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TENSOR RANK: MATCHING POLYNOMIALS AND SCHUR
RINGS

DIMA GRIGORIEV, MIKHAIL MUZYCHUK, AND ILYA PONOMARENKO

Abstract. We study the polynomial equations vanishing on tensors of a given

rank. By means of polarization we reduce them to elements A of the group
algebra Q[Sn × Sn] and describe explicit linear equations on the coefficients

of A to vanish on tensors of a given rank. Further, we reduce the study to the

Schur ring over the group Sn × Sn that arises from the diagonal conjugacy
action of Sn. More closely, we consider elements of Q[Sn × Sn] vanishing on

tensor of rank n− 1 and describe them in terms of triples of Young diagrams,

their irreducible characters and nonvanishing of their Kronecker coefficients.
Also, we construct a family of elements in Q[Sn × Sn] vanishing on tensors of

rank n− 1 and illustrate our approach by a sharp lower bound on the border

rank of an explicitly produced tensor. Finally, we apply this construction to
prove a lower bound 5n2/4 on the border rank of the matrix multiplication

tensor (being, of course, weaker than the best known one (2 − ε) · n2, due to
Landsberg, Ottaviani).

1. Introduction

In this paper we propose an approach to producing equations for tensors of a
given rank with the goal of obtaining lower bounds on the rank. We recall (see e.g.
[22, 25, 4, 12, 13]) that the rank rk(A) of a tensor A ∈ U ⊗ V ⊗W is defined to
be the minimal positive integer r such that there exist vectors u(i) ∈ U , v(i) ∈ V ,
w(i) ∈W , i = 1, . . . , r, for which

A =
∑

1≤i≤r

u(i) ⊗ v(i) ⊗ w(i).

(Throughout this paper we assume that the vector spaces U , V and W are defined
over an algebraically closed field of characteristic zero.) Clearly, the concept of the
rank of a tensor generalizes the one of the matrix rank. But unlike the matrix rank
the tensor rank is not semicontinuous. That is why one studies the border rank
rk(A) being the maximal semicontinuous function for which rk(A) ≤ rk(A).

The tensor rank equals the multiplicative complexity of computing a family of
bilinear forms [22]. One of the main inspiring problems in this context is to estimate
the multiplicative complexity of n × n matrix multiplication, that is equal to the
rank rk(Mn) of the structure tensor Mn of the algebra of n× n matrices. The best
known bounds are

2.5 · n2 − 3n ≤ rk(Mn) ≤ O(n2.38),

we refer to [25, 4, 12, 13] for the development and the history of the upper bound,
and to [2] for the lower bound. In [19] it was established a lower bound on the
border rank rk(Mn) ≥ 3n2/2 + n/2 − 1. In [17] the best known current bound
rk(Mn) ≥ (2− ε) · n2 for any ε > 0 was proved.
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Thus, the gap between the upper and lower bounds is big. One of its reasons is
the lack of explicit equations on the variety Tr ⊂ U ⊗ V ⊗W of the tensors with
the border rank less or equal to r. There are several approaches in this direction.

Strassen in [23] has constructed explicit equations on the variety Tr for certain
r’s in the case dim(U) = 3 and dim(V ) = dim(W ) = n. This result was extended in
[15] to more general tensors of order more than 3. Another approach is based on the
general idea of ”embedding” tensors into appropriate matrices (called flattenings)
and estimating the rank of these matrices [16, 14, 7, 17]. A study of the closures
of the GL(U) × GL(V ) × GL(W )-orbits of tensors was proposed first in [24] being
developed further in [5], the recent progress in [6] has allowed one to obtain a bound
close to [19], relying on this study.

A similar problem of estimating the rank for the symmetric product (rather than
the tensor product) was studied e.g. in [18] (see also the numerous references in the
latter paper); earlier a method to obtain lower bound for the rank in this situation
was suggested in [8]. We mention also a topological approach that was proposed
in [9] for a related problem on lower bounds for the complexity of polynomials.

Let us briefly discuss the contents of our paper. In Section 2 we establish a
reduction from general polynomials on tensors A = (Aijk) to the matching poly-
nomials which are homogeneous, and polylinear in a strong sense: the indices of
variables Xijk occuring in any given monomial form a 3-dimensional matching

(1) {(if , ig, ih) : i = 1, . . . , n}

where n is the degree of the matching polynomial, and f, g, h ∈ Sn are permuta-
tions depending on the monomial. One can treat such a matching polynomial on
n × n × n tensors, which vanishes on the rank n − 1 tensors, as a 3-dimensional
analogue of the customary determinant (or more generally, a 3-dimensional sub-
determinant vanishing on tensors of fixed rank r < n). Our reduction is a special
polarization which preserves the property ”to vanish on Tr” . Subsequently, having
a 3-dimensional determinant D one can pass to a polynomial vanishing on Tr for
tensors of a smaller size n1 × n2 × n3 (n1, n2, n3 ≤ n) by means of depolarization
just identifying suitable variables of D. Since the polarization and the depolariza-
tion are transformation being inverse to each other, one may reduce the study of
equations on Tr to matching polynomials.

In its turn the 3-dimensional matchings (1) are in 1-1 correspondence with the
elements (f−1g, f−1h) of the group Sn×Sn. This enables us to identify a matching
polynomial with an element of the group algebra Q[Sn × Sn]. In Section 3 we
describe explicitly (linear) equations on the coefficients of an element of this algebra
that corresponds to a 3-dimensional (sub)determinant vanishing on tensors of rank
at most r. Since these equations, and thereby, their space of solutions

Vn,n−r ⊂ Q[Sn × Sn],

are invariant under the (diagonal) conjugacy action of Sn, the space Vn,n−r is
generated as a right ideal in Q[Sn × Sn] by the intersection Vn,n−r ∩ A where
A ⊂ Q[Sn × Sn] is the Schur ring of this action (see Section 4). Moreover,

Vn,n−r ∩ A =
⊕
π

Vn,n−r ∩ Aπ
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where the direct sum ranges over the irreducible representations of A. Furthermore,
in Section 4 we describe the latter representations in terms of triples of Young
diagrams and nonvanishing of their Kronecker coefficients. Finally, in this section
we provide the conditions (in terms of the Young diagrams) when the depolarization
does not vanish identically.

In Section 5 we study more closely the case of the rank of n × n × n tensors
equal n − 1, and give an explicit criterion for a matching polynomial to be a 3-
dimensional determinant; this criterion is expressed in terms of the triples of Young
diagrams. Also in this section we show that, unfortunately, if a depolarization of
3-dimensional determinant does not vanish on n1 × n2 × n3 tensors, then ni > n/3
for some i ∈ {1, 2, 3}. This implies that in order to obtain nonlinear lower bound
on the tensor rank one should consider elements of Vn,n−r with r < n−1 (perhaps,
with the rank r significantly less than n− 1).

Finally, in Section 5 we construct a particular family of elements in Vn,n−1 which
we apply in Section 6 to yield a (2m+ 1)× (2m+ 1)× (2m+ 1) tensor A such that
rk(A) = rk(A) = 3m. Also as an illustration of our approach we apply in Section 6
the latter construction to get a bound rk(Mn) ≥ 5n2/4 (being, of course, weaker
than the best known bound from [19]).

Notations.
For positive integers m ≤ n we set [m,n] = {m,m+ 1, . . . , n} and [n] = [1, n].
Given a right action of a group G on a set Ω, we write ωg for an image of ω ∈ Ω

under an action of g ∈ G.
The set of all (resp. r-class) partitions of [n] is denoted by Λ(n) (resp. Λ(n, r)).

For the sake of convenience we agree that partitions can contain empty subsets
(in particular, r can be greater than n). In other words, a partition λ ∈ Λ(n, r)
is treated as a map λ : [n] → [r]. To make our notation consistent, we write xλ

instead of λ(x).
The Young diagram of λ ∈ Λ(n) is denoted by [λ]. Clearly, empty subsets from

a partition do not influence on the Young diagram. The set of all Young diagrams
with n nodes is denoted by Λ(n). The Young subgroup of a partition λ ∈ Λ(n) is
denoted by Sλ. Notice that Sλ = {g ∈ Sn | gλ = λ}.

