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AUTHENTICATION FROM MATRIX CONJUGATION

We propose an authentication scheme where forgery (a.k.a. impersonation) seems infeasible without finding the prover's long-term private key. The latter is equivalent to solving the conjugacy search problem in the platform (noncommutative) semigroup, i.e., to recovering X from X -1 AX and A. The platform semigroup that we suggest here is the semigroup of n × n matrices over truncated multivariable polynomials over a ring.

Introduction

For a general theory of public-key authentication (a.k.a. identification) as well as early examples of authentication protocols, the reader is referred to [START_REF] Menezes | Handbook of Applied Cryptography[END_REF]. In this paper, we propose an authentication scheme where recovering the private key from the public key would follow from solving the conjugacy search problem in the platform (noncommutative) semigroup, i.e., to recovering X from X -1 AX and A. There were some previous proposals based on this problem, see e.g. [START_REF] Ko | New signature scheme using conjugacy problem[END_REF][START_REF] Sibert | Entity authentication schemes using braid word reduction[END_REF], so it would make sense to spell out what makes our proposal different:

(1) Forgery (a.k.a. impersonation) seems infeasible without finding the prover's private key. In other proposals, there is usually a "shortcut", i.e., a way for the adversary to pass the final test by the verifier without obtaining the prover's private key. In particular, in the proposal of [START_REF] Ko | New signature scheme using conjugacy problem[END_REF] modeled on the Diffie-Hellman authentication scheme, there is an alternative (formally weaker) problem that is sufficient for the adversary to solve in order to impersonate the prover. Namely, it is sufficient for the adversary to obtain Y -1 X -1 AXY from X -1 AX, Y -1 AY , and A. (2) Our platform semigroup might be the first serious candidate for having generically hard conjugacy search problem. It can therefore be used with some other previously suggested cryptographic protocols based on the conjugacy search problem, e.g. with the protocols in [START_REF] Anshel | An algebraic method for public-key cryptography[END_REF] or [START_REF] Grigoriev | Constructions in public-key cryptography over matrix groups[END_REF]; see also [START_REF] Myasnikov | Group-based cryptography[END_REF] for more examples. (3) One of the most important new features is that the verifier selects his final test randomly from a large series of tests. This is what makes it difficult for the adversary to impersonate the prover without obtaining her private key: if the adversary just "studies for the test", as weak students do, he/she at least should know what the test is.

(4) Unlike the proposals in [START_REF] Grigoriev | Zero-knowledge authentication schemes from actions on graphs, groups, or rings[END_REF][START_REF] Sibert | Entity authentication schemes using braid word reduction[END_REF], our authentication scheme does not use the Feige-Fiat-Shamir idea [START_REF] Feige | Zero knowledge proofs of identity[END_REF] involving repeating several times a three-pass challengeresponse step (to avoid predicting, by the adversary, the challenge with nonnegligible probability). In our scheme, we have just one challenge and one response. [START_REF] Ko | New signature scheme using conjugacy problem[END_REF] To prevent attacks by malicious verifier, there is an intermediate "commitment to challenge" step for the verifier because otherwise, malicious verifier might present the prover with a carefully selected challenge that may result in leaking information about the prover's private key at the response step. This is similar to the "chosen-plaintext attack" on an encryption protocol.

The protocol, beta version

In this section, we give a preliminary description of our authentication protocol. Here Alice is the prover and Bob the verifier. We call this a "beta version" of the protocol because what we describe here represents a single session; repeating this particular protocol several times can compromise the long-term private key of the prover. This is why extra care has to be taken to protect the long-term private key; this is done in the complete protocol described in the following section, while here, in an attempt to be helpful to the reader, we describe the "skeleton" of our scheme where all principal (i.e., non-technical) ideas are introduced.

The platform ring G that we suggest is the ring of n × n matrices over N -truncated k-variable polynomials over a ring R. The reader is referred to our Section 4 for the definition of N -truncated polynomials as well as for suggested values of parameters n, N , k, and the ring R.

Protocol, beta version

(i) Alice's public key is a pair of matrices (A, X -1 AX), where the matrix X ∈ G is Alice's long-term private key. The matrix A ∈ G does not have to be invertible. (ii) At the challenge step, Bob chooses a random matrix B from the ring G and sends it to Alice. (See the full version of the protocol in the next section for how to prevent Bob from choosing B maliciously.) (iii) Alice responds with the matrix X -1 BX. (iv) Bob selects a random word w(x, y) (without negative exponents on x or y),

evaluates the matrices

M 1 = w(A, B) and M 2 = w(X -1 AX, X -1 BX), then computes their traces. If tr(M 1 ) = tr(M 2 ), he accepts authentication. If not, then rejects. The point of the final test is that M 2 = w(X -1 AX, X -1 BX) should be equal to X -1 M 1 X = X -1 w(A, B)X.
Therefore, since the matrices M 1 and M 2 are conjugate, they should, in particular, have the same trace. Note that the trace in this context works much better (from the security point of view) than, say, the determinant, because the determinant is a multiplicative function, so the adversary could use any matrix with the same determinant as B in place of X -1 BX, and still pass the determinant test. With the trace, the situation is quite different, and there is no visible way for the adversary to pass the trace test for a random word w(x, y) unless he/she actually uses the matrix X -1 BX.

