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Abstract

In this paper we characterize the global asymptotic and exponential stability of nonlinear switching
retarded systems through direct and converse Lyapunov–Krasovskii theorems. Thanks to these theorems,
a link between the exponential stability of an unforced switching retarded system and the input-to-state
stability property is obtained. An example illustrating the applicability of our results is given.

Keywords: Converse theorems; Lyapunov–Krasovskii functionals; retarded functional differential equa-
tions; switching systems.

1 Introduction

A significative research has been devoted around the stability property of switching systems (see, e.g., [25]).
Many sufficient conditions based on the existence of common Lyapunov functions [4] or multiple Lyapunov
functions [2] are developed. Theses two approaches have been extended to switching retarded systems (see,
e.g., [15, 26, 28] and references therein). Another interesting approach called trajectory based approach [17] is
also investigated in the context of switching retarded systems (see, e.g., [1, 18]). In [15] the authors study the
robustness of exponential stability of a class of nonlinear retarded switching systems to some specific class of
perturbations. The key point is the existence of a common Lyapunov–Krasovskii functional for the nominal
switching system, i.e. the non-perturbed one. In [18], based on a multiple Lyapunov functions approach, the
authors study the asymptotic stability and robustness properties of nonlinear retarded switching systems.
The key assumption in [18] is the existence of multiple Lyapunov functions with some weak properties.

The utility of converse Lyapunov theorems is well known in the literature of non-switching control systems.
For example, converse Lyapunov theorems are the main tool for characterizing input-to-state stability and
proving robust stability properties (see [14] for systems described by ordinary differential equations, and [22,
23, 27] for systems described by retarded and neutral functional differential equations). Converse theorems
are also developed for switching systems. The existence of a common Lyapunov function is actually equivalent
to the uniform global asymptotic stability of finite-dimensional switching systems (see, e.g., [4, 16]). Converse
like results are also obtained for infinite-dimensional switching systems (see, e.g., [7, 11, 19]).

Converse theorems have been recently developed in [8] for linear retarded switching systems. Thanks
to these theorems, sufficient conditions for the stability of interconnected linear uncertain delay systems
are given in [9]. Converse like results are not yet developed for nonlinear retarded switching systems.
In this paper we develop theorems characterizing the global asymptotic and exponential stability of such
systems through the existence of a common Lyapunov–Krasovskii functional. These theorems are obtained
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for switching systems with piecewise constant switching signals. A theorem showing the link between input-
to-state stability and global exponentially stability of an unforced switching retarded systems is given. An
example highlighting the importance of such theorems is presented. Proofs are reported in the appendix.

2 Switching retarded systems

2.1 Notation

By R we denote the set of real numbers, R+ the set of non-negative real numbers and R the extended real
line. Given ∆ > 0, C = (C([−∆, 0],Rn), ‖ · ‖∞) denotes the Banach space of continuous functions mapping
[−∆, 0] into Rn, where ‖ · ‖∞ is the norm of uniform convergence. For a function x : [−∆, b) → Rn, with
0 < b ≤ +∞, for t ∈ [0, b), xt : [−∆, 0] → Rn denotes the history function defined by xt(θ) = x(t + θ),
−∆ ≤ θ ≤ 0. For a positive real H and given φ ∈ C, CH(φ) denotes the subset {ψ ∈ C : ‖φ − ψ‖∞ ≤ H}.
We simply denote CH(0) by CH . A function α : R+ → R+ is said to be of class K if it is continuous, strictly
increasing and α(0) = 0; it is said to be of class K∞ if it is of class K and unbounded. A continuous function
β : R+ × R+ → R+ is said to be of class KL if β(·, t) is of class K for each t ≥ 0 and, for each s ≥ 0, β(s, ·)
is nonincreasing and converges to zero as t tends to +∞.

2.2 Definitions and assumptions

Let us consider the switching system described by the following retarded functional differential equation

Σ :
ẋ(t) = fσ(t)(xt), a.e. t ≥ 0,
x(θ) = x0(θ), θ ∈ [−∆, 0],

(1)

where: x(t) ∈ Rn; n is a positive integer; ∆ is a positive real (the maximum involved time-delay); x0 ∈ C is
the initial condition; the function σ : R+ → S is the switching signal; S is a nonempty subset of RD; D is a
positive integer. We introduce the following assumption.

