials, the monkeys are correctly rejecting the
distracter. Fig. 4A indicates that these correct rejections are behaving
similar to miss trials, although a higher distractibility can be observed for
miss trials (see Astrand et al., 2016 for a detailed analysis of this aspect).
This indicates that, on these correct rejection and miss trials, attention is
oriented away from the location of the upcoming distractor –thus ac-
counting for it not being perceived on these trials. Thus, overall, these
results suggest that the coincidence between distractor location and
pre-distractor spatial attentional priority information contribute to overt
behavior. As described below, this is mediated by an enhanced spatial
representation of the distractor when it is selected by attention.

3.6. Spatial representation of distractor

Following distractor presentation, classification performance in-
creases substantially during false alarm trials (Fig. 4A, blue) and reaches
the same accuracy as for correct trials following target onset (correct
trials, average accuracy from 100 to 200 ms post target onset: 61%, false
alarm trials: 60%, p ¼ 0.64, Wilcoxon paired test). On correct (gray) and
miss (pink) trials, there is a substantially smaller increase in decoding
accuracy following distractor presentation which remains below the
upper 95% confidence interval limit (correct trials: average difference
7% below the 95% c.i., p¼<0.001, miss trials: 11% below the 95% c.i., p
< 0.001). In other words, as seen for reported target trials, when the
distractor is reported (defined as overt false alarm behavior), a high
decoding accuracy of distractor quadrant location in visual space can be
observed. In contrast, for non-reported distractors (hits and misses)
decoding accuracy is low.

To investigate how the distractor is spatially represented on the (x,y)-
plane in the neuronal population, the continuous decoder output is
analyzed as a function of overt behavior. Fig. 4B–D represent the (x,y)
locations decoded from the population activities that were statistically
overrepresented (red color scale, z-scores > 2.33, p < 0.01) or under-
represented (blue color scale, z-scores<�2.33, p< 0.01) as a function of
the position of the distractor with respect to chance (estimated by a 2-
tailed non-parametric random permutation test). During both correct
(Fig. 4B) and miss (Fig. 4C) trials, distractor location is either weakly or
erroneously represented. In contrast, on false alarm trials (Fig. 4D), i.e.
trials in which the distractor was mistakenly reported as a target, dis-
tractor location is significantly decoded at the actual location of the
distractor, very much like what is shown for target localization on correct
trials in Fig. 3B. Overall, this indicates that stimulus perception (whether
a target or a distractor), assessed by overt behavior, correlates with a
reliable stimulus localization that resides in the proximity of the real
stimulus position.



Fig. 4. Distractor perception. (A) Instantaneous classification accuracy of
distractor location in time, aligned on distractor presentation (time ¼ 0 ms).
(B–D) Distractor (x,y)-location probability maps for hit trials (B), miss trials (C)
and false alarm trials (D). All as in Fig. 3.
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3.7. Distractor vs. target prefrontal representations

By task design, distractors and targets correspond to the same visual
stimulus. What distinguishes one from the other is whether the spatial
location where the stimulus is presented has been cued or not. In the
following, we quantify the similarity between how the FEF encodes, at
the population level, target and distractor spatial information. To this
goal, a regularized linear regression was trained on correct trials, to
discriminate between target and distractor, irrespective of stimulus po-
sition. Training was performed on MUA neuronal responses 100 ms to
200 ms following target and distractor presentation and decoding accu-
racy corresponded to how well the linear regression could predict that
the presented stimulus was a target or a distractor, based on the observed
neuronal activities. Fig. 5A shows decoding accuracies on novel correct
(black), miss (pink) and false alarm (blue) test trials. Specifically, on
correct trials, the classifier succeeded in discriminating the target from
the distractor in 71% of instances (chance at 50%). On false alarm trials,
decoding accuracies were in the same range as those observed on correct
trials, and significantly above chance (69%, p ¼ 0.12, Wilcoxon paired
test, note that the distractor that evoked the response was considered to
be the target in these trials). In contrast, on miss trials, decoding accuracy
was significantly lower and hardly above chance (54%, p < 0.001, Wil-
coxon paired test). Overall, this thus suggests that while information
about the selected item is well represented in the FEF (target on hit trials
Fig. 5. Target and distractor related information. (A) Decoding accuracy at
classifying target vs. distractor (meanþ/-s.e., in %). Classifier is trained on hit
trials and tested on hits (gray), misses (pink) and false alarm trials (blue). Ac-
curacies are calculated over a 100–200 ms post-target or post-distractor time
interval. Dotted horizontal line corresponds to chance level (50%). (B) Confu-
sion matrices of the classification in A for hit trials (B.1), misses (B.2), and false
alarms (B.3). Rows correspond to actual presented stimulus (distractor or target)
and columns correspond to the predicted stimulus by the classifier. For false
alarms, the target is taken as distractor that elicited the response T(D), all other
stimuli are considered as distractors. (C) Euclidian multidimensional distance of
MUA over all channels: target related response (y-axis) vs. distractor related
response (x-axis) for hit (gray), miss (pink), and false alarm (blue) trials. Each
dot corresponds to one session. Solid lines correspond to an orthogonal
regression fit. Corresponding Spearman’s correlation statistics are indicated.
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and distractor on false alarm trials), hardly any information is available
about the unselected item (target on miss trials).