Given a group G and a set H ⊂ G the sum
∑
h∈H h in the group algebra

QG = QG is denoted by H. If H is a subgroup of G, then 1
|H|H is an idempotent

of the group algebra QG denoted by eH . Recall that H ≤ G means that H is a
subgroup of G. The product of two elements x, y ∈ QG is written either as xy or
x · y. The identity of a group G is denoted by 1G.

Inside a group G = S3
n we fix two subgroups: D = {(d, d, d) | d ∈ Sn} and

S = {(1, g2, g3) | g2, g3 ∈ Sn}. Notice that S is normal in G and G = S o D. The
subgroup S is isomorphic to S2

n and we denote by ι : S2
n → S the natural embedding

ι((g2, g3)) = (1, g2, g3).
Given three elements xi =

∑
g∈Sn x

i
gg of a group algebra QSn, we denote by

x1 ⊗ x2 ⊗ x3 the element
∑
g1∈Sn,g2∈Sn,g3∈Sn x

1
g1x

2
g2x

3
g3(g1, g2, g3) ∈ QS3

n.
For a set S the algebra of all rational S × S-matrices is denoted by MatS(Q), or

Matn(Q) if S = [n].
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2. Tensor rank, polarization and matching polynomials

We observe that the variety Tr (see Section 1) is defined over the field Q. There-
fore it suffices to look for polynomials which vanish on Tr with rational coefficients.
Thus throughout the paper we assume that all the polynomials have rational coef-
ficients.

Let P(n1, n2, n3) be the set of all homogeneous polynomials P (X) on n1 × n2 ×
n3 tensors; here X = {Xijk}i∈[n1],j∈[n2],k∈[n3] denotes the set of variables. Our
goal is to find those polynomials P (X) for which P (A) = 0 for all n1 × n2 × n3

tensors A of rank at most r. The linear space of all these polynomials is denoted
by Pr(n1, n2, n3). The key point of our approach to look for elements of this space
is the concept of a matching polynomial introduced below.

Given an arbitrary triple g = (g1, g2, g3) of functions gi : [n]→ [ni], i = 1, 2, 3 we
define

(2) Mg(X) =
n∏
i=1

Xig1 ,ig2 ,ig3 .

In the case when all gi’s are permutations of [n] we call the above product a matching
monomial. Notice that different triples may define the same monomial. More
precisely, we have the following

Lemma 2.1. Given two triples g = (g1, g2, g3) and (h1, h2, h3) of functions, gi, hi :
[n]→ [ni], two monomials Mg(X) and Mh(X) are equal if and only if there exists
a permutation f ∈ Sn such that fgi = hi, i = 1, 2, 3.

Proof. The ”if” direction is trivial. Assume now that Mg(X) = Mh(X). Then
the multisets {(ig1 , ig2 , ig3) | i ∈ [n]} and {(ih1 , ih2 , ih3) | i ∈ [n]} are equal, that is
there exists a bijection between the triples hereby producing the required f ∈ Sn.

It follows from the above statement that matching monomials are in one-to-one
correspondence with the triples g = (1, g2, g3), g2, g3 ∈ Sn:

(3) Mg(X) =
n∏
i=1

Xi ig2 ig3 ,

In what follows we will also abbreviate Mι(g)(X) as Mg(X) where g ∈ S2
n. We say

that P (X) ∈ P(n, n, n) is a (3-dimensional) matching polynomial if it is a linear
combination of matching monomials The linear space of matching polynomials is
denoted by M(n).

Given a monomial M(X) =
∏
ijkX

mijk
ijk ∈ P(n1, n2, n3), define u ∈ Zn1 , v ∈ Zn2

and w ∈ Zn3 as follows us =
∑
jkmsjk, vs =

∑
ikmisk, ws =

∑
ijmijs. The triple

(u, v, w) ∈ Zn1 × Zn2 × Zn3 will be called the multidegree of M(X). Notice that
we always have that

∑
i ui =

∑
j vj =

∑
k wk (it is the degree of M(X)).The

sum of all monomials of a polynomial P (X) ∈ P(n1, n2, n3) that have the same
multidegree is called a multihomogeneous component of P (X). The polynomial
P (X) ∈ P(n1, n2, n3) is multihomogeneous if it has exactly one multihomogeneous
component, (u, v, w); the polynomial P (X) is also called N -uniform where N =∑
i ui.

Polarization. Given an N -uniform polynomial P (X) ∈ P(n1, n2, n3) one can
construct a matching polynomial belonging to M(N) by means of its polarization.
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Since the polarization is a linear operator it suffices to define it on a monomial
M(X) =

∏
ijkX

mijk
ijk ∈ P(n1, n2, n3).

Consider three partitions µ ∈ Λ(N,n1), ν ∈ Λ(N,n2), κ ∈ Λ(N,n3) with the
cardinalities of their classes u, v, w, respectively. Rewrite M(X) as a product (in
an arbitrary order) of N variables Xijk repeating the latter mijk times. Replace
in this product ui occurances of subscript i by different elements of i-th class of
µ (in an arbitrary way); similar for vj occurances of j and ν; and for wk and
κ, respectively. The resulting matching monomial denote by M ∈ M(N). The
polarization of M(X) is defined as
(4)

1∏
1≤i≤n1

ui! ·
∏

1≤j≤n2
vj ! ·

∏
1≤k≤n3

wk!

∑
g1∈Sµ, g2∈Sν , g3∈Sκ

Mg1, g2, g3 ∈M(N)

Example. The polarization of monomial X211X121X112 equals
1
8 (X211X123X332+X211X323X132+X231X123X312+X231X323X112+X213X121X332+

X213X321X132 +X233X121X312 +X233X321X112)

Lemma 2.2. Let P (X) ∈ Pr(n1, n2, n3). Then
(1) each multihomogeneous component of P (X) belongs to Pr(n1, n2, n3),
(2) if P (X) is N -uniform, then the polarization of P (X) belongs to Pr(N,N,N).

Proof. To prove statement (1) take n1 + n2 + n3 new variables ε(u)
su with su ∈ [nu]

and u ∈ [3]. Let us consider

P (. . . , Xijk := Xijk ε
(1)
i ε

(2)
j ε

(3)
k , . . .).

as a polynomial in these variables. The coefficient of this polynomial at the
monomial M =

∏
u,su

(ε(u)
su )d(su,u) coincides with the multihomogeneous compo-

nent of P (X), the multidegree of which is (. . . , d(su, u), . . .) where d(su, u) is the
degree of the variable ε(u)

su in M . Now, since P (X) ∈ Pr(n1, n2, n3), the above co-
efficient at M is equal to zero. This implies that the multihomogeneous component
of P (X) that contains M , vanishes at any n1 × n2 × n3 tensor of rank ≤ r. Thus
each multihomogeneous component of a polynomial P (X) belongs to Pr(n1, n2, n3).

To prove statement (2) denote by Q(Y ) ∈ M(N) the polarization of P (X)
(see (4)). Thus, P (X) is defined on n1×n2×n3 tensors for some integers n1, n2, n3,
while Q(Y ) is defined on N ×N ×N tensors.

Take any N × N × N tensor A of rank ≤ r. Then there exist N -dimensional
vectors X(u), Y (u), Z(u), 1 ≤ u ≤ r such that

(5) Aα,β,γ =
r∑

u=1

X(u)
α Y

(u)
β Z(u)

γ

for all α, β, γ. Denote by µ1, . . . , µn1 ⊆ [N ] the classes of partition µ, respectively
by ν1, . . . , νn2 ⊆ [N ] the classes of partition ν, and by κ1, . . . , κn3 ⊆ [N ] the classes
of partition κ (see (4)).

