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Abstract

In this article, we are interested in the analysis and simulation of solutions to an optimal
control problem motivated by population dynamics issues. In order to control the spread of
mosquito-borne arboviruses, the population replacement technique consists in releasing into the
environment mosquitoes infected with the Wolbachia bacterium, which greatly reduces the trans-
mission of the virus to the humans. Spatial releases are then sought in such a way that the
infected mosquito population invades the uninfected mosquito population. Assuming very high
mosquito fecundity rates, we first introduce an asymptotic model on the proportion of infected
mosquitoes and then an optimal control problem to determine the best spatial strategy to achieve
these releases. We then analyze this problem, including the optimality of natural candidates and
carry out first numerical simulations in one dimension of space to illustrate the relevance of our
approach.
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1 Introduction and state of the art

Aedes mosquitoes are the main vector of the transmission to human of many diseases, such as
dengue, zika, or chikungunya. Since there are still no vaccines against these diseases, the best way
to fight against them is to act on the vector population. Several techniques have been proposed.
Some approaches aim at reducing the size of the population of mosquitoes. The use of insecticides
is one of them, but its environmental consequences are too important to be used for a long time
and on a large scale. The sterile insect technique (SIT) or the incompatible insect technique (IIT)
are very promissing strategies, consisting in massive releases of sterile or incompatible males, after
mating with these males, the wild females will not produce viable eggs which should reduce the size
of the populations (see e.g. [9] and references therein). This method has already been implemented
successfully on the field (see [29, 36]). Other strategies are based on genetic manipulations like, for
example, the release of insects carrying a dominant lethal (RIDL) [32, 15, 14].

However, the suppression of one population of insects might have consequences on the envi-
ronment. Then, other approaches aim at replacing the wild population of mosquitoes by another
population inoffensive to human. One strategy under investigation consists in using the bacteria
Wolbachia taking advantage of phenomena called cytoplasmic incompatibility (CI) and pathogen in-
terference (PI) [7, 28]. In key vector species such as Aedes aegypti, if a male mosquito infected with
Wolbachia mates with a non-infected female, the embryos die early in development [35]. This is the
so-called cytoplasmic incompatibility (CI). Moreover, it has been observed that Aedes mosquitoes
infected with some Wolbachia strains are not able to transmit viruses like dengue, chikungunya and
zika [34], this is the pathogen interference (PI). Then, one may release mosquitoes artificially infected
by Wolbachia to mate with wild ones. Over time and if the releases are large and long enough, it
can be expected that the majority of mosquitoes will carry Wolbachia, due to cytoplasmic incom-
patibility. As a result of PI, the mosquito population then has reduced vectorial competence.

In this paper, we focus on the Wolbachia strategy and investigate the question of optimizing
the spatial distribution of the releases. Several mathematical models have been proposed for the
Wolbachia technique, see e.g. [11, 12, 26, 17]. In these papers, the authors model the time dynamics
of the mosquitoes population. Then, the question of optimizing the time of releases has been
investigated e.g. in [8, 3, 6, 1]. However the spatial distribution of mosquitoes may have an impact
on the success of the strategy. It is therefore relevant to add spatial dependence in mathematical
models, which makes the study much more complicated.

In order to have a model simple enough to be tractable from a mathematical point of view, the
authors in [4] introduce a model focusing only on the proportion of Wolbachia-infected mosquitoes,
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denoted p in the sequel :

p :=
n1

n1 + n2

where n1 is the density ofWolbachia-infected mosquitoes and n2 the density of uninfected mosquitoes.
This quantity solves a scalar reaction-diffusion equation

∂p

∂t
−D∆p = f(p),

where D is a diffusion coefficient and f is a bistable function1. For this model, the conditions to
initiate the spatial spread are well-known [31]. It has been proved later in [30] that this model may
be rigorously derived from a more general system governing the dynamics of Wolbachia-infected and
Wolbachia-uninfected mosquitoes by performing a large fecundity asymptotics.

In this study, we are investigating the question of the best spatial strategy for mosquito release,
i.e., giving a certain amount of mosquitoes, we are trying to determine optimal locations to release
them in order to ensure the invasion of the environment by Wolbachia-infected mosquitoes. If we
denote u the release function, then the above model is modified into















∂p(t, x)

∂t
−D∆p(t, x) = f(p(t, x)) + u(t, x)g(p(t, x)), t ∈ (0, T ), x ∈ Ω,

∂νp(t, x) = 0, t ∈ (0, T ), x ∈ ∂Ω,

p(0, x) = 0, x ∈ Ω,

(1) ?{eq:pintro}?

where Ω is an open bounded connected subset of R
d with a regular boundary ∂Ω. The function g is

positive and vanishes when p = 1. The derivation of (1) will be detailed in Section 2.
Let us summarize the main assumptions on f and g we will use in the sequel.







f is C2 and of bistable type.
Denoting by θ the only root of f in (0, 1), we assume that f ′′(·) > 0 on (0, θ).
g is nonnegative, decreasing on [0, 1]. Moreover, g(1) = 0.

(Hf,g) ?{assump:fg}?

A first study was carried out in [2], giving rise to the first very simple numerical experiments.
In the present article, we seek to complete the results of this study, by analyzing qualitatively the
solutions and by proposing adapted numerical strategies. Let us mention that a problem of the same
nature has been investigated in [22], mainly from a numerical point of view. Authors characterize
optimal vaccination strategies to minimizes the costs associated with infections by the Zika virus
and vaccines in the state of Rio Grande do Norte in Brazil.

In [23], an optimal control problem close to the one investigated hereafter is tackled. The
authors consider a population whose evolution is driven by a reaction-diffusion equation and look
at determining initial data submitted to L1 and L∞ constraints, maximizing the total size of the
population. In our article, we choose to deal with a least square criterion instead of the average
criterion considered in [23] (and more recently in [20]). Moreover, our results are less general than
those of [23], but more precise on the qualitative analysis aspects, since they rest upon the bistable
character of the right-hand side of the reaction-diffusion equation. Finally, it is worth mentioning that
exact controllability issues for similar reaction-diffusion systems have been investigated in [18, 21].

The outline of the paper is the following. In Section 2, we present the derivation of system (1) and
present the optimal control problem we are looking at. Section 3 contains the main mathematical
results of this paper. Their proofs are given in Section 4. More precisely, the rigorous derivation

1The wording “bistable function” means that f(0) = f(1) = 0 and there exists θ ∈ (0, 1) such that f(x)(x−θ) < 0
on (0, 1) \ {θ} (in particular, one has necessarily f(θ) = 0 whenever f is smooth)
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of system (1) is explained in Section 4.1 and Section 4.2 is devoted to the mathematical study of
the optimal control problem. Finally, numerical illustrations with the description of the numerical
algorithm are provided in Section 5.

2 Modelling

〈sec:model〉 In the whole article, we will consider a given bounded connected open domain Ω of R
d assumed to

have a Lipschitz boundary. Let T > 0 denote a fixed horizon of time.

2.1 Model with two compartments

In order to justify the introduced model on the proportion of Wolbachia-infected mosquitoes, we
first explain how to derive it. Let us denote n1 the density of infected mosquitoes and n2 the density
of uninfected mosquitoes. The dynamics of these quantities is governed by the reaction-diffusion
system



























∂tn1 −D∆n1 = (1− sf )
Fu

ε
n1

(

1− n1 + n2
K

)

− δdun1 + u, in (0, T )× Ω ?{eq:ni}?

∂tn2 −D∆n2 =
Fu

ε
n2

(

1− sh
n1

n1 + n2

)(

1− n1 + n2
K

)

− dun2, in (0, T )× Ω ?{eq:nu}?

∂νn1 = 0, ∂νn2 = 0, on (0, T )× ∂Ω

(2a) ?{eq:ni}?

(2b) ?{eq:nu}?

complemented by initial conditions n1(t = 0, x) = ninit1 (x), n2(t = 0, x) = ninit2 (x), where the
following notations are used:

• u ∈ L∞(0, T ): instantaneous releases of Wolbachia infected mosquitoes: it is on this control
that we will act upon;

• du, di = δdu with δ > 1: death rates, respectively for uninfected and infected mosquitoes. We
assume that di < du since Wolbachia decreases lifespan;

• Fu, Fi = (1 − sf )Fu: net fecundity rates, respectively for uninfected and infected mosquitoes.
We assume that Fi < Fu since Wolbachia reduces fecundity;

• ε : parameter without dimension quantifying the fecundity, we assume ε ≪ 1 meaning that
the fecundity is considered to be large;

• sh ∈ (0, 1): cytoplasmic incompatibility parameter (fraction of uninfected females’ eggs fer-
tilized by infected males which will not hatch). Formally, a proportion 1 − sh of uninfected
female’s eggs fertilized by infected males actually hatch. Cytoplasmic incompatibility is perfect
when sh = 1;

• K: carrying capacity;

• D: dispersal coefficient (that will be assumed constant equal to 1 in what follows).

