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Complexity of tropical Schur polynomials

Dima Grigoriev∗and Gleb Koshevoy†

Abstract

We study the complexity of computation of a tropical Schur polynomial Tsλ
where λ is a partition, and of a tropical polynomial Tmλ obtained by the tropical-
ization of the monomial symmetric function mλ. Then Tsλ and Tmλ coincide as
tropical functions (so, as convex piece-wise linear functions), while differ as trop-
ical polynomials. We prove the following bounds on the complexity of computing
over the tropical semi-ring (R,max,+):

• a polynomial upper bound for Tsλ and

• an exponential lower bound for Tmλ.

Also the complexity of tropical skew Schur polynomials is discussed.

Keywords: tropical Schur polynomials, complexity over the tropical semi-ring

Introduction

We study computations (i. e. circuits, see e. g. [2]) over a tropical semi-ring (R,max,+)
where max plays a role of addition, and + plays a role of multiplication (see e. g. [12]).
Actually, computations over (R,max,+) were considered in Computer Science earlier
than tropical algebra and geometry (and even the term ”tropical” itself) have emerged
(see e. g. [13] and further references there).

The tropicalization of a polynomial f =
∑

I aIx
i1
1 · · ·xinn ∈ R[x1, . . . , xn] is a tropical

polynomial Trop(f) := maxI{i1x1 + · · · + inxn} defined over the tropical semi-ring
(R,max,+) (see e. g. [12]). One can treat a tropical polynomial as a convex piece-wise
linear function.

We study a tropical Schur polynomial Tsλ = Trop(sλ) (see Section 1) being the
tropicalizations of the Schur function sλ, where λ = {λ1, . . . , λn}, λ1 ≥ λ2 ≥ · · · is a
partition.

Schur functions is an important class in combinatorics, representation theory and
geometry (see, for example, [10]). These functions form a distinguished basis in the
ring of symmetric polynomials. Schur functions considered as functions of λ’s satisfy
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Plücker relations [10], and such hipostasis of Schur functions is of importance for con-
struction of polynomial solutions to discrete Hirotra equation [18]. Tropical Plücker
relations take the form of the tropical octahedron recursion [5] and tropical Schur poly-
nomials satisfy this recursion. Tropicalization of polynomials relates to optimization
problems on the corresponding Newton polytopes. For Schur functions the Newton
polytopes are permutohedrons, a subclass of important class of polytopes in combina-
torial optimization, base-polytopes, see Section 3 below.

Since Tsλ is a convex piece-wise linear function maxW{w1x1 + · · · + wnxn} where
the multiindices W range over all integer points of the Newton polyhedron of sλ, it
coincides with a function Tmλ := maxJ{j1x1 + · · · + jnxn} where the multiindices J
range over all the vertices of the Newton polyhedron of sλ. Note that Tmλ are the
tropicalizations of the monomial symmetric functions mλ which form (as well as sλ) a
basis in the ring of symmetric functions (see [16]). On the other hand, Tsλ and Tmλ

differ as the elements of the semi-ring of tropical polynomials [12].
We exhibit (see Theorem 2.1) a polynomial complexity O(n2 · λ1) algorithm which

computes Tsλ over (R,max,+). On the contrary, we prove (see Theorem 4.1) an
exponential lower bound on the complexity of computing Tmλ over (R,max,+). This
demonstrates an interesting phenomenon: while Tsλ and Tmλ coincide as tropical
functions, their complexities as tropical polynomials differ considerably.

Observe that in [8] there was designed a polynomial complexity subtraction-free
algorithm (relying on the cluster transformations), in other words a computation
over (R,+,×, /) for Schur polynomials. The tropicalization (see [1]) of this algo-
rithm provides a polynomial complexity computation of Tsλ over a tropical semi-field
(R,max,+,−). Thus, the algorithm from Theorem 2.1 is better because it avoids sub-
traction (viewed as a tropical analog of division). It is unclear, whether the complexity
of computation of Tmλ over (R,max,+,−) is polynomial?

