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2Université Paris-Saclay, CNRS, LIMSI, 91405, Orsay, France.5
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We study a gravity-driven wavy liquid film falling down the inner surface of a narrow8

cylindrical tube in the presence of an active core gas flow. We employ the model of9

Dietze and Ruyer-Quil (J. Fluid Mech., vol. 762, 2015, pp. 68-109) to investigate the10

role of surface waves in the occlusion of the tube. We consider four real working liquids11

and reproduce several experiments from the literature, focusing on conditions where12

the Bond number is greater or equal to unity. We prove that occlusion is triggered by13

spatially growing surface waves beyond the limit of saturated travelling-wave solutions,14

and delimit three possible regimes for a naturally evolving wavy film: (i) certain occlusion,15

when the liquid Reynolds number is greater than the limit of the spatially most-amplified16

travelling waves. Occlusion is caused by surface waves emerging from linear wave selection17

(scenario I); (ii) conditional occlusion, when the most-amplified waves possess travelling18

states but longer waves don’t. Occlusion is triggered by secondary instability, generating19

long waves through nonlinear coarsening dynamics (scenario II); and (iii) impossible20

occlusion, when travelling waves always exist, no matter how great their wavelength. We21

show that certain occlusion is delayed by gravity and precipitated by a counter-current22

gas flow, axial viscous diffusion (high-viscosity liquids), and inertia (low-viscosity liquids).23

The latter two effects are also found to determine whether the occlusion mechanism is24

dictated by loss of travelling-wave solutions or absolute instability. Finally, we show that25

occlusion can be prevented through coherent inlet forcing. As a side benefit, we introduce26

an augmented version of our model based on a localized additional force term that allows27

representing stable travelling liquid pseudo-plugs.28

Key words: Thin films29

1. Introduction30

We consider the configuration in figure 1, a thin liquid film falling down the inner31

surface of a vertical cylindrical tube of radius R⋆ under the action of the gravitational32

acceleration g. The film of liquid (denoted with the subscript l) is in contact with a33

laminar flow of gas in the core (subscript g). Both fluids are assumed to be Newtonian34

with constant densities ρl and ρg, dynamic viscosities µl and µg, and surface tension σ.35

Also, we assume the arrangement to be axisymmetric. We denote the film thickness h,36

the core radius d, its spatial average d̄, and the flow rates ql and qg. Their dimensional37

† Email address for correspondence: dietze@fast.u-psud.fr
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Figure 1. Falling liquid film (subscript l) lining the inner surface of a narrow cylindrical tube
in contact with a laminar gas flow in the core (subscript g). (a) Problem configuration and
notations. The tube radius R⋆ is the length scale, the star superscript designating dimensional
quantities; (b) example of a travelling-wave computation with our model (2.5): case 4 in table 1
(low-viscosity silicone oil), Re=14.6, Reg=-17.27 (limit point marked by asterisk in panel 13a).
Streamlines in the wall-fixed reference frame within the liquid (blue lines) and gas (red lines).

counterparts will be distinguished by a star, e.g. d⋆, and their counterparts in the38

corresponding flat-film primary flow will be denoted with a subscript zero, e.g. d0.39

We focus on conditions, where: (i) the effect of gravity, quantified through the Bond40

number Bo=ρl g R
⋆2/σ, is at least comparable to that of capillarity (Bo > 1); (ii) the41

liquid film’s inertia, quantified through the Reynolds number Re=q⋆l0 ρl/(πR
⋆ µl), is not42

necessarily negligible (Re 6 20); and (iii) the effect of the gas flow can be relevant, but43

its Reynolds number Reg=q
⋆
g0 ρg/(πR

⋆ µg) remains moderate (|Reg|<20).44

We investigate this flow with the weighted residual integral boundary layer (WRIBL)45

model of Dietze & Ruyer-Quil (2015), which was previously applied only to gravity-free46

films. The model accounts for gravity, inertia, full interfacial curvature, axial viscous47

diffusion, and full inter-phase coupling. Our model computations are confronted with48

our own direct numerical simulations (DNS) in appendix A and panel 5d.49

We focus on the occlusion of the narrow tube due to the interfacial instability of the50

falling liquid film, as observed experimentally by Dao & Balakotaiah (2000) and Camassa51

et al. (2014). Occlusion is relevant for chemical engineering applications such as tubular52

falling film micro-reactors (Seebauer et al. 2012). It also occurs in the human pulmonary53

airways due to the collapse of the mucus-serous film lining their inner surface (Grotberg54

2011). In the lower generations of bronchioles, the effect of gravity and possibly inertia55

is not necessarily negligible (Kamm & Schroter 1989).56

The falling liquid film is subject to two instability mechanisms causing interfacial57

deformations: the Plateau-Rayleigh mechanism (Plateau 1849; Rayleigh 1892; Goren58

1962), due to the azimuthal curvature of the film surface; and the Kapitza mechanism59

(Kapitza 1948), due to inertia, which sets in as a result of the gravity-driven mean flow60

(Brooke Benjamin 1957; Yih 1963). The strength of this mean flow determines whether61
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the absolute nature of the Plateau-Rayleigh instability or the convective nature of the62

Kapitza instability dominates (Duprat et al. 2007). For the liquids studied here, we63

find that occlusion is dictated by absolute instability when Bo ≪ 1, whereas convective64

instability is responsible for occlusion when Bo > 1.65

In the case of convective instability, the liquid film can produce travelling surface66

waves, which remain stationary in their reference frame. Gravity plays an important67

role in shaping these waves, compressing the leading and elongating the trailing wave68

front, which results in asymmetric tear-shaped wave humps (Dietze 2016). The resulting69

distortion of the film surface favours variations in axial (stabilizing) over azimuthal70

(destabilizing) surface curvature. In related systems, this mechanism has been found to71

saturate the Plateau-Rayleigh instability in the weakly-nonlinear regime (Frenkel et al.72

1987), to the extent that the film looks stable to the naked eye (Quéré 1990). In our73

current problem, we find that it greatly extends the region of existence of strongly-74

nonlinear travelling waves and considerably delays occlusion.75

Trifonov (1992) applied the integral boundary layer approach of Shkadov (1967) to76

model an annular liquid film falling in a vertical cylindrical tube. The author found77

that the Plateau-Rayleigh mechanism systematically increases the amplitude of travelling78

waves versus a planar falling liquid film, where only the Kapitza mechanism is active.79

He also observed catastrophic growth, when the amplitude of travelling-wave solutions80

diverged as a function of 1/R. In those instances, the effect of gravity was negligible, i.e.81

Bo ≪ 1. By contrast, we focus on occlusion in the limit Bo > 1. Moreover, the model82

of Trifonov (1992) did not account for axial viscous diffusion, which we find to greatly83

precipitate occlusion in high-viscosity films.84

Dao & Balakotaiah (2000) performed falling-film experiments in long narrow tubes and85

determined the occlusion onset in terms of Re for a wide range of liquids. However, no86

information was available on the wave dynamics responsible for occlusion. By reproducing87

two of these experiments (runs 13 and 20 there) with our own spatio-temporal compu-88

tations, we provide this missing information, leading us to distinguish two wave-induced89

occlusion scenarios. In scenario I, waves causing occlusion emerge directly from linear90

wave selection. In scenario II, they result from the secondary instability of a regular train91

of travelling waves, triggering a cascade of coalescence/absorption events that produce92

increasingly long, more dangerous, waves. The secondary instability (Liu & Gollub 1993)93

and the ensuing cascaded coarsening dynamics (Chang et al. 1996b) are well known94

phenomena in planar falling liquid films.95

Jensen (2000) investigated annular collars travelling on a gravity-driven liquid film96

lining the inner surface of a cylindrical tube. The collars were constructed from undu-97

loids, i.e. symmetric constant-curvature equilibrium shapes (Delaunay 1841). The author98

studied under what conditions collars may grow to occlude the tube. Our study extends99

this work in that the collar shape is not forced to be symmetric, but follows implicitly100

from the evolution equations. This allows for the gravity-induced distortion of collars,101

which we find can greatly delay occlusion.102

Camassa et al. (2014) performed falling-film occlusion experiments in a transparent103

tube, using a high-viscosity silicone oil. By confronting these with linear stability calcula-104

tions, the authors concluded that occlusion is caused by spatially growing nonlinear waves105

and not by absolute linear instability (Bo=11.06 in their experiments). Further, with106

the help of a first-order long-wave model obtained from asymptotic expansion (Benney107

1966), the authors constructed travelling-wave solutions. By continuing these at fixed108

wave length in terms of Re, they identified a limit point (LP), and conjectured that this109

may signal the occlusion onset in a real system. However, the authors cautioned that110

further work was needed to verify this w.r.t. their experiments. This work was initiated111
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by Camassa et al. (2016), but their model did not account for axial viscous diffusion,112

which we show to strongly affect travelling wave solutions, and the wavelength assumed113

in their continuation was too long compared to the experiment.114

In our current study, we have checked the conjecture of Camassa et al. (2014) based on115

travelling-wave and spatio-temporal computations with our model. We have successfully116

confronted these computations with the experiments of Camassa et al. (2014) and find117

that accounting for axial viscous diffusion greatly improves agreement. Based on our118

computations, we find that the surface waves causing occlusion indeed systematically119

lie beyond the limit of travelling-wave solutions (figure 4), confirming the conjecture of120

Camassa et al. (2014). This limit is highly sensitive to the considered wavelength, long121

waves being more dangerous than short ones, as shown by Camassa et al. (2016) and122

Ding et al. (2019). Thus, any predictive criterion for occlusion based on travelling-wave123

solutions must account for the type of waves that actually occur in a real system.124

For this, we introduce the upper conservative occlusion bound Remax, which corre-125

sponds to the limit point of travelling-wave solutions at the spatially most amplified126

frequency of linear waves fmax. For Re>Remax, the most amplified surface waves, which127

typically emerge in an experiment, do not possess travelling states and occlusion is certain128

to occur in a naturally evolving film. We find that the occlusion experiments of Camassa129

et al. (2014) and experimental run 20 in Dao & Balakotaiah (2000) correspond to this130

regime. Occlusion in this case occurs through scenario I. To determine Remax, we have131

computed the most amplified wave frequency fmax in our numerical continuations by132

solving the linear spatial stability problem along with our nonlinear model equations.133

This had not been attempted by Camassa et al. (2014) and Ding et al. (2019).134

At the other end, occlusion is delimited by a lower conservative bound Re=Re0, below135

which travelling wave solutions always exist, no matter how great the wavelength, and136

occlusion is impossible. The existence of such a limit was discovered by Ding et al. (2019).137

We find that the conservative occlusion bounds Re0 and Remax delimit a region of138

conditional occlusion, Re0<Re<Remax, where occlusion is theoretically possible (for long139

enough waves) but does not necessarily occur in a real system. Whether it does, depends140

on the specific wave dynamics that unfolds over the spatio-temporal evolution of the141

film, and whether the tube is long enough to accommodate this. In this regime, we find142

that occlusion is caused by scenario II and that it applies to experimental run 13 in143

Dao & Balakotaiah (2000). It also opens the possibility of preventing occlusion through144

coherent inlet forcing, i.e. by forcing waves of sufficiently high frequency. We validate this145

idea based on spatio-temporal computations.146

Unless Bo is very large, we find that the height of travelling waves at the limit point147

Re=Remax is far from reaching the tube radius. In contrast to what Dao & Balakotaiah148

(2000) conjectured, travelling-wave solutions are thus lost abruptly and not due to the149

wave height reaching the tube radius continuously.150

Zhou et al. (2016) investigated viscoelastic liquid films falling in a deformable narrow151

tube. The authors performed calculations with a model based on the same approach152

as Trifonov (1992), which does not account for axial viscous diffusion. Interestingly,153

it was shown that occlusion can cause a contraction of the flexible tube. Such events154

are known to occur in the pulmonary airways (Grotberg 2011) and can damage cells155

within the capillaries (Bian et al. 2010). The authors went on to determine the occlusion156

onset by varying the liquid flow rate in spatio-temporal computations. This onset was157

defined as the point at which the computation breaks down due to an occlusion event.158

However, such computations cannot attain a representative developed state. For example,159

when starting from a flat-film initial condition, a single unrealistically large tsunami-like160

wave usually develops in the early stages. This wave is bound to cause occlusion, but161



Falling liquid films in narrow tubes: occlusion scenarios 5

it is not representative of a real system. By contrast, we characterize occlusion based162

on the bounds Re0 and Remax of travelling-wave solutions, and our spatio-temporal163

computations have all been continued until reaching a statistically-developed state. To164

achieve this, we have allowed our computations to continue past occlusion events by165

numerically limiting the core radius of an occluded region to a small but finite value.166

Liu & Ding (2017) studied a vertically falling glycerol film flowing down a porous167

cylindrical surface using a lubrication equation. The authors found that porosity pre-168

cipitates both the absolute instability threshold and the occlusion limit. Using the same169

approach, Ding et al. (2019) studied the effect of the Marangoni instability on a radially-170

heated liquid film falling in a vertical cylindrical tube. The authors found that Marangoni171

stresses promote/delay occlusion when the film is heated/cooled from the wall. However,172

their modelling approach does not account for inertia nor axial viscous diffusion. We find173

that this does not allow to accurately predict occlusion in high-viscosity (because of axial174

viscous diffusion) or low-viscosity (because of inertia) liquids.175

The model employed in our current study extends upon the earlier works of Trifonov176

(1992), Camassa et al. (2014, 2017), Zhou et al. (2016), Liu & Ding (2017), and Ding177

et al. (2019) by accounting for axial viscous diffusion and inertia. This has allowed us to178

investigate four real liquids, for which we determine the lower and upper occlusion bounds179

Re0 and Remax and characterize the possible occlusion scenarios. When the viscosity is180

high, we find that axial viscous diffusion greatly precipitates the upper occlusion bound181

