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Abstract 23 

In this study, the effect of distance-dependent dispersion coefficients on density-driven flow is 24 

investigated. The linear asymptotic model, which assumes that dispersivities increase linearly 25 

with distance from the source of contamination and reach asymptotic values at a large 26 

asymptotic distance, is employed. An in-house numerical model is adapted to handle distance-27 

dependent dispersion. The effect of asymptotic-dispersion on aquifer contamination is analyzed 28 

for two tests: (i) a seawater intrusion problem in a coastal aquifer and (ii) a leachate transport 29 

problem from a surface deposit site. Global Sensitivity Analysis (GSA) combined with the 30 

Polynomial Chaos Expansion (PCE) surrogate modelling is conducted to assess the influence 31 

of the dispersion coefficients on the contamination plume for both configurations. 32 

For the seawater intrusion problem, the results show that the length of the toe is mainly 33 

controlled by the asymptotic transverse dispersivity whereas the spread of the concentration is 34 

sensitive to the asymptotic longitudinal dispersivity and the asymptotic dispersivity distance. 35 

The latter is the most important parameter controlling the amount of salt which intrudes into 36 

the aquifer. For the leachate transport problem, the results show that the asymptotic longitudinal 37 

dispersivity coefficient does not affect the concentration distribution. The asymptotic 38 

dispersivity distance has a strong effect on the total amount of contaminant that enters the 39 

aquifer. This effect can be three times more important than the effect of the asymptotic 40 

transverse dispersivity. These findings are likely to be helpful for the investigation and 41 

management of density-driven flow problems. 42 

Keywords 43 

Density driven flow, saltwater intrusion, leachate transport, variable dispersion, asymptotic 44 

model, global sensitivity analysis. 45 

 46 

  47 
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1. Introduction 48 

Density-driven flow (DDF) is a particular configuration of transport in porous media in which 49 

the fluid concentration causes a change in groundwater density which can significantly affect 50 

the flow dynamics. DDF can be encountered in several applications related to contaminant 51 

transport in aquifers. Among these applications, a well-known problem is the contamination of 52 

coastal aquifers by saltwater intrusion (Werner et al., 2013) which is a major concern around 53 

the world. Another important example is groundwater contamination by leachates from surface 54 

industrial waste and landfills (Frind, 1982). Managing and predicting the evolution of pollutants 55 

in such situations require accurate numerical simulations.  56 

The simulation of DDF problems is based on coupling Darcy’s groundwater flow equation to 57 

the solute transport equation via a state relation expressing the density as a function of solute 58 

concentration. Transport of solute in the aquifer is ruled by advection, representing the solute 59 

displacement by the mean fluid flow, and by dispersion, which accounts for solute spreading 60 

caused by velocity variations due to the heterogeneity of the porous medium at different scales 61 

(Liu et Kitandis, 2013; Kitanidis, 2017; Dai et al., 2020). Dispersion processes have been found 62 

to play a major role in DDF problems as they cause mixing between different fluids. The effect 63 

of dispersion on DDF has been widely investigated in the literature. For instance, Abarca et al. 64 

(2007) studied the effect of dispersion on DDF in the context of seawater intrusion and showed 65 

that when dispersion is taken into account, concentration isolines resemble those observed in 66 

real coastal aquifers. Emami-Meybodi (2017) studied instabilities driven by dispersion for an 67 

unstable DDF problem with mixed convective flow. Wen et al. (2018) defined a dispersive 68 

Rayleigh number and investigated the effect of dispersion on the Rayleigh-Darcy convection 69 

problem. Fahs et al. (2020) investigated the effect of dispersion on thermal DDF problem.  70 

In most DDF models, dispersion is ruled using a velocity-dependent dispersion tensor involving 71 

constant coefficients characterizing mixing in the longitudinal (parallel to the flow) and 72 
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transverse (orthogonal to flow) directions. In the last decades, many studies have shown that 73 

this conventional approach cannot satisfactorily represent field transport especially for aquifers 74 

with spatial heterogeneity (Pickens and Grisak, 1981a). Alternative approaches have developed 75 

such as stochastic models (e.g. Gelhar, 1992; Zhang, 2002, Kerrou and Renard, 2010; Pool et 76 

al., 2015) or continuous time random walk methods (e.g. Berkowitz et al., 2000; Dentz et al., 77 

2004). However, these methods usually require sufficient field measurements to formulate 78 

statistical structure and are known to be computationally expensive (Wang et al., 2006). Such 79 

difficulties have motivated using the conventional dispersion approach, but by considering that 80 

the dispersivity values are temporal or scale dependent (Pickens and Grisak, 1981a). In other 81 

words, the longitudinal and transverse dispersion coefficients are not constant but can vary with 82 

the distance from the source of contamination. Indeed, in a tracer test, Molz et al. (1983) found 83 

that dispersivity is not constant but increases with the travel distance because of the scale 84 

dependence of dispersivities. This phenomenon has been observed both in field-scale transport 85 

(e.g. Pickens and Grisak 1981a; Gelhar et al., 1992; Schulze-Makuch, 2005) and laboratory-86 

scale transport (e.g., Silliman and Simpson, 1987; Khan and Jury, 1990; Huang et al., 1995; 87 