Assumption 1. For each s ∈ S, fs(0) = 0. Moreover, fs is uniformly (with respect to s ∈ S) Lipschitz on
bounded subsets of C, i.e., for any H > 0 there exists LH > 0 such that

|fs(φ)− fs(ψ)| ≤ LH‖φ− ψ‖∞, ∀φ, ψ ∈ CH ,∀s ∈ S. (2)

In addition, the switching signal σ(·) satisfies the following assumption:

Assumption 2. The switching signal σ : R+ → S is piecewise constant.

Let us denote by S the set of all functions σ : R+ → S satisfying Assumption 2. The following lemma
discusses the existence and uniqueness of the solution of system Σ as well as its continuous dependence on
the initial state.

Lemma 1. For any x0 ∈ C and σ ∈ S, there exists, uniquely, an absolutely continuous solution x(t, x0, σ) of
Σ in a maximal time interval [0, b), with 0 < b ≤ +∞. If b < +∞, then the solution is unbounded in [0, b).
Moreover, for any ε > 0, for any c ∈ (0, b), there exists δ > 0 such that, for any φ ∈ Cδ(x0), the solution
x(t, φ, σ) exists in [0, c] and, furthermore, the following inequality holds

|x(t, x0, σ)− x(t, φ, σ)| ≤ ε, ∀ t ∈ [0, c]. (3)

Proof. The proof is straightforward from the theory of systems described by RFDEs (see, e.g. [10]). �

Definition 1. We say that the system Σ is PC-0-GAS if there exist a function β ∈ KL such that, for any
x0 ∈ C and σ ∈ S, the corresponding solution exists in R+ and, furthermore, satisfies the inequality

|x(t, x0, σ)| ≤ β(‖x0‖∞, t). (4)
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Definition 2. We say that the system Σ is PC-0-GES if there exist positive reals M and λ such that, for
any x0 ∈ C and σ ∈ S, the corresponding solution exists in R+ and, furthermore, satisfies the inequality

|x(t, x0, σ)| ≤Me−λt‖x0‖∞. (5)

Notice, from Definitions 1 and 2, that here we deal with stability properties which are uniform with
respect to both the initial condition x0 in compact sets and the switching signals σ ∈ S.

Let us recall the following definition about Driver’s form derivative of a continuous functional V : C → R+.
This definition is a variation of the one given in [5, 20], for retarded functional differential equations without
switching.

Definition 3. For a continuous functional V : C → R+, its Driver’s form derivative, D+V : C → R, is
defined, for the switching system Σ, for φ ∈ C, as follows,

D+V (φ) = sup
s∈S

lim sup
h→0+

V (φΣ,s
h )− V (φ)

h
, (6)

where φΣ,s
h ∈ C is defined, for h ∈ [0,∆) and θ ∈ [−∆, 0], as follows

φΣ,s
h (θ) =

{
φ(θ + h), θ ∈ [−∆,−h)
φ(0) + (θ + h)fs(φ), θ ∈ [−h, 0].

(7)

3 Converse theorems by common Lyapunov–Krasovskii function-
als

The following theorems provide necessary and sufficient conditions for the PC-0-GAS and PC-0-GES prop-
erties of system Σ.

Theorem 1. System Σ is PC-0-GAS if and only if there exist a functional V : C → R+, Lipschitz on
bounded subsets of C, and functions α1, α2 ∈ K∞, α3 ∈ K such that the following inequalities hold for any
φ ∈ C

(i) α1(|φ(0)|) ≤ V (φ) ≤ α2(‖φ‖∞),

(ii) D+V (φ) ≤ −α3(|φ(0)|).

Theorem 2. System Σ is PC-0-GES if and only if there exist a functional V : C → R+, Lipschitz on bounded
subsets of C, and positive reals α1, α2, α3 and p, such that the following inequalities hold for any φ ∈ C

(i) α1‖φ‖p∞ ≤ V (φ) ≤ α2‖φ‖p∞,

(ii) D+V (φ) ≤ −α3‖φ‖p∞.

If, in addition, fs, for s ∈ S, is uniformly globally Lipschitz then V is globally Lipschitz.

4 Application to input-to-state stability of switching retarded sys-
tems

Consider the following switching retarded system

ẋ(t) = fσ(t)(xt, u(t)), a.e. t ≥ 0,
x(θ) = x0(θ), θ ∈ [−∆, 0],

(8)

where u : R+ → Rm is a piecewise continuous function which represents the input of the system and
fs : C ×Rm → Rn, for s ∈ S, is uniformly Lipschitz on bounded subsets of C ×Rm, with f(0, 0) = 0. Thanks
to Theorem 2, we give a link between the input-to-state stability of system (8) and the exponential stability
of the unforced system. Firstly, let us recall the following standard definition (see [24]).
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Definition 4. We say that system (8) is input-to-state stable if there exist a function β ∈ KL and a function
γ ∈ K such that, for any x0 ∈ C, any piecewise continuous input u and any σ ∈ S, the corresponding solution
exists in R+ and, furthermore, satisfies the inequality

|x(t, x0, u, σ)| ≤ β(‖x0‖∞, t) + γ(‖u[0,t)‖∞). (9)

We have the following theorem (inspired by [27]).