Remax (by 74% for the high-viscosity silicone oil). When the viscosity is low (low-viscosity182

silicone oil), inertia cannot be neglected and is found to precipitate Remax by 20%. We183

also find that these two effects determine whether the occlusion mechanism is dictated184

by absolute linear instability or the loss of travelling-wave solutions.185

Our model also accounts for full inter-phase coupling between the liquid and gas,186

and this has allowed us to study the effect of a laminar counter-current gas flow on187

the occlusion bound Remax. For low-viscosity liquids, where the wave-induced pressure188

variation in the gas becomes relevant in the liquid force balance, we find that Remax is189

significantly reduced with increasing |Reg| (by up to 25% in our computations). Thereby,190

the conditions we have studied differ from previous works. Alekseenko et al. (2009)191

experimentally studied the linear stability of a falling liquid film subject to a co-current192

turbulent gas flow. Their tube radius was large and thus occlusion could not occur.193

Camassa et al. (2012, 2017) studied co-current upward liquid/gas flows based on a long-194

wave model, where the effect of the (turbulent) gas flow was accounted for by relaxing the195

inter-phase coupling conditions in the limit of high gas velocities. By contrast, we focus196

on laminar (counter-current) gas flows, where our model, which relies on the unrelaxed197

coupling conditions, behaves well.198

For the case of a planar falling liquid film sheared by a confined gas flow, many works199

have investigated the flooding phenomenon, where the liquid film either occludes the200

channel (Vlachos et al. 2001), surface waves (Tseluiko & Kalliadasis 2011) or the liquid201

flow (Trifonov 2010) reverse direction, or the liquid film disintegrates into drops (Zapke202

& Kröger 2000).203

Finally, several works are related less directly to the studied problem. Kouris &204

Tsamopoulos (2001) studied liquid/liquid gravity-driven flows through a vertical pipe.205

Beltrame (2018) studied the transition between partial and complete wetting in a micro-206

tube. Xu & Jensen (2017) studied migration of liquid films in tubes with rough walls.207

Moreover, many works have dealt with pressure-driven core-annular flows (Aul & Olbricht208

1990; Joseph et al. 1997) or liquid films falling down fibres (Kalliadasis & Chang 1994;209

Quéré 1999). In the latter case, occlusion cannot occur, unless the gas phase is confined210

by an additional concentric hollow cylinder (Wray 2013).211
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Our manuscript is structured as follows. Section 2 introduces the governing equations,212

and details of our model (§2.1), direct numerical simulations (§2.2), and linear stability213

calculations (§2.3). Results are presented in §3, where we start by proving that occlusion214

in real systems results from surface waves that lie beyond the limit of travelling-wave215

solutions (§3.1). In §3.2, we compute the upper and lower occlusion bounds Remax and216

Re0, delimiting the regimes of certain, conditional, and impossible occlusion. For one of217

the studied cases, we validate these results based on our own DNS of travelling-wave218

solutions. In sections 3.3 to 3.6, we show how Remax is affected by gravity, axial viscous219

diffusion, inertia, and the core gas flow. In §3.7, we demonstrate occlusion scenarios I220

(certain occlusion regime) and II (conditional occlusion regime) by reproducing two of the221

experimental runs from Dao & Balakotaiah (2000) with spatio-temporal computations.222

In §3.8, we show that occlusion in the conditional regime can be prevented through223

coherent inlet forcing. Conclusions are drawn in §4. The appendix reports comparisons224

with transient DNS (appendix A), numerical details regarding our travelling-wave DNS225

(appendix B), as well as additional discussions of panels 13a (appendix C) and 4a226

(appendix D). Finally, appendix E introduces an augmented version of our WRIBL model227

that allows a better representation of liquid plugs, based on a localized force term.228

2. Mathematical description229

We consider the flow in panel 1a, which is rotationally symmetric w.r.t. the tube axis,230

and is governed by the Navier-Stokes and continuity equations for the liquid (subscript231

k=l, χl=1) and gas (subscript k=g, χg=Πµ/Πρ):232

dtuk = −∂xpk + Fr−2 + χk Re
−1

{

r−1∂r(r ∂ru) + ∂xxu
}

,

dtvk = −∂rpk + χk Re
−1

{

∂r
[

r−1∂r(r v)
]

+ ∂xxv
}

,
(2.1a)

233

∂xuk + r−1∂r (vk r) = 0, (2.1b)

where Re=ρlUL/µl=q
⋆
l0/(πR

⋆)/(µl/ρl) is the Reynolds number and Fr=U/√gL is the234

Froude number, all variables having been rendered dimensionless with the following235

reference scales: the length scale L=R⋆, which corresponds to the tube radius, the velocity236

scale U=q⋆l0/π/R⋆2, which corresponds to the surface velocity of the liquid, the time237

scale T =L/U , and the pressure scale Pk=ρkU2, which corresponds to the phase-specific238

dynamical pressure. The star symbol denotes dimensional quantities, and the subscript239

zero the flat-film primary flow. Thus, ql0 designates the nominal liquid flow rate.240

The set of governing equations is completed by the boundary conditions:241

ul|r=R = vl|r=R = 0, ∂rug|r=0
= vg|r=0

= 0, (2.2)

and the kinematic/dynamic inter-phase coupling conditions at the film surface r=d:242

ul = ug, vl = vg = ∂td+ uk∂xd, (2.3a)
243

τ tl = Πµτ
t
g ,

τ tk = ∂ruk + ∂xvk − 2∂xd
(

1 + ∂xd
2
)

−1
[∂xuk − ∂rvk] ,

(2.3b)

244

τnl +Re pl = Πµτ
n
g +ΠρRe pg +ReWe−1 κ,

τnk = 2
(

1 + ∂xd
2
)

−1 [

∂xd ∂ruk − ∂rvk − ∂xd
2∂xuk + ∂xd ∂xvk

]

,
(2.3c)

where τ t and τn designate the tangential and normal interfacial viscous stresses,245

Πρ=ρg/ρl and Πµ=µg/µl are the density and dynamic viscosity ratios, We=ρlU2L/σ is246
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the Weber number, and κ denotes the total curvature of the film surface:247

κ = ∂xxd−
1

d

[

1− 1

2
(∂xd)

2

]

. (2.4)

We will refer to computations based on the full equations (2.1) to (2.3) as direct248

numerical simulations (DNS). These have been performed for validation purposes and249

results are reported in appendix A and panel 5d. However, most of our computations250

were carried out with the weighted residual integral boundary layer (WRIBL) model of251

Dietze & Ruyer-Quil (2015), which we introduce next.252

2.1. Weighted residual integral boundary layer (WRIBL) model253

The WRIBL model consists of three coupled partial differential equations for the core254

radius d, and the flow rates ql and qg (Dietze & Ruyer-Quil 2015):255

∂xqj − εj 2π d ∂td = 0, (2.5a)
256

{Si ∂tqi + Fij qi∂xqj +Gij qiqj∂xd} = Fr−2(1−Πρ)

−We−1 ∂x [κ] + Re−1(Cjl −ΠµCjg)qj

+Re−1
{

Jj qj (∂xd)
2
+Kj ∂xqj∂xd+ Lj qj∂xxd+Mj ∂xxqj

}

,
(2.5b)

where the subscripts i and j are to be permuted over the phase indicators for the liquid257

(i,j=l) and gas (i,j=g). This yields two equations from (2.5a), ensuring integral mass258

conservation, and one equation from (2.5b), which ensures conservation of momentum.259

The RHS terms in (2.5b) account for different driving forces, i.e. gravity, capillarity, and260

viscous drag. Relating these terms directly to one another yields two alternative dimen-261

sionless groups that are also useful for characterizing the studied flow regimes: the Bond262

number Bo=WeFr−2=ρlgR
⋆2/σ, which relates gravity to capillarity, and the capillary263

number Ca=We/Re=µlU/σ, which relates viscous drag to capillarity. Following Dao &264

Balakotaiah (2000), we will also make use of the Kapitza number Ka=σ ρ−1
l g−1/3µ

−4/3
l ,265

and the Laplace number La=σ ρlR
⋆/µ2

l . We point out however that the list Re, Fr, We,266

Bo, Ca, Ka, and La, contains only three independent dimensionless groups, e.g. Re, Ka,267

and Bo, which (along with Πµ and Πρ) suffice to fully describe the flow. All other groups268

can be expressed in terms of these three, e.g. Ca=Re(BoKa3)−1/2.269

The model is completed by an equation for the gas pressure gradient ∂xpg|r=d:270

2ΠρRe ∂xpg|r=d = −Re
{

Si ∂tqi + Fij qi∂xqj +Gij qiqj∂xd
}

+ReFr−2(1 +Πρ)−We−1 Re∂x [κ] + (Cjl +ΠµCjg)qj
+Jj qj (∂xd)

2
+Kj ∂xqj∂xd+ Lj qj∂xxd+Mj ∂xxqj ,

(2.5c)

which is used either to evaluate the pressure distribution a posteriori or to impose a gas271

pressure drop through an integral condition. The coefficients Fij , Gij , Cij , Sj , Jj , Kj,272

and Mj in (2.5b) and their counterparts marked by an underscore in (2.5c) are known273

functions of d. They can be found in appendix A of Dietze & Ruyer-Quil (2015).274

We solve the equation system (2.5) numerically using three approaches: (i) transient275

periodic computations, where the domain length L corresponds to the wavelength Λ and276

where ∂ixqk
∣

∣

x=0
=∂ixqk

∣

∣

x=Λ
and ∂ixd

∣

∣

x=0
=∂ixd

∣

∣

x=Λ
for i=0,1,2,3. The code employed for277

this is based on a Crank-Nicolson time discretization and first-order central differences for278

spatial discretization (Dietze & Ruyer-Quil 2015); (ii) continuation of periodic travelling279

wave solutions that are stationary in the wave-fixed coordinate ξ=x-c t moving with280

the wave celerity c. These computations were performed with the continuation software281

AUTO07P (Doedel 2008); (iii) transient open-domain computations with inlet and outlet282
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conditions. At the liquid inlet, x=0, we fix the core radius d=d0 of the flat-film primary283

flow. For the liquid flow rate ql, we superimpose a zero-mean temporal perturbation on284

the nominal value ql0:285

ql(x = 0, t) = ql0 [1 + F (t)] , (2.6a)

where the function F (t) defines the type of inlet perturbation:286

F (t) = ǫ1 sin(2π f t) + ǫ2

N
∑

k=1

sin(2π k∆f t+ ϕrand), ∆f = 2 fc/N. (2.6b)

The first term in (2.6b) constitutes a harmonic perturbation of frequency f and the second287

one mimics white noise through a series of N=1000 Fourier modes that are shifted by288

a random phase shift ϕrand=ϕrand(k) ∈ [0, 2π] and that span a frequency range of twice289

the linear cut-off frequency fc (Chang et al. 1996a). All our computations were run290

with the same ϕrand(k) number series, which was generated once and for all with the291

pseudo random number generator RandomReal in Mathematica (2014). The strength of292

the two terms in (2.6b) is determined through their amplitudes ǫ1 and ǫ2. When ǫ1=0, the293

inlet perturbation consists only of white noise. This setting will be used to simulate the294

natural, noise-driven, evolution of a wavy film as it would occur in an experiment (sections295

3.1 and 3.7). In §3.8, we will use coherent inlet forcing to prevent occlusion. In those296

computations, we will set ǫ1>0, thus adding a monochromatic harmonic perturbation to297

the inlet noise.298

At the outlet, x=L, we have implemented the boundary conditions of Richard et al.299

(2016), which ensure that liquid is always sufficiently drained from the domain. We set300

d|N+2=d|N+1=d|N , and ql|N+1=ql0(R−d|N )3/2/(R−d0)3/2, whereN corresponds to the301

last grid point within the domain and N +1, N +2 to the two downstream ghost points.302

Computations were started from the initial condition d(x, t = 0)=d0, ql(x, t = 0)=ql0.303

In our codes, the gas flow rate qg is expressed in terms of the total flow rate qtot:304

qtot(t) = ql(x, t) + qg(x, t), (2.7)

which is spatially invariant. In our computations, we either fix qtot explicitly, which fixes305

the nominal gas flow rate qg0, given a nominal liquid flow rate ql0. Or, qtot is dynamically306

adjusted to produce a fixed gas pressure drop∆pg, imposed through an integral condition307

on (2.5c). We quantify this pressure drop through the normalized pressure gradient:308

Ψ = ∆pg/LFr
2, (2.8)

where L is the domain length. When Ψ=1, the pressure drop exactly balances the weight309

of the gas column, and we refer to this as the aerostatic situation. This is most realistic310

for reproducing experiments where the core gas flow is quiescent.311

In our transient computations, the wavy liquid film can tend toward occluding the tube.312

In an experiment, such an event would form a liquid plug separated by two gas bubbles.313

The topological change occurring in this situation cannot be mathematically represented314

by our model, which implies continuous fluid layers. Thus, we apply a numerical procedure315

to allow our computations to continue beyond such events. For this, we level the core316

radius d to an arbitrary value dcrit=0.1 whenever/wherever d 6 dcrit. As a result, occluded317

zones are represented by a thin gas filament connecting two bubbles either side of a liquid318

plug (figure 3c). Although our approach allows to recover some basic features of these319

zones, it is a crude and invasive approximation of the actual physics. For example, every320

time d is reset to dcrit, a bit of liquid mass is lost and this can cause the unphysical321

reopening of liquid plugs (supplementary movies M2 and M3). We stress however, that322

we are not interested in studying the actual behaviour of occluded zones here. Our current323
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paper focusses on the events leading up to occlusion, and thus our numerical limitation324

of the core radius d is simply a means to continue our computations until a developed325

state has been reached. Nonetheless, we propose in appendix E an alternative way of326

representing liquid plugs in the framework of our WRIBL model, based on an additional327

repulsive force in the momentum equation (2.5b) that stabilizes the film surface at very328

small d. This approach is inspired by the representation of contact line problems with329

film models (Thiele et al. 2001), and confronting it with full-fledged plug models (Ubal330

et al. 2008; Suresh & Grotberg 2005) is an enticing prospect for future work.331

2.2. Direct numerical simulation (DNS)332

We have validated our model computations with selected DNS based on the full333

governing equations (2.1)-(2.4). These were performed with two different codes.334

Transient simulations were performed with the finite volume solver Gerris (Popinet335

2009), which uses the volume of fluid (Hirt & Nichols 1981) and continuum surface336

force (Brackbill et al. 1992) methods to represent the two-phase nature of the flow. We337

have successfully applied this code to falling liquid films in previous works (Dietze &338