Vanderborght and Vereecken, 2007). According to Gao et al. (2012), the scale dependence of 88 

dispersivity can be related to different processes such as the heterogeneity of the porous media 89 

at different scales (Gelhar et al., 1992; Huang et al., 2006), the fractal nature of the pore space 90 

in the aquifer (Wheatcraft and Tyler, 1988) or the anomalous transport (Cortis and Berkowitz, 91 

2004). Mishra and Parker (1990) showed that a hyperbolic dispersivity-distance function allows 92 

a good fitting of the data estimated from a natural gradient tracer experiment. Kangle et al. 93 

(1996) provided a one-dimensional analytical solution with linear asymptotic dispersion. Chen 94 

et al. (2003, 2007) investigated distance-dependent dispersion for convergent and divergent 95 

flow fields with linear scale-dependent dispersion. Chen et al (2008a) studied one-dimensional 96 

transport with hyperbolic asymptotic dispersivity function. Pérez Guerrero and Skaggs (2010) 97 
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derived a general analytical solution for one-dimensional transport with distance-dependent 98 

coefficients. Gao et al. (2010, 2012) investigated mobile-immobile transport model with 99 

asymptotic scale-dependent dispersivity. You and Zhan (2013) developed semi-analytical 100 

solutions for solute transport in a finite column with linear asymptotic and exponential distance-101 

dependent dispersivities and time-dependent sources. 102 

Thus, in the literature, the effect of asymptotic dispersivity has been essentially investigated for 103 

simplified situations of 1D transport (e.g. Basha and El-Habel, 1993; Yates, 1992; David-104 

Logan, 1996; Pang and Hunt, 2001; Chen et al., 2003; Pérez Guerrero and Skaggs, 2010; 105 

Sharma and Abgaze, 2015, Wang et al., 2019), 2D problems with a uniform flow field (e.g. 106 

Hunt, 2002; Chen et al., 2008b) or radially convergent divergent flow fields (e.g. Chen et al., 107 

2003, 2006, 2007). To the best our knowledge, investigation of distance-dependent dispersion 108 

coefficients in cases involving complex velocity fields, such as in DDF problems, have not been 109 

undertaken. 110 

The aim of this work is to incorporate distance-dependent dispersion in a DDF model and to 111 

investigate the effect of dispersion parameters on contaminant transport. As conceptual models, 112 

we consider (i) the Henry problem describing seawater intrusion (SWI) in a coastal aquifer 113 

(Henry, 1964) and (ii) the leachate transport problem proposed by Frind (1982) to investigate 114 

the leachate plume from a surface deposit site. The effect of distance-dependent dispersivities 115 

on the aquifer contamination is investigated using Global Sensitivity Analysis (GSA) combined 116 

with Polynomial Chaos Expansion (PCE) surrogate modelling (Sudret, 2008; Fajraoui et al., 117 

2012, 2017; Mara et al., 2017).  118 

2. Methods 119 

2.1 The mathematical model and numerical code 120 

The mathematical model for water movement through porous media is based on the mass 121 

conservation equation and Darcy’s law (Guevara et al., 2015): 122 
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where   is the fluid density [ML-3], S  the specific mass storativity related to head changes [L-125 

1], h  the equivalent freshwater head [L], t the time [T],   the porosity [-], C  the relative 126 

concentration [-], q  the Darcy’s velocity [LT-1], 0  the density of the displaced fluid [ML-3], 127 

g  the gravity acceleration [LT-2],   the fluid dynamic viscosity [ML-1T-1], k  the permeability 128 

tensor [L2] and z the depth [L] taken positive upwards.  129 

The contaminant transport in porous media is based on the solute mass conservation equation:  130 

 0
( C )

.( C . C )
t

 
 


   q D  (3) 131 

where the dispersive tensor D  is given by: 132 

   T

m L T TD /D I qq q q I       (4) 133 

with L  and T  the longitudinal and transverse dispersion coefficients [L], mD  the pore water 134 

diffusion coefficient [L2T-1] and I  the unit tensor. The associated boundary conditions of the 135 

flow-transport system (1)-(3) are of Dirichlet, Neuman or mixed type.  136 

Flow and transport equations are coupled via the linear mixture density equation: 137 

  0 1 0 C       (5) 138 

where 1  is density of contaminant. 139 

In this work, we assume that the longitudinal and transverse dispersion coefficients are a 140 

function of the distance from the source of contamination. Distance-dependent dispersivities 141 

are generally ruled using one of the four types of functions suggested by Pickens and Grisak 142 

(1981b) including linear, parabolic, asymptotic and exponential functions. The linear distance-143 

dependent dispersivity function has been largely used in the literature (e.g. Pang and Hunt, 144 
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2001; Gao et al., 2010; Pérez Guerrero and Skaggs, 2010; Chen et al., 2008b). However, this 145 

function seems to be unphysical, because field observations show that a constant dispersivity 146 

could be asymptotically reached (Gelhar et al., 1992; Pickens and Grisak, 1981a). Huang et al. 147 

(1995) used a linear-asymptotic distance-dependent function where the dispersivity value 148 

increases linearly with the transport distance and reaches an asymptotic value at a certain large 149 

distance. The linear-asymptotic model was adopted by You and Zhan (2013) and is employed 150 

in this work:  151 

  