We conjecture that in the algebraic setup, it is exponential hard to calculate sλ
without division, i.e. over (R,+,×).

On the other hand, from the tropicalization of the results of [8] we conclude that
the tropical polynomial expressing the maximal weight directed spanning tree in the
complete graph has a polynomial complexity over (R,max,+,−), while its complexity
over (R,max,+) is exponential. In the proofs of complexity lower bounds we make
use of technical tools developed in [19], [13], where some exponential complexity lower
bounds were established for computations over (R,+,×) as well as over the tropical
semi-ring (R,max,+).

In Section 3 we provide some necessary concepts and results on base-polytopes and
submodular functions.

In Section 5, we speculate that the complexity of a skew Schur polynomial Tsλ/µ
in n variables (being the tropicalization of the skew Schur polynomial sλ/µ) might
depend on the shapes of the partitions λ, µ, and we conjecture that for some shapes
its complexity over the semi-ring (R,max,+) is exponential, while over the semi-field
(R,max,+,−) the complexity is (polynomial) O(n5) due to the tropicalization of the
subtraction-free algorithm from [8] which computes skew Schur polynomials.
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1 Tropical Schur polynomials and monomial sym-

metric polynomials

Recall that for a fixed alphabet [n] := {1, . . . , n} and a partition λ = (λ1 ≥ . . . ≥ λn)
the Schur polynomial sλ [16] is defined as follows. Consider a matrix ∆ having n
rows and infinite number of columns with the entry xji at i-th row and j-th column,
1 ≤ i ≤ n, j ≥ 0. By ∆λ denote the n×n subdeterminant of ∆ formed by the columns
λn, λn−1 + 1, . . . , λ2 + n − 2, λ1 + n − 1. In particular, ∆(0,...,0) =

∏
1≤i<j≤n(xj − xi)

is the Vandermond determinant. Thus, the symmetric polynomial sλ is defined as the
quotient ∆λ/∆(0,...,0).

For example, for n = 3 and λ = (2, 1, 0), we get

s(2,1,0)(x1, x2, x3) =

det

1 x2
3 x4

3

1 x2
2 x4

2

1 x2
1 x4

1


det

1 x3 x2
3

1 x2 x2
2

1 x1 x2
1

 =
x4

1x
2
3 + x4

2x
2
1 + x4

3x
2
2 − x4

1x
2
2 − x4

2x
2
3 − x4

3x
2
1

(x2 − x1)(x3 − x1)(x3 − x2)
=

x2
1x2 + x2

1x3 + x1x
2
2 + x2

2x3 + x1x
2
3 + x2x

2
3 + 2x1x2x3.

The coefficients Kµ,λ of the expansion

sλ(x) =
∑

µ∈ch(w(λ), w∈Sn)

Kµ,λx
µ, (1)

are called Kostka numbers, where x = (x1, . . . , xn), xµ = xµ1

1 · · · xµn
n , (µ1, . . . , µn) ∈ Zn,

Sn is the group of permutations of the finite set [n], w(λ) = (λw(1), . . . , λw(n)), and
ch(w(λ), w ∈ Sn) denotes the convex hull of the points w(λ), w ∈ Sn, we introduce a
relation µ � λ if µ ∈ ch(w(λ), w ∈ Sn).

For s(2,1,0)(x1, x2, x3), we get 7 points in ch(w(2, 1, 0), w ∈ S3), (1, 1, 1) and 6
permutations of (2, 1, 0). The Kostka numbers are Kw(2,1,0),(2,1,0) = 1, w ∈ S3, and
K(1,1,1),(2,1,0) = 2.

The Newton polytope of sλ is defined as the convex hull of all the vectors µ ∈ Rn

with non-zero coefficients Kµ,λ 6= 0, that is ch(w(λ), w ∈ Sn). The tropicalization Tsλ
of the Schur polynomial sλ can be treated as the maximum of a linear functional over
the Newton polytope. Thus, the tropical Schur polynomial sλ(x) is

Tsλ(x) = max
µ∈ch(w(λ), w∈Sn)

x(µ),

here we consider x as a linear functional on Rn, and x(µ) denotes the value of the
functional at µ ∈ Zn.