The protocol, full version

Compared to the beta version described in the previous section, the full protocol given in this section has an extra feature of protecting the long-term private key X from overexposure. This is needed because upon accumulating sufficiently many matrices of the form X -1 B i X with different B i but the same X, the adversary may recover X more easily. To avoid this, we make Alice (the prover) apply a non-invertible endomorphism (i.e., a homomorphism into itself) of the ambient ring G to all participating matrices. This endomorphism is selected by Bob in the beginning of each new session. We also note yet another extra feature of the protocol below, namely, a (mild) "commitment to challenge" by the verifier (step 2(i)) preceding the actual challenge. Recall that this is done to prevent a malicious verifier from presenting the prover with a carefully selected challenge that may result in leaking information about the prover's private key at the response step.

Protocol, full version

(1) Alice's public key is a pair of matrices (A, X -1 AX), where the matrix X ∈ G is Alice's long-term private key. The matrix A ∈ G does not have to be invertible. (2) At the "commitment to challenge" step, Bob chooses: (i) a random matrix B from the ring G; (ii) a random non-invertible endomorphism ϕ of the ring G.

Bob then sends B and ϕ to Alice. (3) In order to prevent a malicious Bob from presenting her with a carefully selected challenge, Alice publishes random positive integers p and q and asks Bob to send her random non-zero constants c i , i = 1, 2, 3, and create his challenge in the form

B = c 1 A + c 2 B + c 3 A p B q . ( 4 
) Upon receiving B , Alice responds with the matrix ϕ(X -1 B X).

(5) Bob selects a random word w(x, y) (without negative exponents on

x or y), evaluates the matrices M 1 = w(ϕ(A), ϕ(B )) and M 2 = w(ϕ(X -1 AX), ϕ(X -1 B X)), then computes their traces. If tr(M 1 ) = tr(M 2 ), he accepts authentication. If not, then rejects.

Parameters and key generation

Our suggested platform ring G is the ring of all n × n matrices over truncated k-variable polynomials over the ring Z 11 . Truncated (more precisely, N -truncated) k-variable polynomials over Z 11 are elements of the factor algebra of the algebra Z 11 [x 1 , . . . , x k ] of k-variable polynomials over Z 11 by the ideal generated by all monomials of degree N . In other words, N -truncated k-variable polynomials are expressions of the form 0≤s≤N -1 a j 1 ...js • x j 1 • • • x js , where a j 1 ...js are elements of Z 11 , and x js are variables.

To make computation efficient for legitimate parties, we suggest to use sparse polynomials as entries in participating matrices. This means that there is an additional parameter d specifying the maximum number of non-zero coefficients in polynomials randomly generated by Alice or Bob. Note that the number of different monomials of degree N in k variables is M (N, k) = N +k k . This number grows exponentially in k (assuming that N is greater than k). The number of different collections of d monomials (with non-zero coefficients) of degree < N is more than M (N,k) d , which grows exponentially in both d and k. Concrete suggested values for parameters are given below; right now we just say that, if we denote the security parameter by t, we suggest that the number M (N, k) = N +k k is at least t. At the same time, neither N nor k should exceed t. As for the parameter d, we require that d

m n • k • log N • n 2 < t,
where m is yet another parameter, defined in the following subsection 4.1.

Since the questions of generating random invertible matrices or random polynomial endomorphism have not been addressed in the literature on cryptography before (to the best of our knowledge), we address these questions below. 4.1. Generating matrices. Our notation here follows that of Section 3.

Since the matrices A and B do not have to be invertible, they are easy to generate. We require that each entry is a √ d-sparse N -truncated k-variable polynomial over Z 11 , which is generated the obvious way. Namely, one first chooses √ d random monomials of degree at most N -1, then randomly chooses non-zero coefficients from Z 11 for these monomials.

An invertible matrix X can be generated as a random product of m elementary matrices. A square matrix is called elementary if it differs from the identity matrix by exactly one non-zero element outside the diagonal. This single non-zero element is generated as described in the previous paragraph. Denote by E ij (u) the elementary matrix that has u = 0 in the (i, j)th place, i = j.