0

0

0

0

0

0L,T
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,

,





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
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x  (6) 152 

where  corresponds to the distance from the source of contamination, 0

L  and 0

T  are 153 

respectively the asymptotic longitudinal and transverse dispersion coefficients and 0  is the 154 

asymptotic distance after which both longitudinal and transverse dispersivities reach their 155 

asymptotic values 0

L,T L,T  . 156 

The coupled flow-transport system is solved with an advanced in-house numerical model using 157 

triangular meshes (Ackerer and Younes, 2008). The flow equations (Eqs. 1-2) are solved by the 158 

mixed finite element method (Younes et al., 2010). The transport equation (Eq. 3) is solved by 159 

combining two numerical methods: Discontinuous Galerkin (DG) method for solving advection 160 

and Multipoint Flux Approximation (MPFA) method for solving dispersion. Coupling between 161 

flow and transport equations is performed using the non-iterative scheme proposed in Younes 162 

and Ackerer (2010) with proper time management. This scheme was shown to be highly 163 

efficient and more accurate than the standard iterative procedure. The in-house code has been 164 

validated by comparison against semi-analytical solutions in Fahs et al. (2016). Performance 165 

and robustness of the code has been highlighted in Shao et al. (2018) by comparison against 166 

COMSOL Multiphysics. In this work, the in-house code is modified to handle distance-167 
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dependent dispersion coefficients. Both longitudinal and transverse dispersivities are defined 168 

elementwise and their values are calculated using (Eq. 4) where  corresponds to the distance 169 

from the center of each element to the source of contamination.  170 

 171 

2.2 The Henry saltwater Intrusion Problem 172 

Real applications of SWI at a field scale are increasingly reported in the literature. However, in 173 

several theoretical and applied studies, SWI is often investigated based on the hypothetical 174 

Henry problem (Henry, 1964) (Figure 1a). This problem represents a common benchmark that 175 

is widely used for multiple purposes as understanding physical processes, numerical model 176 

verification, and parameter sensitivity analyses. A detailed review of the different use of the 177 

Henry problem as a surrogate representation of SWI can be found in Werner et al. (2013) and 178 

Fahs et al. (2018).  179 

The Henry problem represents SWI in a vertical cross-section of a confined coastal aquifer 180 

where an inland freshwater flow is in equilibrium with seawater that intrudes into the aquifer 181 

from the seaside due to its higher density (Figure 1a). The first studies on the Henry problem 182 

have been limited to pure molecular diffusion cases. More realistic configurations that include 183 

velocity-dependent dispersion have been suggested in Abarca et al. (2007) and Fahs et al. 184 

(2016). These cases will be considered here as this work deals with asymptotic dispersion 185 

coefficients.  186 

 187 

 188 

 189 

 190 

 191 

 192 

https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2016WR019288#wrcr22275-bib-0002
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 193 
(a) 

 

(b) 

 

Figure 1. (a) Henry problem domain and boundary conditions; (b) The leachate transport 194 

problem (Frind, 1982).  195 

 196 

Following Simpson and Clement (2004), we decrease the freshwater recharge by half to 197 

increase the density-dependent effects compared to boundary forces. Further, we use a larger 198 

rectangular domain with an aspect ratio 3
L

H
  as proposed by Zidane et al. (2012) to reduce 199 

the influence of the left boundary condition on the saltwater distribution. The parameters and 200 

boundary conditions for the Henry problem are given in Table 1.  201 

 202 
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 209 

Table 1. Parameters and boundary conditions for the Henry problem. 210 

 permeability k= 1.0204 x 10-9 m2 

 porosity  

 length of the aquifer 

 height of the aquifer 

0.35   

3L   m 

1H   m 

  

-molecular diffusion coefficient  89.4 10mD   m2 s-1 

Boundary conditions for flow  - hydrostatic pressure at the right hand side 

- constant flux at the inland boundary: 
53.3 10Q    m2/s 

- no flow along the top and bottom  

Boundary conditions for transport  - 0  = 1000 kg/m3 on the left boundary. 

- 1  = 1025 kg/m3 on the right boundary 

- zero concentration gradient along the top and bottom  

 211 

The numerical model is employed to analyze the saltwater intrusion by considering that 212 

uncertainty of model outputs is associated with the following dispersion parameters: the 213 

asymptotic longitudinal dispersivity 
0

L , the asymptotic transverse dispersivity 
0

T  and the 214 

asymptotic distance 0 . Note that the longitudinal and transverse dispersivities are assumed to 215 

be independent. The corresponding uncertainty ranges (Table 2) are sufficiently large to explore 216 

the role of each parameter.  217 

Table 2. Uncertainty ranges of the dispersion coefficients for the Henry problem. 218 

Parameter Uncertainty Range 

0

L  [m] [0.1, 1.0] 

0

T  [m] [0.04, 1.0] 

0  [m] [0, 2.0] 

 219 
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2.3 The leachate transport problem in unconfined aquifer 220 

This problem was proposed by Frind (1982) to investigate groundwater contamination by 221 

leachates from sanitary landfills or industrial waste disposal sites. A typical problem is 222 

considered (Figure 1b) where a disposal site unprotected from precipitation is situated above 223 

the water table in a rectangular unconfined aquifer of 3000 m length and 24m thickness.  224 

