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In this paper we characterize the global asymptotic and exponential stability of nonlinear switching retarded systems through direct and converse Lyapunov-Krasovskii theorems. Thanks to these theorems, a link between the exponential stability of an unforced switching retarded system and the input-to-state stability property is obtained. An example illustrating the applicability of our results is given.

Introduction

A significative research has been devoted around the stability property of switching systems (see, e.g., [START_REF] Sun | Stability theory of switched dynamical systems[END_REF]). Many sufficient conditions based on the existence of common Lyapunov functions [START_REF] Wijesuriya | A converse Lyapunov theorem for a class of dynamical systems which undergo switching[END_REF] or multiple Lyapunov functions [START_REF] Michael | Multiple Lyapunov functions and other analysis tools for switched and hybrid systems[END_REF] are developed. Theses two approaches have been extended to switching retarded systems (see, e.g., [START_REF] Liu | Dynamics of delayed switched nonlinear systems with applications to cascade systems[END_REF][START_REF] Viet | New results on exponential stability and passivity analysis of delayed switched systems with nonlinear perturbations[END_REF][START_REF] Zhang | Absolute exponential stability of switched nonlinear time-delay systems[END_REF] and references therein). Another interesting approach called trajectory based approach [START_REF] Mazenc | Trajectory based approach for the stability analysis of nonlinear systems with time delays[END_REF] is also investigated in the context of switching retarded systems (see, e.g., [START_REF] Ahmed | Dynamic output feedback stabilization of switched linear systems with delay via a trajectory based approach[END_REF][START_REF] Mazenc | Stability and robustness analysis for switched systems with time-varying delays[END_REF]). In [START_REF] Liu | Dynamics of delayed switched nonlinear systems with applications to cascade systems[END_REF] the authors study the robustness of exponential stability of a class of nonlinear retarded switching systems to some specific class of perturbations. The key point is the existence of a common Lyapunov-Krasovskii functional for the nominal switching system, i.e. the non-perturbed one. In [START_REF] Mazenc | Stability and robustness analysis for switched systems with time-varying delays[END_REF], based on a multiple Lyapunov functions approach, the authors study the asymptotic stability and robustness properties of nonlinear retarded switching systems. The key assumption in [START_REF] Mazenc | Stability and robustness analysis for switched systems with time-varying delays[END_REF] is the existence of multiple Lyapunov functions with some weak properties.

The utility of converse Lyapunov theorems is well known in the literature of non-switching control systems. For example, converse Lyapunov theorems are the main tool for characterizing input-to-state stability and proving robust stability properties (see [START_REF] Lin | A smooth converse Lyapunov theorem for robust stability[END_REF] for systems described by ordinary differential equations, and [START_REF] Pepe | Converse Lyapunov-Krasovskii theorems for systems described by neutral functional differential equations in Hale's form[END_REF][START_REF] Pepe | Lyapunov-Krasovskii characterization of the input-to-state stability for neutral systems in Hale's form[END_REF][START_REF] Yeganefar | Input-to-state stability of time-delay systems: a link with exponential stability[END_REF] for systems described by retarded and neutral functional differential equations). Converse theorems are also developed for switching systems. The existence of a common Lyapunov function is actually equivalent to the uniform global asymptotic stability of finite-dimensional switching systems (see, e.g., [START_REF] Wijesuriya | A converse Lyapunov theorem for a class of dynamical systems which undergo switching[END_REF][START_REF] Jose | A converse Lyapunov theorem for nonlinear switched systems[END_REF]). Converse like results are also obtained for infinite-dimensional switching systems (see, e.g., [START_REF] Haidar | Converse Lyapunov theorems for infinite-dimensional nonlinear switching systems[END_REF][START_REF] Falk | Converse Lyapunov theorems for switched systems in Banach and Hilbert spaces[END_REF][START_REF] Mironchenko | Non-coercive Lyapunov functions for infinite-dimensional systems[END_REF]).

Converse theorems have been recently developed in [START_REF] Haidar | Converse Lyapunov-Krasovskii theorems for uncertain retarded differential equations[END_REF] for linear retarded switching systems. Thanks to these theorems, sufficient conditions for the stability of interconnected linear uncertain delay systems are given in [START_REF] Haidar | Stability of interconnected uncertain delay systems: a converse Lyapunov approach[END_REF]. Converse like results are not yet developed for nonlinear retarded switching systems. In this paper we develop theorems characterizing the global asymptotic and exponential stability of such systems through the existence of a common Lyapunov-Krasovskii functional. These theorems are obtained 2 Switching retarded systems

Notation

By R we denote the set of real numbers, R + the set of non-negative real numbers and R the extended real line.

