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In this study, the effect of distance-dependent dispersion coefficients on density-driven flow is investigated. The linear asymptotic model, which assumes that dispersivities increase linearly with distance from the source of contamination and reach asymptotic values at a large asymptotic distance, is employed. An in-house numerical model is adapted to handle distancedependent dispersion. The effect of asymptotic-dispersion on aquifer contamination is analyzed for two tests: (i) a seawater intrusion problem in a coastal aquifer and (ii) a leachate transport problem from a surface deposit site. Global Sensitivity Analysis (GSA) combined with the Polynomial Chaos Expansion (PCE) surrogate modelling is conducted to assess the influence of the dispersion coefficients on the contamination plume for both configurations.

For the seawater intrusion problem, the results show that the length of the toe is mainly controlled by the asymptotic transverse dispersivity whereas the spread of the concentration is sensitive to the asymptotic longitudinal dispersivity and the asymptotic dispersivity distance.

The latter is the most important parameter controlling the amount of salt which intrudes into the aquifer. For the leachate transport problem, the results show that the asymptotic longitudinal dispersivity coefficient does not affect the concentration distribution. The asymptotic dispersivity distance has a strong effect on the total amount of contaminant that enters the aquifer. This effect can be three times more important than the effect of the asymptotic transverse dispersivity. These findings are likely to be helpful for the investigation and management of density-driven flow problems.

Introduction

Density-driven flow (DDF) is a particular configuration of transport in porous media in which the fluid concentration causes a change in groundwater density which can significantly affect the flow dynamics. DDF can be encountered in several applications related to contaminant transport in aquifers. Among these applications, a well-known problem is the contamination of coastal aquifers by saltwater intrusion [START_REF] Werner | Seawater intrusion processes, investigation and management: Recent advances and future challenges[END_REF] which is a major concern around the world. Another important example is groundwater contamination by leachates from surface industrial waste and landfills [START_REF] Frind | Simulation of long-term transient density-dependent transport in groundwater[END_REF]. Managing and predicting the evolution of pollutants in such situations require accurate numerical simulations. In most DDF models, dispersion is ruled using a velocity-dependent dispersion tensor involving constant coefficients characterizing mixing in the longitudinal (parallel to the flow) and transverse (orthogonal to flow) directions. In the last decades, many studies have shown that this conventional approach cannot satisfactorily represent field transport especially for aquifers with spatial heterogeneity (Pickens and Grisak, 1981a). Alternative approaches have developed such as stochastic models (e.g. [START_REF] Gelhar | A critical review of data on field-scale dispersion in aquifers[END_REF]Zhang, 2002, Kerrou and[START_REF] Kerrou | A numerical analysis of dimensionality and heterogeneity effects on advective dispersive seawater intrusion processes[END_REF][START_REF] Pool | Effects of tidal fluctuations and spatial heterogeneity on mixing and spreading in spatially heterogeneous coastal aquifers[END_REF] or continuous time random walk methods (e.g. [START_REF] Berkowitz | Anomalous transport in laboratory-scale, heterogeneous porous media[END_REF][START_REF] Dentz | Time behavior of solute transport in heterogeneous media: transition from anomalous to normal transport[END_REF]). However, these methods usually require sufficient field measurements to formulate statistical structure and are known to be computationally expensive [START_REF] Wang | Specifying Scale-dependent Dispersivity in Numerical Solutions of the Convection-Dispersion Equation[END_REF]. Such difficulties have motivated using the conventional dispersion approach, but by considering that the dispersivity values are temporal or scale dependent (Pickens and Grisak, 1981a). In other words, the longitudinal and transverse dispersion coefficients are not constant but can vary with the distance from the source of contamination. Indeed, in a tracer test, [START_REF] Molz | An Examination of Scale-Dependent Dispersion Coefficients[END_REF] found that dispersivity is not constant but increases with the travel distance because of the scale dependence of dispersivities. This phenomenon has been observed both in field-scale transport (e.g. Pickens and Grisak 1981a;[START_REF] Gelhar | A critical review of data on field-scale dispersion in aquifers[END_REF]; Schulze-Makuch, 2005) and laboratoryscale transport (e.g., [START_REF] Silliman | Laboratory evidence of the scale effect in dispersion of solutes in porous media[END_REF][START_REF] Khan | A laboratory study of the dispersion scale effect in column outflow experiments[END_REF][START_REF] Huang | Experimental investigation of solute transport in large, homogeneous and heterogeneous, saturated soil columns[END_REF][START_REF] Vanderborght | Review of Dispersivities for Transport Modeling in Soils[END_REF]. According to [START_REF] Gao | A mobile-immobile model with an asymptotic scale-dependent dispersion function[END_REF], the scale dependence of dispersivity can be related to different processes such as the heterogeneity of the porous media at different scales [START_REF] Gelhar | A critical review of data on field-scale dispersion in aquifers[END_REF][START_REF] Huang | Evidence of one-dimensional scale-dependent fractional advection-dispersion[END_REF], the fractal nature of the pore space in the aquifer [START_REF] Wheatcraft | An explanation of scale-dependent dispersivity in heterogeneous aquifers using concepts of fractal geometry[END_REF] or the anomalous transport [START_REF] Cortis | Anomalous Transport in "Classical" Soil and Sand Columns[END_REF]. [START_REF] Mishra | Analysis of solute transport with a hyperbolic scaledependent dispersion model[END_REF] showed that a hyperbolic dispersivity-distance function allows a good fitting of the data estimated from a natural gradient tracer experiment. Kangle et al. [START_REF] Hunt | Scale-Dependent Dispersion from a Pit[END_REF][START_REF] Chen | Analytical power series solutions to the twodimensional advection-dispersion equation with distance-dependent dispersivities[END_REF] or radially convergent divergent flow fields (e.g. [START_REF] Chen | A Laplace transform power series solution for solute transport in a convergent flow field with scale-dependent dispersion[END_REF][START_REF] Chen | Evaluation of longitudinal and transverse dispersivities/distance ratios for tracer test in a radially convergent flow field with scaledependent dispersion[END_REF][START_REF] Chen | Analysis of solute transport in a divergent flow tracer test with scale-dependent dispersion[END_REF]. To the best our knowledge, investigation of distance-dependent dispersion coefficients in cases involving complex velocity fields, such as in DDF problems, have not been undertaken.

