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Keywords: 

An algorithm is designed which tests solvability of a system of k polynomial equations in n variables with degrees d within complexity polynomial in n d 3k . If a systems is solvable then the algorithm yields one of its solutions. Thus, for fixed d, k the complexity of the algorithm is polynomial.

Introduction

Consider a system of polynomial equations

f 1 = • • • = f k = 0 (1) 
where f 1 , . . . , f k ∈ Z[X 1 , . . . , X n ], deg f i ≤ d, 1 ≤ i ≤ k. The algorithm from [START_REF] Grigoriev | Polynomial factoring over a finite field and solving systems of algebraic equations[END_REF], [START_REF] Chistov | An algorithm of polynomial complexity for factoring polynomials, and determination of the components of a variety in a subexponential time[END_REF] (see also [START_REF] Chistov | Complexity of quantifier elimination in the theory of algebraically closed fields[END_REF]) solves [START_REF] Chistov | An algorithm of polynomial complexity for factoring polynomials, and determination of the components of a variety in a subexponential time[END_REF] within complexity polynomial in M, k, d n 2 , where M denotes the bound on bit-sizes of (integer) coefficients of polynomials f 1 , . . . , f k . Moreover, this algorithm finds the irreducible components of the variety in C n determined by [START_REF] Chistov | An algorithm of polynomial complexity for factoring polynomials, and determination of the components of a variety in a subexponential time[END_REF]. We mention also that in [START_REF] Renegar | On the computational complexity and geometry of the first-order theory of the reals. I. Introduction. Preliminaries. The geometry of semi-algebraic sets. The decision problem for the existential theory of the reals[END_REF] an algorithm is designed which tests solvability of (1) reducing it to a system of equations over R, within a better complexity polynomial in M, (k • d) n . We note that the algorithm from [START_REF] Renegar | On the computational complexity and geometry of the first-order theory of the reals. I. Introduction. Preliminaries. The geometry of semi-algebraic sets. The decision problem for the existential theory of the reals[END_REF] tests solvability of (1) and outputs a solution, provided that (1) is solvable, rather than finds the irreducible components as the algorithms from [START_REF] Grigoriev | Polynomial factoring over a finite field and solving systems of algebraic equations[END_REF], [START_REF] Chistov | An algorithm of polynomial complexity for factoring polynomials, and determination of the components of a variety in a subexponential time[END_REF].

In the present paper we design an algorithm which tests solvability of (1) within complexity polynomial in M • n+d 3k n ≤ M • n d 3k , which provides polynomial (in the size M • k • n+d n of the input system (1)) complexity when d, k being fixed. If (1) is solvable then the algorithm yields one of its solutions. Note that the algorithm from [START_REF] Renegar | On the computational complexity and geometry of the first-order theory of the reals. I. Introduction. Preliminaries. The geometry of semi-algebraic sets. The decision problem for the existential theory of the reals[END_REF] has a 1 polynomial complexity when, say d > n 2 and k being polynomial in n; when d is close to n the complexity is subexponential, while for small d the complexity is exponential.

We mention that in [START_REF] Grigoriev | Polynomial-time computing over quadratic maps I. Sampling in real algebraic sets[END_REF] an algorithm was designed testing solvability of (1) over R (and finding a real solution, provided that it does exist) within the complexity polynomial in M, n 2k for quadratic equations (d = 2), and moreover, one can replace equations by inequalities.

It would be interesting to clarify, for which relations between n, k, d the complexity of solvability of (1) is polynomial. In particular, when d = 2 and k is close to n the problem of solvability is N P -hard.

1 Testing points for sparse polynomials Recall (see [START_REF] Grigoriev | The matching problem for bipartite graphs with polynomially bounded permanents is in NC[END_REF]) a construction of testing points for sparse polynomials in n variables. Let p i denote i-th prime and

s j = (p j 1 , . . . , p j n ) ∈ Z n , j ≥ 0 be a point. A polynomial f ∈ C[X 1 , . . . , X n ] is called t-sparse if it contains at most t monomials.
Lemma 1.1 [START_REF] Grigoriev | The matching problem for bipartite graphs with polynomially bounded permanents is in NC[END_REF]. For a t-sparse polynomial f there exists 0 ≤ j < t such that f (s j ) = 0.

The proof follows from the observation that writing f = 1≤l≤t a l •X I l where coefficients a l ∈ C and X I l are monomials, the equations f (s j ) = 0, 0 ≤ j < t lead to a t × t linear system with Vandermonde matrix and its solution (a 1 , . . . , a t ). Since Vandermonde matrix is nonsingular, the obtained contradiction proves the lemma. 

Reduction of solvability to systems in few variables

The goal of this section is to reduce testing solvability of (1) to testing solvability of several systems in k variables.

Let V ⊂ C n be an irreducible (over Q) component of the variety determined by [START_REF] Chistov | An algorithm of polynomial complexity for factoring polynomials, and determination of the components of a variety in a subexponential time[END_REF]. Observe that the algorithm described in the next Section does not need to produce V .

Then dim V =: m ≥ n -k and deg V ≤ d n-m ≤ d k due to Bezout inequality [9].
Let variables X i 1 , . . . , X im constitute a transcendental basis over C of the field C(V ) of rational functions on V , clearly such i 1 , . . . , i m do exist. Then the degree of fields extension e := [C(V ) : C(X i 1 , . . . , X im )] ≤ deg V equals the typical (and at the same time, the maximal) number of points in the intersections V ∩ {X i 1 = c 1 , . . . , X im = c m } for different c 1 , . . . , c m ∈ C, provided that this intersection being finite. Observe that for almost all vectors (c 1 , . . . , c m ) ∈ C n the intersection is finite and consists of e points.