The analysis of the confusion matrices refines this view (Fig. 5B). On
hit trials (Fig. 5B1), while the target is correctly decoded as a target in
88% of instances, distractors are correctly decoded as distractors in only
55% of instances (88% vs 55%, p< 0.001, Wilcoxon paired test). In other
words, the distractor is mistaken for a target in 45% of instances. On miss
trials (Fig. 5B2), this pattern is reversed. Namely, the target is correctly
detected as a target in only 41% of the trials (to be compared to the 88%
correct classification on hit trials), while distractors are correctly deco-
ded as distractors in up to 67% of instances. On false alarm trials
(Fig. 5B3), both the decoded distractor (named T(D), due to the fact that
it is selected as a target by the monkey) and the ignored distractor (D) are
both correctly classified as target (69%) and distractor (69%) respec-
tively. This suggests that, coexisting with the stronger selection process
on hit and false alarm trials, described in the previous paragraph, an
overall weaker distractor filtering process is at play during miss and false
alarm trials, as available information about distractors is much higher on
these trials than on hit trials. This possibly relates to higher noise cor-
relations observed on miss and false alarm trials relative to hit trials that
we previously described in the FEF neuronal population (Astrand et al.,
2016).

The above describes differences in classification accuracy in target
and distractor localization as a function of overt behavior and reflect
complex changes in the joint neuronal population response patterns at
stimulus presentation time. In order to gain a better understanding of
how the spatial representations of a given visual stimulus, as assessed
from the neuronal population response patterns, vary as a function of
overt behavior, we proceeded as follows. We computed the multidi-
mensional Euclidian distance in the multidimensional neuronal space
(hereon simply called multidimensional distance, MDD) between the
neuronal response patterns of the recorded populations (MUA) to the
four possible stimuli locations for two conditions: after target and dis-
tractor presentation (see methods section). The MDD reflects how distant
the MUA population response patterns is between the four stimuli posi-
tions. We first computed the MDD-target (Fig. 5C, y-axis), when the
presented stimulus was an expected target (hits and misses) or a dis-
tractor that elicited a response (false alarms). We then computed the
MDD-distractor (Fig. 5C, x-axis), when the presented stimulus was a non-
reported distractor stimulus. For both computations, MDD was computed
using neuronal activities averaged over 100–200 ms post-stimulus pre-
sentation. MDD-target and MDD-distractor are strongly correlated for all
three types of trials (Fig. 5C, hits, gray: p< 0.001, r2¼ 0.88; misses, pink:
p < 0.001, r2 ¼ 0.80; false alarms, blue: p < 0.01, r2 ¼ 0.54). This in-
dicates that while neuronal responses varied when encoding target or
distractor, these two processes were yet closely related. Furthermore,
MDD is significantly higher following target presentation as compared to
after distractor presentation for correct trials (average 238 MUA/s vs. 81
MUA/s, p < 0.001, Wilcoxon paired test). The same relationship can be
observed for false alarm trials when considering the distractor that
evoked the erroneous response as the target (average 244 MUA/s vs. 125
MUA/s, p < 0.001, Wilcoxon paired test). This indicates that stimuli
evoking a behavior response result in more distant and dissociable
response patterns to the four possible stimuli locations in the higher
neuronal dimensional space. During miss trials there is a slight, although
significant increase in the MDD following target presentation as
compared to after distractor presentation (157 MUA/s vs. 127 MUA/s, p
< 0.01). This may indicate the co-existence of two processes: 1) An active
selection process associated with an overt behavioral response (in hits
and false alarm trials) which coincides with enhanced neuronal responses
following the visual stimulus, and 2) an active suppression mechanism
that is associated with the absence of overt behavioral response and
which coincides with decreased neuronal responses following a visual
stimulus (i.e. compare neuronal responses following a distractor in hit
trials with those following a target in miss trials).