Given ∆ > 0, C = (C([-∆, 0], R n ), • ∞ ) denotes the Banach space of continuous functions mapping [-∆, 0] into R n , where • ∞ is the norm of uniform convergence. For a function x : [-∆, b) → R n , with 0 < b ≤ +∞, for t ∈ [0, b), x t : [-∆, 0] → R n denotes the history function defined by x t (θ) = x(t + θ), -∆ ≤ θ ≤ 0. For a positive real H and given φ ∈ C, C H (φ) denotes the subset {ψ ∈ C : φ -ψ ∞ ≤ H}. We simply denote C H (0) by C H . A function α : R + → R + is said to be of class K if it is continuous, strictly increasing and α(0) = 0; it is said to be of class K ∞ if it is of class K and unbounded. A continuous function β : R + × R + → R + is said to be of class KL if β(•, t) is of class K for each t ≥ 0 and, for each s ≥ 0, β(s, •)
is nonincreasing and converges to zero as t tends to +∞.

Definitions and assumptions

Let us consider the switching system described by the following retarded functional differential equation

Σ : ẋ(t) = f σ(t) (x t ), a.e. t ≥ 0, x(θ) = x 0 (θ), θ ∈ [-∆, 0], (1) 
where: x(t) ∈ R n ; n is a positive integer; ∆ is a positive real (the maximum involved time-delay); x 0 ∈ C is the initial condition; the function σ : R + → S is the switching signal; S is a nonempty subset of R D ; D is a positive integer. We introduce the following assumption.

Assumption 1. For each s ∈ S, f s (0) = 0. Moreover, f s is uniformly (with respect to s ∈ S) Lipschitz on bounded subsets of C, i.e., for any H > 0 there exists L H > 0 such that

|f s (φ) -f s (ψ)| ≤ L H φ -ψ ∞ , ∀φ, ψ ∈ C H , ∀s ∈ S. (2) 
In addition, the switching signal σ(•) satisfies the following assumption:

Assumption 2. The switching signal σ : R + → S is piecewise constant.

Let us denote by S the set of all functions σ : R + → S satisfying Assumption 2. The following lemma discusses the existence and uniqueness of the solution of system Σ as well as its continuous dependence on the initial state.

Lemma 1. For any x 0 ∈ C and σ ∈ S, there exists, uniquely, an absolutely continuous solution

x(t, x 0 , σ) of Σ in a maximal time interval [0, b), with 0 < b ≤ +∞. If b < +∞, then the solution is unbounded in [0, b).
Moreover, for any ε > 0, for any c ∈ (0, b), there exists δ > 0 such that, for any φ ∈ C δ (x 0 ), the solution x(t, φ, σ) exists in [0, c] and, furthermore, the following inequality holds

|x(t, x 0 , σ) -x(t, φ, σ)| ≤ ε, ∀ t ∈ [0, c]. (3) 
Proof. The proof is straightforward from the theory of systems described by RFDEs (see, e.g. [START_REF] Hale | Introduction to functional differential equations[END_REF]).

Definition 1. We say that the system Σ is PC-0-GAS if there exist a function β ∈ KL such that, for any x 0 ∈ C and σ ∈ S, the corresponding solution exists in R + and, furthermore, satisfies the inequality

|x(t, x 0 , σ)| ≤ β( x 0 ∞ , t). (4) 
Definition 2. We say that the system Σ is PC-0-GES if there exist positive reals M and λ such that, for any x 0 ∈ C and σ ∈ S, the corresponding solution exists in R + and, furthermore, satisfies the inequality

|x(t, x 0 , σ)| ≤ M e -λt x 0 ∞ . (5) 
Notice, from Definitions 1 and 2, that here we deal with stability properties which are uniform with respect to both the initial condition x 0 in compact sets and the switching signals σ ∈ S.

Let us recall the following definition about Driver's form derivative of a continuous functional V : C → R + . This definition is a variation of the one given in [START_REF] Driver | Existence and stability of solutions of a delay-differential system[END_REF][START_REF] Pepe | On Liapunov-Krasovskii functionals under Carathéodory conditions[END_REF], for retarded functional differential equations without switching.

Definition 3. For a continuous functional V : C → R + , its Driver's form derivative, D + V : C → R, is defined, for the switching system Σ, for φ ∈ C, as follows,

D + V (φ) = sup s∈S lim sup h→0 + V (φ Σ,s h ) -V (φ) h , (6) 
where φ Σ,s h ∈ C is defined, for h ∈ [0, ∆) and θ ∈ [-∆, 0], as follows

φ Σ,s h (θ) = φ(θ + h), θ ∈ [-∆, -h) φ(0) + (θ + h)f s (φ), θ ∈ [-h, 0]. ( 7 
)
3 Converse theorems by common Lyapunov-Krasovskii functionals

The following theorems provide necessary and sufficient conditions for the PC-0-GAS and PC-0-GES properties of system Σ.