All the constants above are assumed to be positive. Existence and uniqueness of solutions for such
reaction-diffusion system is by now well-known see e.g. [10, 25]. The equations driving the dynamics
of n1 and n2 are bistable and monostable reaction-diffusion equations, respectively. Note that in the
reaction term of the first equation the term − n2

n1+n2
stands for the vertical transition of the disease
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whereas the coefficient sh models that this vertical transmission may or not be perfect because of
the cytoplasmic incompatibility.

Similarly to [3], we will assume moreover that the relation

sf + δ − 1 < δsh (3) ?{rel:coef}?

holds true.
To model optimal strategies with an adapted optimal control problem, it is convenient to intro-

duce the Wolbachia-infected equilibrium (n∗1W , 0) defined by

(n∗1W , 0) :=

(

K(1− εδdu
Fu(1− sf )

), 0

)

, (4) ?{eqn1Wstar}?

that is (n∗1W , 0) is a stationary solution of (2a)–(2b). A possible approach hence consists in looking
for controls steering the system as close as possible to the target state (n∗1W , 0). In some sense, it
stands for the research of a control strategy ensuring the persistence of infected mosquitoes at the
time horizon T .

This leads to define the least squares functional JT given by

JT (u) =
1

2
n2(T )

2 +
1

2
(n∗1W − n1(T ))+

2, (5) ?{eq:J}?

where (n1, n2) denotes the unique solution to the reaction-diffusion system (2a).

2.2 Reduction for large fecundity

〈sec:asympModel〉When the fecundity is large compared to other parameters, it is relevant to consider the asymptotics
ε → 0, which allows us to reduce system (2a)–(2b). This reduction is inspired by [3] where the
authors consider a differential system. We first explain formally how to reduce this system and state
the main result, the rigorous approach is postponed to Section 4.1. Since n1 and n2 will depend on
ε, we use the notation nε1 and nε2.

Formal reasoning. We investigate formally the limit as ε→ 0 in the (2a)–(2b). From (2a)–(2b),
we expect that nε1 + nε2 = K +O(ε). Then, we introduce the variables

nε =
1

ε

(

1− nε1 + nε2
K

)

, pε =
nε1

nε1 + nε2
,

where pε is the proportion of infected mosquitoes in the population. Consider a sequence (uε)ε>0 of
controls. From straightforward computations from (2a)–(2b), we deduce

∂tn
ε −D∆nε = −1− εnε

ε
(Fun

ε(sh(p
ε)2 − (sf + sh)p

ε + 1)− du((δ − 1)pε + 1)) − uε

εK
, (6) ?{eq:n}?

∂tp
ε −D∆pε +

2εD

1− εnε
∇pε · ∇nε = pε(1− pε)(Fun

ε(shp
ε − sf ) + (1− δ)du) +

uε(1− pε)

K(1− εnε)
. (7) ?{eq:peps}?

Letting formally ε going to 0, assuming that (nε, pε, uε) converges to (n0, p0, u0), we deduce from
(6) that the limit should satisfy the relation

n0 = h(p0, u0) :=
du((δ − 1)p0 + 1)− u0/K

Fu(sh(p0)2 − (sf + sh)p0 + 1)
. (8) ?{eq:h}?
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Then, passing into the limit in (7), we deduce

∂tp
0 −D∆p0 = p0(1− p0)(Fun

0(shp
0 − sf ) + (1− δ)du) +

u0(1− p0)

K
.

Injecting (8) into this latter equation, we obtain the scalar reaction-diffusion equation for the fraction
of infected mosquitoes

{

∂tp
0 −D∆p0 = f(p0) + u0g(p0) in (0, T )× Ω

∂np
0 = 0 on (0, T ) × ∂Ω

(9) ?{eq:p0}?

with

f(p) =
δdushp(1− p)(p − θ)

shp2 − (sf + sh)p+ 1
, g(p) =

(1− p)(1− shp)

K(shp2 − (sf + sh)p + 1)
, (10) ?{eq:fg}?

where we use the notation θ =
sf+δ−1

δsh
. Under the assumption (3) on the coefficients, we have

0 < θ < 1. Hence equation (9) for u0 = 0 is a bistable reaction-diffusion equation.
We introduce the notation F for the antiderivative of f ,

F (p) =

∫ p

0
f(q) dq.

We assume that there exists θc ∈ (θ, 1) such that F (θc) = 0. Notice that this assumption is necessary
to guarantee that invasion of the infected population may occur in space by local release, and it is
satisfied for the values of the parameters taken from the case at hand (see e.g. [31]).

We consider system (2a)–(2b) with Neumann boundary conditions to model that the boundary
acts as a barrier, and initial conditions satisfying

ninit,ε1 ∈ L1(Ω) ∩ L∞(Ω), 0 ≤ ninit,ε1 , ninit,ε2 ∈ L1(Ω) ∩ L∞(Ω), 0 < ninit,ε2 . (11) ?{hyp:init}?

We assume also that the initial conditions are well-prepared, i.e.

ninit,ε1 + ninit,ε2 = K + εKε
0 , with ‖Kε

0‖∞ ≤ C. (12) ?{eq:wellprepared}

A typical example of initial conditions is when the system is as the Wolbachia-free equilibrium for
which ninit,ε1 = 0 and ninit,ε2 = K(1− εdu

Fu
). In this case, assumption (12) is obvioulsy satisfied.

Convergence result. Following the ideas in [30], where a similar asymptotic limit is performed,
we derive an asymptotic model on the proportion of infected mosquitoes, as the fecundity rates tend
to +∞.

〈TH〉
Theorem 2.1. Under the assumptions (11)–(12) on the initial data, let us assume moreover that
the sequence (uε) converges towards u0 in weak star in L∞((0, T ) × Ω). Then, up to extraction
of subsequences, the solution (nε, pε) of (6)–(7) converges towards (n0, p0) as ε → 0, with n0 ∈
L1((0, T ) × Ω) ∩ L∞((0, T ) × Ω), p0 ∈ L2(0, T ;H1(Ω)), and satisfying (8) almost everywhere and
(9)–(10) in the weak sense. More precisely, we have

pε → p0 strongly in L2((0, T ) × Ω), nε ⇀ n0weak-star in L∞,

where p0 is solution to (9).
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The proof of this theorem is postponed to Section 4.1.
In what follows, we will deal with the proportion p0 to model optimal releases strategies. Let

u ∈ L∞(0, T ;R+) be given. Passing into the limit in (5), we deduce that (nε1(T )+n
ε
2)ε>0 converges to

K and (pε(T ))ε>0 converges to some limit p0(T ) ∈ [0, 1] as ε ց 0, meaning that (nε1(T ), n
ε
2(T )))ε>0

converges to (Kp0(T ),K(1 − p0(T ))). Since the Wolbachia-infected equilibrium (n∗1W , 0) converges
to (K, 0) as εց 0, according to (4), it follows that Jε

T (u) converges, as εց 0 to J0
T (u) given by

J0
T (u) =

K2

2
(1− p0(T ))2 +

K2

2
(1− p0(T ))2 = K2(1− p0(T ))2, (13) ?{def:j022}?

where p denotes the solution of (9).

2.3 Toward an optimal control problem

〈sec:OCP〉 In what follows, we assume all fecundity rates large, which legitimates the use of the limit model
(9)–(10) introduced in Section 2.2.

In order not to cumulate all the difficulties related to the search for release distributions in time
and space, we will suppose that one release, which is an impulse in time2, is done at the beginning
of the experiment, i.e. u(t, x) = u0(x)δ{t=0}.

Let us approximate the Dirac measure at t = 0 by the function 1
ε1[0,ε]. Making the change of

variable t = τε, and introducing p̃ given by p̃(τ, x) = p0(t, x), one gets from system (9) that p̃ solves

∂p̃

∂τ
− εD∆p̃ = εf(p̃) + u0g(p̃), τ ∈ [0, 1], x ∈ Ω.

Letting formally ε go to 0 and denoting, with a slight abuse of notation, still by p̃ the formal limit
of the system above yields

∂p̃

∂τ
(τ, x) = u0(x)g(p̃(τ, x)), τ ∈ [0, 1], x ∈ Ω. (14) ?{eq:ptilde}?

Let us denote G the anti-derivative of 1/g vanishing at 0, namely

G(p) =

∫ p

0

dq

g(q)
.

Then, by a direct integration of (14) on [0, 1], we obtain

G(p̃(1, x)) = G(p̃(0, x)) + u0(x), x ∈ Ω.