In a last step, we sought to test whether the neuronal responses to the
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target and distractor, respectively, are associated with a change in the
coefficient of variation of the neuronal responses. We thus calculated for
each channel, on each session, the ratio between the standard deviation
and the mean of MUA, following target or distractor presentation, for
each trial type (hits, misses and false alarms). A 2-way ANOVA (trial type
x target vs. distractor) revealed a significant main effect of target vs.
distractor presentation (p < 0.001). Further post-hoc tests show that this
coefficient of variation was significantly lower following target as
compared to after distractor presentation for correct trials (target: 0.30,
distractor: 0.32, p < 0.001, Wilcoxon paired test). This was also true
during false alarm trials (distractor eliciting the response: 0.30, other
distractors: 0.31, p < 0.05). During miss trials, no difference was
observed (target: 0.31, distractor: 0.32, p ¼ 0.42). In other words,
stimulus selection was associated with more reliable neuronal responses
and a 6% decrease in the coefficient of variation of the neuronal
responses.

3.8. Behavioral correlates of target/distractor spatial representation

In Astrand et al. (2016), we show that the precision of the spatial
representation of the cued location (i.e. same as target location), before
target presentation, by the FEF neuronal population account for overt
behavior: 1) the shorter the distance is between decoded location and the
upcoming target, the lower the miss rates and the faster the reaction
times; 2) the shorter the distance of the decoded location from the up-
coming distractor, the higher the false alarm rates and the faster the
reaction times. We argue that these correlations between the decoded
location prior to target presentation and overt behavior strongly indicate
that the decoded location reflects attentional orientation (Astrand et al.,
2016). In this section, we analyze the correlation between the decoded
location after target presentation and overt behavior and next we analyze
how the decoded locations before and after target presentation relate to
one another to optimize behavior. The distance between the decoded
location after target presentation and the actual target location correlates
with overt behavior in a similar manner as described for attention allo-
cation (Fig. 6). Specifically, both monkeys show a significant correlation
between median reaction times and mean distances between actual
target location and (x,y) decoded target location in 20 equally sized
distance bins (estimated on average neuronal responses from 100 to 200
ms after target onset), on correct trials (Fig. 6A, M1: r2¼ 0.42, p< 0.001,
M2: r2 ¼ 0.35, p < 0.001). It is to be noted that in the task, the monkeys
performed a manual response with the same hand throughout all ses-
sions. As the response was identical for the four positions, we would not
expect spatial information in the response preparation activity. Addi-
tionally, previous findings of single-unit activity in the FEF during a
search task with a manual lever turn response, showed no activity related
to the response indicating that FEF does not contribute to the manual
behavioral report (Trageser et al., 2008). A significant correlation is also
observed on false alarm trials between median reaction times and mean
distances between actual distractor location (the distractor that evoked
the response) and (x,y) distractor decoded location, in 20 equally sized
distance bins, estimated on average neuronal responses from 100 to 200
ms after distractor onset (Fig. 6A, M1: r2 ¼ 0.16, p< 0.05, M2: r2 ¼ 0.40,
p < 0.001). More specifically, for normalized distances below 1 and
above 1, average reaction time substantially improved by 22 ms and 27
ms for monkey 1 and monkey 2, respectively. In addition, the proportion
of misses over correct trials increases as the distance between target
location and (x,y) target decoded location increases (Fig. 6B, M1: r2 ¼
0.79, p< 0.001, M2: r2¼ 0.79, p< 0.001). In accordance, as the distance
between distractor location (the distractor that evoked the response) and
(x,y) distractor decoded location decreases, the proportion of false alarms
over correct trials increases (Fig. 6B, M1: r2 ¼ 0.77, p < 0.001, M2: r2 ¼
0.93, p < 0.001). These results establish an undisputable correlation
between the decoded location of target and overt behavior of both
monkeys. In other words, the spatial precision of which the target and
distractors are represented in the FEF neuronal population strongly



Fig. 6. Reaction times (A) and detection performance (B) as a function of
target to decoded target distance. Target to decoded target distance are
calculated on a time interval running from 100 to 200 ms post target presen-
tation. For false alarms, the target is taken as the distractor that elicited the
response T(D). Data are represented for hits (left panels), and false alarms (right
panels). Each dot corresponds to the mean distance and median reaction times
(A) or mean trial-type proportion rate (B) in each out of 20 equally sized dis-
tance bins (black, monkey M1, red, monkey M2). Data was fitted with an
orthogonal regression (solid lines) and the corresponding statics of Spearman’s
correlation are indicated. Locations (10� or 13� eccentricity depending on the
session) are normalized across sessions so that target locations are mapped to an
eccentricity of � 1.
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influences both speed and accuracy of overt behavior.