Theorem 3. Let system (8) with u ≡ 0 be PC-0-GES. If there exist positive reals L and l and a nonnegative
real p < 1 such that:

1) ∀φ, ψ ∈ C,∀u ∈ Rm,∀s ∈ S, the following holds

|fs(φ, u)− fs(ψ, u)| ≤ L‖φ− ψ‖∞; (10)

2) ∀φ ∈ C,∀u ∈ Rm,∀s ∈ S, the following holds

|fs(φ, u)− fs(φ, 0)| ≤ lmax{‖φ‖p∞, 1}|u|; (11)

then system (8) is input-to-state stable.

5 Example

Consider the neural network with constant delays

ẋ(t) = Ax(t) + g(xt), (12)

where A = diag(a1, · · · , an), with ai < 0 for i ∈ {1, · · · , n}, and the nonlineartiy g : C → Rn is given by

gi(ϕ) =

n∑
j=1

bijfj(ϕj(−τij)), (13)

where bij ∈ R, τij ∈ [0,∆], for some ∆ > 0, for i, j ∈ {1, · · · , n}.

Assumption 3. For each i ∈ {1, · · · , n} the function fi is globally Lipschitz with Lipschitz constant µi > 0.

If the following condition is satisfied

ai +

n∑
j=1

µj |bij | < 0, for i = 1, · · · , n, (14)

it has been proven in [3] that system (12) is globally exponentially stable.
System (12) is useful in many applications such as signal processing, robotics and neurosciences. However,
in general, the delays and even the vector field g may depend on different uncertain parameters and it is
more suitable to consider a perturbed switching neural network with uncertain time-varying delays instead
of constant ones. For this, let us consider the following modified perturbed system

ẋ(t) = Ax(t) + gσ(t)(xt, u(t)), (15)

where σ : R+ → S is a piecewise constant switching signal, u : R+ → Rm is a piecewise continuous input
and, for each fixed mode s ∈ S, the nonlineartiy gs : C × Rm → Rn is given, for (φ, u) ∈ C × Rm, by

gi,s(ϕ, u) =

n∑
j=1

bijfj,s(ϕj(−τij,s)) + ui, (16)
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where fj,s ∈ {f1, · · · , fn} and τij,s ∈ [0,∆], for all i, j ∈ {1, · · · , n}.
As said previously, if condition (14) is satisfied then system (12) is globally exponentially stable. There-

fore, by [22, Theorem 2.5], there exists a globally Lipschitz functional V : C → R+ with Lipschitz constant
α4 > 0 such that the inequalities (i) and (ii) of Theorem 2 hold with p = 1. Computing the Driver’s derivative
of V along the trajectories of the switching system (15), in the case when u ≡ 0, gives

D+V (ϕ) = sup
s∈S

lim sup
h→0+

V (ϕ
(15),s
h )− V (ϕ)

h

≤ −α3‖ϕ‖∞ + sup
s∈S

lim sup
h→0+

V (ϕ
(15),s
h )− V (ϕ

(12)
h )

h

≤ −α3‖ϕ‖∞ + α4 sup
s∈S

lim sup
h→0+

‖ϕ(15),s
h − ϕ(12)

h ‖∞
h

≤ −α3‖ϕ‖∞ + 2µ̄α4

√√√√√ n∑
i=1

 n∑
j=1

|bij |

2

‖ϕ‖∞,

where µ̄ = max{µ1, · · · , µn}. By consequence, by Theorem 2, in addition to condition (14), if the Lipschitz
constants µi, for i ∈ {1, · · · , n}, are sufficiently small, then the global exponential stability of the non-
perturbed system (15), i.e. with u ≡ 0, is preserved. In particular, if α4 is known, sufficient condition for
the global exponential stability of the non-perturbed system (15) is given by condition (14) together with
the following inequality

µ̄

√√√√√ n∑
i=1

 n∑
j=1

|bij |

2

<
α3

2α4
. (17)

In this case, thanks to Theorem 3, we have that the perturbed switching uncertain delay system (15) is
input-to-state stable.