Hence we arrive at the system


















∂p

∂t
−D∆p = f(p), t ∈ (0, T ), x ∈ Ω,

∂νp(t, x) = 0, x ∈ ∂Ω,
p(0+, ·) = G−1(u0(·)),

(15) ?{eq:psimple}?

where f and g are given by (10).
Recall that, if u0 ∈ L∞(Ω) is given and positive, the solution p to System (15) satisfies 0 ≤

p(t, x) < 1 for a.e. t ∈ [0, T ] and x ∈ Ω according to a standard comparison argument for parabolic
systems.

To take into account biological constraints on the release procedure, we will moreover assume
that the release function is such that:

2We consider Dirac measures since at the time-level of the study (namely, some generations), the release can be
considered as instantaneous.
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• the local release of mosquitoes is bounded : 0 ≤ u0 ≤M a.e. in Ω with M > 0;

• the total number of used mosquitoes is bounded (production limitation), reading

0 ≤
∫

Ω
u0(t, x) dx ≤ C,

with C ∈ (0,MT ).

This leads to introduce the admissible set VC,M given by

VC,M =

{

u0 ∈ L∞(Ω), 0 ≤ u0 ≤M a.e. in Ω,

∫

Ω
u0(x) dx ≤ C

}

.

The goal is to be as near as possible to the equilibrium p = 1 at time T . Let us denote (with a
slight abuse of notation) by JT , the least squares functional defined by

JT (u0) =
1

2

∫

Ω
(1− p(T, x))2 dx.

Observe that coincides, up to a positive multiplicative constant, with the asymptotic functional J0
T

given by (13). The optimization problem thus reads

inf
u0∈VC,M

JT (u0) , (Preduced) ?{prob:reduced}

where p is the solution of (15).
From now on and without loss of generality, we will assume in what follows that the diffusion

coefficient D is equal to 1.

3 Main results
〈sec:main〉

Constant solutions are natural candidates to solve Problem (Preduced). Indeed, it has been observed
in [2, Theorem 2.1] that in the very simple case where f(·) = 0 and G : x 7→ x, Problem (Preduced)
has a unique solution u0, which is constant and equal to min

(

1,M, C
|Ω|

)

. Furthermore, as stated in
the following result, constant solutions equal to M are optimal for a given range of the parameters.
We show moreover that, outside of this range, constant functions remain critical points and show
that they are still local minimizers whenever C is small enough. We also comment on the sharpness
of this result by highlighting that for certain parameters, constant functions may not be global
minimizers for Problem (Preduced).

According to Corollary 4.8, it is enough to concentrate on the constant function equal to C/|Ω|.
〈prop1.1〉Theorem 3.1. Let us assume that f and g satisfy (Hf,g). Problem (Preduced) has a solution.

(i) For every M ∈ (0, C/|Ω|], the constant function uM equal to M is the unique solution to
Problem (Preduced).

(ii) Let us assume that M |Ω| > C. The constant function u(·) = C/|Ω| is a critical point for
Problem (Preduced) (meaning that it satisfies the first order optimality conditions stated in
Proposition 4.7).

Furthermore, if C ≤ |Ω|G(θ), there exists KT > 0 such that for every h ∈ L2(Ω), the second
order differential of JT at u satisfies

d2JT (u)(h, h) ≥ KT ‖h‖2L2(Ω)

and it follows that the function u is a local minimizer for Problem (Preduced).
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Let us comment on the sharpness of Theorem 3.1. As will be emphasized hereafter and in
Section 5, we do not expect that u solves Problem (Preduced) for all values of C ∈ (|Ω|G(θ),M |Ω|). In
some case, this will be confirmed numerically, by using u as starting point of optimization algorithms
and obtain at convergence a nonconstant minimizer ũ such that JT (ũ) < JT (u).

Actually, even in the case C < min{G(θ),M}|Ω|, where we know from Theorem 3.1 that the
constant solution u is a local minimizer, under some conditions on |Ω| and C, we may construct non
constant initial date u0 such that JT (u0) < JT (u), as stated below in Proposition 4.13.

Recalling that θc ∈ (θ, 1) is defined by
∫ θc
0 f(p) dp = 0. We assume

G(θc) < M and C < |Ω|G(θ). (16) ?{eq:assumptionCLM}

The following result shows that under some conditions on Ω, M and C, the constant function u is
not a global minimum of the optimization problem (Preduced).

prop:cstpasoptim1〉Proposition 3.2. Let us assume (16) and that:

• C is large enough;

• the inradius3 of Ω is large enough;

• T is large enough.

Then the constant solution u is not a global minimum for Problem (Preduced).

A proof of this result is provided in Section 4.2.4.

Remark 3.3. The conditions stated in Proposition 3.2 are not sharp; the obtention of necessary
and sufficient condition for constant solution to be a global minimizers seems to be intricate and
we let it open. A related problem concerns the issue of finding sufficient and necessary conditions
guaranteing invasion in a bistable reaction-diffusion system that is, up to our knowledge still open,
and we refer to [23] for partial answers in this direction.

Remark 3.4. It is notable that, for the sets of parameters from [13] below, the functions f and g
satisfy (Hf,g). Indeed, the function f ′′ vanishes once on (0, 1) and its root z satisfies θ < z ≃ 0.466,
while θc ≃ 0.582 (see Figure 1).
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p

f
′′
(p
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)

Figure 1: (from left to right) Graphs of the function f , its second order derivative f ′′ and the
function g by using the data from [13] (see Table 1).

zeros_fonction_f〉
3In other words, the radius of the largest ball inscribed in Ω.
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4 Proofs
〈sec:proofs〉

This section will be devoted to prove Theorem 2.1 and 3.1.

4.1 Model reduction
〈sec:modelreduc〉

In this section, we will give a proof of Theorem 2.1, allowing us to reduce the system (2a)–(2b) to a
scalar reaction-diffusion equation for the proportion as the parameter ε goes to 0. It is inspired by
[3] in which the authors a model composed by two differential equations.

4.1.1 Uniform a priori estimates

We first establish some uniform bounds with respect to ε > 0.

〈lem:Linf〉Lemma 4.1. Assume the assumptions of Theorem 2.1 hold. Let uε be given in VC,M , ε ∈ (0, 1) and
(pε, nε) be the unique solution of (6)–(7). Then,

nε is uniformly bounded in L∞([0, T ]× Ω), and 0 ≤ pε ≤ 1 on [0, T ] ×Ω.

Proof. By nonnegativity of ninit1 and ninit2 , it is standard to deduce the nonnegativity of nε1 and
nε2 (Indeed 0 is a subsolution for (2a) and for (2b)). Moreover, it is obvious to verify that 0 is a
subsolution for the equation satisfied by nε1 + nε2, we deduce that 0 < nε1 + nε2 on Ω. Therefore, pε is
well-defined on [0, T ]× Ω and satisfies by definition 0 ≤ pε ≤ 1.

Consider the function h defined in (8). We remark that the denominator is positive. Let K̃ :=
max{maxp∈[0,1] h(p, 0), ‖ninit,ε‖∞}. Let ε0 be such that K̃ ≤ 1

ε0
(⇔ 1− ε0K̃ ≥ 0), then we have that

K̃ is a supersolution for (6) for any 0 < ε ≤ ε0. Then n
ε ≤ K̃ for any 0 < ε ≤ ε0.

By the same token, we have that the negative constant min{−‖ninit,ε‖∞,minp∈[0,1] h(p,M)} is a
subsolution for (6). Thus nε is uniformly bounded from below. We deduce the uniform bound of nε

in L∞([0, T ]× Ω).

〈lem:nrj〉Lemma 4.2. Under above assumptions, for ε > 0 small enough, we have the uniform estimate

∫ T

0

∫

Ω
|∇pε|2 dx ≤ C.

Proof. On the one hand, multiplying equation (6) by εnε and integrating on Ω, we get

ε
d

dt

∫

Ω
|nε|2 dx+ εD

∫

Ω
|∇nε|2 dx

= −
∫

Ω
(1− εnε)nε(Fun

ε(sh(p
ε)2 − (sf + sh)p

ε + 1)− du((δ − 1)pε + 1)) dx − 1

K

∫

Ω
uεnε dx.

Since from Lemma 4.1, we know that nε and pε are uniformly bounded in L∞([0, T ]×Ω), we deduce
after an integration in time that

εD

∫ T

0

∫

Ω
|∇nε|2 dxdt ≤ C0, (17) ?{boundDn}?

for some nonnegative constant C0.
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On the other hand, we fix ε0 > 0 small enough such that, for all ε 6 ε0, we have |nε| ≤ C1 <
1
ε

on [0, T ] × Ω for some constant C1 > 0 (which is always possible thanks to Lemma 4.1). Then, we
multiply by pε the equation satisfied by pε (7) and integrate over Ω, we deduce

1

2

d

dt

∫

Ω
(pε)2 dx+D

∫

Ω
|∇pε|2 dx+ 2εD

∫

Ω

pε

1− εnε
∇pε · ∇nε dx

≤ C3 +
1

K(1− ε0C1)

∫

Ω
uε(t, x) dx

for some nonnegative constant C3. Then, using a Cauchy-Schwarz inequality, we get

1

2

d

dt

∫

Ω
(pε)2 dx+D

∫

Ω
|∇pε|2 dx ≤ C2 +

2εD

1− εC1

(
∫

Ω
|∇pε|2 dx

)1/2(∫

Ω
|∇nε|2 dx

)1/2

+
1

K(1− εC1)

∫

Ω
uε(t, x) dx.