Ruyer-Quil 2013, 2015; Dietze 2019), where further details are given. In the current339

work, we have used it to perform axisymmetric transient DNS on a domain spanning the340

wavelength Λ in streamwise direction and the tube radius R in radial direction, applying341

periodic streamwise boundary conditions. To allow imposing the gas pressure drop ∆pg342

(2.8) in this periodic setting, the streamwise momentum equations (2.1) for the liquid343

(k=l) and gas (k=g) were rewritten in terms of the modified pressure p̃k=pk+x∆pk/Λ,344

yielding the additional source term Γk:345

Γk =
∆pk
Λ

, ∆pl = Πρ∆pg. (2.9)

Thanks to this source term, the governing equations can be solved with a periodicity346

condition on p̃k, while the actual pressure pk is subject to a pressure drop, allowing to347

control the gas flow rate. Our transient DNS were started from a flat film initial condition348

corresponding to the primary flow. All transient DNS were performed for case 4 in table349

1, on a grid of square cells with increments ∆x=∆r=2−7 in the bulk of the fluid phases350

and ∆x=∆r=2−8 around the liquid-gas interface. The time step ∆t was dynamically351

adapted so that w⋆∆t/∆x 6 0.8 in each cell, whereby w⋆ denotes the magnitude of the352

local dimensional velocity. We have verified that our simulations are grid independent.353

Results of our transient DNS are presented in appendix A, where they are used to validate354

our model computations.355

The second DNS code allows to construct travelling-wave solutions of (2.1)-(2.4) based356

on a pseudo-spectral approach, which we have integrated into the continuation software357

AUTO07P (Doedel 2008). This has allowed us to verify our numerical continuation results358

obtained with the WRIBL model (see panel 5d). In these travelling-wave DNS, the gas359

phase is not accounted for, i.e. Πµ=Πρ=0, and thus we have only applied them to case 3,360

where the effect of the gas is negligible. The underlying numerical procedure is detailed361

in appendix B.362

2.3. Linear stability analysis363

Linearizing the WRIBL model (2.5) around the uniform base state {d, qk}={d0, qk0}364

and assuming a small-amplitude perturbation {d′, q′k}:365

d(x, t) = d0 + d′(x, t) = d0 + d̂ exp [i (αx− ω t)]

qk(x, t) = qk0 + q′k(x, t) = qk0 + q̂k exp [i (αx− ω t)] ,
(2.10)
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Figure 2. Linear instability predictions for three cases from table 1: case 1 (dot-dashed lines,
diamonds); case 3 (solid lines, open circles); case 4 (dashed lines, filled circles). The core fluid is
subject to an aerostatic pressure gradient Ψ=1. Lines correspond to the model dispersion relation
(2.11). (a) Temporal growth: α∈R, ω=ωr+i ωi in (2.10). Symbols correspond to Orr-Sommerfeld
solution, following the work of Hickox (1971); (b) spatial growth: ω∈R, α=αr+i αi in (2.10).
Crosses highlight maximal spatial growth; (c) dispersion curves under increasing Re∈ [0.1, 0.54].
Blue line traces maximum growth rate αi(ωmax); (d) most amplified angular velocity ωmax versus
Re. Asterisks mark absolute linear instability threshold (AI).

yields the complex dispersion relation:366

DR(ω, α) = 2π d0 ω {εjlCjl + εjgΠµCjg}+ α {∂dCjl qj0 −Πµ∂dCjg qj0}
− 2π d0α

2Mjεjl − α3Ljqj0 − iReWe
{

α2/d20 − α4
}

+ iRe
{

2π d0
[

ω2 (Sg − Sl) + ω α (Fjlqj0 − Fjgqj0)
]

− α2Gjk

}

,

(2.11)

where j and k are to be permuted over the phase indicators l and g, ω designates the367

(complex) wave frequency, α the (complex) wave number, εll=εgg=-1, and εlg=εgl=1.368

A temporal stability analysis assumes that waves grow self-similarly in their reference369

frame. This description implies α∈R and ω=ωr+i ωi, where the temporal growth rate370

ωi is obtained by solving DR(ω, α)=0. In panel 2a, we have plotted the thus obtained371

dispersion curve ωi(α) of the temporal growth rate for cases 1, 3 and 4 from table 1.372

Lines correspond to the model dispersion relation (2.11), and symbols correspond to373

our own numerical solutions of the Orr-Sommerfeld equations, following the work of374

Hickox (1971). Agreement between the two data sets is good. Thus, our model is able to375

accurately represent the linear wave selection.376

In a spatially-evolving film, it is more representative to consider the spatial growth rate377
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αi. We thus solve DR(ω, α)=0 for αi(ω), by assuming ω∈R and α=αr+i αi. In panel378

2b, we have plotted the thus obtained growth rate dispersion curves αi(ω) for the three379

cases from panel 2a. Crosses mark the point of maximal growth rate and we denote ωmax380

the associated most-amplified angular velocity.381

In section 3.2, we will characterize occlusion by determining the limit of travelling-382

wave solutions through numerical continuation. This limit is very sensitive to the wave383

frequency f . Thus we focus on the spatially most-amplified waves, which are most likely384

to emerge from linear wave selection in an experiment. For this, we impose the linearly385

most-amplified frequency fmax=2π/ωmax in our continuation runs.386

To determine fmax, which changes with the control parameters varied in these runs,387

our continuation code was augmented to additionally solve for ωmax subject to:388

DR(ωmax, α) = 0, ∂ωαi|ω=ωmax
= 0, (2.12)

where ∂ωαi is obtained from ∂ωDR=0. In a given continuation run, the linear stability389

problem (2.12) is solved for the primary flow {ql0, qg0}={q̄l, q̄g}, which is fixed by the390

mean flow rates q̄l and q̄g of the current travelling wave solution.391

As shown by Camassa et al. (2014), the annular falling liquid film can be subject to392

absolute instability. Thus, we have checked for the absolute instability threshold (AI) in393

all our continuation runs. In the context of our spatial stability analysis, where ω∈R, the394

AI threshold bounds the solutions of (2.12) in terms of the varied control parameter, e.g.395

Re, because the maximum growth rate αi(ωmax) diverges there. For example, panel 2c396

represents dispersion curves αi(ω) for case 3 at different values of Re, increased toward397

the AI threshold. The latter is marked by an asterisk on the blue curve, which traces398

the locus of the spatial growth rate maximum αi(ωmax). We point out that ω has been399

rescaled in panel 2c.400

Panel 2d represents how ωmax changes with Re for the three cases from panel 2b. These401

curves allow to discern the AI threshold (marked by asterisks) in terms of Re. For case 4402

(dashed curve), we have truncated our solution at Re=100, beyond which our nonlinear403

model predictions are no longer reliable. The AI threshold lies beyond this point but, as404

we will see, the occlusion bound Remax lies well within the represented range (panel 6a).405

In our current study, we focus on regimes where Bo > 1. In this case, the AI threshold is406

always situated beyond the limit of nonlinear travelling-wave solutions and thus it does407

not affect the occlusion bound. However, we will demonstrate that neglecting certain408

physical effects in the mathematical description, such as axial viscous diffusion (panel409

9b) or inertia (panel 12a), can change this.410

3. Results and discussion411

In subsections 3.1 and 3.2, we reproduce numerically the visualization experiments412

of Camassa et al. (2014) and demonstrate that the occlusion of a narrow tube by a413

wavy falling liquid film is caused by surface waves that do not possess a finite-amplitude414

travelling state. Depending on how these waves emerge in a spatially evolving film,415

either directly from linear instability (scenario I), or subsequent nonlinear dynamics416

(scenario II), different occlusion scenarios are possible. In subsection 3.2, we determine417

the bounds of these two scenarios based on the numerical continuation of travelling-418

wave solutions with our model (2.5). We obtain an upper conservative bound Remax,419

above which occlusion in a naturally evolving film is certain, and a lower conservative420

bound Re0, below which occlusion is impossible. These bounds delimit a regime of421

conditional occlusion, Re0<Re<Remax, where occlusion is theoretically possible but does422

not necessarily occur in a real system.423
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Case ρl (kg/m
3) µl (Pas) σ (mN/m) R⋆ (mm) Ka (-) Πρ (-) Πµ (-)

1 970 12.9 21.5 5.0 3.3×10−3 1.2×10−3 1.4×10−6

2 1260.7 1.049 64.0 4.765 0.30 0.95×10−3 1.7×10−5

3 1223.9 0.167 65.0 3.175 3.53 0.98×10−3 1.1×10−4

4 900 0.0045 20.0 1.5 121.4 1.3×10−3 4.0×10−3

Case Remax (-) Fr (-) We (-) Bo (-) La (-) Ca (-) figures

1 1.91×10−4 2.7×10−3 8.4×10−5 11.06 6.3×10−4 0.37 3-5,9,11
2 0.038 0.040 7.1×10−3 4.39 0.35 0.142 5,15
3 0.39 0.063 7.3×10−3 1.86 9.1 0.028 5,9,15,16,18
4 18.9 0.42 0.18 0.993 1.3×103 0.012 6,9,12-14,17-19

Table 1. Representative parameters for our computations. Liquid properties correspond to a
high-viscosity silicone oil (case 1), glycerol-water mixtures concentrated at 99 % and 89 % by
mass (cases 2 and 3), and a low-viscosity silicone oil (case 4), while the core fluid is air with
µg=1.8·10−5 Pas and ρg=1.2 kg/m3. Case 1 corresponds to figure 3a in Camassa et al. (2014),
and cases 2 and 3 correspond to experimental runs 20 and 13 in Dao & Balakotaiah (2000).

The dimensionless groups are Bo=ρl gL2/σ, Ca=µl U/σ, Re=ρl UL/µl, Ka=σ ρ−1
l g−1/3µ

−4/3
l ,

La=σ ρl L/µ2
l , We=ρlU2L/σ, and Fr=U/

√
gL, where L=R⋆ and U=q⋆l0/π/L2, q⋆l0 designating

the dimensional nominal liquid flow rate. Remax is the upper conservative occlusion bound (see
e.g. panels 5a and 5b).

In subsection 3.7, we demonstrate occlusion scenarios I and II, which are associated424

with the regimes of certain (Re>Remax) and conditional occlusion (Re0<Re<Remax), by425

reproducing two of the experiments in Dao & Balakotaiah (2000) with our own spatio-426

temporal computations. Before that, in subsections 3.3 to 3.6, we establish how different427

physical effects, i.e. gravity, axial viscous diffusion, inertia, and the core gas flow, affect the428

upper conservative bound Remax, which delimits these two regimes. Except for section 3.6,429

where we will vary the gas Reynolds number Reg, our computations have been performed430

for an aerostatic pressure drop, i.e. Ψ=1. This is most representative of experiments in a431

quiescent gas.432

Parameters for our computations are varied around the four cases listed in table 1,433

which represent real liquids and plausible values of the tube radius. Case 1 corresponds to434

figure 3a in Camassa et al. (2014), where the working liquid was a high-viscosity silicone435

oil. Cases 2 and 3 correspond to experimental runs 20 and 13 in Dao & Balakotaiah436

(2000), where glycerol-water mixtures concentrated at 99 % and 89 % by mass were437

used. Finally, case 4 concerns a liquid film of low-viscosity silicone oil. The four cases438

cover a considerable range of the Laplace number La=σ ρlR
⋆/µ2

l , which relates capillarity439

to viscous drag, and the Reynolds number, which we have quantified with Remax. We see440

that inertia, which drives the Kapitza instability, is significant for case 4. For this case,441

which is the most challenging, we have validated our model computations with transient442

DNS in appendix A (comparisons with travelling-wave DNS, for case 3, are reported in443

panel 5d).444

3.1. Nature of the surface waves that cause occlusion445

Camassa et al. (2014) performed occlusion experiments in an R⋆=0.5 mm and L⋆=400446

mm transparent tube using high-viscosity silicone oil (case 1 in table 1). In their figure 3,447

the authors produce photographs of the wavy falling liquid film at different Re beyond the448
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Figure 3. Spatio-temporal computations of the experiments in panels 3a, 3b, and 3c of Camassa
et al. (2014), which were performed in an L⋆=400 mm tube. Parameters correspond to case 1
in table 1. Computations were performed with our model (2.5) using inlet/outlet conditions
and the noisy inlet perturbation (2.6), where we have set ǫ1=0 and adjusted ǫ2 to match the
experimental wave growth. (a) Re=2.3×10−4, q⋆l0=4.8×10−2 cm3/s, ǫ2=0.0002; (b) Re=3.2×10−4,
q⋆l0=6.7×10−2 cm3/s, ǫ2=0.00005; (c) Re=4.5×10−4, q⋆l0=9.4×10−2 cm3/s, ǫ2=0.0001.

experimental occlusion threshold, allowing to discern the nature of the surface waves that449

cause occlusion. We have reproduced three of these experiments with spatio-temporal450

computations based on our model (2.5) on a long domain using inlet/outlet conditions451

(see section 2.1). Experimental noise was mimicked through the noisy inlet perturbation452

(2.6), where we have set ǫ1=0, and tuned ǫ2 to match the spatial evolution of surface waves453

in the experiments (when decreasing/increasing ǫ2, the region of linear growth of surface454

waves is stretched/compressed in streamwise direction and this shifts the emergence of455

nonlinear effects, such as occlusion, downstream/upstream). Figure 3 shows snapshots456

of these computations, which are to be directly compared to panels 3a, 3b, and 3c in457

Camassa et al. (2014).458

Agreement with the experimental snapshots is good. In particular, the wavelength of459

the four distinct surface waves at the tube outlet in panel 3b is predicted accurately460

by our computations. Also, the number of gas bubbles (eleven) in panel 3c, which461

result from successive occlusion events, agrees with the experiment. Panel 3c and the462

supplementary movie M1 allow to discern the actual mechanics of occlusion. Surface463

waves in the upstream portion of the tube grow spatially until their crests reach the tube464

axis, whereupon individual bubbles of the gas core are pinched off. Our model accurately465

predicts the length scale of the pinch-off process in comparison with the experiment. We466

stress that panel 3c is a snapshot and that the occlusion point shifts up and down the tube467

intermittently as a result of the noisy wave spectrum imposed through the inlet condition.468

These results show that our model captures accurately the wave dynamics leading up to469

occlusion, and this is the focus of our current study. However, the physics of the liquid470

plugs resulting from occlusion is captured only very crudely by the numerical core radius471

limitation introduced in section 2.1. For example, the shape of the gas bubbles in panel472

3c is quite different from that in the experiment and their length evolves as they travel473

downstream (see also supplementary movie M1). First results reported in appendix E474

suggest that these shortcomings can be alleviated with our improvedWRIBL model. But,475

the exact shape of liquid plugs can never be fully captured in the context of lubrication476

theory, as the film surface slope diverges at their edges.477

We focus now on panel 3a, where Re is closest to the experimental occlusion threshold.478
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Figure 4. Nature of the prevailing surface waves that cause occlusion. Spatio-temporal
computation reproducing the second version of the experiment in panel 3a of Camassa et al.
(2014), which was performed in a longer L⋆=1 m tube: case 1 in table 1, Re=2.3×10−4. (a)
Snapshot of the computed film profile, showing individual surface waves that cause occlusion in
the region x > 130; (b-d) frequency spectra at different streamwise locations leading up to the
occlusion region (marked by dashed lines in panel a): (b) x=20; (c) x=70; (d) x=110. Vertical
blue lines at f/fmax=1.12 mark limit of travelling wave solutions determined by numerical
continuation (see panel 6b). fmax designates spatially most amplified frequency of linear waves.