6 Conclusions

In this paper we establish converse Lyapunov–Krasovskii theorems regarding global asymptotic and expo-
nential stability of nonlinear retarded switching systems. These theorems are obtained for switching systems
with piecewise constant switching signals. A link between input-to-state stability and exponential stability
is given. An example discussing the applicability of our results is presented.
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7 Proof of Theorem 1

7.1 Preliminary results

By exploiting the fact that fs is uniformly (with respect to s ∈ S) Lipschitz on bounded subsets of C, the
following two lemmas follows directly from [22, Lemma A.4] and [22, Lemma A.6], respectively.
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Lemma 2. There exists a continuous increasing function L : R+ → R+ such that, for any φ, ψ ∈ C, the
following inequality holds

|fs(φ)− fs(ψ)| ≤ L(‖φ‖∞ + ‖ψ‖∞)‖φ− ψ‖∞, ∀s ∈ S. (18)

Lemma 3. Suppose that system Σ is PC-0-GAS. Let L be a continuous increasing function as depicted in
Lemma 2. Let L : R+ → R+ be the function defined as

L(r) = L(2β(r, 0)), r ∈ R+, (19)

where the function β is given in Definition 1. Then, for any t ∈ R+, for any σ ∈ S, and for any φ, ψ ∈ C,
the following inequality holds

‖xt(φ, σ)− xt(ψ, σ)‖∞ ≤ eL(‖φ‖∞+‖ψ‖∞)t‖φ− ψ‖∞. (20)

The following lemma is given in [24].

Lemma 4. [24, Proposition 7] For a given function β ∈ KL, there exist two functions α1, α2 ∈ K∞, such
that:

β(r, t) ≤ α−1
1 (e−2tα2(r)), r ≥ 0, t ≥ 0. (21)

The proof of the following lemma follows the same methodology as in [12, 22].

Lemma 5. Suppose that system Σ is PC-0-GAS. Let, for any positive integer q, Uq : C → R+ be the
functional defined, for all φ ∈ C, by

Uq(φ) = sup
t≥0,σ∈S

(
max

{
0, α1 (‖xt(φ, σ)‖∞)− 1

q

}
et
)
, (22)

where α1 is defined in Lemma 4. Let G : R+ × Z+ → R+ be the function defined as

G(r, q) = (1 + qα2(r))
(L(2r)+1)

, r ∈ R+, q ∈ Z+, (23)

where L is as depicted in Lemma 3 and α2 is defined in Lemma 4. Then, for any positive integer q, we have:

1) max
{

0, α1 (‖φ‖∞)− 1
q

}
≤ Uq(φ) ≤ α2(‖φ‖∞), ∀ φ ∈ C;

2) Uq(xτ (φ, σ̃)) ≤ e−τUq(φ), ∀ τ ≥ 0, σ̃ ∈ S, φ ∈ C;

3) for any positive real H, for any φ, ψ ∈ CH , the following inequality holds

|Uq(φ)− Uq(ψ)| ≤ G(H, q)‖φ− ψ‖∞.

Proof. Let, for any positive integer q and any fixed σ ∈ S, Uσq : C → R+ be the functional defined, for all
φ ∈ C, by

Uσq (φ) = sup
t≥0

(
max

{
0, α1 (‖xt(φ, σ)‖∞)− 1

q

}
et
)
. (24)

Following the same steps as in the proof of [12, Theorem 2.9], we have

max

{
0, α1 (‖φ‖∞)− 1

q

}
≤ Uσq (φ) ≤ α2(‖φ‖∞), (25)
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for any φ ∈ C and any σ ∈ S. Knowing that the left and right hand sides of inequalities (25) are independent
from σ, the inequalities in 1) follow directly from (25) by applying the supremum over σ ∈ S. Moreover, as
far as the inequality in 2) is concerned, for any τ ≥ 0, any φ ∈ C, and any fixed σ, σ̃ ∈ S, we have,

Uσq (xτ (φ, σ̃)) = sup
t≥0

(
max

{
0, α1 (‖xt(xτ (φ, σ̃), σ)‖∞)− 1

q

}
et
)

≤ sup
t≥0,σ∈S

(
max

{
0, α1 (‖xt+τ (φ, σ)‖∞)− 1

q

}
et
)
.

≤ e−τ sup
t≥0,σ∈S

(
max

{
0, α1 (‖xt(φ, σ)‖∞)− 1

q

}
et
)
.

= e−τUq(φ).