For non-empty subsets I1 ⊆ µ1, . . . , In1 ⊆ µn1 denote by X(u)(I1, . . . , In1) a
vector of dimension n1 with i-th coordinate equal

∑
α∈Ii X

(u)
α , 1 ≤ i ≤ n1. In a

similar way, for non-empty subsets J1 ⊆ ν1, . . . , Jn2 ⊆ νn2 we define n2-dimensional
vector Y (u)(J1, . . . , Jn2), and for non-empty subsets K1 ⊆ κ1, . . . ,Kn3 ⊆ κn3 we
define n3-dimensional vector Z(u)(K1, . . . ,Kn3). Consider n1 × n2 × n3 tensor
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A(I1, . . . , In1 ; J1, . . . , Jn2 ;K1, . . . ,Kn3) :=∑
1≤u≤rX

(u)(I1, . . . , In1)⊗ Y (u)(J1, . . . , Jn2)⊗ Z(u)(K1, . . . ,Kn3) (cf. (5)). Then

(6) Q(A) =
1∏

1≤i≤n1
ui! ·

∏
1≤j≤n2

vj ! ·
∏

1≤k≤n3
wk!
·

∑
Ii⊆µi,1≤i≤n1; Jj⊆νj ,1≤j≤n2;Kk⊆κk,1≤k≤n3

P (A(I1, . . . , In1 ; J1, . . . , Jn2 ;K1, . . . ,Kn3))

where the summation ranges over non-empty subsets I1, . . . , In1 ; J1, . . . , Jn2 ;K1, . . . ,Kn3 .
Since obviously rk(A(I1, . . . , In1 ; J1, . . . , Jn2 ;K1, . . . ,Kn3)) ≤ r for all subsets I1, . . . , In1 ;
J1, . . . , Jn2 ;K1, . . . ,Kn3 and P (X) ∈ Pr(n1, n2, n3) the right-hand side of (6) van-
ishes, thus we are done.

Depolarization. Given three functions λi : [N ] → [ni], i = 1, 2, 3, one obtains
an algebra epimorphism called (λ1, λ2, λ3)-contraction, from C[Xijk]i∈[N ],j∈[N ],k∈[N ]

onto C[Yijk]i∈[n1],j∈[n2],k∈[n3] via (Xijk)λ1,λ2 λ3 = Yiλ1 jλ2kλ3 . The image of a poly-
nomial P (X) ∈ M(N) will be denoted as Pλ1,λ2,λ3(Y ). Thus, Pλ1,λ2,λ3(Y ) ∈
P(n1, n2, n3).

Lemma 2.3. Let g = (g1, g2, g3), h = (h1, h2, h3) ∈ S3
N be arbitrary elements.

Then
(Mg(X))λ1,λ2 λ3 = (Mh(X))λ1,λ2 λ3 ⇐⇒ DgSλ = DhSλ

where Sλ = Sλ1 × Sλ2 × Sλ3 .

Proof. It follows from

(M(g1,g2,g3)(X))λ1,λ2 λ3 = M(g1λ1,g2λ2,g3λ3)(X),
(M(h1,h2,h3)(X))λ1,λ2 λ3 = M(h1λ1,h2λ2,h3λ3)(X)

and Lemma 2.1 that the proclaimed equality holds if and only if there exists d ∈ SN
such that dgiλi = hiλi holds for each i = 1, 2, 3. This is equivalent to h−1

i dgi ∈ Sλi .
Now the claim follows.

Lemma 2.4. In the above notations P ∈ Pr(N,N,N) ⇒ Pλ1,λ2,λ3 ∈ Pr(n1, n2, n3).

Proof. Given an n1 × n2 × n3 tensor A set

(Aλ1,λ2,λ3)i,j,k = Aiλ1 ,jλ2 ,kλ3 , i, j, k ∈ [N ].

ThenAλ1,λ2,λ3 is anN×N×N tensor, and it is easily seen that rk(A) = rk(Aλ1,λ2,λ3).
It follows immediately from the definition of a (λ1, λ2, λ3)-contraction that

Pλ1,λ2,λ3(A) = P (Aλ1,λ2,λ3)

and we are done.

For any multihomogeneous polynomial P (X) the result of its polarization with
a subsequent depolarization such that partitions µ = {λ−1

1 (1), . . . , λ−1
1 (n1)}; ν =

{λ−1
2 (1), . . . , λ−1

2 (n2)}; κ = {λ−1
3 (1), . . . , λ−1

3 (n3)} coincides with P (X) since the
depolarization of each term from the sum (4) coincides with M(X). Therefore, any
multihomogeneous polynomial from Pr(n1, n2, n3) can be obtained as the depolar-
ization of a certain matching polynomial from Pr(N,N,N) where N is the degree
of the polynomial due to statement (2) of Lemma 2.2.
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3. A reduction to the group algebra of Sn × Sn
Throughout the section we fix a number d ∈ [n]. Under a defect d cubic deter-

minant we mean any matching polynomial belonging the set Pn−d(n, n, n). This
name is justified since such a polynomial vanishes at any tensor of the rank less or
equal to n − d (generalizing polynomials in matrices). A transition from M(n) to
the group algebra QS2

n is provided by the linear space isomorphism

Fn :M(n)→ QS2
n,

∑
g∈S2

n

a(g)Mg 7→
∑
g∈S2

n

a(g)g.

The vector space M(n) has a natural structure of a QS3
n-module via the action of

S3
n on matching monomials defined by (Ms(X))g = Msg(X). Writing a matching

monomial in a reduced form Ms, s ∈ S we obtain

M
(g1,g2,g3)
(1,s2,s3) (X) = M(g1,s2g2,s3g3)(X) = M(1,g−1

1 s2g2,g
−1
1 s3g3)(X).

Thus the action of S3
n on matching monomials is equivalent to the action of S3

n on
Sn × Sn definied by the formula

(7) (s2, s3)(g1,g2,g3) = (g−1
1 s2g2, g

−1
1 s3g3).

Thus the permutation module arising from this action is isomorphic to M(n) and
the subspace Vn,d = Fn(Pn−d(n, n, n)) ⊆ QS2

n is a QS3
n-submodule.

The action (7) is faithful and transitive. The normal subgroup S of S3
n acts

regularly on S2
n and can be identfied with the right regular action of S2

n. The point
stabilizer of (1, 1) coincides with the diagonal subgroup D ≤ S3

n. Thus S3
n = SoD

and each element g ∈ S3
n has a unique decomposition into a product g = δs with

δ ∈ D and s ∈ S. Using this decompsition one can describe the above action (7)
by the formula

(8) ι(χg) = δ−1ι(χ)δs, where χ ∈ QS2
n.

The module corresponding to the action (7) is isomorphic (as a QS3
n-module) to

the right ideal generated by D (because D is a point stabilizer of the action). A
direct check shows that the linear map Φ defined by the formula

Φ(D(g1, g2, g3)) = (g−1
1 g2, g

−1
1 g3)

is an isomorphism between two QS3
n-modules: D · (QS3

n) and QS2
n
∼=M(n). Since

G = S o D, each element of the ideal D · (QS3
n) has a unique presentation as a

product Dι(χ) with χ ∈ QS2
n. This yields the following formula

Φ(Dι(χ) · g) = χg.

For each g ∈ Sn we define ∆1(g) = (g, g),∆2(g) = (g, 1),∆3(g) = (1, g). Notice
that each ∆i : QSn → Q(Sn × Sn) is an algebra monomorphism. The importance
of these monomorphisms follows from the following identity

Φ(x(g1, g2, g3)) = ∆1(g−1
1 )Φ(x)∆2(g2)∆3(g3), x ∈ D ·QG.

This identity implies that for any x ∈ D · QG and arbitrary triple of elements
a, b, c ∈ QSn it holds that

(9) Φ(x · (a⊗ b⊗ c)) = ∆1(a−1)Φ(x)∆2(b)∆3(c).
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Lemma 3.1. Let χ ∈ QS2
n and P (X) = F−1

n (χ) =
∑
g∈S2

n
χ(g)Mg(X). Then P is

a cubic determinant of defect d if and only if χ is a solution of the following system
of linear equations:

(10) S2
λ · χ = 0, λ ∈ Λ(n, r)

where S2
λ = Sλ × Sλ and r = n− d.