The parameters and boundary conditions are described in Table 3. 225 

Table 3. Parameters and boundary conditions for the leachate transport problem. 226 

- permeability kx= 0.3262 x 10-10 m2 

kz= 0.3262 x 10-11 m2 

- porosity  

- length of the aquifer 

- height of the aquifer 

0.2   

3000L   m 

24H   m 

- molecular diffusion coefficient  0.0mD  m2 s-1 

- boundary conditions for flow  - fixed head at the left (h0=0) and right (hL=-17.5m) hand 

sides 

- constant flux at the top: 30zq  cm/year  

- no flow along the bottom  

- boundary conditions for transport  - fixed relative concentration (C=C0) at the top with 

C0=1 for  1 2x x x   

C0=0 elsewhere 

with 1 120x  m and 2 920x  m 

 - fixed relative concentration (C=0) at the left and right 

hand sides 

- density of the contaminant 1 1007.1   kg/m3  

- zero concentration gradient along the bottom  

 227 

Large uncertainty ranges (Table 4) are associated to the dispersion parameters (
0

L , 
0

T  and 0228 

) in order to investigate the role of each of them. Note that because the leachate transport 229 

problem has larger dimensions than the synthetic Henry problem, the dispersion parameters are 230 

allowed to have larger values than previously. 231 

 232 

 233 
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 234 

Table 4. Uncertainty ranges of the dispersion parameters for the leachate transport problem. 235 

Parameter Uncertainty Range 

0

L  [m] [0.1, 20.0] 

0

T  [m] [0.04, 5.0] 

0  [m] [0, 50.0] 

 236 

3. Global sensitivity analysis 237 

Effect of the dispersion parameters on DDF is investigated using global sensitivity analysis 238 

(GSA). To this aim, the variance-based sensitivity indices of Sobol’ (Sobol’, 2001) are 239 

computed using Polynomial Chaos Expansion (PCE). The Sobol’ indices measure the 240 

contribution of an input (alone or by interactions with other inputs) to the output variance. They 241 

are well adapted for GSA since they do not require any assumption of monotony or linearity of 242 

the model (Saltelli et al., 2006). Two Sobol’ indices are noteworthy:  243 

- the first-order sensitivity index, 244 

 
 

i i
i

V E y V
S

V y V

        (4) 245 

- the total sensitivity index, 246 

 

T
i i

i

E V y V
ST

V y V


     


     (5) 247 

where y  is the model output,   is the set of parameters  0 0

0, ,L T    ,  E  is the 248 

mathematical expectation (the average),  V  is the mathematical variance, E     and V     249 

are their respective conditional forms. i  represents one of the parameters, and i  stands for 250 

the set of parameters   without the parameter i . 251 
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The first-order sensitivity index (or main effect index)  0,1iS   measures the amount by which 252 

the variance of y is reduced when the true value of i  is known. The total sensitivity index 253 

 0,1iST   measures the remaining uncertainty in y after all parameters are known except i . 254 

It evaluates the contribution of i  to the response variance, including its interactions with the 255 

other parameters (i.e., ~i ). If interactions between parameters are negligible, we have 1i

i

S   256 

and ,i iS ST i  . 257 

The marginal effect  iy   of the parameter i  on the model output y  enables to investigate 258 

the range of variation of y  with respect to i , 259 

  i iy E y      . (7) 260 

In this work, we use the Polynomial Chaos Expansion (PCE) surrogate modeling to infer 261 

sensitivity indices (Fajraoui et al., 2012, 2017; Younes et al., 2016; Shao et al., 2017). PCE 262 

allows an efficient evaluation of the Sobol’ indices, since they can be easily calculated using 263 

the PCE coefficients (Sudret, 2008). 264 

Since we deal with only three uncertain parameters (
0

L , 
0

T  and 0 ), we use a full surrogate 265 

PCE of order 4. The number of polynomial coefficients in the expansion is therefore 
7!

35
4! 3!




266 

. The coefficients of the surrogate PCE are calculated by a least-square technique minimizing 267 

the sum of squared errors between model responses and the PCE. To this aim, a hundred of 268 

evaluations of the Henry and leachate transport problems are performed using parameter values 269 

randomly generated in the intervals of variation given in Table 2 and Table 4 respectively.  270 

4. Results for the Henry SWI problem 271 
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A mesh converged solution is obtained a uniform triangular mesh formed by 4800 elements. 272 

The effect of the dispersion parameters on saltwater intrusion is investigated based on the 273 

following metrics (see Figure 2). 274 

- The positions 0.1 0.5,X X  and 0.9X  of respectively the 10%, 50% and 90% isochlors at 275 

the aquifer bottom. Note that the 0.5X  is related to the well-known length of the toe toeL  276 

which is the distance between the seaside boundary and 0.5X .  277 

- The spread of the concentration 0.9 0.1SL X X   which corresponds to the distance 278 

between the 10% and the 90% isochlors at the bottom of the domain. 279 

- The total mass in the domain. 280 

- The values of steady state concentration at the following selected points:  1 1.5,0A ; 281 