3.9. Spatial representations before and after stimulus presentation –

interactions towards optimal behavior

The spatial estimate of target location (as decoded from FEF neuronal
activity 100 ms to 200 ms after target onset) is related to behavior in a
very similar way as previously described for the spatial estimate of the
cued location (i.e. attention orientation; 200 ms to 100 ms before target
onset, Astrand et al., 2016). In a subsequent analysis, we examine the
relation between attentional locus and spatial location of perception as
estimated from the decoding of prefrontal neuronal population. We
observe a strong correlation between the decoded location of attention
and that of perception. More specifically, in correct trials during which
attention was oriented close to the cued location prior to target presen-
tation (attention located within a normalized distance of 0.7 from the
cued location 300 ms to 200 ms prior to target presentation, hereafter
referred to as close attention trials), the decoded location of the target
(100 ms to 200 ms after target presentation) was significantly closer to its
real physical location compared to trials during which attention was
oriented outside the quadrant of the cued location (hereafter referred to
as far attention trials) prior to target presentation (in close attention
trials: the normalized distance between perceived location of target and
its real physical location ¼ 0.88�0.22, far attention trials: distance ¼
1.19�0.19, p ¼ 0.00036). This indicates a strong relationship between
pre-orientation of attention and the location of perception. In other
words, the precision with which attention is pre-oriented to the cued
location strongly influences how precise and veridical perceived target
spatial location is.
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An important question is whether these estimates actually correspond
the same neuronal process? If the spatial estimate of target location
merely reflects a reorientation or reinforcement of spatial attention, we
should expect a structurally similar neuronal pattern in the FEF popula-
tion before and after target presentation, albeit a modulation in MUA
amplitudes and/or reliability.

To shed light on this question, we performed a cross-temporal clas-
sification analysis of correct trials, using the discrete classification pro-
cedure, aligned on target presentation, and thus encompassing both
before and after target-related processes (Fig. 7A, for details on classifi-
cation procedure see sections related to Figs. 3A and 4A). In this analysis,
data sets for training and testing the classifier were temporally dissoci-
ated to study whether different time points in the task relied on the same
neural code (data were averaged in windows of 50 ms and slided with a
step of 10 ms). From this analysis, two main observations can be high-
lighted: 1) the classification accuracy of target location using a classifier
trained on data before target onset (i.e. attention epoch) increases sub-
stantially when tested after target location, and 2) the classification ac-
curacy using a classifier trained on data after target onset decreases
substantially when tested before target onset. These observations indi-
cate that the attentional neural encoding before target onset is boosted by
the target appearance, which may be interpreted as an attentional
recapture. On top of this process, additional spatial information is acti-
vated by target appearance, the neuronal pattern of which is not shared
with that of the encoding of the cued location prior to target presentation.
We hypothesize that this additional spatial information specifically
captures the spatial estimate of perception, independently of other pro-
cesses in the task.

To further our understanding of how the spatial information repre-
sented in the neuronal population before and after target presentation are
related to each other on a trial-by-trial basis, we investigated the decoded
Cued location-Target (C-T) distance before target onset (estimated 200
ms to 100 ms before target onset) as a function of decoded Target
location-Target (T-T) distance (estimated 100 ms to 200 ms after target
onset, Fig. 7B). For both monkeys we show that while the C-T distance is
shorter than
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location is within a non-cued quadrant of the screen), the T-T distance is
significantly shorter than the C-T distance (M1: p < 0.001, M2: p <

0.001, Wilcoxon signed rank test with Bonferroni correction of n ¼ 6
tests). In contrast, for trials in which the decoded cued location is outside
the cued quadrant (C-T distance>
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), the T-T distance is significantly

longer than C-T distance (M1: p < 0.01, M2: p < 0.01 for 1.6 < PT < 2.0
and p ¼ 0.56 for PT > 2.0, Wilcoxon signed rank test with Bonferroni
correction of n ¼ 6 tests). As these results strengthen our hypothesis that
different neural processes underlie the decoded locations before and after
target presentation, they also show that spatial information of an up-
coming target (i.e. spatial attention), encoded in the neuronal popula-
tion, strongly impacts the accuracy of the spatial representation of the
target.