The aim of this work is to incorporate distance-dependent dispersion in a DDF model and to investigate the effect of dispersion parameters on contaminant transport. As conceptual models, we consider (i) the Henry problem describing seawater intrusion (SWI) in a coastal aquifer [START_REF] Henry | Effects of dispersion on salt encroachment in coastal aquifers[END_REF] and (ii) the leachate transport problem proposed by [START_REF] Frind | Simulation of long-term transient density-dependent transport in groundwater[END_REF] to investigate the leachate plume from a surface deposit site. The effect of distance-dependent dispersivities on the aquifer contamination is investigated using Global Sensitivity Analysis (GSA) combined with Polynomial Chaos Expansion (PCE) surrogate modelling [START_REF] Sudret | Global sensitivity analysis using polynomial chaos expansions[END_REF][START_REF] Fajraoui | Reactive Transport Parameter Estimation and Global Sensitivity Analysis Using Sparse Polynomial Chaos Expansion[END_REF][START_REF] Fajraoui | Analyzing natural convection in porous enclosure with polynomial chaos expansions: Effect of thermal dispersion, anisotropic permeability and heterogeneity[END_REF][START_REF] Mara | Addressing factors fixing setting from given data: A comparison of different methods[END_REF].

Methods

The mathematical model and numerical code

The mathematical model for water movement through porous media is based on the mass conservation equation and Darcy's law [START_REF] Guevara Morel | Systematic investigation of non-Boussinesq effects in variable-density groundwater flow simulations[END_REF]:
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where  is the fluid density [ML -3 ],

S the specific mass storativity related to head changes [L - Flow and transport equations are coupled via the linear mixture density equation:
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where 1  is density of contaminant.

In this work, we assume that the longitudinal and transverse dispersion coefficients are a function of the distance from the source of contamination. Distance-dependent dispersivities are generally ruled using one of the four types of functions suggested by [START_REF] Pickens | Scale-dependent dispersion in a stratified granular aquifer[END_REF] including linear, parabolic, asymptotic and exponential functions. The linear distancedependent dispersivity function has been largely used in the literature (e.g. [START_REF] Pang | Solutions and verification of a scale-dependent dispersion model[END_REF][START_REF] Gao | A new mobile-immobile model for reactive solute transport with scale-dependent dispersion[END_REF][START_REF] Guerrero | Analytical solution for one-dimensional advection-dispersion transport equation with distance-dependent coefficients[END_REF][START_REF] Chen | Analytical power series solutions to the twodimensional advection-dispersion equation with distance-dependent dispersivities[END_REF]. However, this function seems to be unphysical, because field observations show that a constant dispersivity could be asymptotically reached [START_REF] Gelhar | A critical review of data on field-scale dispersion in aquifers[END_REF]Pickens and Grisak, 1981a). Huang et al.