Theorem 1. System Σ is PC-0-GAS if and only if there exist a functional V : C → R + , Lipschitz on bounded subsets of C, and functions α 1 , α 2 ∈ K ∞ , α 3 ∈ K such that the following inequalities hold for any φ ∈ C

(i) α 1 (|φ(0)|) ≤ V (φ) ≤ α 2 ( φ ∞ ), (ii) D + V (φ) ≤ -α 3 (|φ(0)|).
Theorem 2. System Σ is PC-0-GES if and only if there exist a functional V : C → R + , Lipschitz on bounded subsets of C, and positive reals α 1 , α 2 , α 3 and p, such that the following inequalities hold for any φ ∈ C

(i) α 1 φ p ∞ ≤ V (φ) ≤ α 2 φ p ∞ , (ii) D + V (φ) ≤ -α 3 φ p ∞ .
If, in addition, f s , for s ∈ S, is uniformly globally Lipschitz then V is globally Lipschitz.

Application to input-to-state stability of switching retarded systems

Consider the following switching retarded system

ẋ(t) = f σ(t) (x t , u(t)), a.e. t ≥ 0, x(θ) = x 0 (θ), θ ∈ [-∆, 0], (8) 
where u : R + → R m is a piecewise continuous function which represents the input of the system and

f s : C × R m → R n , for s ∈ S, is uniformly Lipschitz on bounded subsets of C × R m , with f (0, 0) = 0.
Thanks to Theorem 2, we give a link between the input-to-state stability of system [START_REF] Haidar | Converse Lyapunov-Krasovskii theorems for uncertain retarded differential equations[END_REF] and the exponential stability of the unforced system. Firstly, let us recall the following standard definition (see [START_REF] Sontag | Comments on integral variants of ISS[END_REF]).

Definition 4. We say that system (8) is input-to-state stable if there exist a function β ∈ KL and a function γ ∈ K such that, for any x 0 ∈ C, any piecewise continuous input u and any σ ∈ S, the corresponding solution exists in R + and, furthermore, satisfies the inequality

|x(t, x 0 , u, σ)| ≤ β( x 0 ∞ , t) + γ( u [0,t) ∞ ). (9) 
We have the following theorem (inspired by [START_REF] Yeganefar | Input-to-state stability of time-delay systems: a link with exponential stability[END_REF]).

Theorem 3. Let system (8) with u ≡ 0 be PC-0-GES. If there exist positive reals L and l and a nonnegative real p < 1 such that:

1) ∀φ, ψ ∈ C, ∀u ∈ R m , ∀s ∈ S, the following holds

|f s (φ, u) -f s (ψ, u)| ≤ L φ -ψ ∞ ; (10) 
2) ∀φ ∈ C, ∀u ∈ R m , ∀s ∈ S, the following holds

|f s (φ, u) -f s (φ, 0)| ≤ l max{ φ p ∞ , 1}|u|; (11) 
then system (8) is input-to-state stable.

Example

Consider the neural network with constant delays

ẋ(t) = Ax(t) + g(x t ), (12) 
where

A = diag(a 1 , • • • , a n ), with a i < 0 for i ∈ {1, • • • , n}
, and the nonlineartiy g : C → R n is given by

g i (ϕ) = n j=1 b ij f j (ϕ j (-τ ij )), (13) 
where

b ij ∈ R, τ ij ∈ [0, ∆], for some ∆ > 0, for i, j ∈ {1, • • • , n}. Assumption 3. For each i ∈ {1, • • • , n} the function f i is globally Lipschitz with Lipschitz constant µ i > 0.
If the following condition is satisfied

a i + n j=1 µ j |b ij | < 0, for i = 1, • • • , n, (14) 
it has been proven in [START_REF] Cao | Global exponential stability and periodicity of recurrent neural networks with time delays[END_REF] that system ( 12) is globally exponentially stable. System ( 12) is useful in many applications such as signal processing, robotics and neurosciences. However, in general, the delays and even the vector field g may depend on different uncertain parameters and it is more suitable to consider a perturbed switching neural network with uncertain time-varying delays instead of constant ones. For this, let us consider the following modified perturbed system

ẋ(t) = Ax(t) + g σ(t) (x t , u(t)), (15) 
where σ : R + → S is a piecewise constant switching signal, u : R + → R m is a piecewise continuous input and, for each fixed mode s ∈ S, the nonlineartiy

g s : C × R m → R n is given, for (φ, u) ∈ C × R m , by g i,s (ϕ, u) = n j=1 b ij f j,s (ϕ j (-τ ij,s )) + u i , (16) 
where

f j,s ∈ {f 1 , • • • , f n } and τ ij,s ∈ [0, ∆], for all i, j ∈ {1, • • • , n}.
As said previously, if condition ( 14) is satisfied then system ( 12) is globally exponentially stable. Therefore, by [START_REF] Pepe | Converse Lyapunov-Krasovskii theorems for systems described by neutral functional differential equations in Hale's form[END_REF]Theorem 2.5], there exists a globally Lipschitz functional V : C → R + with Lipschitz constant α 4 > 0 such that the inequalities (i) and (ii) of Theorem 2 hold with p = 1. Computing the Driver's derivative of V along the trajectories of the switching system [START_REF] Liu | Dynamics of delayed switched nonlinear systems with applications to cascade systems[END_REF], in the case when u ≡ 0, gives

