Dima Grigoriev 
email: dmitry.grigoryev@math.univ-lille1.fr
  
Gérald Tenenbaum 
email: gerald.tenenbaum@iecn.u-nancy.fr
  
A low complexity probabilistic test for integer multiplication
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A probabilistic test for equality a = bc for given n-bit integers a, b, c is designed within complexity n(log log n) exp{O(log * n)}.
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Lemma 1.1. The complexity of division with remainder of n-bit integer a by m-bit integer d does not exceed n(log m) exp{O(log * m)}.

Proof. Let a ∈ N * be an n-bit integer and, for 1 m n, write the 2 m -ary expansion of a, namely a = 0 i n/m a i 2 mi with 0 a i < 2 m (0 i n/m). Each of remainder u i := Rem(2 mi , d) ∈ [0, d[ may be computed within complexity O(M (m)) [START_REF] Aho | Design and analysis of computer algorithms[END_REF]. Subsequently one can calculate each v i := Rem(a i u i , d) (0 i n/m) again within complexity O(M (m)). Finally, Rem 0 i n/m v i , d can be computed within complexity O(n).

To perform a probabilistic test of the validity of the equation a = bc, the algorithm picks randomly an integer 2 d n 2 , calculates a := Rem(a, d), 1 Recall the definition log * n := min{j 0 : log [j] n 1}, where log [j] is the j-fold iteration of the logarithm to the base 2, denoted by log. 2 Bounds for the number of small divisors

We designate by ln k the k-fold iteration of the Neperian logarithm function ln = ln 1 .

Let P (n) denote the largest prime factor of an integer n > 1, with the convention that P (1) = 1. For x 1, y 1, we define S(x, y) := {n x : P (n) y} as the set of y-friable integers not exceeding x, and denote by Ψ(x, y) its cardinality. We designate by Dickman's function, which is defined as the unique continuous solution on R + of the difference-differential equation

u (u) + (u -1) = 0 (u > 1)
with initial condition (u) = 1 (0 u 1). The function is strictly decreasing from 1 to 0 on [0, ∞[ and we have

(u) = u -u+o(u) (u → ∞).
For further information and references on the Dickman function, see, e.g., [START_REF] Tenenbaum | Introduction à la théorie analytique et probabiliste des nombres[END_REF], chapter III.5.

Given a function

Z : [1, ∞[→]1, ∞[ such that ln Z(x) = o(ln x ln 2 x) as x → ∞ and a real number t > e, we let Ξ(t; Z) denote the smallest solution in ]1, ∞[ of the equation Z(x) ln x ln 2 t = 1.
That such a solution exists follows from the fact that the right hand side is > 1 for x = ln t and tends to 0 as

x → ∞. Put τ (n, x) := d|n d x 1 (n ∈ N * , x 1). Theorem 2.1. Let Z : [1, ∞[→]1, ∞[ be a non-decreasing function satisfying (1) ln Z(x) (ln x)/(ln 2 3x) 2 (x 1).
For all ε > 0 and sufficiently large n, we have

(2) x > Ξ(n; (1 + ε)Z) ⇒ τ (n, x) x/Z(x).
Under the extra condition

(3) ln Z(x) = o √ ln x (x → ∞),
there exists a strictly increasing integer sequence {n k } ∞ k=0 such that

(4) τ (n k , x k ) > x k /Z(x k ) (k 0), with x k := Ξ n k ; (1 -ε)Z .
Before embarking on the proof, we note a simple corollary obtained by considering the case when Z is a constant. For fixed v > 1, we let x n (v) denote the smallest real number such that

τ (n, x) x/v (n 1, x x n (v)).
Theorem 1.2 follows by specializing v = 2 in the next statement, and Remark 1.3 by selecting v = 1/(1 -ln 2).

Theorem 2.2. For 1 < v 1/(1 -ln 2), w := exp{1 -1/v}, we have

(5) x n (v) (ln n) w+o(1) (n → ∞).
Moreover, in the above upper bound, the exponent w is optimal in the following sense: given any ε > 0, there exists a strictly increasing integer sequence

{n j } ∞ j=0 such that (6) 
x n j (v) > (ln n j ) w-ε (j 0).

Proof. We select Z(x) = v in Theorem 2.1 and note that, since (u) = 1 -ln u for 1 u 2, we have Ξ(n; v) = (log n) w for n 3 and 1 < v 1/(1 -log 2).

Proof of Theorem 2.1. We first establish (2). Let p k denote the k-th prime number and {p j (n)} ω(n) j=1 designate the increasing sequence of distinct prime factors of an natural integer n. Then the mapping F :

1 j ω(n) p j (n) ν j → 1 j ω(n) p ν j j
is an injection from the set of divisors of n into the subset of p ω(n) -friable integers d. Moreover, F (d) d for all d 1. Therefore [START_REF] Tenenbaum | Introduction à la théorie analytique et probabiliste des nombres[END_REF] τ (n, x) Ψ(x, p ω(n) ) (n 1, x 1).