Relating the C-T- and T-T-distances to response times (Fig. 7C) reveals
that the spatial information in the neuronal population before and after
target presentation will impact response times differently for the two
monkeys. Specifically, linearly fitting the 3-dimensional data points (C-T-
distance x T-T-distance x Response time) for both monkeys showed that
for monkey 1, the T-T distance better explained the response times
(weightAttention ¼ 2.23, weightPerception ¼ 28.99), and for monkey 2, both
the C-T and T-T distances explained the response times (weightAttention ¼
19.61, weightPerception ¼ 33.83). These results indicate that the decoded
target location (after target presentation) reflects a spatial estimate of
perception, differently encoded than the spatial estimate of attention
prior to target presentation. These observations thus indicate a tight
relationship between the spatial encoding of attention and perception,
however, the exact relationship might depend on internal strategies
rather than on a strict causal relationship.



Fig. 7. Spatial representation before and after
target presentation. (A) Cross-temporal classification
matrices of target location for monkey 1 (left column)
and monkey 2 (right column) and for one example
session (upper matrices) and across all sessions (lower
matrices). Colors represent classification accuracy
(with red as the highest accuracy) as a function of
classifier train-time during the task (x-axis) and clas-
sifier test-time (y-axis). Black lines correspond to the
diagonal and the defined perception epoch (100 ms to
200 ms after target onset). (B) Decoded Cued location-
Target distance (C-T, estimated 200 ms to 100 ms
before target onset) as a function of decoded Target
location-Target distance (T-T, estimated 100 ms to
200 ms after target onset) for monkey 1 (left) and
monkey 2 (right). The normalized distance between
the spatial estimate of the target and the physical local
of the target (T-T distance) are represented in 6 bins
(light gray bars) with the corresponding distance be-
tween the spatial estimate of the cued location and
that of the target (C-T distance, dark gray bars). The
dotted horizontal line corresponds to a distance of

ffiffiffi
2

p
.

Asterisks denote statistical difference between distri-
butions (***p < 0.001, **p < 0.01, and *p < 0.05). (C)
Linear modeling of reaction times as a function of the
optimal weighted sum of C-T and T-T distances for
monkey 1 (left) and monkey 2 (right). For each trial,
the C-T and T-T distances are plotted against the
response time. Data was linearly fitted and the
resulting hyperplane is visualized in each 3-D plot
with yellow colors corresponding to slower response
times.
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3.10. Population target location estimates reflect onto underlying MUA

The distance between the actual visual stimuli and where they are
represented in space as decoded from the FEF neuronal responses is a
population estimate. Here, we probe how much this population estimate
reflects onto the underlying MUA responses. In other words, do MUA
responses correlate with decoder output? Fig. 8 represents the correlation
between the normalized amplitude of MUA and the distance between
target (distractor evoking a response for false alarm trials) location and
(x,y) decoder output. MUA signals that had a significant positive mod-
ulation of their response, on correct trials, in the 100–200 ms time
window following target presentation, as compared to the �200 to�100
ms prior to target presentation (Wilcoxon paired tests, p < 0.05), were
selected for further analysis (508 out of 720 MUA channels and 960 out
of 2880 target-related responses). The target-to-decoder output distance
was averaged within 20 equally sized distance bins and the MUA from
the corresponding trials within each bin was averaged. On correct trials
(Fig. 8, gray), a significant correlation between target-decoder output
distance and MUA amplitude can be observed (r2 ¼ 0.48, p < 0.01). On
false alarm trials, overall MUA amplitude is lower compared to hit trials
(p < 0.001, Wilcoxon test) but a significant correlation can also be
observed between MUA amplitude and distractor-decoder output dis-
tance (r2 ¼ 0.32, p ¼ 0.01). On miss trials, the MUA amplitude is sub-
stantially lower as compared to hit trials (485 MUA/s vs. 360 MUA/s, p
< 0.001, Wilcoxon test). For these trials, a trend towards significance can
be observed between the correlation betweenMUA amplitude and target-
decoder output distance (r2 ¼ 0.23, p¼ 0.06). Overall, FEF MUA activity
thus reflects the decoded stimulus location, rather than actual stimulus
physical location.