Proof. To prove the sufficiency suppose that χ is a solution of system (10). Take
an n×n×n tensor A of rank ≤ r. Then there exist n-vectors X(u), Y (u) and Z(u),
u = 1, . . . , r, such that

Aijk =
r∑

u=1

X
(u)
i Y

(u)
j Z

(u)
k , i, j, k ∈ [n].

Without loss of generality we can assume that the elements of the vectors X(u), Y (u)

and Z(u) are independent pairwise commuting variables. Then P (A) is a polynomial
on these variables, and for any monomial Mg(X), g ∈ S2

n, of the polynomial P (X)
we have (see (3)):

Mg(A) =
n∏
v=1

( r∑
u=1

X
(u)
v Y

(u)
vg1 Z

(u)
vg2

)
.

This implies that any monomial of the polynomial Mg(A), and hence any monomial
of the polynomial P (A), is uniquely determined by a map θ : [n]→ [r], in terms of
which this monomial can be written as follows:

M(g, θ) =
n∏
v=1

X
(θ(v))
v Y

(θ(v))
vg1 Z

(θ(v))
vg2 .

Though not all of these monomials are distinct, we have

(11) P (A) =
∑
g∈S2

n

χ(g)Mg(X) =
∑
g∈S2

n

∑
θ:[n]→[r]

χ(g)M(g, θ)

where χ(g) is the coefficient of χ at g. For any two functions θ, µ : [n]→ [r] the prod-
ucts

∏
vX

θ(v)
v ,

∏
vX

µ(v)
v are equal if and only if θ = µ. Therefore two monomials

M(g, θ) and M(g′, θ′) are equal if and only if θ = θ′, g−1
1 θ = g′1

−1
θ′, g−1

2 θ = g′2
−1
θ′.

This shows that
M(g, θ) = M(g′, θ) ⇐⇒ g′ ∈ S2

λg.

where λ is the partition of [n] with r′ ≤ r non-empty classes θ−1(i), i ∈ [r].

Thus given a right S2
λ-coset C in the group S2

n, the monomial M(g, θ) does not
depend on g ∈ C; we denote it by M(C, λ). Then by (11) we obtain that

P (A) =
∑
λ∈Λr

∑
C∈Cλ

∑
g∈C

χ(g)M(C, λ) =
∑
λ∈Λr

∑
C∈Cλ

∑
g∈C

χ(g)

M(C, λ)

where Cλ is the set of all S2
λ-cosets in S2

n, and Λr is the set of all partitions of [n]
into at most r classes. Thus P is of defect d if and only if for any χ the following
condition holds:

(12) ∀λ ∈ Λr ∀C ∈ Cλ
∑
g∈C

χ(g) = 0.
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In its turn, (12) is equivalent to the following one

∀λ ∈ Λr S2
λ · χ = 0.

Therefore to finish the proof it remains to show that

(13) ∀λ ∈ Λr S2
λ · χ = 0 ⇐⇒ ∀λ ∈ Λ(n, r) S2

λ · χ = 0.

One direction follows immediately from the inclusion Λ(n, r) ⊆ Λr. To prove the
other direction pick an arbitrary λ ∈ Λr. There exists a refinement µ ∈ Λ(n, r) of
λ. Then S2

µ ≤ S2
λ, implying S2

λ · S
2
µ = kS2

λ with k = |Sµ|2. Now we obtain

S2
µ · χ = 0⇒ S2

λ · S
2
µ · χ = 0⇒ kS2

λ · χ = 0⇒ S2
λ · χ = 0.

Lemma 3.1 shows that Vn,d coincides with the solutions of the linear system
defined by (10). Clearly that Vn,d set is a right ideal of the group algebra QS2

n.
Lemma 3.2 below enables us to reduce the system (10) to a single linear equation
by means of the element

(14) ζ = ζn,d =
∑

λ∈Λ(n,n−d)

S2
λ.

For every partititon λ ∈ Λ(n) and a permutation g ∈ Sn, it holds that g−1Sλg =
Sg−1λ. This implies

(g, g)−1ζ(g, g) =
∑

λ∈Λ(n,n−d)

S2
g−1λ = ζ.

Therefore the coefficients of ζ are constant on the orbits of the coordinatewise
conjugacy action of Sn on S2

n.

To compute the element ζn,1, we note that every partition λ ∈ Λ(n, n − 1) has
exactly one class of size 2 and n−2 singleton classes. Therefore S2

λ is a Klein group
whose non-identity elements are (t, t), (1n, t) and (t, 1n) for some transposition
t ∈ Sn where 1n is the identity permutation in Sn. It follows that

(15) ζn,1 =
(
n

2

)
1n + C1 + C2 + C3

where C1 = Diag(T × T ), C2 = {1n} × T and C3 = T × {1n} with T = Tn being
the set of transpositions in Sn.

Lemma 3.2. In the above notations Vn,d = {χ ∈ QS2
n : ζ · χ = 0}.

Proof. Clearly, ζ · χ = 0 for all χ ∈ Vn,d. Conversely, let χ ∈ QS2
n be such that

ζ · χ = 0. We have to verify that S2
λ · χ = 0 for all λ ∈ Λ(n, r) where r = n − d.

However,

(16) ζ · χ = 0 ⇒ 〈ζ · χ, χ〉 = 0 ⇒
∑

λ∈Λ(n,r)

〈S2
λ · χ, χ〉 = 0

where 〈·, ·〉 is the standard scalar product in QS2
n. Since S2

λ is a subgroup of S2
n,

the quadratic form 〈S2
λ · χ, χ〉 is positive semidefinite. Hence the right-hand side

equation in (16) implies that 〈S2
λ · χ, χ〉 = 0, and hence S2

λ ·χ = 0 for all λ ∈ Λ(n, r).
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We complete the section by giving a necessary and sufficient condition for a
matching polynomial to have a nonzero contraction in terms of the Young subgroups
of the corresponding partitions. For an element χ ∈ QS2

n set

χλ1,λ2,λ3 = ∆1(Sλ1
) · χ ·∆2(Sλ2

) ·∆3(Sλ3
).

This element will be called the (λ1, λ2, λ3)-contraction of χ.

Lemma 3.3. Let P ∈ M(n), χ = Fn(P ) and λ1, λ2, λ3 ∈ Λn. Then for Sλ =
Sλ1 × Sλ2 × Sλ2 we have

Pλ1,λ2,λ3 6= 0 ⇐⇒ D · ι(χ) · Sλ 6= 0⇐⇒ χλ1,λ2,λ3 6= 0.

Proof. It is enough to prove the first equivalence, since the second one follows
from (9):

Φ(D·ι(χ)·Sλ) = ∆1(Sλ1
)·Φ(D·ι(χ))·∆2(Sλ2

)·∆3(Sλ3
) = ∆1(Sλ1

)·χ·∆2(Sλ2
)·∆3(Sλ3

).

By the definition of the mapping Fn we have

P (X) =
∑
g∈S2

n

χ(g)Mg(X) =
∑
g∈S2

n

χ(g)Mι(g)(X)⇒

P (X)(λ1,λ2,λ3) =
∑
g∈S

χ(ι−1(g))Mg(X)(λ1,λ2,λ3).

By Lemma 2.1 Mg(X)(λ1,λ2,λ3) = Mh(X)(λ1,λ2,λ3) iff DgSλ = DhSλ. Thus the
monomial Mh(X)(λ1,λ2,λ3) does not depend on a choice of h in the double coset
C = DgSλ. Denoting this monomial by MC(Y ) we can write1

P (X)(λ1,λ2,λ3) =
∑

C∈D\S/Sλ

 ∑
g∈C∩S

χ(ι−1(g))

MC(Y ).