From (17) and the well-known inequality 2ab ≤ a2 + b2, we deduce after an integration in time

1

2

∫

Ω
(pε)2 dx+D

(

1− ε

1− εC0

)
∫ T

0

∫

Ω
|∇pε|2 dxdt ≤ C2T +

DC
1/2
0

1− εC1
+

MT |Ω|
K(1− εC1)

,

where we recall that uε ∈ VC,M and p ∈ [0, 1]. Taking ε small enough, we get the desired estimate.

4.1.2 Compactness result and proof of Theorem 2.1

We first recall the following compactness result (see [27]).

〈Aubin-Lions〉Lemma 4.3 (Aubin-Lions). Let T > 0, q ∈ (1,∞), (ψn)n a bounded sequence in Lq(0, T ;H), where
H is a Banach space. If ψn is bounded in Lq(0, T ;V ) and V compactly embeds in H, and if (∂tψn)n is
bounded in Lq(0, T ;V ′) uniformly with respect to n, then (ψn)n is relatively compact in Lq(0, T ;H).

Proof of Theorem 2.1 We split the proof of the Theorem into several steps.
Step 1. Compactness. We use Lemma 4.3 with q = 2, H = L2(Ω), V = H1(Ω) ∩ L∞(Ω).

Then, the sequence (pε) is clearly bounded in L2(0, T ;V ) from Lemma 4.1 and 4.2. The compact
embedding of V in H is well-known from the Rellich-Kondrachov Theorem. We are left to verify
the bound on the time derivative : Let φ ∈ V , we denote 〈·, ·〉 := 〈·, ·〉V ′,V the duality bracket. From
equation (7), we get

∫ T

0
|〈∂tpε(t), φ〉|2 dt =

∫ T

0

∣

∣

∣

∣

〈D∆pε(t)− 2εD

1− εnε(t)
∇pε(t) · ∇nε(t)− ψε(t), φ〉

∣

∣

∣

∣

2

dt,

where ψε is the function defining the right hand side in equation (7), which is uniformly bounded in
L1((0, T ) × Ω) ∩ L∞((0, T )× Ω) as a direct consequence of Lemma 4.1. Then,

∫ T

0
|〈∂tpε, φ〉|2 dt ≤ C0‖∇φ‖2L2(Ω)

∫ T

0
‖∇pε‖2L2(Ω) dt+ C1ε‖φ‖2L∞(Ω)

∫ T

0
‖∇pε‖2L2(Ω)‖∇nε‖2L2(Ω) dt

+ C2‖φ‖2L2(Ω)‖ψε‖2L∞((0,T )×Ω).

Hence, we get the required bound from Lemma 4.1 and 4.2 and estimate (17). We may apply Lemma
4.3 and deduce the relative strong compactness of (pε) in L

2(0, T ;L2(Ω)).
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Moreover, from the estimates in Lemma 4.1, we deduce the relative weak-star compactness of the
sequence (nε) in L

∞((0, T )×Ω). Therefore, there exists p0 ∈ L2(0, T ;H1(Ω)) and n0 ∈ L∞((0, T )×Ω)
such that, up to extraction of subsequences, we have pε → p strongly in L2((0, T ) × Ω) and a.e.,
∇pε ⇀ ∇p weakly in L2((0, T ) × Ω), and nε ⇀ n in L∞((0, T )× Ω)-weak⋆.

Step 2. Passing to the limit. We now pass to the limit in the weak formulation of equations (6)
and (7). From the weak formulation of (6), we deduce that for any test function φ ∈ C∞

c ((0, T )×Ω),
we have

ε

∫ T

0

∫

Ω
(−nε∂tφ−Dnε∆φ) dxdt

= −
∫ T

0

∫

Ω

(

Fun
ε(sh(p

ε)2 − (sf + sh)p
ε + 1)− du((δ − 1)pε + 1))− uε

K

)

φdxdt

+ ε

∫ T

0

∫

Ω
nε(Fun

ε(sh(p
ε)2 − (sf + sh)p

ε + 1)− du((δ − 1)pε + 1))φdxdt.

From the L∞-bound of Lemma 4.1, we deduce that the term of the left hand side and the last term
of the right hand side converge to 0 as ε → 0. For the first term of the right hand side, we may
pass into the limit thanks to the weak convergence of nε, the strong convergence of pε, and the weak
convergence of uε. We obtain, for any φ ∈ C∞

c ((0, T )× Ω),

0 = −
∫ T

0

∫

Ω

(

Fun
0(sh(p

0)2 − (sf + sh)p
0 + 1)− du((δ − 1)p0 + 1)) − u0

K

)

φdxdt.

As a consequence (8) is verified almost everywhere.
We are left to pass into the limit in the weak formulation of (7). Let φ ∈ C∞

c ((0, T ) × Ω), we
have

∫ T

0

∫

Ω
(−pε∂tφ+D∇pε · ∇φ+

2εDφ

1− εnε
∇pε · ∇nε) dxdt

=

∫ T

0

∫

Ω
pε(1− pε)(Fun

ε(shp
ε − sf ) + (1− δ)du)φdxdt+

∫ T

0

∫

Ω

uε(1− pε)

K(1− εnε)
φdxdt. (18) ?{eqfin}?

From the above convergence it is straightforward to pass into the limit into the first two terms of
the left hand side. For the third term, we use estimate (17), and a Cauchy-Schwarz inequality to get

∫ T

0

∫

Ω

2εDφ

1− εnε
∇pε · ∇nε dxdt ≤ 2

√
εD‖φ‖L∞

1− ε‖nε‖L∞

‖∇pε‖L2

√

C0 → 0,

as ε→ 0, thanks to Lemma 4.1 and 4.2.
We may pass into the limit for the first term of the right hand side of (18) since (pε) converges

strongly and a.e., and (nε) converges weakly. Then, for the last term of the right hand side of (18),
we verify
∣

∣

∣

∣

∫ T

0

∫

Ω

(

uε(1− pε)

K(1− εnε)
− u0(1− p0)

K

)

φdxdt

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ T

0

∫

Ω

(

(uε − u0)(1− p0) + uε(p0 − pε) + εu0(1− p0)nε

K(1− εnε)

)

φdxdt

∣

∣

∣

∣

≤
∣

∣

∣

∣

∫ T

0

∫

Ω

(

(uε − u0)(1− p0)

K(1− εnε)

)

φdxdt

∣

∣

∣

∣

+
‖u0‖L∞‖φ‖L2

K(1− ε‖nε‖L∞)
‖p0 − pε‖L2 + ε

‖uε‖L∞‖nε‖L∞‖φ‖L1

K(1− ε‖nε‖L∞)
.

(19) ?{eq1}?
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From the strong L2 convergence of (pε) and the L∞ bounds in Lemma 4.1, we deduce that the last
two terms go to 0 as ε→ 0. For the first term, we write

(uε − u0)(1− p0)

K(1− εnε)
=

(uε − u0)(1 − p0)

K
+ ε

(uε − u0)(1 − p0)nε

K(1− εnε)
.

It is then straightforward to conclude the convergence towards 0 of the first term of the right hand
side of (19).

Finally, passing into the limit ε→ 0 into (18), we obtain

∫ T

0

∫

Ω
(−p0∂tφ+D∇p0 · ∇φ) dxdt =

∫ T

0

∫

Ω
p0(1− p0)(Fun

0(shp
0 − sf ) + (1− δ)du)φdxdt

+

∫ T

0

∫

Ω

u0(1− p0)

K
φdxdt.

We conclude by using the fact that (n0, p0, u0) verifies the relation (8).

4.2 Analysis of the optimal control problem (Preduced)

sec:OCPanalysis〉 4.2.1 Existence of an optimal control

As a preliminary remark, note that existence of an optimal control has been shown in [2, Theorem 1.1]
in a more general setting. To make this article self-contained, we recall the argument hereafter. The
analysis to follow is valid under the assumption (Hf,g) on f and g. It is not restricted to the
particular choice of functions f and g given by (10).

Lemma 4.4. Let T > 0, C > 0 and M > 0. Problem (Preduced) admits a solution u∗0.