(1995) used a linear-asymptotic distance-dependent function where the dispersivity value increases linearly with the transport distance and reaches an asymptotic value at a certain large distance. The linear-asymptotic model was adopted by [START_REF] You | New solutions for solute transport in a finite column with distance-dependent dispersivities and time-dependent solute sources[END_REF] and is employed in this work:
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where corresponds to the distance from the source of contamination, 0 elementwise and their values are calculated using (Eq. 4) where corresponds to the distance from the center of each element to the source of contamination.

The Henry saltwater Intrusion Problem

Real applications of SWI at a field scale are increasingly reported in the literature. However, in several theoretical and applied studies, SWI is often investigated based on the hypothetical Henry problem (Henry, 1964) (Figure 1a). This problem represents a common benchmark that is widely used for multiple purposes as understanding physical processes, numerical model The Henry problem represents SWI in a vertical cross-section of a confined coastal aquifer where an inland freshwater flow is in equilibrium with seawater that intrudes into the aquifer from the seaside due to its higher density (Figure 1a). The first studies on the  and the asymptotic distance 0 . Note that the longitudinal and transverse dispersivities are assumed to be independent. The corresponding uncertainty ranges (Table 2) are sufficiently large to explore the role of each parameter. 

  3 L  m 1 H  m -molecular diffusion coefficient
L  [m] [0.1, 1.0] 0 T  [m] [0.04, 1.0] 0 [m] [0, 2.0]

The leachate transport problem in unconfined aquifer

This problem was proposed by [START_REF] Frind | Simulation of long-term transient density-dependent transport in groundwater[END_REF] to investigate groundwater contamination by leachates from sanitary landfills or industrial waste disposal sites. A typical problem is considered (Figure 1b) where a disposal site unprotected from precipitation is situated above the water table in a rectangular unconfined aquifer of 3000 m length and 24m thickness.

The parameters and boundary conditions are described in Table 3. -the first-order sensitivity index,
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-the total sensitivity index,  
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where y is the model output,  is the set of parameters

  00 0 ,, LT   ,   E is the mathematical expectation (the average),   V is the mathematical variance, E     and V    
are their respective conditional forms. 2 and Table 4 respectively.

Results for the Henry SWI problem

A mesh converged solution is obtained a uniform triangular mesh formed by 4800 elements.

The effect of the dispersion parameters on saltwater intrusion is investigated based on the following metrics (see Figure 2).

-The positions 0.1 0.5 , XX and 0.9

X of respectively the 10%, 50% and 90% isochlors at the aquifer bottom. Note that the 0.5 X is related to the well-known length of the toe toe L which is the distance between the seaside boundary and 0.5 X .

-The spread of the concentration 0.9 0.1 S L X X  which corresponds to the distance between the 10% and the 90% isochlors at the bottom of the domain.

-The total mass in the domain.

-The values of steady state concentration at the following selected points:   The distribution of the variance of the concentration shows that high variances regions are located at the center of the domain near the bottom of the aquifer (Figure 3b). This makes sense as the length of the toe is mainly controlled by the dispersion processes [START_REF] Abarca | Anisotropic dispersive Henry problem[END_REF][START_REF] Fahs | The Henry problem: New semianalytical solution for velocity-dependent dispersion[END_REF]. Indeed, it is well known that low dispersion increases the buoyancy forces compared to dispersion effects and yields much more intrusion near the bottom of the aquifer [START_REF] Younes | A semi-analytical solution for saltwater intrusion with a very narrow transition zone[END_REF]. This explains the high variance region near A1 in Figure 3b.

Significant variability of the salinity can be observed also at top of the aquifer near the seaside (Figure 3b). In this zone, the groundwater flow is discharging to the sea. Thus, the salinity of this zone is mainly due to dispersion. The dashed contour in Figure 3b shows the region where the effect of dispersion parameters is significant which corresponds to 5% of the standard deviation of the concentrations.