For this case, Camassa et al. (2014) observed occlusion only after having switched to a479

longer L⋆=1 m tube. Because of the small spatial growth rate, distinguishable surface480

waves emerged only very close to the outlet of the shorter L⋆=400 mm tube, and their481

amplitude was insufficient to cause occlusion there. Our computation in panel 3a exhibits482

the same behaviour.483

We have also reproduced numerically the experiment in the L⋆=1 m tube and a484

snapshot of our computation is represented in panel 4a. It confirms that occlusion does485

indeed occur, in the region x > 130. Occlusion results from unbounded spatial growth486

of the prevailing surface waves, and panels 4b to 4d show how the latter emerge from487

the noisy inlet condition. In these panels, we have represented the single-sided amplitude488

spectrum P (fj) of the discrete Fourier transform F (fj) applied to core radius time series489

d(tk) recorded at different streamwise positions x (marked by dashed lines in panel 4a),490

leading up to the occlusion region:491

P (fj) = (2/N)F (fj) ∀ j 6 N/2 + 1, F (fj) =
N
∑

k=0

d(tk) exp(i 2πj/N k), (3.1)

where N=1.8 · 106 is the number of (equidistant) sampling points tk with which we have492

recorded the time series d(tk) over a duration T=9.1 · 104, and fj=(j/N)/T are the493

frequencies of the discrete spectrum. At the most downstream location (panel 4d), the494

spectrum is organized around the spatially most amplified frequency of linear waves fmax495

in the form of a quite narrow peak. This peak lies beyond the limit f/fmax=1.12 for the496

existence of travelling-wave solutions at the considered Reynolds number Re=2.3×10−4,497

which is highlighted by vertical blue lines in panels 4b, 4c, and 4d. This limit has been498

determined by numerical continuation of travelling-wave solutions, which we will discuss499

in the next subsection (it is marked by an asterisk in panel 5b). We will see that higher500
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frequency (shorter) waves are safe from and lower frequency (longer) waves are prone to501

occlusion.502

By way of numerical continuation, Camassa et al. (2014) were the first to show that the503

existence of travelling-wave solutions is bounded. By increasing Re at fixed wavelength,504

the authors found a limit point beyond which travelling-wave solutions cease to exist.505

They conjectured that the loss of such solutions signals occlusion in an actual experiment.506

However, the authors cautioned that further work was needed to verify this conjecture.507

This work was initiated by Camassa et al. (2016), but their model did not account for508

axial viscous diffusion. Our computations in figures 3 and 4 provide further validation, by509

taking into account this effect, which greatly improves agreement of our model predictions510

with the experiments of Camassa et al. (2014), as a result of the high viscosity of511

the working liquid. For example, when running the computation in panel 4a without512

axial viscous diffusion, we did not observe any occlusion over the entire experimental513

tube length (see figure 21 in appendix D), which is in qualitative contradiction to the514

experiments. Also, we will show in subsection 3.4 that neglecting axial viscous diffusion515

increases Remax by 74% for this liquid (panel 9a), moving it far beyond the experimental516

occlusion limit, as quantified in terms of Re.517

Figure 4 proves that the occlusion of a narrow tube by a wavy falling liquid film is518

caused by surface waves that lie beyond the limit of travelling-wave solutions. Thus,519

occlusion can be characterized based on the existence span of such solutions and we520

proceed to this in the following subsection.521

3.2. Travelling waves: regimes of certain, conditional, and impossible occlusion522

The frequency of travelling waves determines their amplitude, which is well known523

for planar falling liquid films (Nosoko et al. 1996) and also holds in our cylindrical524

configuration. At a given value of Re, the smaller the wave frequency, the greater the wave525

amplitude. Consequently, low-frequency travelling waves are more prone to occlusion than526

high-frequency waves. This effect was demonstrated by Camassa et al. (2016) and Ding527

et al. (2019) with a first-order asymptotic model and a lubrication model, respectively.528

Using our model (2.5), we quantify it for the real liquids studied here (cases 1-4 in table529

1), which require a more complicated modelling approach.530

Panel 5a represents curves of travelling-wave solutions for case 1 in terms of the minimal531

core radius dmin, as obtained by varying the liquid Reynolds number Re. On each curve,532

we have fixed the wave frequency f to a certain fraction f/fmax of the spatially most533

amplified frequency fmax, which we determine through the approach outlined in section534

2.3. All curves display a limit point in terms of Re, beyond which there are no travelling-535

wave solutions. The existence of such a limit point was discovered by Camassa et al.536

(2014), who imposed a constant wavelength in their continuation. This wavelength was537

too long compared to their experiments, whereas we see here that accounting for the538

correct wavelength/frequency is quite important. Indeed, the limit point of the curves in539

panel 5a varies greatly with f/fmax. The lower the wave frequency, the smaller the limit540

value of Re, the more danger of occlusion.541

We now introduce the upper conservative occlusion bound Remax, which corresponds to542

the limit point (LP) of the solid line representing the spatially most amplified travelling543

waves, i.e. f/fmax=1. For Re>Remax, the linearly most amplified surface waves, which544

are most likely to emerge in an experiment, do not possess travelling states and occlusion545

is certain to occur in a naturally evolving film. The experiment of Camassa et al. (2014),546

which we have reproduced numerically in figure 4, corresponds to this regime. Occlusion547

in this case occurs through scenario I, which we will discuss further in section 3.7 based548

on spatio-temporal computations.549
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Figure 5. Limits of travelling-wave solutions obtained from numerical continuation with our
model (2.5). Cases 1 (panels a, b), 2 (panel c), and 3 (panel d) in table 1. (a) Continuation of Re
at wave frequency f/fmax=0.5 (long dashes), 0.8 (short dashes), 1 (solid), 1.1 (dot-dashed), and
1.2 (dot-dot-dashed). Vertical blue line marks limit point (LP) for spatially most amplified linear
waves, where f=fmax and Re=Remax; (b-d) frequency dependence at Re=const. Dashed blue:
linear spatial growth rate αi at Re=Remax (right abscissae), other: travelling-wave solutions
at Re=const (left abscissae). (b) Case 1: Re=Re0=6 × 10−5 (dot-dashed red), Re=7.5 × 10−5,
1 × 10−4 (thin solid), Re=Remax=1.91 × 10−4 (thick solid blue), and Re=2.3 × 10−4 (dotted
with asterisk); (c) case 2: Re=Re0=0.012 (dot-dashed red), Re=0.016, 0.025 (thin solid), and
Re=Remax=0.038 (thick solid); (d) case 3: Re=Re0=0.075 (dot-dashed red), Re=0.1, 0.14, 0.2
(thin solid), and Re=Remax=0.393 (thick solid). Open circles correspond to data obtained with
our own travelling-wave DNS (see section 2.2).

Panel 5b explains the meaning of the upper occlusion bound Remax in a different550

way, by illustrating the effect of the wave frequency f at fixed Re. The dashed blue551

line represents the linear spatial growth rate αi at Re=Remax (right abscissa), while552

all other curves represent travelling-wave solutions (left abscissa) at different Re. These553

curves all display a limit point in terms of f . The dotted line marked by an asterisk554

corresponds to the experiment of Camassa et al. (2014) numerically reproduced in figure555

4, where Re=2.3×10−4. The thick blue solid line corresponds to the upper occlusion556

bound Re=Remax=1.9×10−4 and its limit point thus coincides with the maximum of557

the growth rate dispersion curve αi(f). We stress that determining Remax requires558

simultaneously computing the most amplified wave frequency fmax in our numerical559

continuations, as described in section 2.3. This had not been attempted in the previous560

studies of Camassa et al. (2014) and Ding et al. (2019).561

Reducing Re below Remax moves the limit point of travelling-wave solutions to lower562

values of f . Thus, the occlusion range is increasingly confined to (very long) waves of563
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very low frequency, until it vanishes completely at Re=Re0 (red dot-dashed curve in panel564

5b). This limit, the existence of which was discovered by Ding et al. (2019), constitutes565

a lower conservative occlusion bound. When Re<Re0, occlusion is impossible, no matter566

how long the waves. In a real system, it is conceivable that wave coalescence events567

can produce local overshoots leading to occlusion even when Re<Re0. However, we have568

not observed this in our computations of spatially evolving films (see panels 16b and569

17c). The value Re0 being very low for all studied liquids, inertia is weak and significant570

overshoots are unlikely.571

Based on the conservative occlusion bounds Re0 and Remax, we delimit a region of572

conditional occlusion, Re0<Re<Remax (between the red dot-dashed and thick solid blue573

lines in panel 5b), where occlusion is theoretically possible, for long enough waves, but574

does not necessarily occur in a real system. That depends on whether the required waves575

actually develop in a spatially evolving film. And, in particular, whether the tube is576

long enough to accommodate the nonlinear wave dynamics required to produce them. In577

section 3.7, we will demonstrate that occlusion in this regime occurs through scenario II,578

i.e. wave coarsening triggered by secondary instability, which shifts surface waves down579

the ascending branch of the dispersion curve toward increasingly low frequencies.580

In panel 5a, the limit point LP is a turning point, where two solution branches meet.581

As suggested by Camassa et al. (2014), we have checked their stability using transient582

periodic simulations with imposed Ψ started from selected travelling-wave solutions. In583

these computations, numerical noise is responsible for perturbing the flow. A full-fledged584

formal stability analysis, such as the one performed by Camassa et al. (2016) based on585

the first-order model of Camassa et al. (2014), is outside the scope of our current study.586

We find that the lower solution branch is entirely unstable. As this branch does not587

connect to the flat-film primary flow dmin=dmax=1, the solutions thereon are thus highly588

unlikely in an experiment. Conversely, the upper branch is stable, at least w.r.t. periodic589

perturbations. However, wave trains of high-frequency travelling waves on falling liquid590

films are subject to secondary subharmonic and sideband instabilities that rely on wave591

interaction and lead to coalescence events (Liu & Gollub 1993). We have found that this592

triggers occlusion scenario II, which we will demonstrate in §3.7. Finally, when starting593

a periodic transient computation from a flat-film initial condition beyond the limit of594

travelling-wave solutions, the outcome is indeed occlusion, which we have checked (and595

validated with transient DNS) in appendix A (see panels 19a and 19b).596

Panels 5c (case 2), 5d (case 3), and figure 6 (case 4) report the occlusion bounds597

Remax and Re0 for the other three cases from table 1. In panel 5d, we have represented598

with open circles additional results obtained with our own travelling-wave DNS (see599

section 2.2), evidencing gratifying agreement with our WRIBL model predictions. Overall600

tendencies in these graphs are the same as for case 1. For case 4 (low-viscosity silicone601

oil), where the Kapitza instability is relevant, there is an additional feature. In panel 6a,602

the continuation curves of dmin(Re,f=const) at high frequencies, e.g. the dot-dot-dashed603

curve at f/fmax=1.2, exhibit two lobes that are each associated with a limit point. Wave604

profiles corresponding to these highlighted points LP1 and LP2 are represented in panel605

6c. We see that the main wave hump is preceded by a small precursory ripple. Such so-606

called capillary ripples can produce multiplicity of solutions in falling liquid films, when607

they are close enough to interact with the following wave hump (Kalliadasis et al. 2012).608

By contrast, the dashed curves in panel 6a, which pertain to low-frequency waves, each609

display only a single limit point (LP). Panels 6d and 6e show the corresponding wave610

profiles at those points. We see in panels 6c, 6d, and 6e that lower wave frequencies are611

associated with longer wavelengths, which we have implicitly assumed up until now.612

Finally, panel 6f represents the wave profile corresponding to the limit point (LP)613
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Figure 6. Limits of travelling-wave solutions for case 4 in table 1. (a) Continuation of
Re at constant wave frequency f/fmax=0.5 (long dashes), 0.8 (short dashes), 1 (solid), 1.1
(dot-dashed), and 1.2 (dot-dot-dashed); (b) frequency dependence at Re=const. Dashed: linear
spatial growth rate αi at Re=Remax=18.9 (right abscissa); other: travelling-wave solutions (left
abscissa) at Re=Re0=1.5 (dot-dashed red), Re=2, 5, 10 (thin solid), and Re=Remax (thick blue);
(c-e) film profiles for LPs marked by filled circles in panel a; (c) f=1.2fmax. Solid: LP1; dashed:
LP2; (d) f=0.8fmax; (e) f=0.5fmax; (f ) profile for marked LP in panel b.

marked by a filled circle on the Re=2 curve in panel 6b. This curve lies in the region of614

conditional occlusion, Re0<Re<Remax (Re0=1.5, Remax=18.9). However, based on the615

wavelength of the waves in panel 6f, which span about 600 times the tube radius, it616

becomes clear that quite particular conditions can be required to cause occlusion in this617

regime. This underlines the conservative nature of the lower occlusion bound Re0.618