Since we have, for any integer n 1,

p p ω(n)
p n, a strong form of the prime number theorem yields (8) p ω(n) L n := 1 + e -(ln 2 n) c ln n for any c < 3/5 and sufficiently large n.

If, for instance, ln n e 2(ln 2 x) 11/6 , we have, as n → ∞, by virtue of the uniform upper bound for Ψ(x, y) given in theorem III.5.1 of [START_REF] Tenenbaum | Introduction à la théorie analytique et probabiliste des nombres[END_REF],

Ψ(x, L n ) Ψ(x, 2 ln n) x 1-1/(2+2 ln 2 n) xe -1 5 (ln x)/(ln 2 x) 11/6 = o x/Z(x) .
This implies τ (n, x) < x/Z(x) in this case. If (9) ln n > e 2(ln 2 x) 11/6 , Hildebrand's asymptotic formula (see for instance corollary III.5.19 of [START_REF] Tenenbaum | Introduction à la théorie analytique et probabiliste des nombres[END_REF]) implies

Ψ(x, L n ) {1 + o(1)}x ln x ln L n (x → ∞).
However, by (8), we have

ln x ln L n = ln x ln 2 n + O e -(ln 2 x) 11c/6 .
By selecting 6 11 < c < 3 5 , and in view of the estimate (u) (ln 2u) (u) (u 1) established for instance in corollary III.5.14 of [START_REF] Tenenbaum | Introduction à la théorie analytique et probabiliste des nombres[END_REF], we deduce that

ln x ln L n ∼ ln x ln 2 n
as n and x tend to infinity under condition (9). It follows that, in the same circumstances, we have τ (n, x) < x/Z(x) as soon as x > Ξ(n, (1 + ε)Z). This completes the proof of the upper bound (2).

To prove the lower bound (4), we give ourselves a (large) constant D ∈ N * and put Ψ D (x, y) :=

n x p|n⇒p y g D (n),
where g D is the indicator of D-free integers, i.e. integers such that p ν n ⇒ ν D. The arithmetical function g D is an s-function in the sense of [START_REF] Ivić | Local densities over integers free of large prime factors[END_REF], in other words g D (n) only depends upon s(n) :=

p ν n, ν 2 p ν .
Theorem 1 of [START_REF] Ivić | Local densities over integers free of large prime factors[END_REF] may hence be applied, and, writing ζ(s) for the Riemann zeta function, yields, for any ε > 0, (10)

Ψ D (x, y) := n x p|n⇒p y g D (n) ∼ x (u) ζ(D + 1)
as x and y tend to infinity in such a way that exp (log 2 x) 5/3+ε y x. Let us then put N k := 1 j k p D j (k 1). Applying (10) for (11)

p k < x exp{o (ln p k ) 2 / ln 2 p k } (k → ∞),
and setting u k := (ln x)/ ln p k , we get

τ N k , x = Ψ D (x, p k ) ∼ x (u k ) ζ(D + 1) •
Now, observe that hypothesis (11) implies

u k ln(1 + u k ) = o(ln p k ) (k → ∞).
Since ln N k ∼ Dp k , we therefore have, when x satisfies (11),

ln x ln 2 N k = ln x ln p k + O(1) = u k + O u k ln p k = 1 + O u k ln(1 + u k ) ln p k (u k ) ∼ (u k ). Select x := Ξ(N k ; (1 -ε)Z), where ε ∈]0, 1 -1/Z(1)[. From the above, it then follows that Z(x)(1 -ε) (u k ) = 1 + o(1) as k → ∞.
We deduce, on the one hand, that x > p k , because (1) = 1, and, on the other hand, in view of the classical asymptotic estimates for (u) (see for instance theorem III.5.13 of [START_REF] Tenenbaum | Introduction à la théorie analytique et probabiliste des nombres[END_REF]), that

u k ln(1 + u k ) ln Z(x) = o √ ln x .
Condition (11) is hence fulfilled. It follows that

τ N k , x = Ψ D (x, p k ) > x (1 -ε/2)ζ(D + 1)Z(x) > x Z(x) (k → ∞),
provided we choose, as we may, D sufficiently large in terms of ε. This completes the proof of the second part of our theorem. As a further concrete example of application of Theorem 2.1, we state the following corollary.

Corollary 2.3. Let c > 0, ε > 0. For sufficiently large n and all

x > (ln n) {1+ε}c(ln 3 n)/ ln 4 n , we have τ (n, x) x/(ln x) c . This statement is optimal in the sense that one cannot replace ε by -ε.
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 1213 := Rem(b, d), c := Rem(c, d) and finally tests the equality a = Rem(b c , d). This test has complexity less than n(log log n) exp{O(log * n)} by virtue of Lemma 1.1 and has an error less than 1/2 due to the following result applied to a -bc. Let δ > 1 -ln 2. Then any sufficiently large n-bit integer has at most δn 2 divisors in the interval [1, n 2 ]. More precisely, the bounds established in the next section show that, for any ε > 0, the test can be defined by picking the random divisor d in the interval [2, n √ e+ε ], but not by picking d in the interval [2, n √ e-ε ].