4. Discussion

Visual perception is defined as the conscious representation of a vi-
sual item. It is experimentally assessed by requesting an overt report by
the subject that can take different forms: a detection, a discrimination, a
Fig. 8. Normalized MUA as a function of target to decoded target distance.
Normalized MUA and target to decoded target distance are calculated on a time
interval running from 100 to 200 ms post target presentation. Data cumulated
for both monkeys are represented for hits (gray), misses (pink) and false alarms
(blue). In the case of false alarms, measures are extracted relative to distractor
presentation. All else as in Fig. 6.
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verbal report etc. In this work, we identify the neuronal prefrontal cor-
relates of visual perception from a neuronal population perspective
(Astrand et al., 2014, 2015, 2016). The neurons in the FEF have tradi-
tionally been analyzed with univariate techniques, such as correlating
single-unit recording activity to individual task aspects. These techniques
have enabled to identify highly distinct roles of individual neurons in the
FEF. Specifically, early studies have established the well-known catego-
rization of FEF neurons into visual, motor or visuomotor neurons based
on their activation pattern during the memory-guided saccade task
(Bruce and Goldberg, 1985). However, these univariate analyses fail to
explain the often-observed complex activation patterns in neurons in
higher-order brain areas (FEF included). Through advances in multi-
variate pattern analysis, it has become possible to study neuronal pop-
ulation encoding (Buonomano and Maass, 2009), which has provided
evidence for prefrontal neurons exhibiting selectivity for multiple rele-
vant aspect of a given task (so-called a mixed selectivity, Fusi, 2016;
Rigotti et al., 2013). Rigotti et al. (2013) specifically show that prefrontal
neuronal populations encode distributed information not detectable
using univariate analysis. These findings emphasize the difficulty in
linking univariate functional properties of FEF neurons to the multivar-
iate decoding analysis. Here, we propose that the neuronal population,
with a major contribution of visual and visuo-motor neurons, encode a
perceived position of visual stimuli that may be different from their
veridical position. This encoded perceived position drives overt
behavior, in partial interaction with spatial orientation signals and
cannot be captured by individual neurons. This framework is novel and
contrasts with, though also complementing previous studies on the
contribution of FEF neuronal responses to perception. Specifically, we
show that when a stimulus is reported, whether this stimulus is the target
of behavior or a distractor, the neuronal FEF population precisely en-
codes its location. In contrast, when a stimulus is not reported, whether
this stimulus is the target of behavior or a distractor, its location, as
encoded by the FEF, does not match its actual location. We describe a
strong correlation between the error in the estimation of the position of
the visual stimulus in space as coded by the neuronal population with
respect to its actual physical location, and overt behavior. We further
show that the spatial estimate of the visual stimulus is partly independent
from the spatial location of attention prior to the stimulus onset, and that
eachmonkey relied differently upon the spatial encoding of attention and
perception in their behavioral optimization. These observations are dis-
cussed below.

4.1. Precise stimulus location estimation correlates with stimulus selection

In the absence of attentional pre-orientation (cued), single-unit
neuronal activity in the FEF during pop-out visual search, driven by
bottom-up mechanisms, has been shown to reliably encode the presence
of a visual stimulus within the neuron’s receptive field (RF) indepen-
dently of whether a correct or erroneous manual report is produced
(Trageser et al., 2008). This indicates that, in this task, the FEF does not
contribute to the behavioral report. In contrast, on a difficult cued target
detection task, driven by top-down mechanisms, the speed and accuracy
of the behavioral response on individual trials is predicted by the
magnitude of single neuron responses to the target when presented in the
neuron’s RF, this magnitude being lower both on error trials and on trials
with longer response times (Monosov and Thompson, 2009). Single-unit
analyses have provided great insight into how individual neurons behave
and encode information but interactions between neurons within a
population are lost (e.g. spatial attention (Cohen and Maunsell, 2009;
Astrand et al., 2016)).

At the neuronal population level, we show very high classification
rates of both targets and distractors when these are selected to produce a
behavioral response (Figs. 3, 4, hits and false alarm trials). This translates
into a confined localization on the decoding probability maps around the
actual physical location of the target/distractor. In other words, on these
trials, the location of the target or of the distractor is precisely
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represented in the prefrontal cortex. In contrast, classification rates of
both targets and distractors are below the 95% confidence interval when
these are not selected for behavioral report (misses and correct re-
jections). This corresponds to an unreliable localization on the target/
distractor decoding probability maps. In other words, visual stimulus
selection correlates with a reliable neuronal population representation of
stimulus location on a trial-to-trial basis. The decoding probability maps
(Figs. 3, 4) also show an underrepresented area in the vicinity of the
fixation point. This indicates that monkeys avoid selecting this portion of
space as compared to other spatial locations, however no conclusions can
yet be drawn as to whether active suppression mechanisms are at play.