In summary, due to the frequency dependence of travelling-wave solutions demon-619

strated in panels 5b, 5c, 5d, and 6b, three characteristic regimes can be delimited: (i)620

impossible occlusion, when Re<Re0, (ii) conditional occlusion, when Re0<Re<Remax,621
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Figure 7. Delay of occlusion by increasing the Bond number Bo=ρl g R
⋆2/σ at constant Laplace

number: La=σ ρl R
⋆/µ2

l =6.27×10−4 (case 1). Travelling-wave solutions at f=fmax. Symbols
mark onset of absolute linear instability (AI) or limit points (LP). The limit points correspond
to the upper occlusion bound Remax. Circles: Bo=0.1; squares: Bo=1; asterisks: Bo=11.1 (case
1); crosses: Bo=50; diamonds: Bo=100. (a) Minimal core radius dmin versus liquid Reynolds
number; (b) minimal core radius versus liquid holdup.

and (iii) certain occlusion, when Re>Remax. In section 3.7, we will characterize these622

regimes with spatio-temporal computations and demonstrate the associated occlusion623

scenarios I and II. On the other hand, the frequency dependence of travelling-wave624

solutions opens the possibility of using coherent inlet forcing to prevent occlusion. By625

forcing regular waves of sufficiently high frequency, occlusion can be avoided versus a626

noise-driven wave evolution. We demonstrate this idea in section 3.8 based on spatio-627

temporal computations. In the next sections, 3.3 to 3.6, we first proceed to establish how628

different physical effects, i.e. gravity, axial viscous diffusion, inertia, and the core gas629

flow, affect the upper conservative occlusion bound Remax.630

3.3. Role of gravity631

The upper occlusion bound Remax can be significantly delayed by increasing the relative632

strength of gravity versus capillarity. We have quantified this by varying the Bond633

number Bo=ρl g R
⋆2/σ over several orders of magnitude at constant Laplace number634

La=6.3×10−4. This value of La corresponds to the high-viscosity silicone oil (case 1),635

where inertia is always negligible.636

Panel 7a represents travelling-wave solutions for different values of Bo. On each curve,637

we have imposed the frequency fmax of the most amplified spatially growing linear waves.638

All curves exhibit a limit value for the liquid Reynolds number Re. For Bo ≪ 1, where639

the Plateau-Rayleigh instability dominates, this limit is dictated by the onset of absolute640

instability (AI), as discussed in panels 2c and 2d. Beyond this point, prevailing waves are641

no longer characterized by the most-amplified spatially growing linear waves and fmax is642

no longer defined. The solution curves stop abruptly. Occlusion in this regime is caused643

by absolute instability of the primary flow. This regime is not the focus of our study.644

We focus on Bo > 1, for which the solution curves in panel 7a are bounded by a limit645

point (LP), as discussed in panel 5a. This limit point marks the upper occlusion bound646

Remax, which increases significantly with increasing Bo, while the minimal core radius647

dmin at LP significantly diminishes. The first observation is in line with the experiments648

of Dao & Balakotaiah (2000), who reported Re at the experimental occlusion onset for649

different liquids and tube radii but had no access to the wave dynamics. The authors also650
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Figure 8. Delay of occlusion by increasing the Bond number Bo at constant Kapitza number:

Ka=σ ρ−1
l g−1/3µ

−4/3
l =3.29×10−4 (case 1). This amounts to increasing the tube radius R⋆ while

maintaining constant fluid properties. See figure 7 for symbol attributions. (a) Minimal core
radius dmin versus liquid Reynolds number; (b) minimal core radius versus liquid holdup; (c)
surface profiles at AI and LP; (d) corresponding profiles of axial curvature ∂xxd.

outlined an approach for predicting occlusion based on travelling waves, which relied on651

the conjecture that the wave height always reaches the tube radius as Re is increased652

toward the occlusion limit. Based on our results in panel 7a, this conjecture only holds653

when Bo is extremely large. Otherwise, travelling-wave solutions are lost well before their654

height attains the tube radius.655

In panel 7b, we have replotted our results from panel 7a in terms of the liquid hold-up656

Vl/π/Λ. We see that the maximally achievable liquid hold-up increases significantly with657

Bo. This again is in line with the experiments of Dao & Balakotaiah (2000), who had658

observed that the mean film thickness h̄ at occlusion is significantly greater than in the659

gravity-free Plateau-Rayleigh configuration (Gauglitz 1988).660

The variation of Bo in figure 7 amounts to varying the gravitational acceleration for661

constant liquid and tube radius. Of course, it is either very difficult (low Bo range,662

microgravity experiments) or impossible (high Bo range) to realize the displayed range of663

variation 0.1 6 Bo 6 100 practically. A more practicable way to quantify the desired effect664

is to increase the tube radius R for a constant liquid. This amounts to increasing Bo at665

constant Ka=σ ρ−1
l g−1/3µ

−4/3
l . We have performed such computations for Ka=3.3×10−3,666

corresponding to the high-viscosity silicone oil (case 1). Results are represented in panels667

8a and 8b, and these display the same overall behaviour as figure 7.668

The delay of Remax results from a gravity-induced streamwise distortion of surface669

waves, which favours variations in (stabilizing) axial interface curvature over variations in670
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(destabilizing) azimuthal curvature. Panel 8c illustrates this distortion, which is marked671

by a compression of the leading wave front and an elongation of the trailing front. The672

different surface profiles represented correspond to the absolute instability thresholds (AI)673

and limit points (LP) highlighted in panel 8a. Panel 8d represents corresponding profiles674

of the axial curvature ∂xxd. The variation in (stabilizing) axial curvature ∂xxd around675

the wave crest (marked by a symbol) significantly increases in magnitude with increasing676

Bo. This allows to counter a larger variation in (destabilizing) azimuthal curvature, and,677

thus, to saturate waves of greater amplitude.678

The saturation mechanism was identified by Frenkel et al. (1987) for pressure-driven679

core annular flows, where it is due to a viscous interfacial shear stress, and demonstrated680

experimentally for falling liquid films on cylindrical fibres by Quéré (1990). In both681

studies, the saturation took hold in the weakly-nonlinear regime, limiting waves to682

a very small amplitude. Thus, it was perceived as suppressing macroscopically-visible683

waves altogether. In our case, the mechanism takes hold in the strongly-nonlinear regime,684

allowing to saturate travelling waves of greater amplitude as Bo is increased.685

The role of gravity is kinematic, i.e. it makes initial surface elevations travel faster686

than surface depressions (Dietze 2016), and this produces the distortion of wave fronts687

observed in panel 8c. We point out that this effect was precluded in Jensen (2000), where688

surface waves were constructed in the form of perfectly symmetrical unduloids.689

3.4. Role of axial viscous diffusion690

Axial viscous diffusion, emanating from the ∂xxu term in (2.1), is represented in our691

model (2.5) through the terms with coefficients Jj , Kj, Lj, and Mj . These terms appear692

when the underlying long-wave expansion is performed up to second order. This was not693

done in the previous modelling works of Trifonov (1992), Camassa et al. (2014, 2017),694

Zhou et al. (2016), Liu & Ding (2017), and Ding et al. (2019). So, the question is whether695

retaining these terms is worth the effort. We have checked this in panels 9a, 9b, and 9d,696

representing travelling-wave solutions for cases 1, 3, and 4. The three cases span a wide697

range of the capillary number Ca=µl U/σ, which relates viscous to capillary stresses, and698

which quantifies the relevance of axial viscous diffusion.699

In figure 9, solid lines correspond to the full model (2.5) and dot-dashed lines to the700

limit Ji=Ki=Li=Mi=0. Further, we distinguish two types of continuations. On the blue701

curves, which contain no symbols, we have fixed the wavelength Λ=12.56. On the black702

curves with symbols, we have imposed the spatially most amplified frequency of linear703

waves f=fmax. In that case, axial viscous diffusion may affect the solution both non-704

linearly and linearly (via wave selection), but the latter effect is negligible for the cases705

considered here. By comparing the solid and dashed curves in panels 9a, 9b, and 9d, we706

see that axial viscous diffusion precipitates occlusion in general and Remax in particular707

and this effect increases with Ca.708

For the high-viscosity silicone oil (panel 9a, case 1: Ca=0.37), accounting for axial vis-709

cous diffusion greatly reduces Remax, i.e. from Remax=3.3E-4 to Remax=1.9E-4 (compare710

dot-dashed and solid black lines with symbols). It is insightful to compare these values to711

the experimental occlusion bound, which was observed by Camassa et al. (2014) between712

Re=1.6E-4 and Re=2.3E-4 for their 1 m long tube. Linear interpolation based on their713

table 1 and figure 11 yields a value of Re=2.2E-4, which is not much greater than our714

Remax prediction with (Remax=1.9E-4) but much smaller than our prediction without715

axial viscous diffusion (Remax=3.3E-4). Interestingly, when basing the comparison on the716

mass-equivalent core radius dm=(L−1
∫ L

0
d2dx)1/2, which was also measured by Camassa717

et al. (2014), our two predictions (d⋆m=0.31 cm versus d⋆m=0.25 cm) lie equally close to the718
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Figure 9. Precipitation of occlusion due to axial viscous diffusion. Cases 1, 2, and 3.
Circles/asterisks mark limit points (LP) and absolute instability onset (AI). Solid lines: full
model (2.5); dot-dashed lines: no axial viscous diffusion, Jj=Kj=Lj=Mj=0 in (2.5) and (2.11);
black curves with symbols: f=fmax; blue lines without symbols: Λ=12.56. The capillary number
Ca scales the observed effect. (a,c) Case 1: Ca=0.37. Cross and diamond mark points used in
figure 10. Panel c represents ratio of interfacial fluid velocity u(dmin) to wave speed c. Grey
region marks existence of roll waves u(dmin) > c; (b) case 3: Ca=0.028. In the grey region, the
primary flow is absolutely unstable (AI); (d) case 4: Ca=0.012.

experimental value d⋆m=0.28 cm. This explains why Camassa et al. (2014, 2016) observed719

good agreement in terms of this parameter, although their model did not account for axial720

viscous diffusion. Finally, we point out that the corresponding values of the primary-flow721

core radius d0, which is more representative of the flat film portion in the upper part722

of the experimental tube, are d⋆0=0.29 cm with and d⋆0=0.24 cm without axial viscous723

diffusion.724

For case 3 (panel 9b, Ca=0.028), which corresponds to experimental run 13 in Dao725

& Balakotaiah (2000), axial viscous diffusion dictates even the nature of the occlusion726

mechanism. For the continuation at f=fmax (black lines with symbols in panel 9b),727

occlusion is caused by absolute linear instability (AI) when axial viscous diffusion is728

neglected (dot-dashed line), and by nonlinear loss of travelling-wave solutions (LP) when729

it is taken into account (solid line).730

For the lowest Ca (panel 9d, case 4: Ca=0.012), neglecting axial viscous diffusion does731

not meaningfully affect Remax. It is however responsible for the formation of a second732

lobe on the black dot-dashed curve marked by an asterisk, which results from a change733

in the number of precursory ripples, as discussed w.r.t. panels 6a and 6c.734

The nonlinear mechanism by which axial viscous diffusion precipitates occlusion is735
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Figure 10. Mechanism delaying occlusion due to axial viscous diffusion. Data correspond to
the two solution points marked by a cross and a diamond in panel 9a. Solid lines: diamond in
panel 9a, Re=1.47×10−4; dashed lines: cross in in panel 9a, Re=1.0×10−4. (a) Surface profiles
with zones of negative (grey) and positive (white) Ψxx; (b) normalized differential normal axial
viscous stress Ψxx according to (3.2). Axial normal viscous stresses counteract gravity in the
wave fronts, tending to steepen the trailing and flatten the leading wave front.

illustrated in figure 10. Panel 10a represents surface profiles corresponding to the two736

points marked by a diamond and a cross in panel 9a. The solid profile in panel 10a737

corresponds to the point marked by a diamond in panel 9a and the dashed profile to738

the point marked by a cross. In panel 10b, we have plotted corresponding profiles of the739

normalized axial normal viscous force Ψxx:740

Ψxx =
Fr2

Re

∂xFxx

π(1− d2)
, Fxx = 2π

∫ 1

d

∂xu rdr, (3.2)

where Fxx is the (dimensionless) axial viscous force acting on the cross section of the741

liquid film. Its differential dFxx=∂xFxxdx yields the resulting axial normal viscous force742

acting on a slice of liquid film. In (3.2), we have normalized dFxx with the differential743

gravitational force to obtain Ψxx.744

Grey and white areas underneath the solid curves in panels 10a and 10b identify regions745

where the axial normal viscous force is directed counter to (Ψxx < 0) or in the direction of746

(Ψxx > 0) gravity. Based on this, the arrows in panel 10a illustrate the resulting action of747

axial normal viscous stresses. This action tends to steepen the trailing front of the surface748

wave (where the residual film and the wave hump are pushed toward one another) and749

elongate the leading wave front (where residual film and wave hump are pulled away750

from one another). It counters the gravity-induced compression of the leading wave front751

and elongation of the trailing wave front and thus weakens the saturation mechanism752

discussed in section 3.3. The strength of the effect increases with increasing Reynolds753

number, as evidenced by comparing the two profiles in panel 10b and this explains why754

the solid and dot-dashed lines in panel 9a diverge with increasing Re.755

Axial viscous diffusion also greatly affects the wave speed and the streamline pattern756

in the wave-fixed reference frame. In panel 9c, we have replotted the continuation curves757

from panel 9a in terms of the fluid velocity at the wave crest u(dmin) normalized by the758

wave celerity c. When u(dmin) > c, a moving-frame vortex develops in the wave hump.759

Such waves are known as roll waves and the grey area in panel 9c delimits their existence.760

The limit point on the solid black line (filled circle) lies within this region, while the limit761

point on the dot-dashed line (asterisk) does not. This is illustrated by the corresponding762

streamline patterns in figure 11. Also, we see that the roll wave in panel 11a conveys with763
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Figure 11. Streamlines in the wave-fixed reference frame for the marked limit points (LP) in
panel 9c. Blue lines correspond to liquid film and red lines to core gas flow. (a) Full model (2.5):
filled circle in panel 9c. The wave hump contains a vortex; (b) no axial viscous diffusion, i.e.
Jj=Kj=Lj=Mj=0 in (2.5): asterisk in panel 9c. No vortex is predicted in the wave hump.