The spatial maps of first order Sobol' indices representing the sensitivity of the salinity distribution to 0 L  , 0 T  and 0 are plotted in the Figure 4. For the region of significant variance (the region delimited by the dashed lines), Figure 4a shows that 0 L  has a negligible effect on salinity distribution, except around A2 where a moderate effect can be observed. The parameter 0 T  is the most influential parameter as its zone of high sensitivity is situated in the region of high variability (Figure 4b). Significant sensitivity to 0 T  is observed around A3 but the highest sensitivity area is situated in the mixing zone near A1. This is in agreement with the results of 

Sensitivity of the SWI metrics

The Sobol' indices for the concentration at the observation points (A1, A2, A3) as well as for the SWI metrics are depicted in Table 5. This table also gives the mean value and the standard deviation for all quantities of interest. . In this region, moderate interactions occur between parameters The most influential parameter in this region is 0   3 0.6 S  followed by the parameter 0

T    2 0.33 S 
. The parameter 0

L  is irrelevant   1 0.02 S 
. Interactions between the three dispersion parameters are not significant -The 50% isochlor intersects the substratum at an average distance of 2.0 m. The dispersion parameters have a strong effect on that position since the standard deviation is significant (std=0. [START_REF] Fajraoui | Analyzing natural convection in porous enclosure with polynomial chaos expansions: Effect of thermal dispersion, anisotropic permeability and heterogeneity[END_REF]). As 0.1 X , 0.5 X is mainly controlled by the parameter 0

T    2 0.73 S 
. The parameters 0

L    1 0.07 S  and 0   3 0.13 S 
have a limited effect.

Because the 50% isochlor is closer to the sea than the 10% isochlor, 0.5 X is more sensitive to 0 than 0.1 X . Small interactions are observed between the dispersion . Marginal effects of the three sensitive dispersion parameters on 0.9 X are plotted in the Figure 5. The sensitivity of 0.9 X to 0 L  (Figure 5b) has a positive slope as an increase of 0 L  induces an increase of the spreading of the concentration front resulting in an increase of 0.9 X . The sensitivity of 0.9 X to 0 T  (Figure 5c) is similar to that observed for 0.5 X . This demonstrates that saltwater intrusion is mainly controlled by the asymptotic transverse dispersivity. A decrease of 0 T  induces more intrusion which results in a decrease of 0.5 X and 0.9 X . The sensitivity of the intrusion to 0 T  is more pronounced for small values of this parameter. The 0.9 X varies almost linearly with a negative slope with respect to the parameter 0 (Figure 5d).

Indeed, the 90% isochlor is located near the sea boundary (the average 0.9 X is 2.66m)

where the effect of 0 is significant (see Figure 4c). In that region, the increase of 0 yields less dispersion effects which results in more saltwater intrusion and hence a decrease in 0.9 X .

-For the spread of the concentration (Ls), the most influential parameter is 0

L    1 0.5 S  , followed by 0   3 0.41 S 
. The sensitivity of S L to 0 L  is much more important than that of 0.1 X and 0.9 X . Furthermore, although 0 T  is influential on 0.9 X and on 0.1 X , it has no effect on

S L   2 0.05 S 
. The interactions between parameters are almost absent 5e). This confirms that the spreading is directly proportional to the value of 0 L  . The sensitivity of S L to 0 has a negative slope (Figure 5f). The increase of 0 yields less dispersion which results in less spreading of the concentration front and hence a reduction in S L .

-The standard deviation of the total mass in the aquifer is around 10% of its mean value.

Significant interactions occur between the dispersion parameters . This shows that 0 plays the most important role on the amount of mass which has intruded into the domain, followed by 

Results of the leachate transport problem

Starting with no leachate in the aquifer, the leachate transport problem is simulated for 24 years.

A mesh converged solution is obtained using a uniform triangular mesh formed by 14400 triangular elements. A hundred simulations were performed using independent random parameter values generated inside the intervals given in Table 4. The mean leachate plume is shown in the Figure 6a. The leachate enters the aquifer due to dispersion and vertical infiltration.