Proof. In what follows, we will denote by pu0
the solution to Problem (15) associated to the control

choice u0. Let (un0 )n∈N ∈ (VC,M)N be a minimizing sequence for Problem (Preduced). Notice that,
since un0 belongs to VC,M and the range of G−1 is included in [0, 1[, we infer from the maximum prin-
ciple that 0 ≤ pun

0
(t, ·) < 1 for a.e. t ∈ [0, T ] so that (JT (u

n
0 ))n∈N is bounded and infu0∈VC,M

JT (u0)
is finite.

Since the class VC,M is closed for the L∞ weak-star topology, there exists u∞0 ∈ VC,M such that,
up to a subsequence, un0 converges weakly-star to u∞0 in L∞. Here and in the sequel, we will denote
similarly with a slight abuse of notation a given sequence and any subsequence.

Multiplying the main equation of (15) by pun
0
and integrating by parts, we infer from the above

estimates the existence of a positive constant C such that

1

2

∫ T

0

∫

Ω
∂t(pun

0
(t, x)2)dxdt+D

∫ T

0

∫

Ω
|∇pun

0
(t, x)|2dxdt ≤ C

for every n ∈ N, which also reads

1

2

∫

Ω

[

(pun
0
(t, x))2)

]t=T

t=0
dx+D

∫ T

0

∫

Ω
|∇pun

0
(t, x)|2 dxdt ≤ C

for every n ∈ N.
By using the pointwise bounds on pun

0
, one gets that pun

0
is uniformly bounded in L2(0, T ;H1(Ω)).

Furthermore, according to (15), the sequence ∂tpun
0
is uniformly bounded in L2(0, T ;W−1,1(Ω)). The

Aubin-Lions theorem (see [27] and Lemma 4.3) yields that pun
0
converges (up to a subsequence) to

p∞ ∈ L2(0, T ;H1(Ω)), strongly in L2(0, T ;L2(Ω)) and weakly in L2(0, T ;H1(Ω)). Furthermore,
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using that the sequence ∂tpun
0
is uniformly bounded in L2(0, T ;W−1,1(Ω)) also yields that ∂tp

∞

belongs to L2(0, T ;W−1,1(Ω)) and that the family pun
0
is equicontinuous in C0([0, T ];L2(Ω)). Thanks

to the Ascoli characterization of compact sets in C0([0, T ];E) whereE denotes a metric space (see e.g.
[27, Lemma 1]), it follows that for all t ∈ [0, T ], pun

0
(t, ·) also converges weakly, up to a subsequence,

to p∞(t, ·) in L2(Ω).
Passing to the limit in (15) yields that p∞ is a weak solution to

{

∂tp
∞(t, x)−D∆p∞(t, x) = f(p∞(t, x)), t ∈ (0, T ), x ∈ Ω,

∂νp
∞(t, x) = 0, t ∈ (0, T ), x ∈ ∂Ω.

It is standard that any solution to this bistable reaction-diffusion equation is continuous in time.
It remains to show that u∞0 = G(p∞(0+, .)). Note first that G is convex since one has G′′(p) =

κb2 (1−shp
2)

((p−1)(shp−1))2 which is positive whenever p belongs to [0, 1]. According to the convergence results

above, since pun
0
(0, ·) converges weakly (up to a subsequence) to p∞(0, ·) in L2(Ω) and since un0 :=

G(pun
0
(0+, .)), we get that G(p∞(0, ·)) = u∞0 and hence, p∞ = pu∞

0
by passing to the limit as n→ +∞

in the variational formulation on pun
0
.

Finally, let us show that u∞0 belongs to VC,M . Since the derivative of G is 1/g which is positive,
G is increasing and therefore, one has 0 ≤ u∞0 ≤ M a.e. in Ω. Moreover, since

∫

Ω u
n
0 ≤ C rewrites

〈un0 , 1〉L∞,L1 ≤ C, we immediately get that the integral condition is satisfied by u∞0 .
Therefore, u∞0 solves Problem (Preduced).

4.2.2 First and second order optimality conditions

We now state first and second order optimality conditions. The objective is doable: first, we will an-
alyze the optimality of constant solutions, and second, we will use them to derive adapted numerical
algorithms.

Definition 4.5. Let u0 ∈ VC,M . A function h in L∞(Ω) is said to be an admissible perturbation

of u0 in VC,M if, for every sequence of positive real numbers (εn)n∈N decreasing to 0, there exists a
sequence of functions hn converging to h for the weak-star topology of L∞(0, T ) as n → +∞, and
such that u+ εnh

n ∈ VC,M for every n ∈ N.

〈prop:adjoint〉Proposition 4.6. Let u0 ∈ VC,M and h be an admissible perturbation. The functional JT is two
times differentiable in the sense of Fréchet at u0 and one has

dJT (u0) · h =

∫

Ω
q(0+, x)(G−1)′(u0(x))h(x) dx,

where q denotes the adjoint state, solving the backward p.d.e.







−∂tq(t, x)−D∆q(t, x) = f ′(p(t, x))q(t, x), (t, x) ∈ (0, T ) × Ω,
∂νq(t, x) = 0, (t, x) ∈ (0, T ) × ∂Ω,
q(T, x) = p(T, x)− 1 x ∈ Ω

(20) ?{eq:q}?

and p denotes the solution to (15) associated to the control choice u0.
Furthermore, the second order derivative of JT at u0 reads

d2JT (u0)(h, h) = −
∫

Ω

∫ T

0
ṗ(t, x)2f ′′(p(t, x))q(t, x) dtdx +

∫

Ω
ṗ(T, x)2 dx

+

∫

Ω
q(0+, x)(G−1)′′(u0(x))h(x)

2 dx
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for every admissible perturbation h, where ṗ denotes the solution to the linear system






∂tṗ(t, x)−D∆ṗ(t, x) = ṗ(t, x)f ′(p(t, x)) (t, x) ∈ (0, T )× Ω,
∂ν ṗ(t, x) = 0 (t, x) ∈ (0, T )× ∂Ω,
ṗ(0+, x) = (G−1)′(u0)h(x) x ∈ Ω.

(21) ?{pdot}?

Proof. As a preliminary remark, we claim that for any element u of the set VC,M and any admissible
perturbation h, the mapping u ∈ VC,M 7→ p ∈ L2(0, T ;H1(Ω)), where pu denotes the unique weak
solution of (15), is differentiable in the sense of Gâteaux at u in direction h. Indeed, proving such a
property is standard in calculus of variations and rests upon the implicit function theorem.

Let u ∈ VC,M . Let h denote an admissible perturbation. Observing that pu+εh solves the system







∂tpu+εh(t, x)−D∆pu+εh(t, x) = f(pu+εh(t, x)), (t, x) ∈ (0, T ) ×Ω,
∂νpu+εh(t, x) = 0, (t, x) ∈ (0, T ) × ∂Ω,
pu+εh(0

+, x) = G−1(u+ εh(x)), x ∈ Ω.

Let ṗ denote the derivative of ε 7→ p(u + εh) at ε = 0. Standard computations yield that ṗ solves
the linearized reaction-diffusion system







∂tṗ(t, x)−D∆ṗ(t, x) = ṗ(t, x)f ′(pu(t, x)), (t, x) ∈ (0, T )× Ω,
∂ν ṗ(t, x) = 0, (t, x) ∈ (0, T )× ∂Ω,
ṗ(0+, x) = (G−1)′(u(x))h(x), x ∈ Ω.

(22) ?{dot0}?

Furthermore, according to the chain rule, one has

dJT (u) · h = lim
ε→0

JT (u+ εh)− JT (u)

ε
=

∫

Ω
ṗ(T, x) (pu(T, x)− 1) dx.

Let us multiply the main equation of (22) by qu, and integrate then two times by parts on
(0, T )× Ω. One thus gets

∫ T

0

∫

Ω
∂tṗ(t, x)qu(t, x) dxdt =

∫ T

0

∫

Ω
Dṗ(t, x)∆qu(t, x) dxdt

+

∫ T

0

∫

Ω
ṗ(t, x)f ′(pu(t, x))qu(t, x) dxdt. (23) ?{intdoti2}?

Similarly, let us multiply the main equation of (20) by ṗ, and integrate then by parts on (0, T )×Ω.
We obtain

−
∫ T

0

∫

Ω
ṗ(t, x)∂tqu(t, x) dxdt =

∫ T

0

∫

Ω
Dṗ(t, x)∆qu(t, x) dxdt

+

∫ T

0

∫

Ω
ṗ(t, x)f ′(pu(t, x))qu(t, x) dxdt. (24) ?{intq}?

By comparing (23) and (24), we infer that

∫ T

0

∫

Ω
(ṗ(t, x)∂tqu(t, x) + ∂tṗ(t, x)qu(t, x)) dxdt = 0

leading to the following duality identity:
∫

Ω
(ṗ(T, x)qu(T, x)− ṗ(0, x)qu(0, x)) dx = 0.
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By using (22) and (20), we rewrite the expression above as
∫

Ω
ṗ(T, x)(pu(T, x)− 1) =

∫

Ω
(G−1)′(u(x))h(x)qu(0, x)dx.