it a large gas bubble containing a toroidal vortex. This particular flow pattern results764

from the aerostatic pressure difference imposed here, i.e. Ψ=1. Other gas flow scenarios765

will be discussed in section 3.6. Finally, we point out that the lower branches in panel766

9 are the stable ones, and that only the full model, which accounts for axial viscous767

diffusion, predicts roll wave solutions on these branches.768

3.5. Role of inertia769

Inertia constitutes the growth mechanism of the Kapitza instability, which is respon-770

sible for the formation of surface waves on planar falling liquid films, and which becomes771

relevant in our current problem when Re is sufficiently large. This is the case for the low-772

viscosity silicone oil film (case 4). In figure 12, we have represented nonlinear travelling-773

wave solutions (panel 12a) and dispersion curves of the linear spatial growth rate αi774

(panel 12b) for this case. Solid curves were obtained with our full model (2.5), and775

dashed curves by neglecting inertia, i.e. by setting Si=Fij=Gij=0 in (2.5) and (2.11).776

In panel 12a, we confront two types of travelling-wave continuations. On the blue777

lines without symbols, we have fixed the wavelength Λ=12.56. In this case, the effect of778

inertia is purely nonlinear. We see that this effect significantly advances the limit point779

of the solid blue versus the dashed blue curve (by approximately 20%). Inertia increases780

the cumulated strength of the destabilizing mechanisms (Plateau-Rayleigh and Kapitza781

instabilities) versus the stabilizing ones (capillarity and viscous dissipation). This limits782

the ability to saturate nonlinear travelling waves to smaller amplitudes, i.e. lower Re.783

On the black lines with symbols, we have imposed f=fmax. Here, the effect of inertia784



Falling liquid films in narrow tubes: occlusion scenarios 25

(a)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30

d
m
in

Re

LP

AI A
b
so

lu
te

in
st
a
b
il
it
y

(b)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0  2  4  6  8  10  12

ω

α
i

Figure 12. Precipitation of occlusion due to inertia. Case 4: low-viscosity silicone oil, Bo=0.993.
Solid lines: full model (2.5); dot-dashed lines: no inertia, Si=Fij=Gij=0 in (2.5) and (2.11).
(a) Nonlinear travelling-wave solutions. Black lines with symbols: f=fmax; blue lines without
symbols: Λ=12.56; (b) dispersion curves of linear spatial growth rate αi: Re=15.4.

is even stronger, as it additionally affects linear wave selection by determining the785

spatially most amplified wave frequency fmax. The linear dispersion curves in panel 12b,786

where Re=15.4, illustrate this effect. When inertia is taken into account (solid curve),787

ωmax=2πfmax moves to smaller frequencies, which we have shown to precipitate the loss788

of travelling-wave solutions (panel 6a in §3.2). Comparing the solid and dashed lines in789

panel 12a, we see that inertia, similar to axial viscous diffusion, also dictates the nature790

of the occlusion mechanism. When it is taken into account, occlusion results from the loss791

of travelling-wave solutions at the limit point (LP) marking the upper occlusion bound792

Remax. When it is neglected, occlusion occurs to to absolute instability (AI).793

In addition to shifting Remax, inertia also changes the nature of the occlusion bound in794

panel 12a. If inertia is neglected, Remax is dictated by absolute instability (AI, asterisk),795

otherwise, it is dictated by a nonlinear turning point (LP, filled circle). This qualitative796

change was also observed for the role of axial viscous diffusion in figure 9.797

In the case of the classical Plateau-Rayleigh configuration, Bo → 0, inertia only affects798

the dynamics of the film’s evolution (Dietze & Ruyer-Quil 2015) but not the occlusion799

limit itself, because the latter is determined by a static equilibrium state (Everett &800

Haynes 1972).801

3.6. Role of core gas flow802

The gas in the core of the cylindrical tube can affect the liquid film falling down its803

inner wall in two ways: (i) through the normal and tangential interfacial viscous stresses804

τng and τ tg , which are scaled by Πµ in (2.3), and (ii) through the interfacial gas pressure805

pg, which is scaled by Πρ in (2.3). Up until now, we have assumed that the gas is subject806

to an aerostatic pressure difference, Ψ=1, meaning that gravity is fully compensated in807

the gas. In that case, the gas flow is enslaved to the hydrodynamics of the liquid film808

and both the above effects are negligible. Nonetheless, this one-way coupling produces809

intricate flow structures in the gas, as has been suggested by panel 11a and will be810

discussed further based on panel 14a.811

Conversely, when the gas flows counter-currently at a Reynolds number Reg of sufficient812

magnitude, it does affect the hydrodynamics of the liquid film, and this two-way coupling813

can significantly precipitate the upper occlusion bound Remax. We show this in figure814

13 based on case 4, which produces surface waves of sufficient amplitude to significantly815
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Figure 13. Precipitation of occlusion due to a counter-current gas flow. Case 4. (a)
Travelling-wave continuation at f=fmax. Solid: aerostatic pressure drop, Ψ=1; dashed:
counter-current gas flow, Reg=-17.27; solid blue line without symbol:Πµ=0 in (2.5), Reg=-17.27;
dot-dashed: Πρ=0 in (2.5), Reg=-17.27; (b) continuation at Vl=const and f=fmax. Square:
Vl/π/R

3=2.435; diamond: Vl/π/R
3=2.770; (c) wave profiles corresponding to the asterisk and

filled circle in panel a; (d) corresponding profiles of gas pressure gradient ∂xpg according to (2.5c)
(symbols mark position of wave maximum). Grey/white zones between the dashed profiles in
panels c, d demarcate regions of negative/positive ∂xpg. Arrows in panel c indicate action of
gas pressure gradient on the liquid film.

constrict the core gas flow. Panel 13a represents travelling-wave solutions obtained by816

continuing Re at f=fmax for different gas flow configurations. The solid black curve with817

a filled circle at the limit point corresponds to Ψ=1, and the dashed curve to a counter-818

current gas flow with Reg=-17.27. Comparing these two curves, we see that Remax is819

significantly precipitated due to the counter-current gas flow (by roughly 25%). We have820

checked that the gas flow does not meaningfully affect the most amplified frequency821

fmax, and thus this precipitation is a nonlinear effect. The dashed curve also displays822

two qualitative changes. First, its lower branch turns forward at a second, lower, limit823

point, producing travelling-wave solutions of constant amplitude that exist far beyond824

Remax. However, as we show in appendix C, these solutions are inaccessible in a real825

system. Thus, Remax remains a representative occlusion bound also in the counter-current826

configuration. Second, solutions on the portion of the curve between the asterisk and the827

new limit point are stable, in contrast to those on the lower branch of the solid black828

curve, where Ψ=1.829

Panel 13b illustrates the effect of the gas flow in another way. Here, Reg is varied at a830

fixed liquid volume Vl, while maintaining f=fmax. Such a scenario may be relevant for831
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Figure 14. Streamlines in the wave-fixed reference frame corresponding to the marked limit
points (LP) in panel 13a. Within the film, liquid below the vortex flows from right to
left. (a) Aerostatic gas pressure drop (filled circle in panel 13a): Ψ=1, Re=18.9, Λ=6.3; (b)
counter-current gas flow (asterisk in panel 13a): Reg=-17.27, Re=14.6, Λ=5.7. The gas, flowing
from right to left, is constricted by the wave hump, similar to a de Laval nozzle.

mucus films in pulmonary capillaries. We see that travelling-wave solutions are lost when832

the magnitude of the counter-current gas flow |Reg| is increased beyond a limit point.833

The effect of the gas flow on the occlusion bound Remax observed in panel 13a results834

from the pressure coupling between gas and liquid and not from the gaseous interfacial835

viscous stresses. This is evidenced by the curves without symbols in panel 13a, which836

pertain to different limits of the full-model continuation at Reg=-17.27 (dashed curve).837

The blue solid curve without symbol pertains to the limit Πµ=0 and the dot-dashed curve838

to the limit Πρ=0. Deactivating the gaseous viscous stresses (Πµ=0, solid blue curve839

without symbols), changes Remax very little. By contrast, deactivating the gas pressure840

effect (Πρ=0, dot-dashed curve), almost entirely negates the gas-induced precipitation841

of Remax versus the aerostatic reference case (solid black curve with filled circle).842

To elucidate the role of the gas pressure pg, panels 13c and 13d represent wave profiles843

and corresponding profiles of the pressure gradient ∂xpg for the two marked limit points844

(LP) in panel 13a. Thereby, ∂xpg is determined from (2.5c) and corresponds to the845

gas pressure gradient at the film surface ∂xpg|r=d. We have dropped the accompanying846

subscripts for convenience. In panel 13d, ∂xpg is multiplied with Fr2, in order to normalize847

the actual pressure gradient with the aerostatic one. Grey/white zones between the848

dashed lines in panels 13c and 13d distinguish regions of negative/positive ∂xpg in849

the gas. In addition, figure 14 represents streamlines in the wave-fixed reference frame850

corresponding to the wave profiles in panel 13c.851

Focussing on the counter-current case, panel 14b, we see that the wave hump produces852

a constriction through which the gas (flowing from right to left) must pass, similar to a853
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de Laval nozzle that first accelerates and then decelerates the flow. This produces strong854

positive/negative pressure gradients to the right/left of the wave maximum (see dashed855

line in panel 13d) and these tend to push the liquid within the film toward the wave856

hump (arrows in panel 13c). This mechanism tends to increase the wave amplitude for a857

given Re and thus to advance the occlusion bound Remax. It requires a sufficiently strong858

relative motion between the traveling wave and the gas. This does not necessarily require859

an upward gas flow. Indeed, the diamond-marked curve in panel 13b shows that occlusion860

may be brought about even when the gas is co-current, at least if |Reg| is sufficiently861

small.862

In the aerostatic case, Ψ=1, axial pressure variations in the core are very weak (solid863

line in panel 13d) and the gas has no incidence on the occlusion limit. Vice versa, the864

flow structure in the gas is strongly affected by the liquid film. We see this in panel 14a,865

which pertains to case 4 (low-viscosity silicone oil), and also in panel 11a, which pertains866

to case 1 (high-viscosity silicone oil). In both examples, the gas flow is enslaved to the867

liquid surface flow (through equation 2.3a), which exhibits interfacial stagnation points868

around the wave hump, as a result of the moving-frame vortex in the liquid film. Due869

to this, the gas flow is divided into an intricate system of vortices. The constellation of870

these vortices is dictated by the strength of the liquid vortex in the wave hump.871

3.7. Occlusion scenarios in a spatially evolving film872

In section 3.2, we introduced the conservative occlusion bounds Re0 and Remax based873

on the limit of travelling-wave solutions and delimited three regimes for a naturally874

evolving wavy falling liquid film: (i) impossible occlusion, when Re<Re0, (ii) conditional875

occlusion, when Re0<Re<Remax, and (iii) certain occlusion, when Re>Remax. We now876

demonstrate these regimes based on spatio-temporal computations with our model (2.5),877

where we have mimicked naturally-evolving waves through the noisy inlet condition878

(2.6b), using ǫ2=10−5. For the gas, we have imposed Ψ=1.879

We start by reproducing two of the occlusion experiments of Dao & Balakotaiah (2000),880

i.e. their experimental runs 20 and 13 which identified the experimental occlusion point881

at Re=0.0497 and Re=0.258, respectively. These two runs correspond to our cases 2882

and 3 in table 1, for which we have determined the lower/upper occlusion bounds in883

§3.2 as Re0=0.012/Remax=0.038 (panel 5c), and Re0=0.075/Remax=0.39 (panel 5d),884

respectively. Based on this, experimental run 20 (our case 2) lies in the region of certain885

occlusion and experimental run 13 (our case 3) in the region of conditional occlusion. This886

is confirmed by panels 15a and 15b, which represent travelling-wave solutions continued887

in terms of the wave frequency f (right abscissae) and dispersion curves of the linear888

growth rate αi (left abscissae) for these two runs.889

The experiments of Dao & Balakotaiah (2000) were performed in a long vertical tube890

equipped with a conductance probe that allowed to detect occlusion locally. However,891

no information on the film’s surface dynamics upstream of this point was available.892

We provide this missing information in panels 15c and 15d, which represent snapshots893

of our spatio-temporal computations reproducing experimental runs 20 and 13. These894

computations were performed on an L⋆=1 m domain. We see that the two cases reach895

occlusion by two very different routes, as a result of distinct wave dynamics.896

For experimental run 20 (our case 2), most of the dispersion curve in panel 15a897

(grey area) lies beyond the limit point of travelling wave solutions (fmax<fLP). Thus,898

the most amplified surface waves emerging from the linear regime don’t possess any899

saturated travelling state and inevitably cause occlusion by extending their growth into900

the nonlinear regime (panel 15c). This is occlusion scenario I, which we had already901

observed for case 1 (high-viscosity silicone oil) in figure 4. Supplementary movie M2 shows902
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Figure 15. Different routes to occlusion in a spatially evolving film. Computations of
experimental runs 20 (panels a,c) and 13 (panels b,d) in Dao & Balakotaiah (2000). (a,b)
Travelling wave solutions (right abscissae) at Re=const, and dispersion curves of the linear
spatial growth rate αi (left abscissae). Grey zones distinguish linear waves that have no saturated
travelling state; (c,d) spatio-temporal computations on an L⋆=1 m domain with inlet noise
(2.6b); (a,c) experimental run 20: case 2 in table 1, Re=0.0497 (regime of certain occlusion,
scenario I); (b,d) experimental run 13: case 3 in table 1, Re=0.258 (regime of conditional
occlusion, scenario II). Arrow in panel d marks a coalescence event triggering occlusion.

the computation from panel 15c in action. We remind the reader that the unphysical903

plug reopening observed therein (and in supplementary movie M3) is due to the crude904

numerical core radius limitation introduced in section 2.1. First results in appendix E905

suggest that this artefact is negated by our improved WRIBL model (figure 22).906