 2 2.5,0A  and  3 2.5,1A . 282 

 283 

 284 

Figure 2. Seawater intrusion metrics used for the assessment of effects of the dispersion 285 

parameters. 286 

 287 

4.1 Salinity distribution 288 

Figure 3a depicts the mean concentration values as well as the corresponding 10%, 50% and 289 

90% concentration contours. This figure shows that the distribution of the mean concentration 290 

reflects the general distribution of salinity in coastal aquifers which gives confidence to the 291 

accuracy of the PCE surrogate model. Saltwater intrudes from the right and reaches equilibrium 292 
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with the inland freshwater flow. Saltwater intrusion is more pronounced near the bottom 293 

because of density effects. The mean concentration distribution in Figure 3a shows a wide 294 

mixing zone due to the large uncertainty ranges of the dispersion parameters (Table 2). 295 

 296 

(a) 

 

(b) 

 

Figure 3. The Henry problem: (a) Spatial map of the mean concentration values (black lines 297 

represent 90%, 50% and 10% isochlors); (b) Spatial map of the variance of concentrations 298 

(dashed lines limit the zone of high variability- 5% of standard deviation). 299 

 300 

The distribution of the variance of the concentration shows that high variances regions are 301 

located at the center of the domain near the bottom of the aquifer (Figure 3b). This makes sense 302 

as the length of the toe is mainly controlled by the dispersion processes (Abarca et al., 2007; 303 

Fahs et al., 2016). Indeed, it is well known that low dispersion increases the buoyancy forces 304 

compared to dispersion effects and yields much more intrusion near the bottom of the aquifer 305 

(Younes and Fahs, 2014). This explains the high variance region near A1 in Figure 3b. 306 

Significant variability of the salinity can be observed also at top of the aquifer near the seaside 307 

(Figure 3b). In this zone, the groundwater flow is discharging to the sea. Thus, the salinity of 308 
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this zone is mainly due to dispersion. The dashed contour in Figure 3b shows the region where 309 

the effect of dispersion parameters is significant which corresponds to 5% of the standard 310 

deviation of the concentrations. 311 

 312 

The spatial maps of first order Sobol’ indices representing the sensitivity of the salinity 313 

distribution to 0

L , 0

T  and 0  are plotted in the Figure 4. For the region of significant variance 314 

(the region delimited by the dashed lines), Figure 4a shows that 0

L  has a negligible effect on 315 

salinity distribution, except around A2 where a moderate effect can be observed. The parameter 316 

0

T  is the most influential parameter as its zone of high sensitivity is situated in the region of 317 

high variability (Figure 4b). Significant sensitivity to 0

T  is observed around A3 but the highest 318 

sensitivity area is situated in the mixing zone near A1. This is in agreement with the results of 319 

Fahs et al. (2016) and is related to the fact that in this zone, the velocity field is not parallel to 320 

the concentration gradient. As shown in Fahs et al. (2016), in such a case, the dispersion 321 

processes are dominated by the transverse dispersion and hence, the salinity distribution is 322 

highly sensitive to 0

T  in this zone. The parameter 0  is influential near the seaside boundary 323 

(Figure 4c) which makes sense since, far from the sea, the longitudinal and transverse dispersion 324 

coefficients reach their asymptotic values and the salinity distribution become insensitive to 0325 

. 326 

 327 

 328 

 329 

 330 

 331 

 332 
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(a) 

 

 

 

(b) 

  

 

 

(c) 

  

Figure 4. Spatial maps of the first-order sensitivity indices: (a) sensitivity of salinity 333 

distribution to 0

L , (b) sensitivity of salinity distribution to 0

T  and (c) sensitivity of salinity 334 

distribution to 0 . Dashed lines limit the zone of high variability (5% of standard deviation). 335 

 336 

4.2 Sensitivity of the SWI metrics 337 

The Sobol’ indices for the concentration at the observation points (A1, A2, A3) as well as for 338 

the SWI metrics are depicted in Table 5. This table also gives the mean value and the standard 339 

deviation for all quantities of interest.  340 

Table 5. Sensitivity of the concentration at the observation points (A1, A2 and  A3) and of 341 

the SWI metrics. 1S , 2S  and 3S  represent the first order Sobol’ indices for the sensitivity to 342 
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0

L , 0

T  and 0 . ‘mean’ and ‘std’ represent the mean value and the standard deviation for the 343 

quantities of interest.    344 

  345 

 mean std 1S  2S  3S  
3

1

i

i

S


  

A1 0.17 0.12 0.01 0.81 0.04 0.86 

A2 0.79 0.1 0.27 0.24 0.42 0.94 

A3 0.27 0.11 0.02 0.33 0.6 0.95 

0.1X  1.39 0.17 0.13 0.64 0.06 0.82 

0.5X  2.0 0.19 0.07 0.73 0.13 0.93 

0.9X  2.66 0.19 0.30 0.16 0.46 0.93 

SL  1.27 0.23 0.5 0.05 0.41 0.97 

Total mass 1016 110 0.16 0.16 0.35 0.67 

 346 

The results of this table show that  347 

- The concentration near A1 is mostly influenced by 0

T   2 0.81S  . In this region, 348 

moderate interactions occur between parameters 
3

1

0.86i

i

S


 
 

 
 . The effects of 0

L  and 349 

0  alone are insignificant  2 0.01S   and 3 0.04S  , but their total effects (including 350 

interactions) are moderately significant  1 0.12ST   and 3 0.11ST  . The results around 351 