Inequality 2) follows from (26) by applying the supremum over σ ∈ S. As far as the point 3) is concerned,
let H be a positive real and let φ, ψ ∈ CH . Following the same steps as in the proof of [12, Theorem 2.9], we
have

|Uσq (φ)− Uσq (ψ)| ≤ G(H, q)‖φ− ψ‖∞, ∀ σ ∈ S. (26)

By consequence, knowing that the right hand side of inequality (27) is independent from σ, we have

|Uq(φ)− Uq(ψ)| =
∣∣∣∣sup
σ∈S

Uσq (φ)− sup
σ∈S

Uσq (ψ)

∣∣∣∣ ≤ sup
σ∈S

∣∣Uσq (φ)− Uσq (ψ)
∣∣ ≤ G(H, q)‖φ− ψ‖∞. (27)

The proof of the lemma is complete. �

7.2 Proof of Theorem 1

Now we prove the sufficiency part of Theorem 1. Let x0 ∈ C and let σ ∈ S. Let x(·, x0, σ) be the corresponding
solution in a maximal interval [0, b), 0 < b ≤ +∞. Let w : [0, b) → R+ be the function which is defined in
[0, b) as

w(t) = V (xt(x0, σ)), t ∈ [0, b).

The function w is continuous in [0, b). By [5, 20], we have, for t ∈ [0, b),

D+w(t) = lim sup
h→0+

w(t+ h)− w(t)

h

= lim sup
h→0+

V (xt+h(x0, σ))− V (xt(x0, σ))

h

= lim sup
h→0+

V
(

(xt(x0, σ))
Σ,σ(t)
h

)
− V (xt(x0, σ))

h

≤ sup
s∈S

lim sup
h→0+

V
(

(xt(x0, σ))Σ,s
h

)
− V (xt(x0, σ))

h

= D+V (xt(x0, σ)). (28)

By inequality (ii), it follows from (28) that

D+w(t) ≤ −α3(|x(t, x0, σ)|) ≤ 0, ∀ t ∈ [0, b). (29)

Since w is continuous, it follows from [6] that

w(t) ≤ w(0), ∀ t ∈ [0, b). (30)
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Finally, from (30) and the inequalities (i), we obtain

|x(t, x0, σ)| ≤ α−1
1 ◦ α2(‖x0‖∞), ∀ t ∈ [0, b). (31)

It follows, from Lemma 1, that b = +∞. So, for any ε > 0, if δ = α−1
2 ◦ α1(ε), ‖x0‖∞ ≤ δ implies

|x(t, x0, σ)| ≤ ε, for t ≥ 0. Now, by analogous reasoning as in [10], let H be a positive real. Let ε be an
arbitrary positive real. We wish to show that there exists a positive real T such that, for any σ ∈ S, for any
x0 ∈ CH , the inequality |x(t, x0, σ)| ≤ ε holds for all t ≥ T . Notice that, for any σ ∈ S and for any x0 ∈ CH ,
by (31), the following inequality holds

‖xt(x0, σ)‖∞ ≤ H + α−1
1 ◦ α2(H), ∀ t ≥ 0. (32)

Let δ = α−1
2 ◦ α1(ε). Let k be the smallest integer satisfying

k ≥ Γα2(H)

δα3( δ2 )
+ 1,

where

Γ = max

 sup
s∈S, φ∈C

H+α
−1
1 ◦α2(H)

|fs(φ)|, 2δ

∆

 . (33)

From (32) and (33), it follows that, for any s ∈ S and any x0 ∈ CH , |fs(xt(x0, σ))| ≤ Γ, for any t ≥ 0. Let
T = 2k∆. Let x0 ∈ CH and let σ ∈ S. Then, if the corresponding solution satisfies ‖xτ (x0, σ)‖∞ ≤ δ, for
some τ ∈ [0, T ], the inequality |x(t, x0, σ)| ≤ ε holds, ∀ t ≥ T . Provided that σ is fixed in S, the existence
of such τ can be proved by following the same reasoning as in [10], and the proof of the sufficiency part is
complete, since T does not depend on σ.