D + V (ϕ) = sup s∈S lim sup h→0 + V (ϕ (15),s h ) -V (ϕ) h ≤ -α 3 ϕ ∞ + sup s∈S lim sup h→0 + V (ϕ (15),s h ) -V (ϕ (12) h ) h ≤ -α 3 ϕ ∞ + α 4 sup s∈S lim sup h→0 + ϕ (15),s h -ϕ (12) h ∞ h ≤ -α 3 ϕ ∞ + 2μα 4 n i=1   n j=1 |b ij |   2 ϕ ∞ , where μ = max{µ 1 , • • • , µ n }.
By consequence, by Theorem 2, in addition to condition [START_REF] Lin | A smooth converse Lyapunov theorem for robust stability[END_REF], if the Lipschitz constants µ i , for i ∈ {1, • • • , n}, are sufficiently small, then the global exponential stability of the nonperturbed system (15), i.e. with u ≡ 0, is preserved. In particular, if α 4 is known, sufficient condition for the global exponential stability of the non-perturbed system ( 15) is given by condition ( 14) together with the following inequality

μ n i=1   n j=1 |b ij |   2 < α 3 2α 4 . (17) 
In this case, thanks to Theorem 3, we have that the perturbed switching uncertain delay system (15) is input-to-state stable.

Conclusions

In this paper we establish converse Lyapunov-Krasovskii theorems regarding global asymptotic and exponential stability of nonlinear retarded switching systems. These theorems are obtained for switching systems with piecewise constant switching signals. A link between input-to-state stability and exponential stability is given. An example discussing the applicability of our results is presented.

Lemma 2. There exists a continuous increasing function L : R + → R + such that, for any φ, ψ ∈ C, the following inequality holds

|f s (φ) -f s (ψ)| ≤ L( φ ∞ + ψ ∞ ) φ -ψ ∞ , ∀s ∈ S. ( 18 
)
Lemma 3. Suppose that system Σ is PC-0-GAS. Let L be a continuous increasing function as depicted in Lemma 2. Let L : R + → R + be the function defined as

L(r) = L(2β(r, 0)), r ∈ R + , (19) 
where the function β is given in Definition 1. Then, for any t ∈ R + , for any σ ∈ S, and for any φ, ψ ∈ C, the following inequality holds

x t (φ, σ) -x t (ψ, σ) ∞ ≤ e L( φ ∞+ ψ ∞ )t φ -ψ ∞ . ( 20 
)
The following lemma is given in [START_REF] Sontag | Comments on integral variants of ISS[END_REF].

Lemma 4. [24, Proposition 7] For a given function β ∈ KL, there exist two functions α 1 , α 2 ∈ K ∞ , such that:

β(r, t) ≤ α -1 1 (e -2t α 2 (r)), r ≥ 0, t ≥ 0. ( 21 
)
The proof of the following lemma follows the same methodology as in [START_REF] Karafyllis | Lyapunov theorems for systems described by RFDEs[END_REF][START_REF] Pepe | Converse Lyapunov-Krasovskii theorems for systems described by neutral functional differential equations in Hale's form[END_REF].

Lemma 5. Suppose that system Σ is PC-0-GAS. Let, for any positive integer q, U q : C → R + be the functional defined, for all φ ∈ C, by

U q (φ) = sup t≥0,σ∈S max 0, α 1 ( x t (φ, σ) ∞ ) - 1 q e t , (22) 
where α 1 is defined in Lemma 4. Let G : R + × Z + → R + be the function defined as

G(r, q) = (1 + qα 2 (r)) (L(2r)+1) , r ∈ R + , q ∈ Z + , ( 23 
)
where L is as depicted in Lemma 3 and α 2 is defined in Lemma 4. Then, for any positive integer q, we have:

1) max 0, α 1 ( φ ∞ ) -1 q ≤ U q (φ) ≤ α 2 ( φ ∞ ), ∀ φ ∈ C;
2) U q (x τ (φ, σ)) ≤ e -τ U q (φ), ∀ τ ≥ 0, σ ∈ S, φ ∈ C;

3) for any positive real H, for any φ, ψ ∈ C H , the following inequality holds

|U q (φ) -U q (ψ)| ≤ G(H, q) φ -ψ ∞ .
Proof. Let, for any positive integer q and any fixed σ ∈ S, U σ q : C → R + be the functional defined, for all φ ∈ C, by

U σ q (φ) = sup t≥0 max 0, α 1 ( x t (φ, σ) ∞ ) - 1 q e t . ( 24 
)
Following the same steps as in the proof of [12, Theorem 2.9], we have

max 0, α 1 ( φ ∞ ) - 1 q ≤ U σ q (φ) ≤ α 2 ( φ ∞ ), (25) 
for any φ ∈ C and any σ ∈ S. Knowing that the left and right hand sides of inequalities (25) are independent from σ, the inequalities in 1) follow directly from (25) by applying the supremum over σ ∈ S. Moreover, as far as the inequality in 2) is concerned, for any τ ≥ 0, any φ ∈ C, and any fixed σ, σ ∈ S, we have,

U σ q (x τ (φ, σ)) = sup t≥0 max 0, α 1 ( x t (x τ (φ, σ), σ) ∞ ) - 1 q e t ≤ sup t≥0,σ∈S max 0, α 1 ( x t+τ (φ, σ) ∞ ) - 1 q e t . ≤ e -τ sup t≥0,σ∈S max 0, α 1 ( x t (φ, σ) ∞ ) - 1 q e t .
= e -τ U q (φ).