A1 are coherent with the results discussed previously based on the spatial maps of 352 

Sobol’ indices (Figure 4).     353 

- Around A2, located near the sea boundary, high concentrations can be observed 354 

(mean=0.79). The concentration has slight variability (std=0.1) which indicates that 355 

SWI reaches this point whatever the values of the dispersion parameters. The most 356 

influential parameter near A2 is 0   3 0.42S  . The parameters 0

L  and 0

T  have 357 
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significant and close effects  1 0.27S  and 2 0.24S  . Interactions between dispersion 358 

parameters are not significant 
3

1

0.94i

i

S


 
 

 
 . 359 

- The point A3 is located near the top of the domain and close to the sea boundary. The 360 

standard deviation (std=0.11) of concentrations is relatively significant (mean=0.27). 361 

The most influential parameter in this region is 0   3 0.6S   followed by the parameter 362 

0

T   2 0.33S  . The parameter 0

L  is irrelevant  1 0.02S  . Interactions between the 363 

three dispersion parameters are not significant 
3

1

0.95i

i

S


 
 

 
 . 364 

- The 10% isochlor intersects the substratum at an average distance of 1.39 m from the 365 

sea boundary. 
0.1X  has high variability (std=0.17m). The parameter 0

T  is the most 366 

influential parameter  2 0.64S  . The parameter 0

L  has a small first order sensitivity 367 

index  1 0.13S   whereas the parameter 0  has a negligible first order sensitivity index 368 

 3 0.06S  . However, because of interaction between parameters 
3

1

0.82i

i

S


 
 

 
 , 0

L
 

369 

and 0  are influential since their total sensitivity indices are significant  1 0.29ST  and 370 

2 0.2ST  . 371 

- The 50% isochlor intersects the substratum at an average distance of 2.0 m. The 372 

dispersion parameters have a strong effect on that position since the standard deviation 373 

is significant (std=0.19). As 
0.1X , 

0.5X  is mainly controlled by the parameter 0

T  374 

 2 0.73S  . The parameters 0

L   1 0.07S   and 0   3 0.13S   have a limited effect. 375 

Because the 50% isochlor is closer to the sea than the 10% isochlor, 
0.5X  is more 376 

sensitive to 0  than 
0.1X . Small interactions are observed between the dispersion 377 
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parameters 
3

1

0.93i

i

S


 
 

 
 . Therefore, 

0.5X  and in consequence 
toeL  are mainly 378 

controlled by the asymptotic transverse dispersivity. Since interactions are small, the 379 

marginal effect of 0

T , depicted in the Figure 5a, reflects the behavior of 
0.5X  when 380 

varying 0

T  (the other parameters are set at their mean values). Figure 5a shows a high 381 

sensitivity for 
0 0.3T   and a weaker sensitivity for higher values of 

0

T . In this figure, 382 

0.5X  increases with 
0

T  which is consistent with physics as the decrease in 
0

T  induces 383 

more saltwater intrusion and hence a decrease of 
0.5X .   384 

   

   

Figure 5. Marginal effect of: (a) 
0

T  on 
0.5X , (b) 

0

L  on 
0.9X , (c) 

0

T  on 
0.9X , (d) 0  on 385 

0.9X , (e) 
0

L on SL  and (f) 0  on SL  386 

 387 

- The 90% isochlor intersects the substratum at an average distance of 2.66 m with a 388 

standard deviation of 0.19 m. 
0.9X  is sensitive to the three dispersion parameters. As the 389 

isochlor 90% is close to the sea, the most influential parameter is 0   3 0.46S  , comes 390 

next 0

L   1 0.30S   and finally 0

T   2 0.16S  . Small interactions exist between the 391 
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dispersion parameters 
3

1

0.93i

i

S


 
 

 
 . Marginal effects of the three sensitive dispersion 392 

parameters on 
0.9X  are plotted in the Figure 5. The sensitivity of 

0.9X  to 0

L  (Figure 5b) 393 

has a positive slope as an increase of 0

L  induces an increase of the spreading of the 394 

concentration front resulting in an increase of 
0.9X . The sensitivity of 

0.9X  to 0

T  (Figure 395 

5c) is similar to that observed for 
0.5X . This demonstrates that saltwater intrusion is 396 

mainly controlled by the asymptotic transverse dispersivity. A decrease of 0

T  induces 397 

more intrusion which results in a decrease of 
0.5X  and 

0.9X . The sensitivity of the 398 

intrusion to 0

T  is more pronounced for small values of this parameter. The 
0.9X  varies 399 

almost linearly with a negative slope with respect to the parameter 0  (Figure 5d). 400 

Indeed, the 90% isochlor is located near the sea boundary (the average 
0.9X  is 2.66m) 401 

where the effect of 0  is significant (see Figure 4c). In that region, the increase of 0  402 

yields less dispersion effects which results in more saltwater intrusion and hence a 403 

decrease in 
0.9X . 404 

- For the spread of the concentration (Ls), the most influential parameter is 
0

L  1 0.5S   405 

, followed by 0   3 0.41S  . The sensitivity of SL  to 
0

L  is much more important than 406 

that of 0.1X  and 0.9X . Furthermore, although 
0

T  is influential on 0.9X  and on 0.1X , it 407 

has no effect on SL   2 0.05S  . The interactions between parameters are almost absent 408 