Thus the desired expression of the derivative follows.
Let us now compute d2JT (u0). Since JT is two times differentiable, one has

d2JT (u0)(h, h)

= lim
ε→0

dJT (u0 + εh) · h− dJT (u0) · h
ε

= lim
ε→0

∫

Ω qu0+εh(0
+, x)(G−1)′(u0 + εk)(x)h(x) dx −

∫

Ω qu0
(0+, x)(G−1)′(u0(x))h(x) dx

ε

=

∫

Ω
q̇(0+, x)(G−1)′(u0(x))h(x) dx +

∫

Ω
qu0

(0+, x)h(x)2(G−1)′′(u0(x)) dx,

where q̇ is given by

q̇(t, x) = lim
ε→0

qu0+εh(t, x)− qu0
(t, x)

ε
.

A standard reasoning enables us to prove that q̇ solves the linear p.d.e.






−∂tq̇(t, x)−D∆q̇(t, x) = ṗ(t, x)f ′′(pu(t, x))q(t, x) + f ′(pu(t, x))q̇(t, x), (t, x) ∈ (0, T )× Ω,
∂ν q̇(t, x) = 0, (t, x) ∈ (0, T )× ∂Ω,
q̇(T, x) = ṗ(T, x), x ∈ Ω,

(25) ?{qdot}?
with ṗ, the solution of the linear p.d.e. (21). One has

∫

Ω
q̇(0+, x)(G−1)′(u0(x))h(x) dx

=

∫

Ω
q̇(0+, x)ṗ(0+, x) dx

=

∫

Ω
q̇(0+, x)ṗ(0+, x) dx−

∫

Ω
q̇(T, x)ṗ(T, x) dx+

∫

Ω
q̇(T, x)ṗ(T, x) dx

=

∫

Ω

∫ T

0
∂tṗ(t, x)q̇(t, x)dtdx +

∫

Ω

∫ T

0
∂tq̇(t, x)ṗ(t, x)dtdx+

∫

Ω
ṗ(T, x)2 dx.

By using the main equation in Systems (25) and (21), one gets

∫

Ω
q̇(0+, x)(G−1)′(u0(x))h(x) dx =

∫

Ω

∫ T

0

[

D∆ṗ(t, x) + ṗ(t, x)f ′(pu(t, x))
]

q̇(t, x) dtdx

+

∫

Ω

∫ T

0

[

−D∆q̇(t, x)− ṗ(t, x)f ′′(pu(t, x))qu(t, x)

−f ′(pu(t, x))q̇(t, x)
]

ṗ(t, x) dtdx +

∫

Ω
ṗ(T, x)2 dx.

The Green formula finally yields

∫

Ω
q̇(0+, x)(G−1)′(u0(x))h(x) dx =

∫

Ω

∫ T

0
−ṗ(t, x)2f ′′(pu(t, x))qu(t, x)dtdx +

∫

Ω
ṗ(T, x)2 dx,

whence the expected expression for the second order derivative.
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Let us now derive first and second order optimality conditions for this problem.

〈theo:1orderopt〉Proposition 4.7 (First and second order optimality conditions). For all u0 ∈ VC,M consider ψ[u0]
denote the function defined on Ω by

ψ[u0](·) = q(0+, ·)(G−1)′(u0(·)),

where q solves the adjoint system (20) associated to the control choice u0.
Let u∗0 be a solution to Problem (Preduced). Then, there exists λ ∈ R+ such that

on {u∗0 =M}, ψ[u∗0] ≤ −λ, on {u∗0 = 0}, ψ[u∗0] ≥ −λ, on {0 < u0 < M}, ψ[u∗0] = −λ,
(26) ?{eq:cond opt}?

(called optimality condition) or equivalently, the function Λ defined by

Λ : x ∈ Ω 7→ min{u∗0(x),max{u∗0(x)−M,ψ[u∗0](x) + λ}}

vanishes identically in Ω, and moreover, λ
(∫

Ω u
∗
0(x) dx −C

)

= 0 (slackness condition).
Moreover, the second order optimality conditions for this problem read: d2JT (u

∗
0)(h, h) ≥ 0 for

every admissible perturbation h such that dJT (u
∗
0) · h = 0.

Proof. Let us introduce the Lagrangian functional associated to Problem (Preduced), given by

L : (u, λ) ∈ VC,M × R+ 7→ JT (u) + λ

(
∫

Ω
u−C

)

.

According to Proposition 4.6, and denoting by du the differential operator with respect to the variable
u, the Euler inequation associated to Problem (Preduced) reads: duL(u, λ) · h ≥ 0 for all admissible
perturbation h of u∗0 in {u0 ∈ L∞(0, T ), 0 ≤ u0 ≤M a.e. in Ω}. This can be rewritten

∫

Ω
(ψ[u∗0](x) + λ)h(x) dx ≥ 0

for all functions h as above. The analysis of such optimality condition is standard in optimal control
theory (see for example [19]) and yields:

on {u∗0 =M}, ψ[u∗0] ≤ −λ, on {u∗0 = 0}, ψ[u∗0] ≥ −λ, on {0 < u0 < M}, ψ[u∗0] = −λ.

Moreover, one has λ
(∫

Ω u
∗
0(x) dx− C

)

= 0 (slackness condition). It remains to show that such
conditions also rewrite Λ(·) = 0 in Ω. It is straightforward that if the optimality conditions above
are satisfied, then Λ(·) = 0 in Ω. Let us examine the converse sense, assuming that Λ(·) = 0 in Ω.
Then, for a.e. x ∈ {u∗0 = 0}, one has

max{u∗0(x)−M,ψ[u∗0](x) + λ} = max{−M,ψ[u∗0](x) + λ} ≥ 0

and thus, ψ[u∗0](x) ≥ −λ. The analysis is exactly similar on the set {u∗0 =M}. Finally, if x denotes
a Lebesgue point of the {0 < u∗0 < M}, one has necessarily

max{u∗0(x)−M,ψ[u∗0](x) + λ} = 0

and therefore, ψ[u∗0](x) = −λ. This concludes the first part of this proposition. The second part is
standard (see e.g. [16]).

We infer from this result that either the pointwise or the integral constraint is saturated by every
minimizer u∗0.
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〈cor:0959〉Corollary 4.8. Let u∗0 be a solution to Problem (Preduced). Then, one has necessarily
∫

Ω
u∗0(x) dx = min{C,M |Ω|}.

Proof. Let us first assume thatM ≥ C/|Ω|. Let us argue by contradiction, assuming that
∫

Ω u
∗
0 < C.

Let p (resp. q) denote the solution to the direct problem (15) (resp. the adjoint problem (20))
associated to the control choice u∗0. According to Theorem 4.7 and its proof, the slackness condition
implies that λ = 0. Recall that one has p(t, x) ∈ (0, 1) for a.e. (t, x) ∈ (0, T ) × Ω, as highlighted in
Section 2.3, and therefore q(T, ·) ∈ (−1, 0) a.e. in Ω. A simple comparison argument yields that q is
negative in (0, T )×Ω. Since G is bijective and increasing, so is G−1 and we infer that ψ is negative
in Ω. By using Theorem 4.7, we get that necessarily, u∗0(·) = M , which is in contradiction with the
assumption above on M and C.

The case where M < C/|Ω| is solved hereafter, in the proof of Theorem 3.1.

4.2.3 Optimality of constant solutions

〈sec:optCstsol〉This section is devoted to the proof the our main results, that is Therem 3.1. Let us first show
(i). The proof rests upon a simple comparison argument: one shows more precisely that uM solves
Problem (Preduced) as soon as it belongs to VC,M which is equivalent to the condition above on the
parameters.

Let u ∈ VC,M . Let p and pM denote the solutions to System (15) corresponding respectively to
the control choices u and uM .

Since u belongs to VC,M and G−1 is increasing, one has G−1(u(x)) ≤ G−1(M) for a.e. x ∈ Ω,
meaning that p(0+, ·) ≤ pM (0+, ·) on Ω. According to the parabolic comparison principle, we infer
that p(t, ·) ≤ pM (t, ·) on Ω, for all t ∈ [0, T ), so that one gets in particular that p∗(T, ·) ≤ pM (T, ·)
in Ω, and therefore, JT (uM ) ≤ JT (u). Uniqueness follows from the monotonicity of G and the
comparison principle, since 0 6 u 6M a.e. in Ω.

Let us now prove (ii). Set c = C/|Ω|. According to the optimality conditions (26), since c < M ,
the function u identically equal to the constant c satisfies the first order optimality conditions if,
and only if, there exists λ ∈ R+ such that ψ(·) = −λ in Ω. Since (G−1)′(u(·)) is constant in Ω, this
is equivalent to say that q(0+, ·) is constant in Ω.