Let cg, g ∈ S3
n denote the number of pairs (d, h) ∈ D×Sλ satisfying dgh = g. Notice

that cg = cg′ for any g′ ∈ DgSλ, and, cg = |D||Sλ|
|DgSλ| . Thus D · g · Sλ = |D||Sλ|

|DgSλ|DgSλ
implying

D ·ι(χ) ·Sλ = D ·

∑
g∈S

χ(ι−1(g))g

 ·Sλ =
∑

C∈D\S/Sλ

|D||Sλ|
|C|

 ∑
g∈C∩S

χ(ι−1(g))

C.

Now it follows from |D||Sλ|
|C| > 0 that both expressions P (X)(λ1,λ2,λ3) and D ·ι(χ)·Sλ

are nonzero simultenously.

4. A decomposition of the cubic determinant space via a Schur ring

Throughout this section we fix positive integers n and d ∈ [n], and set V = Vn,d.

The ideal D · QG is generated by an idempotent eD = 1
|D|D. Therefore, its

ring of endomorphisms coincides with eD(QG)eD. In order to describe the image
Φ(eD(QG)eD) inside QS2

n we introduce the vector space A spanned by the sim-
ple quantities sD, s = (s2, s3) ∈ S2

n. Recall that sD = {sd | d ∈ D} and by (8)
(s2, s3)(g,g,g) = (g−1s2g, g

−1s3g). Notice that the diagonal subgroup D acts on S2
n

as an automorphism group and A = {χ ∈ QS2
n | ∀d∈D χd = χ}. In other words, A

1Below D\S/Sλ stands for the set of double cosets DsSλ, s ∈ S.
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is a D-fixed point subalgebra of QS2
n. This algebra is also a Schur ring (see [26,

Chapter IV]) which arises from the action of QS3
n on S2

n.

Lemma 4.1. A = Φ(eD(QS2
n)eD) and Φ̃ = |D|Φ is an algebra isomorphism be-

tween eD(QS2
n)eD and A.

Proof. We can replace eD(QS2
n)eD by D(QG)D, because those subspaces are equal.

Pick an arbitrary s ∈ S2
n. Then

Φ(Dι(s)D) =
∑
d∈D

Φ(Dι(s)d) =
∑
d∈D

sd ∈ A

implyingA = Φ(D(QG)D) (recall that the elementsDι(s)(D), s ∈ S2
n spanD(QG)D).

To prove that Φ̃ is an isomorphism it is sufficient to show that

Φ̃(xy) = Φ̃(x)Φ̃(y)

holds for any pair x, y of the form x = Dι(s)D, y = Dι(t)D where s, t ∈ S2
n. First

we notice that for any r ∈ S2
n it holds that

Dι(r)D = D

(∑
d∈D

d−1ι(r)d

)
= D

(∑
d∈D

ι(rd)

)
= |CD(r)| ·D · ι(rD),

where CD(r) = {d ∈ D | rd = r}. Thus Φ̃(x) = |D||CD(s)|sD and Φ̃(y) =
|D||CD(t)|tD. Now we have

Φ̃(xy) = |D|((Dι(s)D)(Dι(t)D)) = |D|2Φ(Dι(s)Dι(t)D) =

|D|2|CD(t)|Φ(Dι(s)Dι(tD)) = |D|2|CD(t)||CD(s)|Φ(Dι(sD)ι(tD)) =

= |D|2|CD(t)||CD(s)|Φ(Dι(sD · tD)) = |D|2|CD(t)||CD(s)|sD · tD = Φ̃(x)Φ̃(y)

The statement below gives a characterization of QS3
n-submodules of QS2

n.

Lemma 4.2. A vector subspace W ⊆ QS2
n is a QS3

n-submodule iff it is a D-
invariant right ideal of the group algebra QS2

n.

Proof. follows immediately from (7).

Since V is a QS3
n submodule of QS2

n, it is a D-invariant right ideal of the group
algebra QS2

n.
Since QS2

n is a semisimple module of QS3
n, the submodule V is a direct sum

of irreducible ones. In order to study irreducible components of QS2
n we will use

the algebra A. Denote by Irr(A) the set of all Q-irreducible characters of A. As
we will see below (Lemma 4.4) these characters are absolutely irreducible. By the
Wedderburn theorem this implies that

(17) A =
⊕

π∈Irr(A)

Aπ

where Aπ is a simple algebra isomorphic to Matnπ (Q) with nπ = π(1S2
n
). The

following statement shows how the space of cubic determinants of defect d can be
constructed from spaces V ∩ Aπ where V = Vn,d.
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Lemma 4.3. Let W ⊆ QS2
n be a QS3

n-submodule. Then the linear space W is
generated (as a right ideal of the algebra QS2

n) by the linear space W ∩A. Moreover,

(18) W ∩ A =
⊕

π∈Irr(A)

W ∩ Aπ.

Proof. Since QS3
n is a semisimple algebra, every QS3

n-module is a direct sum of
the irreducible ones. Thus it is enough to prove the statement for irreducible
submodules. Let now assume that W is irreducible (minimal) submodule of QS2

n.
Applying module isomorphism Φ−1 we obtain that J = Φ−1(W ) is a minimal right
ideal of R = QS3

n contained in eDR. It follows from semisimplicity of R that J = eR
for some idempotent e ∈ R. The inclusion eDR ⊇ eR implies eDe = e. An element
eeD is non-zero, because eeDe = e 6= 0. Now, by minimality of J = eR, we obtain
eeDR = eR. Together with eeD ∈ (eDReD ∩ J) this implies (eDReD ∩ J)R = J .
In other words, the set eDReD ∩ J generate J as ideal. Applying now Φ to both
sides, we conclude that Φ(eDReD) ∩W = A ∩W generate W as a QS3

n-module,
that is W = Span{(A ∩W )g | g ∈ S3

n}. Now it follows from (A ∩W )D = A ∩W
that W = (A∩W )(QS2

n). To prove the second statement we note that W ∩A is a
right A-ideal. Therefore (18) immediately follows from (17).

Given a character π ∈ Irr(A) denote by eπ the central primitive idempotent2

of the algebra A that corresponds to π. Then Aπ = eπ · A. Therefore to study
the linear space V ∩ Aπ we find the explicit expression for the idempotent eπ in
terms of the irreducible characters of the group Sn. For this purpose let us fix some
notations. First, given ρ ∈ Irr(Sn) we denote by eρ the central primitive idempotent
of the algebra QSn that corresponds to ρ.3 The rationality of ρ implies that

(19) eρ =
ρ(1n)
n!
·
∑
g∈Sn

ρ(g)g.

Second, given any two irreducible characters µ, ν ∈ Irr(Sn) we have µ ·ν =
∑
ρ k

ρ
µ,νρ

where ρ runs over the set Irr(Sn) and kρµ,ν is a nonnegative integer called the Kro-
necker coefficient [3].

Lemma 4.4. Given a character π ∈ Irr(A) there exist uniquely determined char-
acters ρ, µ, ν ∈ Irr(Sn) such that kρµ,ν 6= 0 and eπ = eρ,µ,ν where

(20) eρ,µ,ν = ∆1(eρ) ·∆2(eµ) ·∆3(eν).

Proof. By Lemma 4.1 eπ = Φ̃(f) for some central idempotent f ∈ eD(QG)eD. Pick
a primitive central idempotent g of the algebra (1− eD)(QS2

n)(1− eD). Then f + g
is a primitive central idempotent of QS3

n and f = (f + g)eD. Since each primitive
central idempotent of QS3

n has a form eπ′ for some π′ ∈ Irr(S3
n), we conclude that

f = eDeπ′ .
Notice that eDeπ′ 6= 0 if and only if

∑
g∈D π

′(g) 6= 0. Each irreducible char-
acter π′ of QS3

n is a tensor product of irreducible characters ρ, µ, ν of Sn, that is

2Recall that a central idempotent is called primitive if it cannot be decomposed into anorthog-

onal sum central idempotents.
3Here and below we are working in the algebra QSn, because the irreducible representations

of Sn over Q are absolutely irreducible.
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π′((g1, g2, g3)) = ρ(g1)µ(g2)ν(g3) and eπ′ = eρ ⊗ eµ ⊗ eν . Therefore eDeπ′ 6= 0 if
and only if

0 6=
∑
d∈Sn

π′((d, d, d)) =
∑
d∈Sn

ρ(d)µ(d)ν(d) = n!κρµ,ν .