3

1

0.97i

i

S


 
 

 
 . The marginal effects of the parameters 

0

L  and 0  on SL  are depicted 409 

in the Figure 5. SL  increases linearly with the value of 
0

L  (Figure 5e). This confirms 410 

that the spreading is directly proportional to the value of 
0

L . The sensitivity of SL  to 411 
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0  has a negative slope (Figure 5f). The increase of 0  yields less dispersion which 412 

results in less spreading of the concentration front and hence a reduction in SL . 413 

- The standard deviation of the total mass in the aquifer is around 10% of its mean value. 414 

Significant interactions occur between the dispersion parameters 
3

1

0.67i

i

S


 
 

 
 . The 415 

total sensitivity indices of the three dispersion parameters  1 0.46ST  , 2 0.23ST   and 416 

3 0.64ST   are significantly higher than their first order indices  1 0.16S  , 2 0.16S   417 

and 3 0.35S  . This shows that 0  plays the most important role on the amount of mass 418 

which has intruded into the domain, followed by 
0

L . Strong interactions mainly occur 419 

between these two parameters since 3 3 0.29ST S   and 1 1 0.3ST S   whereas 420 

2 2 0.07ST S  .  421 

5. Results of the leachate transport problem  422 

Starting with no leachate in the aquifer, the leachate transport problem is simulated for 24 years. 423 

A mesh converged solution is obtained using a uniform triangular mesh formed by 14400 424 

triangular elements. A hundred simulations were performed using independent random 425 

parameter values generated inside the intervals given in Table 4. The mean leachate plume is 426 

shown in the Figure 6a. The leachate enters the aquifer due to dispersion and vertical infiltration. 427 

Within the aquifer, the leachate plume moves to the right side due to the hydraulic gradient 428 

between left and right sides. A stable flow is obtained for all explored dispersivity values 429 

because of (i) the large dispersion and (ii) the weak density difference between the contaminant 430 

and freshwater. 431 

 432 

 433 

 434 
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(a) 

 

(b) 

 
 435 

Figure 6. The leachate transport problem at 24 years: (a) Spatial map of the mean concentration 436 

values and (b) Spatial map of variance of concentration. The dashed contour delimits the region 437 

of high variances (5% of standard deviation). 438 

 439 

The distribution of the variance of the concentration shows that high variability is located below 440 

the disposal site (Figure 6b) towards the bottom of the aquifer. The center of the zone of high 441 

variability is shifted to the right of the disposal site center because of the basic advective flow 442 

in the aquifer which goes from left to right.  443 

Figure 7 shows the spatial distributions of the first-order Sobol’ indices. For the region of 444 

significant variability (delimited by dashed lines), the asymptotic longitudinal dispersivity 
0

L  445 

has a negligible first-order sensitivity index (Figure 7a). Note that this does not imply the 446 

irrelevance of 
0

L  since the first-order index does not take into account interactions between 447 

parameters. To judge the inefficiency of 
0

L , we evaluate the total Sobol index of 
0

L . Figure 448 

8 shows that, in the region of high variance,
0

L  has no effect on the concentration distribution 449 

(neither alone nor in interaction with the other parameters). Therefore, the parameter 
0

L  is 450 

irrelevant for concentration distribution. Thus, in this case, mixing by dispersion is mainly 451 

related to transverse dispersivity. The parameters 
0

T  and 0  have strong influence on the 452 

concentration distribution (Figure 7b and 7c) in the region of high variability (below the landfill 453 
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site). Significant interactions are observed between these two parameters. The amount of 454 

interaction between parameters can be evaluated by computing 1 i

i

r S  . If interactions 455 

between parameters are absent, then 1i

i

S   and 0r  . Figure 9 shows that interactions 456 

between 
0

T  and 0  are observed in two regions located in the lower half of domain. Moderate 457 

interactions occur in the region between x = 100 m and x = 500 m. Higher interactions occur in 458 

a larger zone located downstream the deposit site between x = 1000 m and x = 1500m. 459 

 460 

 461 

 462 

 463 

Figure 7. Spatial map of the first order sensitivity indices for the leachate transport problem: 464 

a) sensitivity to 
0

L , b) sentitivity to 
0

T  and c) sensitivity to 0 . 465 
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 466 

Figure 8. Spatial map of the total Sobol’ index of 
0

L  for the leachate transport problem. 467 

 468 

Figure 9. Spatial map of the interaction 1 i

i

r S   for the leachate transport problem. 469 

 470 

The effects of dispersion parameters are investigated for the total mass in the domain and for 471 

the final concentration at the following selected points  1 265,0A ;  2 655,0A  and  3 1025,0A  472 

in Table 6. The results of this table show that: 473 

 474 

 mean std 1S  2S  3S  
3

1

i

i

S


  