Inequality 2) follows from ( 26) by applying the supremum over σ ∈ S. As far as the point 3) is concerned, let H be a positive real and let φ, ψ ∈ C H . Following the same steps as in the of [12, Theorem 2.9], we have

|U σ q (φ) -U σ q (ψ)| ≤ G(H, q) φ -ψ ∞ , ∀ σ ∈ S. (26) 
By consequence, knowing that the right hand side of inequality ( 27) is independent from σ, we have

|U q (φ) -U q (ψ)| = sup σ∈S U σ q (φ) -sup σ∈S U σ q (ψ) ≤ sup σ∈S U σ q (φ) -U σ q (ψ) ≤ G(H, q) φ -ψ ∞ . ( 27 
)
The proof of the lemma is complete.

Proof of Theorem 1

Now we prove the sufficiency part of Theorem 

D + w(t) = lim sup h→0 + w(t + h) -w(t) h = lim sup h→0 + V (x t+h (x 0 , σ)) -V (x t (x 0 , σ)) h = lim sup h→0 + V (x t (x 0 , σ)) Σ,σ(t) h -V (x t (x 0 , σ)) h ≤ sup s∈S lim sup h→0 + V (x t (x 0 , σ)) Σ,s h -V (x t (x 0 , σ)) h = D + V (x t (x 0 , σ)). ( 28 
)
By inequality (ii), it follows from (28) that

D + w(t) ≤ -α 3 (|x(t, x 0 , σ)|) ≤ 0, ∀ t ∈ [0, b). ( 29 
)
Since w is continuous, it follows from [START_REF] Hagood | Recovering a function from a dini derivative[END_REF] that

w(t) ≤ w(0), ∀ t ∈ [0, b). ( 30 
)
Finally, from (30) and the inequalities (i), we obtain

|x(t, x 0 , σ)| ≤ α -1 1 • α 2 ( x 0 ∞ ), ∀ t ∈ [0, b). (31) It follows, from Lemma 1, that b = +∞. So, for any ε > 0, if δ = α -1 2 • α 1 (ε), x 0 ∞ ≤ δ implies |x(t, x 0 , σ)| ≤ ε,
for t ≥ 0. Now, by analogous reasoning as in [START_REF] Hale | Introduction to functional differential equations[END_REF], let H be a positive real. Let ε be an arbitrary positive real. We wish to show that there exists a positive real T such that, for any σ ∈ S, for any x 0 ∈ C H , the inequality |x(t, x 0 , σ)| ≤ ε holds for all t ≥ T . Notice that, for any σ ∈ S and for any x 0 ∈ C H , by (31), the following inequality holds

x t (x 0 , σ) ∞ ≤ H + α -1 1 • α 2 (H), ∀ t ≥ 0. ( 32 
) Let δ = α -1 2 • α 1 (ε). Let k be the smallest integer satisfying k ≥ Γα 2 (H) δα 3 ( δ 2 ) + 1,
where

Γ = max    sup s∈S, φ∈C H+α -1 1 •α 2 (H) |f s (φ)|, 2δ ∆    . ( 33 
)
From ( 32) and ( 33), it follows that, for any s ∈ S and any x 0 ∈ C H , |f s (x t (x 0 , σ))| ≤ Γ, for any t ≥ 0. Let T = 2k∆. Let x 0 ∈ C H and let σ ∈ S. Then, if the corresponding solution satisfies x τ (x 0 , σ) ∞ ≤ δ, for some τ ∈ [0, T ], the inequality |x(t, x 0 , σ)| ≤ ε holds, ∀ t ≥ T . Provided that σ is fixed in S, the existence of such τ can be proved by following the same reasoning as in [START_REF] Hale | Introduction to functional differential equations[END_REF], and the proof of the sufficiency part is complete, since T does not depend on σ.