4.2. Neuronal population information accounts for overt behavior

As discussed in the previous section, in cued target detection tasks,
the speed and accuracy of the overt response on individual trials is pre-
dicted by the magnitude of single neuron responses to a target in the RF
(Monosov and Thompson, 2009). Here we show that the spatial estimate
of target/distractor location provided by the FEF neuronal population
accounts for speed and accuracy of overt behavior. Specifically, an ac-
curate spatial representation coincides with 1) shorter reaction times, 2)
lower proportions of misses and 3) higher proportions of false alarms
when the location of the target/distractor is estimated at its veridical
position as compared to further away (Fig. 6). In other words, the pop-
ulation estimate of target/distractor location parametrically accounts for
behavior, with an explained variance of miss and false alarm rates
ranging between 70% and 90%. Multi-unit activity in response to the
target/distractor presentation also co-varies with this population esti-
mate. However, in this case, the explained variance is much lower and
ranges between 20% (MUA response to target in misses) and 50% (MUA
response to target in hits). This indicates that the neuronal population
better accounts for overt behavior than single neuron or multi-unit
activity.

4.3. Target selection vs. distractor filtering

Suzuki and Gottlieb (2013) show that the dorsolateral prefrontal
cortex single-unit neural spiking activity following a distractor (that is
identical to the target) is positively correlated to error rates. On a pop-
ulation level we corroborate and extend this finding by showing that
behavioral performance, in terms of accuracy and response times, cor-
relates with the spatial representation of a distractor in the FEF (Fig. 6).
Specifically, we show that as the distance between the FEF neuronal
population estimate of the locus of distractor and the actual position of
the distractor decreases (i.e. as the error of the spatial estimation de-
creases), the false alarm rate increases and response times during false
alarm trials decrease. We further observe that multiunit activity
following distractor presentation negatively correlates with the error
between the estimated distractor location in false alarm trials and its
actual physical location (Fig. 8). This indicates that the selection of a
distractor for behavioral report co-varies with this distance error mea-
sure. The shorter the distance the more likely the selection. Likewise,
target selection co-varies in a similar manner with the error between the
estimated target location in hit trials and its actual physical location. We
similarly observe that the multiunit activity following target presentation
negatively correlates with this distance error measure.

Hit trials correspond to trials in which the target has been selected. In
contrast, false alarm trials correspond to trials in which a distractor failed
to be filtered. By task design, target and distractors were identical
physical stimuli, the only distinguishing factor being whether the stim-
ulus was presented at the cued location or not. As a result, one expects
that, when perceived, targets and distractors would be represented in
identical manners. Average normalized multi-unit activity in response to
a detected target or to a detected distractor were significantly higher than
the average normalized multi-unit activity in response to a missed target.
Average normalized multi-unit activity in response to a detected target
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was only slightly stronger than the average normalized multi-unit ac-
tivity in response to a detected distractor. The neuronal population does
not discriminate between an unselected target and an unselected dis-
tractor. Likewise, the neuronal population equally discriminates between
selected and unselected target and selected and unselected distractors. In
this context, it is worth noting that we show that target selection corre-
sponds to a lower trial-to-trial MUA variability compared to distractor
selection, suggesting a higher degree of uncertainty during distractor
selection. Previous studies have shown that the trial-to-trial Fano factor
(variance/mean) is similar for both targets and distracters appearing in
the RF of FEF neurons (Bichot et al., 2001; Purcell et al., 2012). However,
these studies only considered correct trials, i.e. trials on which targets
were correctly detected and distractors correctly discarded. In contrast
with what we describe, this FEF change in Fano factor does not reflect
stimulus selection. Overall, our results suggest that once a stimulus has
been selected, targets and distractors are to a great extent undis-
tinguishable to the neuronal population though distractor selection
process is more subject to variability. As shown in Astrand et al. (2016),
the erroneous selection of a distracter is most probably due to a misori-
entation of attention during initial stages of the task (Heitz et al., 2010;
Astrand et al., 2016).