A1 0.19 0.2 0.0 0.29 0.58 0.87 

A2 0.52 0.3 0. 0.51 0.46 0.97 

A3 0.29 0.13 0.0 0.37 0.39 0.76 

Total mass 10667 4058 0.0 0.24 0.74 0.98 

 475 

Table 6. Sobol’s indices for the concentration at the observation points (A1,..,3) and for the 476 

total mass in the domain for the leachate transport problem. 1S , 2S  and 3S  represent the first 477 

order Sobol’ indices for the sensitivity to 0

L , 0

T  and 0 . ‘mean’ and ‘std’ represent the 478 

mean value and the standard variation for the quantities of interest.    479 
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- The concentration around A1 is first influenced by 0   3 0.58S   and then by 
0

T  480 

 2 0.29S  . The parameter 
0

L  is irrelevant  1 0ST  . Moderate interactions occur 481 

between 
0

L  and 0  
3

1

0.87i

i

S


 
 

 
 .  482 

- The concentration around A2 is almost equally influenced by 
0

T   2 0.51S   and 0  483 

 3 0.46S  . In this region, the model is almost additive since interactions between 484 

parameters are almost absent 
3

1

0.97i

i

S


 
 

 
 . 485 

- Around A3, the parameters 
0

T  and 0  have close first-order sensitivity indices 486 

 2 0.37S   and 3 0.39S   and close total sensitivity indices  2 0.6ST   and 487 

3 0.63ST  . In this region, strong interactions occur between these two parameters 488 

3

1

0.76i

i

S


 
 

 
 . 489 

- The total mass in the system has a mean of 10,667 and a significant variance of 4,058. 490 

The parameter 
0

L  has no effect  1 0S  . The parameter 0  has a strong effect on the 491 

total mass value. This effect  3 0.74S   is three times more important than the effect 492 

of 
0

T   2 0.24S  . The effects of the two parameters are additive since interactions 493 

between them are almost absent 
3

1

0.98i

i

S


 
 

 
 . The marginal effects of the parameters 494 

0

T  and 0  on the total mass are plotted in Figure 10. The sensitivity of the total mass 495 

to 
0

T  depicts a curve with a positive slope since the total mass increases as 
0

T  496 

increases. The marginal effect of 0  is represented by a negative slope curve which is 497 

consistent with physics. The leachate plume, and consequently the total mass, increase 498 

as dispersion increases (i.e. 0  decreases).  499 
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  500 

Figure 10. Marginal effects of 
0

T , and 0  on the total mass for the leachate transport 501 

problem. 502 

6. Conclusions 503 

Transport of pollutants in aquifers is usually modeled using the advection-dispersion transport 504 

equation with constant-dispersion coefficients. Recently, laboratory and field transport 505 

observations have shown that dispersivities are distance-dependent. The most popular function 506 

for distance-dependent dispersivity is the linear-asymptotic model which assumes that the 507 

longitudinal and transverse dispersion coefficients increase linearly with the distance from the 508 

source of contamination until some asymptotic distance 0 , after which the dispersion 509 

coefficients reach asymptotic values. In the literature, this model has been investigated in 510 

simple configurations  dealing with either one-dimensional or  uniform two-dimensional flow 511 

fields. In this work, we investigate the effects of asymptotic dispersion model in the case of 512 

contaminant transport with DDF that involves complex velocity field. The linear-asymptotic 513 

model has been incorporated in an advanced in-house DDF numerical model. The new 514 

developed code was used to investigate the effect of the dispersion coefficients (asymptotic 515 

longitudinal dispersivity 
0

L , asymptotic transverse dipersivity 
0

T  and asymptotic distance 0516 

) on the contamination plume for two conceptual models: the Henry saltwater intrusion problem 517 

and a leachate transport problem from a surface deposit site. The effects of dispersion 518 

parameters are evaluated using Global Sensitivity Analysis (GSA) combined with the 519 
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Polynomial Chaos Expansion (PCE) surrogate modelling to compute both first-order and total 520 

Sobol’ sensitivity indices  521 

The results for the Henry problem showed that the concentration at the center bottom of the 522 

domain, is mostly influenced by the asymptotic value of the transverse dispersion 0

T  whereas, 523 

near the sea boundary, the most influential parameter is the asymptotic distance 0 . The 524 

position of the 50% isochlor is mainly controlled by the parameter 
0

T . The spread of the 525 

concentration is not influenced by 
0

T  but by 
0

L  and 0 . The total amount of mass intruded in 526 

the aquifer is influenced by 0  and then by 
0

L  and interactions between them. 527 

The results for the leachate transport problem show that 
0

L  has no effect (neither alone nor in 528 

interaction with the other parameters) on the concentration distribution. The parameters 
0

T  529 

and 0  have a strong influence on the concentration distribution below the landfill site. Strong 530 

interactions occur between these two parameters in the aquifer. The total mass in the aquifer is 531 

strongly influenced by 0 . The sensitivity to 0  is three times more important than to 
0

T  and 532 

the effects of these two parameters on the total mass are additive (interactions are insignificant). 533 

This study showed that distance-dependent dispersion coefficients can significantly affect 534 

contaminant distribution in aquifers in the case of density-driven flow. It demonstrates the 535 

advantage of using GSA with PCE surrogate modeling for such investigation since it allows to 536 

determine, for each parameter, the regions of high influence and the regions where the effect of 537 

the parameter is insignificant. It also allows to determine regions of high interactions between 538 

parameters and to explore the marginal effect of sensitive parameters on the model output. 539 

 540 

 541 

 542 

 543 
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