We note that multiplying m elementary matrices may result in the number of nonzero coefficients in some of the entries growing exponentially in m. More precisely, when we multiply E ij (u) by E jk (v), the result is E ik (uv), and the polynomial uv is no longer d-sparse, but d 2 -sparse. However, this phenomenon is limited to products of elementary matrices of the form E ij (u) • E jk (v), and the expected maximum length of such "matching" chains in a product of m elementary n×n matrices is m n . We therefore require that d

m n • k • log N • n 2 < t,
where t is the security parameter. 4.2. Generating an endomorphism. At step 2 of the full protocol in Section 3, Bob has to generate a random non-invertible endomorphism ϕ of the ring G of matrices over N -truncated k-variable polynomials over Z 11 .

Such an endomorphism is going to be naturally induced by an endomorphism of the ring of N -truncated k-variable polynomials over Z 11 . The latter endomorphism can be constructed as follows: ϕ : x j → f j , where f j = f j (x 1 , . . . , x k ) are random sparse N -truncated k-variable polynomials over Z 11 with zero constant term, which actually depend on (k -k 0 ) variables only, i.e., k 0 variables are missing, where the parameter k 0 is specified in the following subsection. The zero constant term condition is needed for ϕ to actually be an endomorphism, i.e., to keep invariant the ideal generated by all monomials of degree N . For efficiency reasons, it makes sense to have the polynomials f j √ d-sparse.

4.3. Suggested parameters. Suggested values for parameters of our scheme are:

(1) The suggested value of n (the size of participating matrices) is n = 3.

(2) Presently, N = 1000, d = 25, and k = 10 should be quite enough to meet the security conditions specified above. In particular, with these values of parameters, the number M (N, k) of different monomials is greater than 10 20 . (3) The matrix X (Alice's long-term private key) is generated by Alice as a product of m random elementary matrices, where the value for m is randomly selected from the interval n 3 ≤ m ≤ 2n 3 . (4) Parameter k 0 used in constructing a non-invertible endomorphism (subsection 4.2 above) can be specified as follows: k 0 is randomly selected from the interval

k 3 ≤ k 0 ≤ 2k 3 .
(5) Values of random positive integers p and q in step 3 of the protocol in Section 3 can be bounded by 5. Non-zero constants c i in the same step 3 are selected uniformly randomly from the set of all non-zero elements of Z 11 . ( 6) The suggested length of the word w(x, y) in step 5 of the protocol in Section 3 is 10.

4.4. Key size and key space. To conclude this section, we point out that the size of a random matrix in our scenario (e.g. Bob's commitment B) is

√ d • k • log N • n 2 .
The size of an invertible matrix X is, roughly, (d

• k • log N + log n) • m.
The size of the key space for the long-term private key (i.e., the matrix X) is, roughly, exp((d

• k • log N + log n) • m).

Cryptanalysis

We start by discussing how the adversary, Eve, can attack Alice's long-term private key (the matrix X) directly, based just on the public key P = X -1 AX. The relevant problem is known as the conjugacy search problem. Note that the equation P = X -1 AX implies XP = AX, which translates into a system of n 2 linear equations for the entries of X, where n is the size of participating matrices. Thus, a natural way for Eve to attempt to find X would be to solve this system. However, there are some major obstacles along this way:

(a) The matrix equation XP = AX is not equivalent to P = X -1 AX. The former equation has many solutions; for example, if X is a solution, then any matrix of the form X = f (A) • X • g(P ) is a solution, too, where f (A) and g(P ) are arbitrary polynomials in the matrices A and P , respectively. However, only invertible matrices X will be solutions of the equation P = X -1 AX.

If participating matrices come from a ring where "generic" matrices are noninvertible (which is the case for our suggested platform ring), then Eve would have to add to the matrix equation XP = AX another equation XY = I, where X, Y are unknown matrices, and I is the identity matrix. This translates into a system of n 2 quadratic equations, not linear ones. (b) As explained in the previous paragraph, Eve is facing a system of n 2 linear equations and n 2 quadratic equations, with 2n 2 unknowns, over a ring R, which in our scheme is the ring of N -truncated k-variable polynomials over Z 11 . She can further translate this into a system of linear equations over Z 11 if she collects coefficients at similar monomials, but this system is going to be huge: as explained in our Section 4, it is going to have more than 10 20 equations (by the number of monomials). Note that, although entries of all participating matrices are sparse polynomials, Eve does not know which monomials in the private matrix X occur with non-zero coefficients, which means she has to either engage all monomials in her equations or try all possible supports (i.e., collections of monomials with non-zero coefficients) of the entries of elementary matrices in a decomposition of X (see subsection 4.1). (c) Eve may hope to get more information about the matrix X if she eavesdrops on several authentication sessions between legitimate parties. More specifically, she can accumulate several pairs of matrices of the form (ϕ i (B i ), ϕ i (X -1 B i X)). Note however that even if a pair like that yields some information, this is going to be information about the matrix ϕ i (X) rather than about X itself. To recover X from ϕ i (X) is impossible because ϕ i has a large kernel by design.
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