There exists a primitive element Y = i =i 1 ,...,im b i • X i of the extension C(V ) of the field C(X i 1 , . . . , X im ) for appropriate integers b i [START_REF] Lang | Algebra[END_REF] (moreover, one can take integers 0 ≤ b i ≤ e for all i, see e. g. [START_REF] Chistov | An algorithm of polynomial complexity for factoring polynomials, and determination of the components of a variety in a subexponential time[END_REF], [START_REF] Grigoriev | Polynomial factoring over a finite field and solving systems of algebraic equations[END_REF], but we do not need here these bounds). Moreover, there exist n -m linearly over C independent primitive elements Y 1 , . . . , Y n-m of this form. One can view Y 1 , . . . , Y n-m , X i 1 , . . . , X im as new coordinates.

Consider a linear projection π l : C n → C m+1 onto the coordinates Y l , X i 1 , . . . , X im , 1 ≤ l ≤ n -m. Then the closure π l (V ) ⊂ C m+1 is an irreducible hypersurface, so dim π l (V ) = m. Denote by g l ∈ Q[Y l , X i 1 , . . . , X im ] the minimal polynomial providing the equation of π l (V ). Then deg g l = deg π l (V ) ≤ deg V [START_REF] Shafarevich | Foundations of algebraic geometry[END_REF] and deg Y l g l = e, taking into account that Y l is a primitive element.

Rewriting

g l = q≤e Y q l • h q , h q ∈ Q[X i 1 , . . . , X im ] as a polynomial in a distinguished variable Y l , we denote H l := h e • Disc Y l (g l ) ∈ Q[X i 1 , . . . , X im ],
where Disc Y l denotes the discriminant with respect to the variable Y l (the discriminant does not vanish identically since Y l is a primitive element). We have deg

H l ≤ d k + d 2k . Consider the product H := 1≤l≤n-m H l , then D := deg H ≤ (n -m) • (d k + d 2k ) ≤ d 3k .
Due to Corollary 1.2 there exists 0

≤ j < D+m D ≤ m d 3k such that H(s j ) = H(p j 1 , . . . , p j m ) = 0. Observe that the projective intersection V ∩ {X i 1 = p j 1 • X 0 , • • • , X im = p j m • X 0 } in the projective space PC n ⊃ C n with the coordinates [X 0 : X 1 : • • • : X n ]
consists of e points, where V denotes the projective closure of V . On the other hand, coordinate Y l of the points of the affine intersection V ∩ {X i 1 = p j 1 , . . . , X im = p j m } attains e different values, taking into account that H l (s j ) = 0, 1 ≤ l ≤ n -m. Therefore, all e points from the projective intersection lie in the affine chart C n . Consequently, the intersection V ∩ {X i 1 = p j 1 , . . . , X im = p j m } is not empty.

Test of solvability and its complexity

Thus, to test solvability of (1) the algorithm chooses all possible subsets {i 1 , . . . , i m } ⊂ {1, . . . , n} with m ≥ n -k treating X i 1 , . . . , X im as a candidate for a transcendental basis of some irreducible component V of the variety determined by [START_REF] Chistov | An algorithm of polynomial complexity for factoring polynomials, and determination of the components of a variety in a subexponential time[END_REF]. After that for each 0 ≤ j < D+m D where D ≤ d 3k , the algorithm substitutes X i 1 = p j 1 , . . . , X im = p j m into polynomials f 1 , . . . , f k and solves the resulting system of polynomial equations in n-m ≤ k variables applying the algorithm from [START_REF] Chistov | An algorithm of polynomial complexity for factoring polynomials, and determination of the components of a variety in a subexponential time[END_REF], [START_REF] Grigoriev | Polynomial factoring over a finite field and solving systems of algebraic equations[END_REF]. The complexity of each of these applications does not exceed a polynomial in M

• D+m D • d (n-m) 2 , i. e. a polynomial in M • n d 3k .
Moreover, the algorithm from [START_REF] Chistov | An algorithm of polynomial complexity for factoring polynomials, and determination of the components of a variety in a subexponential time[END_REF], [START_REF] Grigoriev | Polynomial factoring over a finite field and solving systems of algebraic equations[END_REF] yields a solution of a system, provided that it does exist. Summarizing, we obtain the following theorem. The construction and the Theorem extend literally to polynomials with coefficients from a field F of characteristic zero (for complexity bounds one needs that the elements of F are given in an efficient way). For F of a positive characteristic one can obtain similar results replacing the zero test from Section 1 by the zero test from [START_REF] Grigoriev | Fast parallel algorithms for sparse multivariate polynomial interpolation over finite fields[END_REF].

Corollary 1 . 2

 12 Let deg f ≤ D. There exists 0 ≤ j < n+D n such that f (s j ) = 0.

Theorem 3 . 1 Corollary 3 . 2

 3132 One can test solvability over C of a system[START_REF] Chistov | An algorithm of polynomial complexity for factoring polynomials, and determination of the components of a variety in a subexponential time[END_REF] of k polynomials f 1 , . . . , f k ∈ Z[X 1 , . . . , X n ] with degrees d within complexity polynomial in M • n+d 3k n ≤ M • n d 3k, where M bounds the bit-sizes of (integer) coefficients of f 1 , . . . , f k . If (1) is solvable then the algorithm yields one of its solutions. For fixed d, k the complexity of the algorithm is polynomial.
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