By contrast, for experimental run 13 (our case 3), the most amplified linear waves lie907

well within the range of travelling-wave solutions (fmax>fLP in panel 15b). Occlusion908

must thus occur through a different route, as evidenced by the wave profile in panel909

15d. In the first part of the tube (x 6130), a quite regular train of saturated-amplitude910

travelling waves develops. These result from linear wave selection and their minimal core911

radius dmin is far from reaching the tube axis. However, individual waves within the wave912

train are quite narrowly spaced and thus prone to the secondary subharmonic/sideband913

instabilities typically associated with single-humped waves in planar falling liquid films914

(Liu & Gollub 1993; Chang et al. 1993). These instabilities result from wave interactions915

triggered by residual noise and lead to wave coalescence, which is the first step in the916

so-called wave coarsening dynamics identified by Chang et al. (1996b). This cascaded dy-917

namics produces ever longer, more dangerous, waves by successive coalescence/absorption918

events and thus represents an inherent route toward occlusion. The arrow in panel 15d919
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Figure 16. Computations of case 3 (Re0=0.075, Remax=0.39; panel 5b) at lower Re, showing a
downstream displacement of the occlusion point w.r.t. panel 15d. Spatio-temporal computations
on an L⋆=2 m domain with inlet noise (2.6b). (a) Re=0.14: regime of conditional occlusion.
Occlusion (through scenario II) occurs much further downstream than in panel 15d; (b)
Re=0.07<Re0: regime of impossible occlusion. Surface waves are extremely small.

highlights one such coalescence event, which produces a wave of greater amplitude that920

will occlude the tube and subsequently absorb several smaller waves downstream.921

This is occlusion scenario II, which is intermittent because the initiating wave coa-922

lescence is occasional, in contrast to scenario I (panel 15c), where (almost) every wave923

grows to occlude the tube. Due to this intermittence, gas bubbles resulting from successive924

occlusion events are much more unevenly distributed. Supplementary movie M3 shows925

the computation from panel 15d in action.926

We now focus on case 3 and compute the spatio-temporal wave evolution for values of927

Re below the experimental occlusion threshold Re=0.258 determined in run 13 of Dao &928

Balakotaiah (2000). This experimental threshold lies well within the region of conditional929

occlusion, which is bounded by Re0=0.075 and Remax=0.393 (panel 5d).930

Panel 16a represents a spatio-temporal computation at a lower Reynolds number931

Re=0.14>Re0, which still lies in the conditional occlusion regime. This computation932

was performed on a domain of L⋆=2 m in length, i.e. twice longer than the one in933

panel 15d. We see that occlusion still occurs, through scenario II, but that the occlusion934

point has shifted greatly downstream w.r.t. panel 15d. The reason for this is that the935

frequency/wavelength of the limiting travelling waves greatly decreases/increases with936

decreasing Re (see panel 5d) and, thus, much more space is needed for these to develop937

from the coarsening dynamics. The downstream shift in the occlusion point explains938

why Dao & Balakotaiah (2000), who checked for occlusion in a fixed region, found an939

experimental threshold for Re that is greater than the lower conservative bound Re0. It940

also clearly shows that occlusion in the conditional regime (through scenario II) depends941

on whether the tube is sufficiently long to accommodate formation of those waves that942

are able to cause occlusion. As these waves may be much longer than those emerging943

from linear selection, occlusion may require unrealistically long tube lengths, depending944

on Re. Supplementary movie M4 shows the computation from panel 16a in action.945

Conversely, occlusion in an infinitely long tube will eventually always occur if Re946

lies within the conditional regime, at least for a naturally evolving film. This is due to947

the nature of the coarsening dynamics, which halts only after truly solitary waves have948

formed. Thus, to avoid occlusion in an infinitely long tube, Re must be decreased below949

the lower conservative bound Re0, where even solitary waves are too small to cause950
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Figure 17. Different occlusion scenarios for case 4 (Re0=1.5, Remax=18.9; panel 6b).
Spatio-temporal computations on an L⋆=1 m domain with inlet noise (2.6b). (a) Re=19>Remax:
regime of certain occlusion (scenario I); (b) Re=5: regime of conditional occlusion (scenario II);
(c) Re=1.25<Re0: regime of impossible occlusion. Surface waves are extremely small

occlusion. Panel 16b shows a computation under such conditions, i.e. Re=0.07<Re0.951

Although occlusion is indeed avoided, surface waves are extremely small in amplitude,952

which thwarts their beneficial effect on heat and mass transfer (Yoshimura et al. 1996;953

Albert et al. 2013). This underlines the conservative nature of the lower occlusion bound954

Re0. We will show in the next section that there is another way to prevent occlusion,955

namely through coherent inlet forcing in the conditional occlusion regime, which allows956

maintaining surface waves of significant amplitude.957

Finally, figure 17 shows snapshots of three representative spatio-temporal computa-958

tions for case 4 (low-viscosity silicone oil), where inertia, which drives the the Kapitza959

instability, is relevant. Panels 17a, 17b, and 17c correspond to the regimes of certain,960

conditional, and impossible occlusion. These display the same main features observed for961

the high-viscosity liquids (panels 15c, 16a, and 16b), only that the length scales of the962

occlusion processes are much shorter.963

3.8. Coherent inlet forcing to prevent occlusion964

For Re>Re0, travelling-wave solutions are bounded by a limiting frequency fLP, below965

which they cannot exist and occlusion is inevitable (see panels 5d and 6b). Conversely,966

by increasing f above fLP, travelling-wave solutions are recovered and occlusion can be967

avoided. We thus test the idea of forcing high-frequency waves through coherent inlet968

forcing in a spatially-evolving falling liquid film, in order to prevent occlusion without969

having to reduce Re below the conservative bound Re0, where surface waves all but970

disappear (see panels 16b and 17c).971

This idea works only in the conditional occlusion regime, Re0<Re<Remax. Indeed,972

in the regime of certain occlusion, Re>Remax, where fLP>fmax, one would have to973

force waves of frequency f>fmax. Such short waves are very sensitive to the secondary974

instabilities causing wave coalescence in closely-packed wave trains (Liu & Gollub 1993),975
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Figure 18. Preventing occlusion in the conditional occlusion regime, Re0<Re<Remax, through
coherent inlet forcing. Spatio-temporal simulations from panels 16a and 17b with additional
coherent inlet forcing of frequency f and amplitude ǫ1=0.1 (2.6b). All other parameters, including
the noise level ǫ2, remain unchanged. (a) Case 3 (Re0=0.075, Remax=0.393; panel 5d): Re=0.14,
f=0.5 fmax=0.525; (b) Case 4 (Re0=1.5, Remax=18.9; panel 6b): Re=5, f=0.5 fmax=1.27
Coherent inlet forcing produces a regular train of saturated-amplitude travelling waves, allowing
to prevent occlusion versus the natural evolution in panels 16a and 17b.

and rapidly loose the signature of the inlet forcing. By contrast, in the conditional976

occlusion regime, fLP can be low enough (the lower Re, the lower fLP) to allow forcing977

a wave train that is not subject to secondary instability.978

We demonstrate this by running the spatio-temporal computations in panels 16a (case979

3) and 17b (case 4) again with additional coherent inlet forcing. For this, we activate the980

monochromatic perturbation in (2.6b) with a relative amplitude ǫ1=0.1. Meanwhile, the981

inlet noise remains active and its level unchanged ǫ2=10−5. We stress that ǫ2 in (2.6b) is982

the scale factor of a Fourier series which 1000 terms. Thus, the actual noise amplitude983

is much greater than suggested by the value of ǫ2. It is about 10% of ǫ1 for the runs984

presented here. The forcing frequency f is chosen greater than the limit value fLP of985

travelling-wave solutions, as obtained from panels 5d (case 3, Re=0.14, fLP=0.41fmax)986

and 6b (case 4, Re=5, fLP=0.35fmax), respectively.987

Panels 18a and 18b show the results of our spatio-temporal computations with ad-988

ditional coherent inlet forcing and are to be compared directly to panels 16a and 17b,989

where the wave dynamics is purely noise-driven. We see that the additional coherent990

inlet forcing produces a regular train of saturated-amplitude travelling waves that do not991

occlude the tube. This wave train is maintained over the entire length of the domain992

and thus robust w.r.t. to secondary instability. In contrast to panels 16b and 17c, where993

occlusion was avoided by reducing Re below the lower conservative bound Re0, the falling994

films in panels 18a and 18b display quite substantial surface waves, expected to be much995

more beneficial for inter-phase heat and mass transfer.996

4. Conclusion997

We have studied numerically the occlusion of a narrow vertical cylindrical tube by998

an axisymmetric wavy falling liquid film in contact with a laminar core gas flow. We999

have focused on conditions where the effect of gravity is at least comparable to that of1000

capillarity, i.e. Bo > 1, and the gas Reynolds number Reg is quite low. In that limit,1001

occlusion is caused by spatially growing waves and not by absolute linear instability.1002
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These waves are generated by a combination of the Plateau-Rayleigh instability, gravity-1003

driven advection, and the Kapitza instability.1004

Using the low-dimensional model introduced in Dietze & Ruyer-Quil (2015), which1005

had been applied only to gravity-free films, we have performed spatio-temporal compu-1006

tations of spatially-evolving falling films and computed travelling-wave solutions through1007

numerical continuation. Our model extends upon the earlier works of Trifonov (1992),1008

Camassa et al. (2014, 2017), Zhou et al. (2016), Liu & Ding (2017), and Ding et al.1009

(2019) by accounting for axial viscous diffusion and inertia. These effects are needed to1010

accurately predict occlusion for the real liquids studied here (cases 1-4 in table 1). We1011

have validated our model computations with DNS (appendix A and panel 5d).1012

Travelling-wave solutions are lost when the liquid Reynolds number Re is increased1013

beyond a limit point (LP), low-frequency/long waves being more dangerous (smaller1014

ReLP) than high-frequency/short waves (greater ReLP). By numerically reproducing the1015

occlusion experiments of Camassa et al. (2014), we have proved that surface waves causing1016

occlusion systematically lie beyond this limit of travelling-wave solutions, thus validating1017

the conjecture formulated by these authors.1018

Depending on how occluding waves emerge in a spatially evolving film, either directly1019

from linear wave selection (scenario I), or subsequent secondary instability and wave1020

coarsening (scenario II), we have distinguished two possible occlusion scenarios. By1021

reproducing several occlusion experiments with our own spatio-temporal computations,1022

we have shown that occlusion scenario I (panels 4a and 15c, movie M2) applies to the1023

experiments of Camassa et al. (2014) and run 20 in Dao & Balakotaiah (2000), while1024

scenario II (panel 15d, movie M3) applies to run 13 in Dao & Balakotaiah (2000).1025

We have delimited scenarios I and II based on an upper conservative occlusion bound1026

Remax, which corresponds to the limit point of travelling-wave solutions at the spatially1027

most amplified frequency fmax of linear waves. And, a lower conservative bound Re0,1028

below which travelling-wave solutions always exist, no matter how great the wavelength1029

(Ding et al. 2019). Determining Remax requires computing fmax and thus we have1030

simultaneously solved the linear stability problem in our numerical continuations. This1031

had not been attempted in previous studies (Camassa et al. 2014; Ding et al. 2019).1032

Based on the upper and lower conservative bounds Remax and Re0, as well as spatio-1033

temporal computations, we have delimited three possible regimes for a naturally evolving1034

wavy film: (i) certain occlusion: Re>Remax. The most amplified surface waves, which1035

typically emerge in an experiment, do not possess travelling states. Occlusion is inevitable1036

and occurs through scenario I; (ii) conditional occlusion: Re0<Re<Remax. Occlusion1037

is theoretically possible through scenario II (for long enough waves), but does not1038

necessarily occur in a real system. That depends on whether the coarsening dynamics1039

can produce sufficiently long waves and whether the tube is long enough to accommodate1040

this (panels 15d and 16a, movies M3 and M4); (iii) impossible occlusion: Re<Re0. All1041

possible surface waves, no matter how long, are safe.1042

We have shown that occlusion can be actively prevented in the regime of conditional1043

occlusion (Re0<Re<Remax) by forcing waves of sufficiently high frequency through1044

coherent inlet forcing (panels 18a and 18b). This allows to maintain surface waves of non-1045

negligible amplitude, in contrast to the regime of impossible occlusion (Re<Re0) where1046

waves are almost invisible (panels 16b and 17c). Given the well documented positive effect1047

of surface waves on inter-phase heat/mass transfer (Yoshimura et al. 1996), coherent inlet1048

forcing is an attractive route to enhance transfer while avoiding occlusion.1049

We have computed the lower and upper conservative bounds Re0 and Remax for the1050

four working liquids considered here (figures 5 and 6). Further, we have quantified how1051

key parameters (Bo and Reg) as well as several physical effects (axial viscous diffusion1052
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and inertia) affect the upper conservative bound Remax, which delimits the regimes of1053

certain and conditional occlusion. We have found that gravity greatly delays this bound,1054

significantly increasing Remax as the Bond number Bo is increased (see panel 8a). Unless1055

Bo is very large, the height of travelling waves at Re=Remax is far from reaching the tube1056

radius. In contrast to what Dao & Balakotaiah (2000) conjectured, such solutions are1057

thus lost abruptly and not due to the wave height reaching the tube radius continuously.1058

We have found that a laminar counter-current gas flow can significantly precipitate1059

occlusion for low-viscosity liquids (low-viscosity silicone oil, case 4), where the effect of1060

the gas pressure becomes relevant in the liquid force balance. At the strongest gas flow1061

studied (Reg=-17), we have observed a 25% reduction of Remax (panel 13a) versus a1062

situation where the gas is quiescent. We have found that the gas affects the liquid film1063

mainly through inter-phase pressure coupling. Surface waves locally constrict the gas1064

flow, which is accelerated and then decelerated as it passes through (panel 14b). This1065

produces a pressure minimum above the wave crest that sucks liquid toward the wave,1066

tending to increase its amplitude and, thus, the danger of occlusion.1067

For high-viscosity liquids (high-viscosity silicone oil and aqueous glycerol solution,1068

cases 1 and 3), axial viscous diffusion greatly precipitates occlusion, i.e. greatly reduces1069