4.4. Interactions between spatial attention and perception

During low signal or high noise conditions, spatial attention has been
shown to facilitate perception at the locus of attention. Indeed, behav-
ioral responses to attended stimuli are faster (Yantis and Jonides, 1990)
and visual sensitivity at attended locations is enhanced (Bashinski and
Bacharach, 1980; Carrasco, 2011). At the neuronal level, attention has
been proposed to operate through a variety of mechanisms including
enhanced neuronal response to visual stimuli when attention is oriented
towards the receptive field of the neuron (e.g. McAdams and Maunsell,
1999); a shrinkage of visual receptive fields (RF) and a shift towards the
attended location (Ben Hamed et al., 2002; Womelsdorf et al., 2006,
2008); a decreased trial-to-trial variability of individual neuron’s
response (Cohen and Maunsell, 2009); an increased synaptic efficacy
(Briggs et al., 2013); a decrease in noise correlations between neurons in
extrastriate visual areas (Cohen and Maunsell, 2009) as well as in pre-
frontal area FEF (Astrand et al., 2016, but see also Cohen et al., 2010),
and decreased neuronal response latencies (Galashan et al., 2013). This is
proposed to have as overall effect to enhance perceptual processing,
possibly through local (Chalk et al., 2010; Panagiotaropoulos et al.,
2012) and long-range (Popov et al., 2017) neuronal coupling mecha-
nisms. Furthermore, perception has traditionally been described as an
“on-off” state; a visual stimulus is either perceived or not perceived. The
reason why a stimulus fails to be consciously perceived has mainly been
explained by classical models (e.g. Signal Detection Theory (SDT) (Green
and Swets, 1966)) assuming that the stimulus-evoked activity has to
reach a certain threshold in order for it to be consciously perceived
(Ratcliff and McKoon, 2008). Recent findings have extended this view to
suggest that the stimulus-induced activity must propagate to
higher-order prefrontal areas and reach a threshold sufficient to activate
“ignition”, an event causing self-sustained prefrontal neuronal activation
to broadcast information between many brain areas (Vugt et al., 2018).
Although a threshold might explain why weak near-threshold stimuli
reach consciousness, it does not address whether the perceived location
of the stimulus is related to overt behavior (i.e. perception contains a
spatial component influencing behavior). Here, we use multi-variate
pattern analyses from simultaneously recorded multi-unit activities,
thus capturing information encoded in the FEF neuronal population, and
we specifically show that overt behavior (speed and accuracy) can be
explained by the spatial accuracy of the reported stimulus encoded by the
neuronal population. We further show that the spatial encoding neuronal
pattern of the reported stimulus is partly independent from that of the
spatial attention orientation, indicating that perception contains a spatial
component de-correlated from pre-existing attention signals.
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The correlations we describe between overt behavior and prefrontal
target-related spatial representations could be interpreted as either a
reinforcement/recapture of spatial attention or change in the strength of
the percept associated with the target or the distractor rather than as a
change in the estimate of its spatial position; a strong percept at the time
of target correlating with higher probability of correct detections and a
strong percept at the time of distractor correlating with higher proba-
bility of false alarms. Two arguments speak against this. First, the clas-
sification we are applying is not discriminating perception vs. failed
perception trials, but rather associating the observed neuronal activities
to a spatial estimate. Second, and most importantly, an asymmetry in the
cross-temporal classification analyses (Fig. 7A) strongly suggests that
additional spatial information is present after target onset that is encoded
differently in the neuronal population than spatial attention before target
onset. We argue that the spatial information after target onset, being
strongly correlated to overt behavior, is evidence for a spatial estimate of
perception. While partly independent from spatial attention, we describe
a close link between the spatial estimates of attention and perception
(Fig. 7B and C). The closer attention is to the cued location prior to target
onset, the more spatially accurate the neuronal population will encode
the target. As long as attention is within the cued quadrant of the screen
prior to target onset, the spatial estimate of perception will be signifi-
cantly more accurate than that of attention. However, even though
monkeys correctly detected the target, when attention is outside of the
cued quadrant prior to target onset, the spatial estimate of perceptionwill
be encoded even farther away from the physical location of the target.
Rather than a strict causal relationship between spatial attention and
perception for optimizing behavior, we show that response times can be
explained by a weighted balance between the spatial estimates before
(attention) and after target onset (perception), of which weights may
depend on individual strategy or task difficulty.

In conclusion, we show that the population neuronal responses in the
FEF not only inform on whether a stimulus has been perceived or not, but
also on how accurately it was localized in space, irrespectively of whether
the stimulus was an actual target of behavior or an irrelevant stimulus.
The accuracy of this spatial representation strongly correlates with overt
behavior in terms of response time and accuracy. A strong prediction of
this is that in a cued-target detection task in which a spatial response is
required (e.g. saccade or pointing), overt error will correlate with the
internal prefrontal representation of target location. From a fundamental
perspective, while perception is often viewed as an all or nothing vari-
able, our work provides evidence for a measure of reliability of the
percept: when a stimulus is detected, this detection can be associated
with a very good spatial estimate or with a poor spatial estimate. This
view challenges classical models of decision-making or at least calls for
the integration of this spatial dimension. From an applied perspective,
understanding the neuronal population substrates of stimulus selection,
distractor filtering and overt behavior is crucial for developing novel
technological advances to improve abilities related to visual discrimi-
nation and selection of relevant information in noisy environments or in
pathological conditions (Astrand et al., 2014).
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