Within the aquifer, the leachate plume moves to the right side due to the hydraulic gradient between left and right sides. A stable flow is obtained for all explored dispersivity values because of (i) the large dispersion and (ii) the weak density difference between the contaminant and freshwater. . In this region, strong interactions occur between these two parameters This study showed that distance-dependent dispersion coefficients can significantly affect contaminant distribution in aquifers in the case of density-driven flow. It demonstrates the advantage of using GSA with PCE surrogate modeling for such investigation since it allows to determine, for each parameter, the regions of high influence and the regions where the effect of the parameter is insignificant. It also allows to determine regions of high interactions between parameters and to explore the marginal effect of sensitive parameters on the model output.

  The simulation of DDF problems is based on coupling Darcy's groundwater flow equation to the solute transport equation via a state relation expressing the density as a function of solute concentration. Transport of solute in the aquifer is ruled by advection, representing the solute displacement by the mean fluid flow, and by dispersion, which accounts for solute spreading caused by velocity variations due to the heterogeneity of the porous medium at different scales (Liu et Kitandis, 2013; Kitanidis, 2017; Dai et al., 2020). Dispersion processes have been found to play a major role in DDF problems as they cause mixing between different fluids. The effect of dispersion on DDF has been widely investigated in the literature. For instance, Abarca et al. (2007) studied the effect of dispersion on DDF in the context of seawater intrusion and showed that when dispersion is taken into account, concentration isolines resemble those observed in real coastal aquifers. Emami-Meybodi (2017) studied instabilities driven by dispersion for an unstable DDF problem with mixed convective flow. Wen et al. (2018) defined a dispersive Rayleigh number and investigated the effect of dispersion on the Rayleigh-Darcy convection problem. Fahs et al. (2020) investigated the effect of dispersion on thermal DDF problem.

(

  1996) provided a one-dimensional analytical solution with linear asymptotic dispersion. Chen et al. (2003, 2007) investigated distance-dependent dispersion for convergent and divergent flow fields with linear scale-dependent dispersion. Chen et al (2008a) studied one-dimensional transport with hyperbolic asymptotic dispersivity function. Pérez Guerrero and Skaggs (2010) derived a general analytical solution for one-dimensional transport with distance-dependent coefficients. Gao et al. (2010, 2012) investigated mobile-immobile transport model with asymptotic scale-dependent dispersivity. You and Zhan (2013) developed semi-analytical solutions for solute transport in a finite column with linear asymptotic and exponential distancedependent dispersivities and time-dependent sources. Thus, in the literature, the effect of asymptotic dispersivity has been essentially investigated for simplified situations of 1D transport (e.g. Basha and El-Habel, 1993; Yates, 1992; David-Logan, 1996; Pang and Hunt, 2001; Chen et al., 2003; Pérez Guerrero and Skaggs, 2010; Sharma and Abgaze, 2015, Wang et al., 2019), 2D problems with a uniform flow field (e.g.



  1 ], h the equivalent freshwater head [L], t the time [T],  the porosity [-], C the relative concentration [-], q the Darcy's velocity [LT -1 ], 0  the density of the displaced fluid [ML -3 ], g the gravity acceleration [LT -2 ],  the fluid dynamic viscosity [ML -1 T -1 ], k the permeability tensor [L 2 ] and z the depth [L] taken positive upwards. The contaminant transport in porous media is based on the solute mass conservation equation: the longitudinal and transverse dispersion coefficients [L], m D the pore water diffusion coefficient [L 2 T -1 ] and I the unit tensor. The associated boundary conditions of the flow-transport system (1)-(3) are of Dirichlet, Neuman or mixed type.

L

  longitudinal and transverse dispersion coefficients and 0 is the asymptotic distance after which both longitudinal and transverse dispersivities reach their -transport system is solved with an advanced in-house numerical model using triangular meshes[START_REF] Ackerer | Efficient approximations for the simulation of density driven flow in porous media[END_REF]. The flow equations (Eqs. 1-2) are solved by the mixed finite element method(Younes et al., 2010). The transport equation (Eq. 3) is solved by combining two numerical methods: Discontinuous Galerkin (DG) method for solving advection and Multipoint Flux Approximation (MPFA) method for solving dispersion. Coupling between flow and transport equations is performed using the non-iterative scheme proposed in Younes and Ackerer (2010) with proper time management. This scheme was shown to be highly efficient and more accurate than the standard iterative procedure. The in-house code has been validated by comparison against semi-analytical solutions in[START_REF] Fahs | The Henry problem: New semianalytical solution for velocity-dependent dispersion[END_REF]. Performance and robustness of the code has been highlighted in[START_REF] Shao | A 3-D Semianalytical Solution for Density-Driven Flow in Porous Media[END_REF] by comparison against COMSOL Multiphysics. In this work, the in-house code is modified to handle distance-dependent dispersion coefficients. Both longitudinal and transverse dispersivities are defined