Thus eπ = Φ̃(eD(eρ ⊗ eµ ⊗ eν)) = ∆1(eρ)∆2(eµ)∆3(eν).

Let us consider the contraction of a cubic determinants (see Section 2 and
Lemma 3.3). For this purpose denote by λρ the Young diagram corresponding
a character ρ ∈ Irr(Sn), and for a partition λ ∈ Λ(n) by πλ the permutation char-
acter of the group Sn acting on the right cosets of Sλ by multiplications. Then by
[11, Corollary 2.2.22] we have

(21) 〈πλ, ρ〉 6= 0 ⇔ λρ D [λ]

where D denotes the partial order on Λ(n) in which λ D µ (λ dominates µ) if and
only if for all i the inequality

∑i
j=1 λj ≥

∑i
j=1 µj holds.

Lemma 4.5. Given ρ, λ, µ ∈ Irr(Sn) and λ1,λ2,λ3 ∈ Λ(n) set e = eρ,µ,ν and set
Λi = {λi ∈ Λ(n) : [λi] = λi}, i = 1, 2, 3. Then

(1) if λ1 6D λρ or λ2 6D λµ or λ3 6D λν , then χλ1,λ2,λ3 = 0 for all χ ∈ eQS2
n

and all λi ∈ Λi,
(2) if λ1 D λρ and λ2 D λµ and λ3 D λν and kρµ,ν 6= 0, then eλ1,λ2,λ3 6= 0 for

some λi ∈ Λi.

Proof. To prove statement (1) suppose that λ1 6D λρ or λ2 6D λµ or λ3 6D λν .
Then by (21) for any partitions λ1 ∈ Λ1, λ2 ∈ Λ2 and λ3 ∈ Λ3 we have

〈πλ1 , ρ〉 = 0 or 〈πλ2 , µ〉 = 0 or 〈πλ3 , ν〉 = 0.

On the other hand, the idempotents of the algebra QSn corresponding the permu-
tation characters πλ1 , πλ2 and πλ3 coincide up to multiple 1/a

λ
where a

λ
= |Sλ1 |,

with the elements Sλ1
, Sλ2

and Sλ3
respectively. Thus one of the elements Sλ1

· eρ,
Sλ2
· eµ, Sλ3

· eν is equal to 0. Therefore due to (20) for any g ∈ S2
n we obtain that

(e · g)λ1,λ2,λ3 = ∆1(Sλ1eρ) ·∆2({g1} · Sλ2eµ) ·∆3({g2} · Sλ3eν) = 0

(here we used the facts that the elements ∆2(X) and ∆3(Y ) commute each to other
for all X,Y ∈ QSn, and that the elements eρ, eµ and eν belong to the center of the
algebra QSn). Now, statement (1) follows from Lemma 3.3.

To prove statement (2) suppose that λ1 D λρ and λ2 D λµ and λ3 D λν . Then
again as above from (21) it follows that∑

λ1

Sλ1 · eρ = a
λ
· eρ,

∑
λ2

Sλ2 · eµ = a
λ
· eµ,

∑
λ3

Sλ3 · eν = a
λ
· eρ,

where λi runs over all the partitions in Λi. Since kνρ,µ 6= 0 by Lemma 4.4 we have

0 6= a3
λ
eλ1,λ2,λ3 =

∑
λ1

∆1(Sλ1 · eρ) ·
∑
λ2

∆2(Sλ2 · eµ) ·
∑
λ3

∆3(Sλ3 · eν).

Since any element of the form ∆1(Sλ1 ·eρ)·∆2(Sλ2 ·eµ)·∆3(Sλ3 ·eν) is an idempotent
in QS2

n, at least one of them is not zero, and we are done.

It is easily seen that any (λ1, λ2, λ3)-contraction of the element eρ,µ,ν is a nonneg-
ative multiple of an idempotent of the algebra QS2

n. Therefore under the condition
of statement (2) of Lemma 4.5 the sum of all (λ1, λ2, λ3)-contractions of eρ,µ,ν is
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not zero. Thus, summing up the results from Lemmas 4.3, 4.4 and 4.5 we come to
the following statement.

Theorem 4.6. The linear space Vn,d is generated as a right ideal of the algebra
QS2

n by the sets

Vρ,µ,ν = {χ ∈ Aρ,µ,ν : ζn,d · eρ,µ,ν · χ = 0}

where ρ, µ, ν run over the set Irr(Sn) with kρµ,ν 6= 0. In particular, Vρ,µ,ν = Aρ,µ,ν if
and only if eρ,µ,ν ∈ Vn,d. In the latter case the sum of all (λ1, λ2, λ3)-contractions
of the element eρ,µ,ν is not zero whenever the partitions λ1, λ2 and λ3 have the
same Young diagram and this diagram dominates the diagrams λρ, λµ and λµ.

Given a Young diagram λ denote by r(λ) the number of rows of λ. Then it
is easily seen that λ D µ only if r(λ) ≤ r(µ). Therefore the following statement
immediately follows from statement (1) of Lemma 4.5.

Corollary 4.7. Let ρ, µ, ν ∈ Irr(Sn) and λ1, λ2, λ3 ∈ Λ(n). Then any cubic deter-
minant inM(n) that corresponds to an element of Vρ,µ,ν has a nonzero (λ1, λ2, λ3)-
contraction only if r(λ1) ≤ r(λρ), r(λ2) ≤ r(λµ) and r(λ3) ≤ r(λν).

5. Cubic determinants of defect 1

In this section we refine Theorem 4.6 for the case d = 1. To compute the elements
ζ · eπ with ζ = ζn,1 and π ∈ Irr(A) we need the following auxiliary lemma.

Lemma 5.1. Let C and ρ be a conjugacy class and an irreducible character of Sn,
respectively. Then

(1) C · eρ = |C|ρ(g)
ρ(1n) eρ for any g ∈ C,

(2) ∆i(C) ·∆j(eρ) = ∆j(eρ) ·∆i(C) for i, j = 1, 2, 3.

Proof. To prove statement (1) 4 we note that the element C belongs to the center
of the group algebra QSn. Therefore χ := C · eρ = a · eρ for some a ∈ Q. After
comparing the coefficients in both sides of the latter equality at 1n, we get that
a = χ(1n)/eρ(1n). However, by (19) we have

χ(1n) = |C|ρ(g)
ρ(1n)
n!

and eρ(1n) =
(ρ(1n))2

n!
where g ∈ C. Thus a = |C|ρ(g)/ρ(1n) and we are done.

Statement (2) is obvious whenever {i, j} ⊂ {2, 3} or i = j = 1. Suppose that
i = 1 and j = 2 (the remaining three cases are proved in a similar way). Then

n!
ρ(1n)

∆1(C) ·∆2(eρ) =
∑
g∈C

∑
h∈Sn

ρ(h)(g, gh) =
∑
g∈C

∑
h′∈Sn

ρ(g−1h′g)(g, h′g) =

∑
g∈C

∑
h′∈Sn

ρ(h′)(g, h′g) =
n!

ρ(1n)
∆2(eρ) ·∆1(C)

whence the required statement follows.

4Although this statement is a direct consequence of (7.11), [1], we give here a direct proof to
make the text self-contained.
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Below given three irreducible characters ρ, µ, ν ∈ Irr(Sn) we set

q(ρ, µ, ν) =
ρ(2n)
ρ(1n)

+
µ(2n)
µ(1n)

+
ν(2n)
ν(1n)

where 2n = (1, 2) is the transposition in Sn.

Theorem 5.2. Let V = Vn,1 and A = An. Then

V ∩ A =
⊕

π: eπ∈V
Aπ.

Moreover, eπ = eρ,µ,ν ∈ V if and only if q(ρ, µ, ν) = −1.