The maximal value Tsλ at a linear functional over the Newton polytope equals the
maximal value at a linear functional over the vertices of the Newton polytope, i, e. the
value of the function

Tmλ(x) = max
w∈Sn

x(w(λ)),

being the tropicalization of the monomial symmetric functionmλ =
∑

w∈Sn
xw(λ), there-

fore Tsλ coincides with Tmλ as functions.
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2 Complexity: upper bound for tropical Schur poly-

nomials

The purpose of this Section is to prove the following theorem.

Theorem 2.1 . A tropical Schur polynomial Tsλ can be calculated within (polyno-
mial) O(n2 · λ1) bit complexity over (R,max,+).

Proof. First let us recall that the Newton polytope NP (ek) of an elementary sym-
metric function

ek(x1, . . . , xn) =
∑

i1<i2<...<ik

xi1xi2 . . . xik ,

is a hypersimplex, that is the convex hull of the set(
[n]

k

)
= {I ⊂ [n], |I| = k},

where a subset I is naturally identified with a vertex of the hypercube 2[n].
A hypersimplex is a matroid, a subclass of base-polytopes. The useful facts on base

polytopes are collected in Section 3.
Denote by λ′ the dual partition to λ, that is λ′i = |{j : λj ≥ i}, i = 1, . . . , λ1}|.

From the Littlewood formula (see [16]) it follows∏
k

eλ′k = sλ +
∑
µ≺λ

Kλ′,µ′sµ.

Hence the Newton polytope NP (Tsλ) of the Schur polynomial sλ coincides with
the Minkowski sum of the Newton polytopes

∑
kNP (eλ′k). Moreover, since the hy-

persymplexes are matroids, the directions of edges of any hypersimplex take the form
{ei − ej}. The latter set is unimodular, and from [4] we get

NP (Tsλ)(Z) =
∑

1≤k≤λ1

NP (eλ′k)(Z), (2)

where, for a polytope P , P (Z) denotes the set of integer points in P .
Due to (2), in order to calculate Tsλ, one needs first to calculate tropical elementary

Schur functions Teλ′k , 1 ≤ k ≤ λ1. Since

ek(x1, . . . , xn) = ek(x1, . . . , xn−1) + xnek−1(x1, . . . , xn−1),

and the tropicalization of this identity holds, the complexity of computation of a trop-
ical elementary Schur function is quadratic in n (to this end, one can use this identity
as a recursion on n, k following the Pascal triangle). �
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3 Base-polytopes

Here we recall some basic facts on base-polytopes. For details see [6, 9].
A function f : 2[n] :→ R is submodular if, for any S, T ⊆ [n], it holds

f(S) + f(T ) ≥ f(S ∪ T ) + f(S ∩ T ).

To a submodular function f is associated a base-polytope Bf in Rn

Bf := {x ∈ Rn : x(S) ≤ f(S), x([n]) = f([n])},

where x(S) denotes the sum
∑

i∈S xi.

This polytope is located in the hyperplane x([n]) = f([n]). Edges of such a polytope
are parallel to ’roots’ αi − αj, where αi denotes the i-th basis vector in Rn ([11]).

The Edmonds greedy algorithm [6] implies that the vertices of the base-polytope
are labeled by permutations from Sn. Namely, for a permutation w ∈ Sn, the corre-
sponding vertex xw(f) has coordinates defined by the rule xw(1) = f({w(1)}), xw(2) =
f({w(1), w(2)})− f({w(1)}), . . . ,

xw(i) = f({w(1), . . . , w(i)})− f({w(1), . . . , w(i− 1)}).