  verification, and parameter sensitivity analyses. A detailed review of the different use of the Henry problem as a surrogate representation of SWI can be found in Werner et al. (2013) and Fahs et al. (2018).

Figure 1 .

 1 Figure 1. (a) Henry problem domain and boundary conditions; (b) The leachate transport problem[START_REF] Frind | Simulation of long-term transient density-dependent transport in groundwater[END_REF]. Following[START_REF] Simpson | Improving the worthiness of the Henry problem as a benchmark for density-dependent groundwater flow models[END_REF], we decrease the freshwater recharge by half to

1 

 1 flow -hydrostatic pressure at the right hand side -constant flux at the inland boundary: along the top and bottom Boundary conditions for transport -0  = 1000 kg/m 3 on the left boundary. -= 1025 kg/m 3 on the right boundary -zero concentration gradient along the top and bottom The numerical model is employed to analyze the saltwater intrusion by considering that uncertainty of model outputs is associated with the following dispersion parameters: the asymptotic longitudinal dispersivity 0 L  , the asymptotic transverse dispersivity 0 T

Table 3 . 1 -L  , 0 T  and 0 )Table 4 . 3 .

 310043 Parameters and boundary conditions for the leachate transport problem. -permeability kx= 0.3262 x 10 -10 m 2 kz= 0.3262 x 10 -11 m 2 -porosity -length of the aquifer -height of the aquifer 0boundary conditions for flow -fixed head at the left (h0=0) and right (hL=-17.5m) hand sides -constant flux at the top: 30 z q  cm/year -no flow along the bottom -boundary conditions for transport -fixed relative concentration (C=C0) at the top with C0=1 for 12 x x x  C0=0 elsewhere with 1 120 x  m and 2 920 x  m -fixed relative concentration (C=0) at the left and right hand sides -density of the contaminant 1 1007.1   kg/m 3 -zero concentration gradient along the bottom Large uncertainty ranges (Table 4) are associated to the dispersion parameters ( 0 in order to investigate the role of each of them. Note that because the leachate transport problem has larger dimensions than the synthetic Henry problem, the dispersion parameters are allowed to have larger values than previously. Uncertainty ranges of the dispersion parameters for the leachate transport problem. Global sensitivity analysis Effect of the dispersion parameters on DDF is investigated using global sensitivity analysis (GSA). To this aim, the variance-based sensitivity indices of Sobol' (Sobol', 2001) are computed using Polynomial Chaos Expansion (PCE). The Sobol' indices measure the contribution of an input (alone or by interactions with other inputs) to the output variance. They are well adapted for GSA since they do not require any assumption of monotony or linearity of the model (Saltelli et al., 2006). Two Sobol' indices are noteworthy:

iL  , 0 T.

 0 represents one of the parameters, and i   stands for the set of parameters  without the parameter i  . The first-order sensitivity index (or main effect index) by which the variance of y is reduced when the true value of i  is known. The total sensitivity index the remaining uncertainty in y after all parameters are known except i  . It evaluates the contribution of i  to the response variance, including its interactions with the other parameters (i.e., ~i  ). If interactions between parameters are negligible, we have 1 marginal effect   i y  of the parameter i  on the model output y enables to investigate the range of variation of y with respect to i In this work, we use the Polynomial Chaos Expansion (PCE) surrogate modeling to infer sensitivity indices (Fajraoui et al., 2012, 2017; Younes et al., 2016; Shao et al., 2017). PCE allows an efficient evaluation of the Sobol' indices, since they can be easily calculated using the PCE coefficients (Sudret, 2008). Since we deal with only three uncertain parameters ( 0 and 0 ), we use a full surrogate PCE of order 4. The number of polynomial coefficients in the expansion is therefore 7The coefficients of the surrogate PCE are calculated by a least-square technique minimizing the sum of squared errors between model responses and the PCE. To this aim, a hundred of evaluations of the Henry and leachate transport problems are performed using parameter values randomly generated in the intervals of variation given in Table
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 2413 Figure 2. Seawater intrusion metrics used for the assessment of effects of the dispersion parameters.
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 4 Figure 4. Spatial maps of the first-order sensitivity indices: (a) sensitivity of salinity distribution to 0 L  , (b) sensitivity of salinity distribution to 0 T  and (c) sensitivity of salinity distribution to 0 . Dashed lines limit the zone of high variability (5% of standard deviation).
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  with the results discussed previously based on the spatial maps of Sobol' indices (Figure4).-Around A2, located near the sea boundary, high concentrations can be observed (mean=0.79). The concentration has slight variability (std=0.1) which indicates that SWI reaches this point whatever the values of the dispersion parameters. The most influential parameter near A2 is 0   The point A3 is located near the top of the domain and close to the sea boundary. The standard deviation (std=0.11) of concentrations is relatively significant (mean=0.27).