Proof. Set ζ = ζn,1 and T = Tn. Then by (15) we have

ζ =
(
n

2

)
1n + ∆1(T ) + ∆2(T ) + ∆3(T ).

By Lemma 4.4 given a character π ∈ Irr(A) there exist characters ρ, µ, ν ∈ Irr(Sn)
such that eπ = ∆1(eρ) ·∆2(eµ) ·∆3(eν). Now by Lemma 5.1 we have

ζ · eπ =
((

n

2

)
1n + ∆1(T ) + ∆2(T ) + ∆3(T )

)
·∆1(eρ) ·∆2(eµ) ·∆3(eν) =(

n

2

)
eπ+∆1(Teρ)·∆2(eµ)·∆3(eν)+∆1(eρ)·∆2(Teµ)·∆3(eν)+∆1(eρ)·∆2(eµ)·∆3(Teν) =(
n

2

)
eπ +

|T |ρ(2n)
ρ(1n)

eπ +
|T |µ(2n)
µ(1n)

eπ +
|T |ν(2n)
ν(1n)

eπ =
(
n

2

)
(1 + q(ρ, µ, ν)) eπ.

This proves the second statement, and by Theorem 4.6 also the first one.

As an immediate consequence of Theorem 5.2 and Lemma 4.4 we obtain the
following statement.

Corollary 5.3. The linear space Vn,1 is generated as a right ideal of the algebra
QS2

n by the set of all elements ∆1(eρ) ·∆2(eµ) ·∆3(eν) where ρ, µ, ν ∈ Irr(Sn) are
such that kρµ,ν 6= 0 and q(ρ, µ, ν) = −1.

Example: The symmetric group S4 has 5 irreducible representations; denote
them by χi, i = 1, . . . , 5. The values χi(2n) and χi(1n) for all i are given in the
following table (here and below we use tables from [11]):

i 1 2 3 4 5
χi(1n) 1 3 2 3 1
χi(2n) 1 1 0 −1 −1
λχi [4] [3, 1] [2, 2] [2, 1, 1] [14]

A direct check shows that q(χi, χj , χk) = −1 for 1 ≤ i ≤ j ≤ k ≤ 5 only if (i, j, k)
is one of the following triples: (1, 5, 5), (3, 3, 5), (2, 4, 5) and (4, 4, 4). In all these
cases kχkχi,χj = 1. Thus

V4,1 = V1,5,5 ⊕ V5,1,5 ⊕ V5,5,1⊕
V3,3,5 ⊕ V3,5,3 ⊕ V5,3,3⊕
V2,4,5 ⊕ V2,5,4 ⊕ V4,2,5 ⊕ V4,5,2 ⊕ V5,2,4 ⊕ V5,4,2⊕
V4,4,4

where Vi,j,k is the right ideal eχi,χj ,χkQ(S4 × S4). The dimensions of the ideals in
the first row are 1, in the second - 4, in the third - 9 and in the fourth - 27.
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Let ρ ∈ Irr(Sn) and λ = λρ. Then (see the remark in the proof of Theorem 3.5
of [21])

(22)
ρ(2n)
ρ(1n)

=
1(
n
2

) ∑
i

((
λi
2

)
−
(

λ′i
2

))
where λi (resp. λ′i) is the size of the ith row (resp. the ith column) of λ. The
negative part of the sum in the right-hand side of this equality is more or equal
than the ratio −λ′1/n: this bound is obtained by maximizing

∑
i(λ
′
i)

2 provided
that λ′1 ≥ λ′2 ≥ · · · ≥ 0 and

∑
i λ
′
i = n. Applying this bound to each summand of

q(ρ, µ, ν) we come to the following statement.

Lemma 5.4. Given ρ, µ, ν ∈ Irr(Sn) we have q(ρ, µ, ν) = −1 only if at least one of
the diagrams λρ, λµ, λν has at least bn/3c rows.

It is not so difficult to construct infinite families of triples ρ, µ, ν ∈ Irr(Sn) for
which q(ρ, µ, ν) = −1. For example a straightforward computation by formula (22)
shows that if all the diagrams λρ, λµ, λν are hooks (resp. rectangles), then an
infinite family is defined by the condition r(ρ) + r(µ) + r(ν) = 2n + 1 (resp. the
conditions r(ρ) = r(µ) = n/2 and r(ν)(r(ν)−3) = n). However, even in these rather
simple cases almost nothing is known on the Kronecker coefficients kνρ,µ (see [3]).

We complete the section by giving an explicit construction of a family of cubic
determinants of defect 1. Take an arbitrary partition [n] = I ∪ J ∪K, and denote
by λI , λJ and λK the partitions of [n] into |I| + 1, |J | + 1 and |K| + 1 classes
containing as a class respectively the complements to the sets I, J and K. The
following lemma shows that the cubic determinant corresponding to the element

(23) D(I, J,K) = ∆1(χ
I
) ·∆2(χ

J
) ·∆3(χ

K
)

with

χ
I

=
∑
g∈SλI

(−1)sgn(g)g, χ
J

=
∑
g∈SλJ

(−1)sgn(g)g, χ
K

=
∑

g∈SλK

(−1)sgn(g)g,

is of defect 1.

Lemma 5.5. For a partition [n] = I ∪ J ∪K set χ = D(I, J,K). Then χ 6= 0 and
(1) χ ∈ Vn,1,
(2) χλ1,λ2,λ3 = 0 for all λ1, λ2, λ3 ∈ Λ(n, r) with r < 2n/3.

Proof. It is easily seen that the coefficient of the element χ at the identity is equal
to 1. Therefore χ 6= 0. Next, by the definition of Vn,1 to prove statement (1) it
suffices to check that given a transposition t = (i, j) ∈ Sn we have

∆2(T ) ·∆3(T ) · χ = 0

where T = {1n, t}. Suppose first that {i, j} 6⊂ J ∪ K, say i does not belong to
J ∪K. Then given a permutation f ∈ SλI the element j is not contained in one of
the sets Jf

−1
or Kf−1

. In the former case, {i, j}∩J = ∅, and hence (f+ tf)χ
J

= 0,
whereas in the latter case {i, j} ∩K = ∅, and hence (f + tf)χ

K
= 0. Thus in any

case

∆2(T ) ·∆3(T ) ·∆1(f) ·∆2(χ
J
) ·∆3(χ

K
) = ∆2((f + tf)χJ) ·∆3(f + tf)χK) = 0
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for all f ∈ SλI , and we are done. To complete the proof of (1) let us assume that
{i, j} ⊂ J ∪K. Then by a direct computation we obtain

∆2(T ) ·∆3(T ) · χ
I

= χ′ ·∆1(T · χ
I
) = 0,

because of T · χI = 0 where χ′ = (1n, 1n) + (t, 1n).

To prove statement (2) suppose that λ1, λ2, λ3 ∈ Λ(n, r) are partitions such that
χλ1,λ2,λ3 6= 0. It is easily seen that

χλ1,λ2,λ3 = ∆1(Sλ1
χ
I
) ·∆2(χ

J
Sλ2

) ·∆3(χ
K
Sλ3

),

and hence

(24) Sλ1
· χ

I
6= 0, χ

J
· Sλ2

6= 0, χ
K
· Sλ3

6= 0.

On the other hand, let a transposition t and the set T be as above. Then obviously
T ·χ

I
= χ

I
·T = 0 whenever {i, j}∩ I = ∅. Since in the latter case Sλ1 = Sλ1T , we

conclude by (24) that at least one of any two distinct elements i, j from the same
class of the partition λ1 belongs to the set I. It follows that a class of λ1 of size a
intersects the set I in at least a− 1 elements. Therefore r(λ1) ≥ n− |I|. Similarly,
one can prove that r(λ2) ≥ n− |J | and r(λ3) ≥ n− |K|. This implies that

3r = r(λ1) + r(λ2) + r(λ3) ≥ 3n− (|I|+ |J |+ |K|) = 2n.

Thus r ≥ 2n/3 as required.