Let us prove now the necessity part. Let V : C → R+ be the functional defined, for φ ∈ C, as

V (φ) =

+∞∑
q=1

2−q

1 +G(q, q)
Uq(φ), (34)

where G : R+×Z+ → R+ is the function defined in (23) and Uq : C → R+ are the functionals defined in (22).
Using the same reasoning as in the proof of [22, Lemma A.8] we have that the inequalities (i) hold true.
Now, we prove that the inequality (ii) holds. Let, for s ∈ S, σs ∈ S be defined, for t ∈ R+, as σs(t) = s. For
any φ ∈ C, the following inequalities hold

D+V (φ) = sup
s∈S

lim sup
h→0+

V (φΣ,s
h )− V (φ)

h
= sup

s∈S
lim sup
h→0+

V (xh(φ, σs))− V (φ)

h

= sup
s∈S

lim sup
h→0+

+∞∑
q=1

2−q

1 +G(q, q)
(Uq(xh(φ, σs)− Uq(φ))

h

≤ sup
s∈S

lim sup
h→0+

+∞∑
q=1

2−q

1 +G(q, q)
Uq(φ)

(
e−h − 1

)
h

=

sup
s∈S

lim sup
h→0+

e−h − 1

h
V (φ) = −V (φ) ≤ −α1(‖φ‖∞).

So the inequality (ii) is satisfied with the K∞ function α3(s) = α1(s). The fact that the functional V is
Lipschitz on bounded subsets of C follows exactly the same lines of the proof of [22, Lemma A.8]. The proof
of the necessity part is complete. The proof of Theorem 1 is complete.
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8 Proof of Theorem 2

We prove first the sufficiency part. Let x0 ∈ C and let σ ∈ S. Let x(·, x0, σ) be the corresponding solution
in a maximal interval [0, b), 0 < b ≤ +∞. Let w : [0, b)→ R+ be the function which is defined in [0, b) as

w(t) = V (xt(x0, σ)), t ∈ [0, b).

Following the same reasoning as in the proof of the sufficiency part of Theorem 1 and using inequalities (i)
and (ii), we obtain

D+w(t) ≤ −α3‖xt(x0, σ)‖p∞ ≤ −
α3

α2
w(t), ∀ t ∈ [0, b). (35)

Since w is continuous, it follows from [6] that

w(t) ≤ e−
α3
α2
tw(0), ∀ t ∈ [0, b). (36)

Finally, from (36) and the inequalities (i), we obtain

|x(t, x0, σ)| ≤
(
α2

α1

) 1
p

e−
α3
pα2

t‖x0‖∞, ∀ t ∈ [0, b). (37)

It follows, from Lemma 1, that b = +∞, and, given the arbitrarity of x0 ∈ C and σ ∈ S, the PC-0-GES
property of the system Σ is proved. The proof of the sufficiency part of the theorem is complete.

Let us prove now the necessity part. Let M ≥ 1 and λ be the positive reals such that, for any x0 ∈ C
and σ ∈ S, the following inequality holds

|x(t, x0, σ)| ≤Me−λt‖x0‖∞. (38)

By analogous reasoning as in [13], let T = 1
λ ln(2M). Let V : C → R+ be the functional defined, for φ ∈ C,

as follows
V (φ) =

sup
σ∈S

∫ T

0

‖xt(φ, σ)‖∞dt+ sup
σ∈S

sup
t∈[0,T ]

‖xt(φ, σ)‖∞.
(39)

Let us prove, first, that the functional V is Lipschitz on bounded subsets of C. For this, let H be any positive
real and let φ, ψ ∈ CH . Let

A = sup
σ∈S

∫ T

0

‖xt(φ, σ)‖∞dt− sup
σ∈S

∫ T

0

‖xt(ψ, σ)‖∞dt (40)

and
B = sup

σ∈S
sup
t∈[0,T ]

‖xt(φ, σ)‖∞ − sup
σ∈S

sup
t∈[0,T ]

‖xt(ψ, σ)‖∞. (41)

We have

|A| ≤ sup
σ∈S

∫ T

0

|‖xt(φ, σ)‖∞ − ‖xt(ψ, σ)‖∞|d ≤ sup
σ∈S

∫ T

0

‖xt(φ, σ)− xt(ψ, σ)‖∞dt (42)

From Lemma 3 and inequality (42) it follows that

|A| ≤ sup
σ∈S

∫ T

0

eL(‖φ‖∞+‖ψ‖∞)T ‖φ− ψ‖∞dt ≤ TeL(4MH)T ‖φ− ψ‖∞.
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Moreover, as far as the term B is concerned, we have, taking into account (20),

|B| ≤ sup
σ∈S

∣∣∣∣∣ sup
t∈[0,T ]

‖xt(φ, σ)‖∞ − sup
t∈[0,T ]

‖xt(ψ, σ)‖∞

∣∣∣∣∣
≤ sup

σ∈S
sup
t∈[0,T ]

|‖xt(φ, σ)‖∞ − ‖xt(ψ, σ)‖∞|

≤ sup
σ∈S

sup
t∈[0,T ]

‖xt(φ, σ)− xt(ψ, σ)‖∞

≤ eL(4MH)T ‖φ− ψ‖∞.