Let us prove now the necessity part. Let V : C → R + be the functional defined, for φ ∈ C, as

V (φ) = +∞ q=1 2 -q 1 + G(q, q) U q (φ), ( 34 
)
where G : R + × Z + → R + is the function defined in [START_REF] Pepe | Lyapunov-Krasovskii characterization of the input-to-state stability for neutral systems in Hale's form[END_REF] and U q : C → R + are the functionals defined in [START_REF] Pepe | Converse Lyapunov-Krasovskii theorems for systems described by neutral functional differential equations in Hale's form[END_REF]. Using the same reasoning as in the proof of [START_REF] Pepe | Converse Lyapunov-Krasovskii theorems for systems described by neutral functional differential equations in Hale's form[END_REF]Lemma A.8] we have that the inequalities (i) hold true. Now, we prove that the inequality (ii) holds. Let, for s ∈ S, σ s ∈ S be defined, for t ∈ R + , as σ s (t) = s. For any φ ∈ C, the following inequalities hold

D + V (φ) = sup s∈S lim sup h→0 + V (φ Σ,s h ) -V (φ) h = sup s∈S lim sup h→0 + V (x h (φ, σ s )) -V (φ) h = sup s∈S lim sup h→0 + +∞ q=1 2 -q 1 + G(q, q) (U q (x h (φ, σ s ) -U q (φ)) h ≤ sup s∈S lim sup h→0 + +∞ q=1 2 -q 1 + G(q, q) U q (φ) e -h -1 h = sup s∈S lim sup h→0 + e -h -1 h V (φ) = -V (φ) ≤ -α 1 ( φ ∞ ).
So the inequality (ii) is satisfied with the K ∞ function α 3 (s) = α 1 (s). The fact that the functional V is Lipschitz on bounded subsets of C follows exactly the same lines of the proof of [START_REF] Pepe | Converse Lyapunov-Krasovskii theorems for systems described by neutral functional differential equations in Hale's form[END_REF]Lemma A.8]. The proof of the necessity part is complete. The proof of Theorem 1 is complete.

Proof of Theorem 2

We prove first the sufficiency part. Let x 0 ∈ C and let σ ∈ S. Let x(•, x 0 , σ) be the corresponding solution in a maximal interval [0, b), 0 < b ≤ +∞. Let w : [0, b) → R + be the function which is defined in [0, b) as

w(t) = V (x t (x 0 , σ)), t ∈ [0, b).
Following the same reasoning as in the proof of the sufficiency part of Theorem 1 and using inequalities (i) and (ii), we obtain

D + w(t) ≤ -α 3 x t (x 0 , σ) p ∞ ≤ - α 3 α 2 w(t), ∀ t ∈ [0, b). ( 35 
)
Since w is continuous, it follows from [START_REF] Hagood | Recovering a function from a dini derivative[END_REF] that

w(t) ≤ e -α 3 α 2 t w(0), ∀ t ∈ [0, b). (36) 
Finally, from (36) and the inequalities (i), we obtain

|x(t, x 0 , σ)| ≤ α 2 α 1 1 p e -α 3 pα 2 t x 0 ∞ , ∀ t ∈ [0, b). (37) 
It follows, from Lemma 1, that b = +∞, and, given the arbitrarity of x 0 ∈ C and σ ∈ S, the PC-0-GES property of the system Σ is proved. The proof of the sufficiency part of the theorem is complete. Let us prove now the necessity part. Let M ≥ 1 and λ be the positive reals such that, for any x 0 ∈ C and σ ∈ S, the following inequality holds

|x(t, x 0 , σ)| ≤ M e -λt x 0 ∞ . (38) 
By analogous reasoning as in [START_REF] Nikolay | Stability of motion[END_REF], let T = 1 λ ln(2M ). Let V : C → R + be the functional defined, for φ ∈ C, as follows

V (φ) = sup σ∈S T 0 x t (φ, σ) ∞ dt + sup σ∈S sup t∈[0,T ] x t (φ, σ) ∞ . (39) 
Let us prove, first, that the functional V is Lipschitz on bounded subsets of C. For this, let H be any positive real and let φ, ψ ∈ C H . Let

A = sup σ∈S T 0 x t (φ, σ) ∞ dt -sup σ∈S T 0 x t (ψ, σ) ∞ dt (40) 
and B = sup

σ∈S sup t∈[0,T ] x t (φ, σ) ∞ -sup σ∈S sup t∈[0,T ] x t (ψ, σ) ∞ . (41) 
We have

|A| ≤ sup σ∈S T 0 | x t (φ, σ) ∞ -x t (ψ, σ) ∞ |d ≤ sup σ∈S T 0 x t (φ, σ) -x t (ψ, σ) ∞ dt (42) 
From Lemma 3 and inequality (42) it follows that

|A| ≤ sup σ∈S T 0 e L( φ ∞ + ψ ∞)T φ -ψ ∞ dt ≤ T e L(4M H)T φ -ψ ∞ .
Moreover, as far as the term B is concerned, we have, taking into account [START_REF] Pepe | On Liapunov-Krasovskii functionals under Carathéodory conditions[END_REF],

|B| ≤ sup σ∈S sup t∈[0,T ] x t (φ, σ) ∞ -sup t∈[0,T ] x t (ψ, σ) ∞ ≤ sup σ∈S sup t∈[0,T ] | x t (φ, σ) ∞ -x t (ψ, σ) ∞ | ≤ sup σ∈S sup t∈[0,T ] x t (φ, σ) -x t (ψ, σ) ∞ ≤ e L(4M H)T φ -ψ ∞ .
Finally, we have the following inequalities

|V (φ) -V (ψ)| ≤ |A| + |B| ≤ (1 + T )e L(4M H)T φ -ψ ∞ .
So, the Lipschitz property of the functional V , on bounded subsets of C, is proved. Observe that if f s , s ∈ S, is uniformly globally Lipschitz then V is globally Lipschitz. Now, we prove that the inequalities (i) and (ii) hold. The first inequality in (i) is satisfied with α 1 = 1. As far as the second inequality in (i) is concerned, the following inequalities hold, for any φ ∈ C,