Remax (by 74% in panel 9a). This may be relevant for mucus films within the first five1070

generations of the human respiratory network, where the capillary radius is large enough1071

for gravity to be relevant (King & Macklem 1977; Lewis et al. 2005; Grotberg 2011).1072

For low-viscosity liquids (low-viscosity silicone oil, case 4), we have observed that1073

Remax becomes large enough for inertia to be relevant (Remax=18.9 in panel 6a). This1074

activates the Kapitza instability, which tends to increase the amplitude of travelling-1075

waves, increasing the danger of occlusion. We have found that inertia significantly1076

precipitates occlusion, decreasing Remax versus an inertialess computation (by 20% in1077

panel 12a). This may be relevant for falling film micro-reactors (Seebauer et al. 2012).1078

Finally, we have found that neglecting axial viscous diffusion (high-viscosity liquids,1079

panel 9a) or inertia (low-viscosity liquids, panel 12a) can change the nature of the1080

occlusion mechanism, from being dictated by the loss of travelling-wave solutions to1081

being dictated by absolute linear instability.1082

Our transient computations on long open domains have been performed with a crude1083

numerical core radius limitation allowing to continue these past occlusion events. Al-1084

though this technique does not affect the wave dynamics leading up to occlusion, which1085

is the focus of our current study, it does not represent the physics of liquid plugs to1086

satisfaction. To remedy this, we have introduced an improved version of our WRIBL1087

model (2.5) by augmenting it with an additional force term (4.1), allowing to form stable1088

travelling pseudo-plugs (figure 22). First results reported in appendix E suggest that this1089

improved model negates the main artefact of the numerical core radius limitation, i.e. the1090

reopening of liquid plugs. Confronting our improved model with full-fledged plug models1091

(Ubal et al. 2008; Suresh & Grotberg 2005) is an enticing prospect for future work.1092

Appendix A: Validation of WRIBL model based on transient DNS1093

Figure 19 represents comparisons between our WRIBL model (2.5) and DNS using the1094

solver Gerris (Popinet 2009). All computations were performed for case 4 (low-viscosity1095

silicone oil), which is the most challenging. The solid and dashed curves in panel 19a1096

represent travelling-wave solutions obtained with our model by continuing the liquid1097

volume Vl at fixed wavelength Λ=5.4 for two different gas flow situations. The dashed line1098

corresponds to an aerostatic gas pressure drop Ψ=1, and the solid line to a counter-current1099

gas flow at Reg=-17.3. We compare these data with two punctual DNS at Vl/π/R
3=2.35,1100
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Figure 19. Validation of our WRIBL model (2.5) with DNS using the solver Gerris (Popinet
2009). Case 4 in table 1: low-viscosity silicone oil, R⋆=1.5 mm. (a) Travelling-wave solutions at
fixed Λ=5.4. Dashed line (WRIBL) and filled circle (DNS, Vl/π/R

3=2.35): aerostatic pressure
drop, Ψ=1; solid line (WRIBL) and open circle (DNS, Vl/π/R

3=2.35): Reg=-17.3; (b) transient
periodic computations with DNS solver (diamonds) and WRIBL model (dot-dashed line): Λ=5.4,
Ψ=1, Vl/π/R

3=2.85 (vertical line in panel a); (c-d) profiles of travelling waves from panel a for
Vl/π/R

3=2.35. Filled/open circles: DNS; dashed/solid lines: WRIBL; (e-f) streamlines in the
wave-fixed reference frame for solutions in panels c and d. Top half: WRIBL; bottom half: DNS.
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which are marked by a filled (Ψ=1) and open circle (Reg=-17.3), respectively. Panels 19c1101

and 19d represent the corresponding surface profiles at this point, as obtained from DNS1102

(symbols) and our model (lines). Panels 19e and 19f represent corresponding streamline1103

patterns in the wave-fixed reference frame. The top half of these graphs represents our1104

model computations and the bottom half our DNS.1105

Finally, panel 19b compares time traces of the minimal and maximal core radius dmin1106

and dmax obtained from transient periodic computations with our model (dot-dashed1107

line) and the DNS solver (diamonds) for Λ=5.4, Ψ=1, and Vl/π/R
3=2.85 (vertical line1108

in panel 19a), which lies beyond the limit point of travelling-wave solutions in panel1109

19a. Agreement between the two data sets in panel 19b is good and both computations1110

produce an occlusion of the tube by the liquid film, as evidenced by the divergence of1111

the minimal core radius dmin. This confirms that occlusion occurs beyond the limit of1112

travelling-wave solutions and that our model is able to capture the associated dynamics.1113

Appendix B: Numerical procedure for travelling-wave DNS1114

The DNS results in panel 5d were obtained by solving the full governing equations1115

(2.1)-(2.3) in the limit Πµ=Πρ=0 with a pseudo-spectral approach. For this, the liquid1116

velocity and pressure fields are projected on modified Chebyshev polynomials:1117

ul(x, r, t) =

n
∑

i=1

ai(x, t)φi(X), pl(x, r, t) =

n−1
∑

i=0

bi(x, t)ψi(X), (4.1)

where X=2(R−r)/(R−d)−1. The radial velocity vl is obtained by integrating (2.1b), i.e.1118

vl=− 1
r

∫ r

R ∂xul rdr. The functions φi(X) and ψi(X) are linear combinations of Chebyshev1119

polynomials of the first kind Ti:1120

φ1 = 1 +X, ψ0 = 1, ψ1 = X − 1,

φ2i = ψ2i = T2i(X)− 1, φ2i+1 = ψ2i+1 = T2i+1(X)−X ∀ i > 1,
(4.2)

so that φi(X = −1) = 0, and thus the boundary conditions (2.2) are fulfilled.1121

Writing the Navier-Stokes equations (2.1a) on the Gauss-Lobato pointsXi=− cos(πi/n)1122

for i > 1, and introducing the wave-fixed coordinate ξ = x− c t, yields 2(n− 1) relations:1123

n−1
∑

j=0

ψj(Xi)Dξbj = Fi(bi, ai,Dξai,Dξξai, h,Dξh,Dξξh),

1

4Re

h

r

n
∑

j=1

[Cj(Xi) + Ij(Xi)] Dξξξai = Gi(bi, ai,Dξai,Dξξai, h,Dξh,Dξξh),

(4.3)

where Dξ=d/dξ, Cj=
∫X

−1
X(φj)

′dX , and Ij=
∫X

−1
φjdX . Further, we have:1124

τ tl = ηDξξξa1,

τnl +Re pl − ReWe−1 κ = ηDξb0,
ql + c πd2 = ηDξξξh,

(4.4)

and thus the free-surface dynamic conditions (2.3b)-(2.3c) and the integral continuity1125

equation (2.5a) are recovered in the limit η → 0. We finally obtain the linear equation1126

system:1127

A
dU

dξ
= B(U; η), (4.5)
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Figure 20. Travelling waves under the effect of a counter-current gas flow: case 4, f=fmax. (a)
New representation of the curves from panel 13a in terms of the normalized pressure gradient
Ψ=∆pgFr

2. Solid: aerostatic pressure drop, Ψ=1; dashed: counter-current gas flow, Reg=-17.27.
Solutions between circle and asterisk (red segment) are stable. Filled circles correspond to limit
points (LP) in panel 13a; (b) variation of the gas Reynolds number Reg at Re=15.72. The
intended continuation path is indicated by an arrow in panel a.

for the unknowns U=(h,Dξh,Dξξh, ai,Dξai,Dξξai, bi−1) ∀ 1 6 i 6 n. Inverting (4.5)1128

leads to an autonomous dynamical system of dimension 4n+ 3. This dynamical system1129

was solved with the continuation software AUTO07P (Doedel 2008), using a predictor-1130

corrector method (Kalliadasis et al. 2012). Our computations were performed with1131

η=10−6 and n = 20, which we have determined based on convergence tests.1132

Appendix C: Travelling waves on the lower branch in panel 13a1133

We discuss further the travelling-wave solutions on the lowest branch of the dashed1134

curve in panel 13a, which extends beyond the limit point Re=Remax, as the result of1135

interfacial viscous stresses exerted by the gas. Panel 20a replots that curve (dashed line)1136

and the corresponding curve for the aerostatic configuration (solid line) in terms of the1137

pressure gradient Ψ=∆pgFr
2. The filled circles therein correspond to the limit points (LP)1138

in panel 13a. The segment of the dashed curve that we are interested in lies above the1139

asterisk, and we have checked the stability of solutions thereon, using transient periodic1140

computations with imposed Ψ (we recall that the red portion of the curve, between1141

circle and asterisk, is stable). As Re is increased on this curve segment, solutions go1142

from being stable to being subject to an oscillatory instability, similar to that found in1143

planar channels (Lavalle et al. to be published). In both situations, our transient periodic1144

computations do not produce occlusion.1145

However, these states are inaccessible in a real system, where Re is fixed and the1146

counter-current gas flow is imposed through Ψ. The arrow in panel 20a indicates how Ψ1147

would need to be varied to attain the desired states, starting from the aerostatic situation1148

(marked by a cross). Besides that this would require a two hundred fold increase of Ψ, it1149

turns out that there is no continuation path (at Re=const) from the solid curve, where1150

Ψ=1, to the dashed curve, where Reg=-17.27. This is shown in panel 20b, representing1151

a continuation of travelling-wave solutions at Re=15.72, where we have varied Reg. The1152

solution curve exhibits a limit point at Reg ≈-10 that precludes reaching the target value1153

Reg=-17.27.1154

We have also performed a transient computation on an open domain with inlet/outlet1155

conditions, where we have set Re=15.72 and forced waves of frequency f=fmax(Reg =1156



38 G. F. Dietze, G. Lavalle and C. Ruyer-Quil

(a)

-1
-0.5

 0
 0.5

 1

 0  10  20  30  40  50  60  70  80  90  100  110  120  130  140  150  160  170  180  190  200

r

x

Figure 21. Version of the computation from panel 4a with axial viscous diffusion deactivated:
Jj=Kj=Lj=Mj=0 in (2.5). The film surface is represented at the same time as in panel 4a.

−17.27)=0.73, while gradually increasing Ψ from Ψ=1 according to a sigmoid function.1157

This computation produces occlusion long before Ψ has reached the target value Ψ=237,1158

which corresponds to the upper solution branch in panel 20a. We may thus conclude that1159

Remax, which is based on the limit point (LP) in panel 13a, remains a representative1160

occlusion bound also in the counter-current configuration.1161

Appendix D: Effect of axial viscous diffusion in panel 4a1162

Figure 21 represents a version of the computation from panel 4a where we have1163

deactivated axial viscous diffusion, by setting Jj=Kj=Lj=Mj=0 in (2.5b). In contrast1164

to panel 4a, no occlusion is observed over the entire length of the tube, which is in1165

qualitative contradiction with the experiments of Camassa et al. (2014).1166

Appendix E: Improved representation of liquid plugs1167

Inspired by the use of an additional attractive-repulsive force term to model contact1168

line problems within the framework of film models (Thiele et al. 2001), we add a repulsive1169

azimuthal capillary term to the RHS of our model equation (2.5b):1170

Πθ = We−1 exp

[

λ

(

1− d(x, t)

dplug

)]

∂xκθ, κθ = −1

d

[

1− 1

2
(∂xd)

2

]

. (4.1)

As a result of its exponential variation with d (which can be scaled with λ), the effect of1171

this term is significant only in the vicinity of the predefined radius dplug, which is set to1172

a small fraction of the tube radius R. At d=dplug, Πθ exactly compensates the capillary1173

pressure gradient due to (destabilizing) azimuthal curvature. Furthermore, by adequately1174

choosing dplug and λ, the primary flow with a cylindrical film surface at d=dplug can be1175

rendered linearly stable at all wave numbers (we have checked this with spatial linear1176

stability analysis). This allows representing liquid plugs as stable travelling liquid annuli,1177

or pseudo-plugs, that almost entirely fill the tube cross section.1178

Figure 22 represents results of a transient periodic computation based on our WRIBL1179

model (2.5) with the additional force term Πθ (4.1). Liquid properties and tube radius1180

correspond to case 4, which, due to the relevance of inertia, is the most challenging.1181

Further, Λ=5.40, Vl/π/R
3=2.80, dplug=0.01R, and λ=1. Panel 22a represents the time1182

evolution of the film surface during formation of a pseudo-plug, and panel 22b represents1183

the fully-developed pseudo-plug. To better guide the eye, we have reproduced and shifted1184

the periodic surface profile in these panels.1185

In contrast to the crude numerical core radius limitation employed in our open-domain1186

computations, our improved representation of liquid plugs ensures volume conservation,1187

and thus the pseudo-plug in figure 22 does not reopen. On the downside, this new repre-1188

sentation requires a finer spatial numerical resolution. Thus, open-domain computations,1189

such as the one in panel 17a, become more costly (about four times for case 4). This can1190
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Figure 22. Improved representation of liquid plugs. Transient periodic computation based on
the WRIBL model (2.5) upgraded with the localized repulsive term Πθ (4.1), using dplug=0.01R
and λ=1. Case 4: Λ=5.40; Vl/π/R

3=2.80. (a) Surface profiles at times t⋆/t⋆ν=20, 30, 40, 50, 60,

70, 80, 90 (t⋆ν=ν
1/3
l g−2/3=0.0037 s), during the formation of a pseudo-plug. The four last profiles

have been shifted by one wavelength to better guide the eye; (b) fully developed pseudo-plugs:
t⋆/t⋆ν=300. The periodic surface profile has been reproduced three times here.

be alleviated by implementing a locally refined grid in the plug regions, following the1191

example of Lister et al. (2006) for the representation of locally thin liquid films. We leave1192

this task, and the confrontation of our pseudo-plug model with full-fledged plug models1193

for pressure driven core-annular flows (Ubal et al. 2008) or inclined planar channel flows1194

(Suresh & Grotberg 2005), to future work. In the latter case, our additional force term1195

(4.1) would have to be adapted to a planar geometry.1196
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Delaunay, C. 1841 Sur la surface de révolution dont la courbure moyenne est constante. Journal1235
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