Finally, we have the following inequalities

|V (φ)− V (ψ)| ≤ |A|+ |B| ≤ (1 + T )eL(4MH)T ‖φ− ψ‖∞.

So, the Lipschitz property of the functional V , on bounded subsets of C, is proved. Observe that if fs, s ∈ S,
is uniformly globally Lipschitz then V is globally Lipschitz.
Now, we prove that the inequalities (i) and (ii) hold. The first inequality in (i) is satisfied with α1 = 1. As
far as the second inequality in (i) is concerned, the following inequalities hold, for any φ ∈ C,

V (φ) ≤ sup
σ∈S

∫ T

0

Me−λt‖φ‖∞dt+ sup
σ∈S

sup
t∈[0,T ]

Me−λt‖φ‖∞ ≤

(∫ T

0

Me−λtdt+M

)
‖φ‖∞. (43)

So, the second inequality in (i) is satisfied with α2 =
∫ T

0
Me−λtdt + M . As far as the inequality (ii) is

concerned, let V1 : C → R+ and V2 : C → R+ be defined, for φ ∈ C, as

V1(φ) = sup
σ∈S

∫ T

0

‖xt(φ, σ)‖∞dt (44)

V2(φ) = sup
σ∈S

sup
t∈[0,T ]

‖xt(φ, σ)‖∞. (45)

Let, for s ∈ S, σs ∈ S be defined, for t ∈ R+, as σs(t) = s. The following inequality holds, for any φ ∈ C

D+V (φ) ≤ sup
s∈S

(
lim sup
h→0+

V1(xh(φ, σs))− V1(φ)

h
+ lim sup

h→0+

V2(xh(φ, σs))− V2(φ)

h

)
. (46)

As far as the first limit in the right-hand side of the inequality in (46) is concerned, let us define, for given

s ∈ S, and for given positive real h, the set Mh,s
S as follows (see, [11])

Mh,s
S = {σ ∈ S : σ(t) = s, ∀ t ∈ [0, h)}. (47)

So, we have the following equalities/inequality,

V1(φ) = sup
σ∈S

∫ T

0

‖xt(φ, σ)‖∞dt (48)

= sup
σ∈S

(∫ h

0

‖xt(φ, σ)‖∞dt+

∫ T

h

‖xt(φ, σ)‖∞dt

)

≥ sup
σ∈Mh,s

S

(∫ h

0

‖xt(φ, σ)‖∞dt+

∫ T

h

‖xt(φ, σ)‖∞dt

)

=

∫ h

0

‖xt(φ, σs)‖∞dt+ sup
σ∈Mh,s

S

∫ T

h

‖xt(φ, σ)‖∞dt.
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Furthermore, we have the following equalities/inequality

V1(xh(φ, σs)) = sup
σ∈S

∫ T

0

‖xt(xh(φ, σs), σ)‖∞dt = sup
σ∈Mh,s

S

∫ T+h

h

‖xt(φ, σ)‖∞dt (49)

≤ sup
σ∈Mh,s

S

∫ T

h

‖xt(φ, σ)‖∞dt+ sup
σ∈Mh,s

S

∫ T+h

T

‖xt(φ, σ)‖∞dt.

So, from (48) and (49), it follows that

V1(φ) ≥
∫ h

0

‖xt(φ, σs)‖∞dt+ sup
σ∈Mh,s

S

∫ T

h

‖xt(φ, σ)‖∞dt

≥
∫ h

0

‖xt(φ, σs)‖∞dt+ V1(xh(φ, σs))− sup
σ∈Mh,s

S

∫ T+h

T

‖xt(φ, σ)‖∞dt. (50)

From, (50), the following inequality holds

V1(xh(φ, σs))− V1(φ) ≤ sup
σ∈Mh,s

S

∫ T+h

T

‖xt(φ, σ)‖∞dt−
∫ h

0

‖xt(φ, σs)‖∞dt. (51)

Finally, from (51), the following equalities/inequalities hold for the first limit in the right-hand side of (46)

lim sup
h→0+

V1(xh(φ, σs))− V1(φ)

h
≤ lim sup

h→0+

1

h

(∫ T+h

T

Me−λt‖φ‖∞dt−
∫ h

0

‖xt(φ, σs)‖∞dt

)

= −
(
1−Me−λT

)
‖φ‖∞ = −1

2
‖φ‖∞. (52)