6. Applications to the border rank of a cubic tensor

In this section we return to the questions discussed in the introduction. The
following metascheme (based on Lemmas 2.4, 3.1 and 3.3) provides a tool to prove
that given a positive integer r the border rank rk(A) of a cubic n× n× n tensor A
is at least r:

• choose a positive integer N ≥ n,
• find χ ∈ V

N,N−r such that χλ1,λ2,λ3 6= 0 for some λ1, λ2, λ3 ∈ Λ(N,n),
• set P = (F−1

N (χ))λ1,λ2,λ3 (depolarization),
• if P (A) 6= 0, then rk(A) ≥ r + 1.

Let us apply this metascheme to the two following concrete examples. The first
one shows, in particular, that the bound from the second statement of Lemma 5.5
is attained, whereas the second one gives a lower bound for the border rank of the
matrix multiplication tensor.

Example 1. Given a positive odd integer n = 2m + 1 we define an n × n × n
zero-one cubic tensor A = An such that Ai,j,k = 1 if and only if (i, j, k) ∈ Qn where

Qn = {(n, i, i) : 1 ≤ i ≤ m}∪
{(j, n, j +m) : 1 ≤ j ≤ m}∪
{(k, k, n) : m < k < n}.

We claim that

(25) rk(An) = rk(An) = 3m =
3(n− 1)

2
.

Indeed, according to our metascheme take r = 3m − 1 and N = 3m. Then by
statement (1) of Lemma 5.5 (with n = N) the linear space VN,N−r = VN,1 contains
the nonzero element χ = D(I, J,K) where

I = {1, . . . ,m}, J = {m+ 1, . . . , 2m}, K = {2m+ 1, . . . , 3m}.
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For i = 1, 2, 3 set λi to be the partition in Λ(3m, 2m+ 1) of the shape [m, 12m] the
unique nonsingleton class of which coincides with the set I, J and K respectively.
Then to prove that rk(A) ≥ r+ 1 it suffices to verify that P (A) 6= 0 where P (X) is
the (λ1, λ2, λ3)-contraction of the matching polynomial F−1

N (χ). For this purpose
choose the functions λi, i = 1, 2, 3 as follows

iλ1 =

{
n, if i ∈ I,
i−m, if i ∈ J ∪K,

, kλ3 =

{
k, if k ∈ I ∪ J ,
n, if k ∈ K,

and

jλ2 =


j, if j ∈ I,
n, if j ∈ J ,
j − 2m, if j ∈ K,

Due to (3) and the definition of the (λ1, λ2, λ3)-contraction, the polynomial P (X)
can be written in the form

(26) P (X) =
∑
g∈S2

N

χ(g)Mλ1,λ2,λ3
g (X),

where χ(g) ∈ {0,±1} is the coefficient of χ at g. It immediately follows from the
definitions of the tensor A and the functions λa that Mλ1,λ2,λ3

(g2,g3) (A) 6= 0 only if the
permutations g2 and g3 leave the sets I, J,K fixed (as sets) and

gI2 = gI3 , gJ3 = 1J , gK2 = 1K
where 1J and 1K are the identical permutations of J and K respectively. Denote
the set of all such pairs g = (g2, g3) by H ⊆ S2

N . Then the latter conditions
imply that (a) the coefficient χ(g) is nonzero and does not depend on g ∈ H
(see (23)), and (b) the monomial Mλ1,λ2,λ3

g (X) does not depend on g ∈ H, and
hence Mλ1,λ2,λ3

g (A) = 1. Therefore

P (A) =
∑
g∈H

χ(g)Mλ1,λ2,λ3
g (A) = χ(g0)|H| 6= 0

where g0 is an arbitrary element from H. According to our metascheme this means
that rk(A) ≥ 3m. The converse inequality holds because rk(A) ≤ rk(A), and rk(A)
does not exceed the number of nonzero entries of A that is |Qn| = 3m.

Example 2. Set Mn to be the structure tensor of n× n-matrix multiplication.
As it was mentioned in the introduction rk(Mn) ≥ (2− ε) · n2 [17]. At present we
can not improve this bound, but we can easily apply our metascheme to obtain the
lower bound

(27) rk(Mn) ≥ 5
4
n2.

Without loss of generality we can assume that n = 2m is even. Set r = 5m2 − 1
and N = 5m2. By statement (1) of Lemma 5.5 (with n = N) the linear space
VN,N−r = VN,1 contains the nonzero element χ = D(I, J,K) where

I = {1, . . . ,m2}, J = {m2 + 1, . . . , 3m2}, K = {3m2 + 1, . . . , 5m2}.
Now, to prove inequality (27) it suffices to find some partitions λ1, λ2 and λ3

in the set Λ(5m2, 4m2) such that P (M) 6= 0 where M = Mn and P (X) is the
(λ1, λ2, λ3)-contraction of the matching polynomial F−1

N (χ). In fact, it is enough
for our purposes that λi ∈ Λ(5m2, n′i) for some n′i ∈ [4m2] (in this case not all
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variables Xijk occur in the polynomial P (X)). To construct the partitions choose
arbitrarily three bijections:

g1 : [4m2] → [2m]× [2m],
g2 : [3m2] → [2m]× [m] ∪ [m]× (m, 2m],
g3 : [3m2] → [2m]× (m, 2m] ∪ (m, 2m]× [m],

and define three maps λi : [5m2]→ [2m]× [2m], i = 1, 2, 3, such that

iλ1 =

{
(d ime, d

i
me), if i ∈ I,

ig1 , if i ∈ J ∪K,

jλ2 =

{
(d j−m

2

m e, d j−m
2

m e), if j ∈ J ,
jg2 , if j ∈ I ∪K,

kλ3 =

{
(dk−3m2

m e, dk−3m2

m e), if k ∈ K,
kg3 , if k ∈ I ∪ J ,

From the definition it immediately follows that

λ1 ∈ Λ(5m2, 4m2) and [λ1] = [(m+ 1)m, 14m2−m],
λ2 ∈ Λ(5m2, 3m2 +m) and [λ2] = [(m+ 1)m,mm, 13m2−m],
λ3 ∈ Λ(5m2, 3m2 +m) and [λ3] = [m2m, 13m2

].

Due to (3) and the definition of a contraction the polynomial P (X) can be written in
the form (26). It immediately follows from the definitions of the tensor M that given
g ∈ SN × SN , we have Mλ1,λ2,λ3

g (M) 6= 0 only if (iλ1 , iλ2g2 , iλ3g3) = (uv, vw,wu)
for some elements u, v, w ∈ [2m] where uv = (u, v), vw = (v, w) and wu = (w, u).
In this case the above triple obviously belongs to one of the following sets:

{(uv, vu, uu) : uv ∈ [m]× [2m]},
{(uv, vv, vu) : uv ∈ (m, 2m]× [2m]},
{(uu, uw,wu) : uw ∈ [m]× (m, 2m]}.

Now, denote by H the set of all g = (g2, g3) ∈ S2
N for which Mλ1,λ2,λ3

g (M) 6= 0.
Then the argument as in Example 1 shows that (a) the coefficient χ(g) is nonzero
and does not depend on g ∈ H, and (b) the monomial Mλ1,λ2,λ3

g (X) does not
depend on the element g ∈ H. Therefore P (M) 6= 0, and hence rk(M) ≥ 5m2.

Remark. The above proof shows that the structure tensor of the 2m × 2m-
matrix multiplication contains a 4m2 × (3m2 + m) × (3m2 + m) subtensor the
border rank of which is at least 5m2.

Acknowledgements. This paper was written during the authors visiting Max
Planck Institut für Mathematik in Bonn. We would like to express our gratitude
to the Institute for hospitality and excellent working conditions. The first author is
grateful to Labex CEMPI (ANR-11-LABX-0007-01). Also the authors are thankful
to the anonymous referees whose valuable remarks helped to improve the exposition.

References

[1] E. Bannai, T. Ito. Algebraic Combinatorics I: Association Schemes. Benjamin-Cummings,

Menlo Park (1984).

[2] M. Bläser, A 5
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