First, observe that, by uniqueness of the solutions to the reaction-diffusion system (15), the
associated solution p is constant in space. Moreover, writing p(t, ·) = p(t) with a slight abuse of
notation, one easily sees that p solves the ODE

{

p′(t) = f(p(t)), t ∈ [0, T ],
p(0+) = G−1(c).

(27) ?{p_bar}?

Standard uniqueness arguments coming from the Cauchy-Lipschitz theorem show that if p(0+) /∈
{0, θ, 1} (the set of roots of f), then f(p(·)) does not vanish on [0, T ] and has hence a constant sign.

Note that, since c 6= 0, one cannot have p(0+) = 0. Similarly, noting that G is an increasing
bijection from [0, 1) into [0,+∞), we infer that one cannot have p(0+) = 1. Let p(0+) ∈ (0, θ)∪(θ, 1).
Then, f(p(0+)) 6= 0, and using that p has a constant sign, which allows us to write

p′(t) = f(p(t)) ⇒ ∀t ∈ [0, T ],

∫ p(t)

p(0)

1

f(u)
du = t

and therefore,
p(t) = F−1(t+ F (G−1(u))),
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for all t ∈ [0, T ], where F denotes an antiderivative of 1/f . Indeed, since f has a constant sign, F
is monotone and continuous, whence the existence of F−1.

Proceeding similarly for the solution q to System (20) associated to p = p drives us to look for
constant solutions with respect to the space variable. Let q denote such a solution (whenever it
exists). Hence, it solves

{

q′(t) = −f ′(p(t))q(t), t ∈ [0, T ],
q(T ) = p(T )− 1

and therefore,

q(t) = (p(T )− 1) exp

(
∫ T

t
f ′(p(s))ds

)

.

By uniqueness of the solution to (20), it follows that q solves (20).
Now, if p(0+) = θ, meaning that u = G(θ), then p(·) = θ and one has q(t) = (θ − 1)e(T−t)f ′(θ)

for all t ∈ [0, T ].
All in all, we get that q(0+, ·) is constant on Ω and the switching function ψ, which is constant,

reads

ψ(·) = (G−1)′(c)(p(T )− 1) exp

(
∫ T

0
f ′(p(s))ds

)

≤ 0,

by using that p(t) ∈ (0, 1) for all t ∈ [0, T ] and that G is bijective and increasing. We infer that the
first order optimality conditions are satisfied by u.

To investigate the second order optimality conditions, it is convenient to introduce the Hilbert
basis {wn}n∈N∗ of L2(Ω) made of the Neumann-Laplacian eigenfunctions defined by:

w1(·) =
1

|Ω| , and for n ≥ 2, wn solves the p.d.e.















−D∆wn = λnwn, in Ω,
∂nwn = 0, on (0, T )× ∂Ω,
∫

Ωwn(x) dx = 0,
‖wn‖L2(Ω) = 1,

where (λn)n≥2 denotes the sequence of associated positive eigenvalues.
In this setting, let us expand every admissible perturbation h as

h =

+∞
∑

n=1

αnwn with αn = 〈h,wn〉L2(Ω) for all n ∈ N
∗.

Using that the solution p to (15) does not depend on the space variable, it is standard to expand ṗ
as

ṗ(t, x) =

∞
∑

n=1

αnvn(t)wn(x) for each t ∈ (0, T ), x ∈ Ω,

where vn solves the o.d.e. v′n(t) = (−λn + f ′(p(t))) vn(t) and vn(0) = (G−1)′(c) so that

vn(t) = (G−1)′(c) exp

(

−λnt+
∫ t

0
f ′(p(s))ds

)

.
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According to Proposition 4.6, one thus computes

d2JT (u)(h, h) =

∫

Ω
ṗ(T, x)2 dx−

∫

Ω

∫ T

0
ṗ(t, x)2f ′′(p(t))q(t) dtdx

+

∫

Ω
q(0)(G−1)′′(c)h(x)2 dx

=

∫

Ω

(

+∞
∑

n=1

αnvn(T )wn(x)

)2

dx−
∫

Ω

∫ T

0

(

+∞
∑

n=1

αnvn(t)wn(x)

)2

f ′′(p(t))q(t) dtdx

+

∫

Ω
q(0)(G−1)′′(c)

(

+∞
∑

n=1

αnwn(x)

)2

dx.

Using that {wn}n∈N∗ is orthonormal in L2(Ω), we finally get the following diagonalized expression
of the second order derivative

d2JT (u)(h, h) =
+∞
∑

n=1

δn(T )α
2
n with δn(T ) = vn(T )

2 −
∫ T

0
f ′′(p(t))q(t)vn(t)

2dt+ q(0)(G−1)′′(c).

The signature of d2JT (u)(h, h) seen as an infinite quadratic form with respect to h is then directly
given by the sign of the coefficients δn. Notice that for all n ∈ N

∗, one has

δn(T ) = vn(T )
2 + (p(T )− 1)e

∫ T

0
f ′(p)

[

(G−1)′′(c)−
∫ T

0
f ′′(p(t))e−

∫ t

0
f ′(p)vn(t)

2 dt

]

.

Let us first assume that C ≤ |Ω|G(θ), meaning that (G−1)(c) ≤ θ. In that case, since p solves (27),
and that the three roots of f are 0, θ and 1, one infers that p is a decreasing function and that f(p)
remains negative all along (0, T ). Furthermore, on (0, θ), the function f ′′ is positive. Finally, one
computes (G−1)′′(c) = (G−1)′(c)g′(G−1(c)) which is negative since so is g′ on (0, 1). Combining all
these facts, we infer that

(G−1)′′(c) −
∫ T

0
f ′′(p(t))e−

∫ t

0
f ′(p)vn(t)

2 dt < 0

and since p(T ) < 1, il follows that

δn(T ) > (p(T )− 1)(G−1)′′(c)e
∫ T

0
f ′(p) > 0

for every n ∈ N
∗ and therefore there exists KT > 0 such that for every admissible perturbation h,

one has

d2JT (u)(h, h) ≥ KT

+∞
∑

n=1

α2
n = KT ‖h‖2L2(Ω).

Expanding JT at the second order at u, it is then standard that this condition implies that u is a
local minimizer for the functional JT .

4.2.4 Constant solutions are not always global minimizers

constant:nonglobal〉We recall the following well-known result (see [24]).
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Lemma 4.9. Let α ∈ (θc, 1). There exists a unique solution, denoted vα, of the Cauchy problem

−d− 1

r
v′(r)− v′′(r) = f(v(r)), on (0,+∞), v(0) = α, v′(0) = 0.

Moreover, (0,+∞)r 7→ vα(r) is decreasing, and there exists Rα > 0 such that vα(Rα) = 0.

In other words, this lemma states the existence of radially symmetric steady-states to the sta-
tionary equation associated to (15). We then deduce the existence of stationary subsolutions for
System (15) that are positive and compactly supported, provided the domain contains a large enough
ball, in other words that the inradius of Ω be large enough.

〈subsol1〉Corollary 4.10. Let us assume that a ball of radius Rα is compactly included in Ω for some
α ∈ (θc, 1), in other words that there exists Oα ∈ Ω such that B(Oα, Rα) ⊂ Ω. Then, wα :=
max{0, vα(‖x−Oα‖)} is a subsolution of (15) if, and only if G(wα) ≤ u0.

Using that wα is a subsolution, we deduce the following comparison result.

〈subsol2〉Corollary 4.11. For any α ∈ (θc, 1) such that Ω contains strictly a ball of radius Rα, that is there
exists Oα ∈ Ω such that B(Oα, Rα) ⊂ Ω, and G(wα) ≤ u0, the solution of (15) verifies p(t, ·) ≥ wα

on Ω for any t ≥ 0.

Let us introduce

Cα :=

∫

Ω
G(wα(x)) dx.

Notice that the family of subsolutions (wα)α have already been used to provide a sufficient
condition on the release function to initiate propagation of infected mosquitoes [31].

Remark 4.12. It is worth mentionning that in the one dimensional case, the expressions for Rα

and Cα are completely explicit:

Rα =

∫ α

0

dw
√

2(F (α) − F (w))
, Cα =

∫ α

0

2G(w) dw
√

2(F (α) − F (w))
.

We are now in position to prove Proposition 3.2 that we rewrite more precisely using the notations
above.

prop:cstpasoptim〉
Proposition 4.13. Let us assume (16). Assume moreover the existence of α ∈ (θc, G

−1(M)] such
that Ω contains strictly a ball of radius Rα, and Cα ≤ C. Then the constant solution u := C

|Ω| is not
a global minimizer of the optimization problem Preduced whenever T is large enough.