As far as the second limit in the right-hand side of the inequality in (46) is concerned, we have

lim sup
h→0+

V2(xh(φ, σs))− V2(φ)

h
≤ lim sup

h→0+

1

h

(
sup
σ∈S

sup
t∈[0,T ]

‖xt+h(φ, σ)‖∞ − sup
σ∈S

sup
t∈[0,T ]

‖xt(φ, σ)‖∞

)

≤ lim sup
h→0+

1

h
sup
σ∈S

(
sup

t∈[0,T+h]

‖xt(φ, σ)‖∞ − sup
t∈[0,T ]

‖xt(φ, σ)‖∞

)
. (53)

Since, for any σ ∈ S, the following inequalities hold

sup
t∈[T,T+h]

‖xt(φ, σ)‖∞ ≤Me−λT ‖φ‖∞ =
1

2
‖φ‖∞, (54)

sup
t∈[0,T ]

‖xt(φ, σ)‖∞ ≥ ‖φ‖∞, (55)

it follows that, for any σ ∈ S, the following inequality holds

sup
t∈[h,T+h]

‖xt(φ, σ)‖∞ ≤ sup
t∈[0,T ]

‖xt(φ, σ)‖∞. (56)

Therefore, from (53) and (56), it follows that

lim sup
h→0+

V2(xh(φ, σs))− V2(φ)

h
≤ 0. (57)

Finally, from (46), (52) and (57), it follows that

D+V (φ) ≤ −1

2
‖φ‖∞. (58)

So the inequality (ii) is satisfied with α3 = 1
2 . The proof of the necessity part is complete. The proof of

Theorem 2 is complete.
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9 Proof of Theorem 3

Proof. We prove first that the theorem holds with bounded piecewise continuous inputs. For this, let x0 ∈ C,
σ ∈ S be fixed and let u be a piecewise continuous function such that ‖u‖∞ ≤ v, for a suitable v ≥ 0. Let
x(·, x0, u, σ) be the corresponding solution in a maximal interval [0, b), 0 < b ≤ +∞ (this is guaranteed using
the same arguments as in Lemma 1). Knowing that system (8), with u ≡ 0, is PC-0-GES, then, thanks to
Theorem 2, there exist a globally Lipschitz functional V : C → R+, with Lipschitz constant α4 > 0, such
that inequalities (i) and (ii) of Theorem 2 hold. Let w : [0, b)→ R+ be the function which is defined in [0, b)
as

w(t) = V (xt(x0, u, σ)), t ∈ [0, b).

The function w is continuous in [0, b). In addition, for t ∈ [0, b), we have

D+w(t) = lim sup
h→0+

w(t+ h)− w(t)

h

= lim sup
h→0+

V (xt+h(x0, u, σ))− V (xt(x0, u, σ))

h

≤ lim sup
h→0+

V (xh(xt(x0, u, σ), 0, σ(t+ ·)))− V (xt(x0, u, σ))

h

+ lim sup
h→0+

V (xt+h(x0, u, σ))− V (xh(xt(x0, u, σ), 0, σ(t+ ·)))
h

≤ −α3‖xt(x0, u, σ)‖∞ + α4lmax{‖xt(x0, u, σ)‖p∞, 1}v.

Let ω ∈ K∞ defined by ω(s) = α3

2lα4
min{s, s1−p}. Let us introduce the set I = {ϕ is continuous : V (ϕ) ≤

α2ω
−1(v)}. Following the same reasoning as in [21], we obtain that the set I is forward invariant. Now,

suppose that x0 /∈ I and let c ≥ 0 be defined as follows

c =

{
b if xt /∈ I,∀t ∈ [0, b),
t̄ if xt /∈ I,∀t ∈ [0, t̄) and xt̄ ∈ I.

(59)

On one hand, we have

|x(t, x0, u, σ)| ≤ α2

α1
e−

α3
2α2

t‖x0‖∞, ∀t ∈ [0, c). (60)

On the other hand, we have

|x(t, x0, u, σ)| ≤ α2

α1
ω−1(v), ∀t ∈ [c, b). (61)

Therefore, the following inequality holds

|x(t, x0, u, σ)| ≤ β(‖x0‖∞, t) + γ(v), ∀t ∈ [0, b), (62)

with β(s, t) = α2

α1
e−

α3
2α2

ts and γ(s) = α2

α1
ω−1(s). Using the same arguments as in the proof of Theorem (2),

it follows that b = +∞. By causality arguments, it follows that, for any x0 ∈ C, σ ∈ S and any piecewise
continuous function u inequality (9) holds with the previously defined functions β and γ. �
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