T

  isochlor intersects the substratum at an average distance of 1.39 m from the sea boundary. 0.1 X has high variability (std=0.17m). The parameter 0 influential since their total sensitivity indices are significant  1

X when varying 0 T 5 X increases with 0 TFigure 5 .T on 0. 5 X

 05055 Figure 5. Marginal effect of: (a) 0 T  on 0.5 X , (b) 0 L  on 0.9 X , (c) 0 T  on 0.9 X , (d) 0 on

Figure 6 .

 6 Figure 6. The leachate transport problem at 24 years: (a) Spatial map of the mean concentration values and (b) Spatial map of variance of concentration. The dashed contour delimits the region of high variances (5% of standard deviation).
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 7 Figure7shows the spatial distributions of the first-order Sobol' indices. For the region of

Figure 7 .T

 7 Figure 7. Spatial map of the first order sensitivity indices for the leachate transport problem: a) sensitivity to 0 L  , b) sentitivity to 0 T  and c) sensitivity to 0 .

Figure 8 .L

 8 Figure 8. Spatial map of the total Sobol' index of 0 L  for the leachate transport problem.
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 9 Figure 9. Spatial map of the interaction 1
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 302 represent the first order Sobol' indices for the sensitivity to 0 and 0 . 'mean' and 'std' represent the mean value and the standard variation for the quantities of interest.-The concentration around A1 is first influenced by 0 and 0 have close first-order sensitivity indices 

- 0 L has no effect   1 0.TT

 01 The total mass in the system has a mean of 10,667 and a significant variance of 4,058.The parameter S  . The parameter 0 has a strong effect on the total mass value. This effect   The marginal effects of the parameters 0 and 0 on the total mass are plotted in Figure10. The sensitivity of the total mass to 0 depicts a curve with a positive slope since the total mass increases as 0 T  increases. The marginal effect of 0 is represented by a negative slope curve which is consistent with physics. The leachate plume, and consequently the total mass, increase as dispersion increases (i.e. 0 decreases).

Figure 10 . 0 L , asymptotic transverse dipersivity 0 TT but by 0 L

 10000 Figure 10. Marginal effects of 0 T  , and 0 on the total mass for the leachate transport problem.
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Table 1 .

 1 Parameters and boundary conditions for the Henry problem.

	permeability	k= 1.0204 x 10 -9 m 2
	porosity	0.35
	length of the aquifer	
	height of the aquifer	

Table 2 .

 2 Uncertainty ranges of the dispersion coefficients for the Henry problem.

	Parameter	Uncertainty Range
	0	

Table 5 .

 5 Sensitivity

	of the concentration at the observation points (A1, A2 and A3) and of
	the SWI metrics. 1 S , 2 S and 3 S represent the first order Sobol' indices for the sensitivity to

Table 6 .

 6 The results of this table show that:

									3	
		mean	std	1 S	S	2	S	3	1   i	S	i
	A1	0.19	0.2	0.0	0.29	0.58	0.87
	A2	0.52	0.3	0.	0.51	0.46	0.97
	A3	0.29	0.13	0.0	0.37	0.39	0.76
	Total mass	10667	4058	0.0	0.24	0.74	0.98

Table 6 .

 6 Sobol's indices for the concentration at the observation points (A1,..,3) and for the total mass in the domain for the leachate transport problem. 1 S , 2
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