Proof. From assumption (16), we have G−1(u) < θ, hence we have already seen in Section 4.2.3 that
the solution, denoted p, of (15) with initial data G−1(u) is constant in space and decreasing with
respect to time. More precisely, it solves the ODE

p′ = f(p), p(0) = G−1(u) = G−1
( C

|Ω|
)

.

Hence, when t→ +∞, p(t) decays to 0.
For any α ∈ (θc, G

−1(M)] satisfying the assumptions above, the subsolution wα defined in
Corollary 4.10 is such that G(wα) ∈ VC,M . From Corollary 4.11, if we take u0 ∈ VC,M such that
G−1(u0) ≥ wα, then for all t ≥ 0, the corresponding solution to (15) verifies p(t, ·) ≥ wα. Hence
JT (u0) ≤ 1

2

∫

Ω(1− wα(x))
2 dx.
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Moreover, since p(T ) → 0 as T → +∞, we have that for T large enough

∫

Ω
(1− p(T ))2 dx = (1− p(T ))2|Ω| >

∫

Ω
(1−wα(x))

2 dx.

Hence, u is not a global minimum of JT at time T since JT (u0) < JT (u) =
1
2

∫

Ω(1− p(T ))2 dx.

Remark 4.14. If G−1(M) > θc, if the inradius of Ω is large enough and is C is large enough, it
is always possible to find α satisfying the assumptions of Proposition 4.13. For instance, it suffices
to choose α = G−1(M) and to take C ≥ CG−1(M) and the inradius of Ω large enough so that (16)
holds and a ball of radius RG−1(M) be included in Ω.

5 Numerical experiments

〈sec:num〉 In this section, we provide some numerical approximations of solutions for the optimal control
problem (Preduced).

The parameter values are given in Tables 1 and 2. We will assume that Ω is an interval (0, L),

i.e. d = 1. From these tables, we deduce that sf = 0.1, δ = 4
3 , and thus θ =

sf+δ−1
δsh

= 13
36 .

System (15) will be discretized with an explicit Euler scheme in time and a standard finite difference
approximation of the Laplacian. In all simulations, the number of steps in space and time will be
fixed to 20 and 200 respectively (in order to satisfy the CFL condition). The solution of the optimal
control problem will be obtained by testing and combining two approaches:

• a Uzawa type algorithm, based on the gradient computation of Prop. 4.6. It consists in
alternating at each iteration a step of minimization of the Lagrangian associated with the
problem with respect to the primal variable (u0) and a step of maximization with respect
to the Lagrange multiplier associated with the integral constraint. The minimization step is
performed with a projected gradient type method, where L∞ constraints on u0 are taken into
account by means of a projection operator.

• the opensource optimization routine GEKKO (see [5]) solving the optimization problem using
the IPOPT (Interior Point OPTimizer) library, a software package for large-scale nonlinear
problems by an interior-point filter line-search algorithm (see [33]). This algorithm has been
initialized with the previous control obtained by using the aforementioned Uzawa type algo-
rithm.

Parameter Name Value

Fu Normalized fecundity rate for uninfected mosquitoes 1

Fi Normalized fecundity rate for infected mosquitoes 0.9

du Death rate for uninfected mosquitoes 0.27

di Death rate for infected mosquitoes 0.36

K Caring capacity 0.06

sh Cytoplasmic incompatibility 0.9

Table 1: Values of the parameters used in the simulations (see [31, sec. 2])
〈tab:value〉

Let us distinguish between two cases:

Case C/|Ω| > M .
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Parameter Name Value

T Time of experiment 40

D Diffusion coefficient 1

L = |Ω| Size of the spatial domain 30

Table 2: Values of the parameters T , D and |Ω| used in the simulations
〈tab:value2〉

In Figure 2, the local minimizers of Problem (Preduced) for C = 1.2 and M = 0.02 (left) (resp.
M = 0.03 (right)) obtained by using the aformentioned Uzawa and Gekko algorithms are reported.
We observe the extinction (resp. the invasion) of the population. One recovers the theoretical result
stated in item (i) of Theorem 3.1, in other words that the constant function equal to M solves
Problem (Preduced) whenever C ≥ M |Ω| (see Table 3). In this situation, the space dependency has
no impact on the time dynamics, i.e. the dynamics is the same as if there is no diffusion. Then,
since it is a bistable dynamics, when M < G(θ) there is extinction of the population, whereas there
is invasion when M > G(θ).

Case C/|Ω| < M .

This situation is illustrated in Figure 3 and 4 with Gekko algorithm and Figure 5 with Uzawa
algorithm for C ∈ {0.5, 0.8} and M ∈ {0.04, 0.4}. The simulation with the Uzawa algorithm in
Figure 5 recovers the fact that C/L is a local minimizer for Problem (Preduced). Indeed this algorithm
seems to converges always to this constant solution. Nevertheless, it is not a global minimum since
Gekko provides a better control as it is illustrated thanks to the values of JT (u) reported in Table
3. Moreover, we see on Figure 3 that invasion of the infected population seems to occurs whereas
the infected population seems to go to extinction in Figure 5. This is also in concordance with the
result stated in Proposition 4.13.

Case Parameters
JT (u) with

Gekko
JT (u) with
Uzawa

JT (M) JT (C/L)

C/|Ω| > M
M = 0.02, C = 1.2 14.7 14.7 14.7
M = 0.03, C = 1.2 3.61e-2 3.61e-2 3.61e-2

C/|Ω| < M

M = 0.04, C = 0.5 14.0 14.8 14.8
M = 0.04, C = 0.8 2.30 12.7 12.7
M = 0.08, C = 0.5 13.8 14.8 14.8
M = 0.08, C = 0.8 2.25 12.7 12.7

Table 3: Values of local optima computed thanks to Gekko and Uzawa algorithms and theoretical
local optima

〈tab:value3〉
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Figure 2: Case C/|Ω| > M : Optimal solution p to Problem (Preduced) at time t ∈ {0, 10, 20, 30, 40}
for C = 1.2 and M ∈ {0.02, 0.03} thanks to Gekko and Uzawa algorithms

〈fig:1〉
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Figure 3: Case C/|Ω| < M : Optimal solution p to Problem (Preduced) at time t ∈ {0, 10, 20, 30, 40}
for C ∈ {0.5, 0.8} and M ∈ {0.04, 0.08} thanks to Gekko algorithm.

〈fig:2〉
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Figure 4: Case C/|Ω| < M : Optimal control u associated to the cases considered in Fig. 3, in
other words solution of Problem (Preduced) for C ∈ {0.5, 0.8} and M ∈ {0.04, 0.08} thanks to Gekko
algorithm
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Figure 5: Case C/|Ω| < M : Optimal solution p to Problem (Preduced) at time t ∈ {0, 10, 20, 30, 40}
for C ∈ {0.5, 0.8} and M = 0.04 thanks to Uzawa algorithms

〈fig:3〉

6 Perspectives

In a near future, we foresee to investigate a more involved model, closer to practical experiments,
where one aims at determining release distributions in time and space, assuming that:

• releases are done periodically in time (for instance every week) and are impulses in time4;

4We consider Dirac measures since at the time-level of the study (namely, some generations), the release can be
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• at each release, the largest allowed amount of mosquitoes is released, corresponding to the
maximal production capacity per week (which is relevant, according to the comparison princi-
ple).

As a consequence, we will be interested in determining the optimal way of releasing spatially the
infected mosquitoes. Considering N releases, we denote by t0 = 0 < t1 < . . . < tN−1 < T , ti = i∆T ,
the release times. Rewriting the L1 constraint on the control as 〈u, 1〉D′,D((0,T )×Ω) ≤ C, the control
function reads

u(t, x) =

N−1
∑

i=0

ui(x)δ{t=ti}, with

N−1
∑

i=0

∫

Ω
ui(x) dx ≤ C,

where the pointwise constraint is modified into 0 ≤ ui(·) ≤M .
The new optimal design problem reads

inf
u∈VC,M

J̃T (u), where u = (ui)0≤i≤N−1, J̃T (u) = JT

(

N−1
∑

i=0

ui(·)δ{t=ti}

)

(P ′
full) {?}

and

VC,M

=

{

u = (ui(·))0≤i≤N−1, 0 ≤ ui ≤M a.e. in Ω, i ∈ {0, . . . , N − 1} ,
N−1
∑

i=0

∫

Ω
ui(x) dx ≤ C

}

.

As done in this article, System (1) can be recast without source measure terms, coming from the
specific form of the control functions.

In a second time, we will also look at dropping the assumption on the frequency of releases and
determine optimal times of releases (in the spirit of [3], where a simpler ODE model were considered).

Another interesting question is also raised by the spatial heterogeneities. Indeed, in field experi-
ments the environment is not homogeneous in space. Then an important issue, from an experimental
point of view, is to determine how to adapt the releases with respect to the spacial heterogeneities
to optimize the success of the replacement strategies.
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