V (φ) ≤ sup σ∈S T 0 M e -λt φ ∞ dt + sup σ∈S sup t∈[0,T ] M e -λt φ ∞ ≤ T 0 M e -λt dt + M φ ∞ . (43) 
So, the second inequality in (i) is satisfied with

α 2 = T 0 M e -λt dt + M . As far as the inequality (ii) is concerned, let V 1 : C → R + and V 2 : C → R + be defined, for φ ∈ C, as V 1 (φ) = sup σ∈S T 0 x t (φ, σ) ∞ dt (44) V 2 (φ) = sup σ∈S sup t∈[0,T ] x t (φ, σ) ∞ . (45) 
Let, for s ∈ S, σ s ∈ S be defined, for t ∈ R + , as σ s (t) = s. The following inequality holds, for any φ ∈ C

D + V (φ) ≤ sup s∈S lim sup h→0 + V 1 (x h (φ, σ s )) -V 1 (φ) h + lim sup h→0 + V 2 (x h (φ, σ s )) -V 2 (φ) h . ( 46 
)
As far as the first limit in the right-hand side of the inequality in (46) is concerned, let us define, for given s ∈ S, and for given positive real h, the set M h,s S as follows (see, [START_REF] Falk | Converse Lyapunov theorems for switched systems in Banach and Hilbert spaces[END_REF])

M h,s S = {σ ∈ S : σ(t) = s, ∀ t ∈ [0, h)}. (47) 
So, we have the following equalities/inequality,

V 1 (φ) = sup σ∈S T 0 x t (φ, σ) ∞ dt (48) = sup σ∈S h 0 x t (φ, σ) ∞ dt + T h x t (φ, σ) ∞ dt ≥ sup σ∈M h,s S h 0 x t (φ, σ) ∞ dt + T h x t (φ, σ) ∞ dt = h 0 x t (φ, σ s ) ∞ dt + sup σ∈M h,s S T h x t (φ, σ) ∞ dt.
Furthermore, we have the following equalities/inequality

V 1 (x h (φ, σ s )) = sup σ∈S T 0 x t (x h (φ, σ s ), σ) ∞ dt = sup σ∈M h,s S T +h h x t (φ, σ) ∞ dt (49) ≤ sup σ∈M h,s S T h x t (φ, σ) ∞ dt + sup σ∈M h,s S T +h T x t (φ, σ) ∞ dt.
So, from (48) and (49), it follows that

V 1 (φ) ≥ h 0 x t (φ, σ s ) ∞ dt + sup σ∈M h,s S T h x t (φ, σ) ∞ dt ≥ h 0 x t (φ, σ s ) ∞ dt + V 1 (x h (φ, σ s )) -sup σ∈M h,s S T +h T x t (φ, σ) ∞ dt. (50) 
From, (50), the following inequality holds

V 1 (x h (φ, σ s )) -V 1 (φ) ≤ sup σ∈M h,s S T +h T x t (φ, σ) ∞ dt - h 0 x t (φ, σ s ) ∞ dt. (51) 
Finally, from (51), the following equalities/inequalities hold for the first limit in the right-hand side of ( 46)

lim sup h→0 + V 1 (x h (φ, σ s )) -V 1 (φ) h ≤ lim sup h→0 + 1 h T +h T M e -λt φ ∞ dt - h 0 x t (φ, σ s ) ∞ dt = -1 -M e -λT φ ∞ = - 1 2 φ ∞ . (52) 
As far as the second limit in the right-hand side of the inequality in ( 46) is concerned, we have lim sup

h→0 + V 2 (x h (φ, σ s )) -V 2 (φ) h ≤ lim sup h→0 + 1 h sup σ∈S sup t∈[0,T ] x t+h (φ, σ) ∞ -sup σ∈S sup t∈[0,T ] x t (φ, σ) ∞ ≤ lim sup h→0 + 1 h sup σ∈S sup t∈[0,T +h] x t (φ, σ) ∞ -sup t∈[0,T ] x t (φ, σ) ∞ . (53) 
Since, for any σ ∈ S, the following inequalities hold sup t∈[T,T +h]

x t (φ, σ) ∞ ≤ M e -λT φ ∞ = 1 2 φ ∞ , (54) 
sup

t∈[0,T ] x t (φ, σ) ∞ ≥ φ ∞ , (55) 
it follows that, for any σ ∈ S, the following inequality holds

sup t∈[h,T +h] x t (φ, σ) ∞ ≤ sup t∈[0,T ] x t (φ, σ) ∞ . (56) 
Therefore, from (53) and (56), it follows that lim sup

h→0 + V 2 (x h (φ, σ s )) -V 2 (φ) h ≤ 0. (57) 
Finally, from (46), ( 52) and (57), it follows that

D + V (φ) ≤ - 1 2 φ ∞ . (58) 
So the inequality (ii) is satisfied with α 3 = 1 2 . The proof of the necessity part is complete. The proof of Theorem 2 is complete.

Proof of Theorem 3

Proof. We prove first that the theorem holds with bounded piecewise continuous inputs. For this, let x 0 ∈ C, σ ∈ S be fixed and let u be a piecewise continuous function such that u ∞ ≤ v, for a suitable v ≥ 0. Let x(•, x 0 , u, σ) be the corresponding solution in a maximal interval [0, b), 0 < b ≤ +∞ (this is guaranteed using the same arguments as in Lemma 1). Knowing that system [START_REF] Haidar | Converse Lyapunov-Krasovskii theorems for uncertain retarded differential equations[END_REF], with u ≡ 0, is PC-0-GES, then, thanks to Theorem 2, there exist a globally Lipschitz functional V : C → R + , with Lipschitz constant α 4 > 0, such that inequalities (i) and (ii) of Theorem 2 hold. V (x t+h (x 0 , u, σ)) -V (x t (x 0 , u, σ)) h

≤ lim sup h→0 +

V (x h (x t (x 0 , u, σ), 0, σ(t + •))) -V (x t (x 0 , u, σ)) h

+ lim sup h→0 +
V (x t+h (x 0 , u, σ)) -V (x h (x t (x 0 , u, σ), 0, σ(t + •))) h ≤ -α 3 x t (x 0 , u, σ) ∞ + α 4 l max{ x t (x 0 , u, σ) p ∞ , 1}v.

Let ω ∈ K ∞ defined by ω(s) = α3 2lα4 min{s, s 1-p }. Let us introduce the set I = {ϕ is continuous : V (ϕ) ≤ α 2 ω -1 (v)}. Following the same reasoning as in [START_REF] Pepe | A Lyapunov-Krasovskii methodology for ISS and iISS of time-delay systems[END_REF], we obtain that the set I is forward invariant. Now, suppose that x 0 / ∈ I and let c ≥ 0 be defined as follows t s and γ(s) = α2 α1 ω -1 (s). Using the same arguments as in the proof of Theorem (2), it follows that b = +∞. By causality arguments, it follows that, for any x 0 ∈ C, σ ∈ S and any piecewise continuous function u inequality (9) holds with the previously defined functions β and γ.

1 .

 1 Let x 0 ∈ C and let σ ∈ S. Let x(•, x 0 , σ) be the corresponding solution in a maximal interval [0, b), 0 < b ≤ +∞. Let w : [0, b) → R + be the function which is defined in [0, b) asw(t) = V (x t (x 0 , σ)), t ∈ [0, b).The function w is continuous in [0, b). By[START_REF] Driver | Existence and stability of solutions of a delay-differential system[END_REF][START_REF] Pepe | On Liapunov-Krasovskii functionals under Carathéodory conditions[END_REF], we have, for t ∈ [0, b),

  Let w : [0, b) → R + be the function which is defined in [0, b) as w(t) = V (x t (x 0 , u, σ)), t ∈ [0, b).The function w is continuous in [0, b). In addition, for t ∈ [0, b), we haveD + w(t) = lim sup h→0 + w(t + h) -w(t) h = lim sup h→0 +

≤ α 2 α 1 e -α 3 2α 2 t

 12 c = b if x t / ∈ I, ∀t ∈ [0, b), t if x t / ∈ I, ∀t ∈ [0, t) and xt ∈ I. (59)On one hand, we have|x(t, x 0 , u, σ)| x 0 ∞ , ∀t ∈ [0, c). (60)On the other hand, we have|x(t, x 0 , u, σ)| ≤ α 2 α 1 ω -1 (v), ∀t ∈ [c, b).(61)Therefore, the following inequality holds|x(t, x 0 , u, σ)| ≤ β( x 0 ∞ , t) + γ(v), ∀t ∈ [0, b),(62)with β(s, t) = α2 α1 e -α 3 2α 2

Proof of Theorem 17.1 Preliminary resultsBy exploiting the fact that f s is uniformly (with respect to s ∈ S) Lipschitz on bounded subsets of C, the following two lemmas follows directly from[START_REF] Pepe | Converse Lyapunov-Krasovskii theorems for systems described by neutral functional differential equations in Hale's form[END_REF] Lemma A.4] and[START_REF] Pepe | Converse Lyapunov-Krasovskii theorems for systems described by neutral functional differential equations in Hale's form[END_REF] Lemma A.6], respectively.
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