There holds

Theorem 3.1 ([6]) Bf is the convex hull of xw(f), w ∈ Sn. �

Any facet (a face of codimension 1) of a base-polytope is a direct product of two
base-polytopes (one of polytopes can degenerate to a point). Moreover, each facet is
labeled by a subset W ⊂ [n] and there holds

Proposition 3.2 ([9]) The facet of Bf labeled by W ⊂ [n] is the product of the base-
polytope Bf |W := {x ∈ RW : x(S) ≤ f(S), S ⊂ W,x(W ) = f(W )} and the base-
polytope BfW := {x ∈ R[n]\W : x(T ) ≤ f(T ∪W ) − f(W ), T ⊂ [n] \W,x([n] \W ) =
f([n])− f(W )}. �

The polytope Bf |W is a subset of RW , and the polytope BfW is a subset of R[n]\W .
Let us note that the facet labeled by the complementary set [n] \W , is the product

of the polytope Bf |[n]\W
in R[n]\W and the polytope Bf [n]\W in RW . In other words, these

facets are parallel and decomposed as the product of polytopes in RW and R[n]\W .
Thus, a facet labeled by a subset W of cardinality k has at most k! × (n − k)!

vertices. Moreover, this bound on the number of vertices is valid for any ’cut’

Bf ∩ {x ∈ R[n] : x(W ) = a, xi = 0, i /∈ W},

where a is in the segment f([n])− f([n] \W ) ≤ a ≤ f(W ). (From the submodularity
it holds that f(W ) + f([n] \W ) ≥ f([n]).)

Lemma 3.3 For a subset W of cardinality k, the polytope

Bf ∩ {x ∈ R[n] : x(W ) = a, xi = 0, i /∈ W}

has at most k!× (n− k)! vertices.
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Proof. The intersection of a base polytope and halfspaces of the form xi ≤ 0, xi ≥ 0,
i ∈ [n], or x([n]) ≤ a, a ∈ R remains a base polytope ([9]).

Because of this, such a cut is a facet of the base polytope

Bf ∩ {x ∈ R[n] : x(W ) ≤ a, xi = 0, i /∈ W}.

�
Let us warn that in general the intersection of base-polytopes may be not a base-

polytope.

4 Complexity: lower bound for tropical monomial

symmetric functions

Since tropical Schur function takes the form of maximization of a linear functional over
a polytope, it suffices to consider only the vertices of such a polytope. However, over the
semi-ring (R,max +) the complexity of such a modification can increase exponentially.
We demonstrate this phenomenon for a tropical Schur function.

Observe that Tsλ and Tmλ (see Section 1) coincide as tropical functions, while they
differ as the elements of the semi-ring of tropical polynomials, and the complexity of
computation in the latter semi-ring is polynomial for Tsλ (Theorem 2.1), while the
complexity of Tmλ is exponential as we prove in the following theorem.

Theorem 4.1 For λ with the ith part of the form λn−i+1 := 2ni + {i2modn},
i = 1, . . . , n for prime n, the complexity of computation of Tmλ over the tropical
semiring (R,max,+) is exponential.

Proof. Throughout the proof we omit the adjective ”tropical” for tropical polyno-
mials and utilize for the latter the customary notations +,× for tropical operations
max,+, respectively. For a (homogeneous) polynomial P by mon(P ) denote the set of
monomials of P . We will use the following result.

Lemma 4.2 [19], [13]. Let P be a homogeneous polynomial in n variables. If for
any homogeneous polynomials R, Q such that mon(P ) ⊃ mon(RQ), and of the degrees

1/3 degP ≤ degR, degQ ≤ 2/3 degP , we have |monP |
|mon(RQ)| > cn1 , for some c1 > 1, then

the complexity of computation of P over (R,max,+) is exponential.
We mention that a similar complexity lower bound holds as well for computations

over (R,+,×).

In our case we have to show that a polynomial RQ has exponentially small deal of
monomials wrt n! (which equals the number of monomials in P = Tmλ).

Let us explain our choice of such a specific λ. The parts of λ form a Golomb ruler
([7]), that is λi + λj = λk + λl iff {i, j} = {k, l}.

Lemma 4.3 [7]. Partition λ specified in Theorem 4.1 forms a Golomb ruler.
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This property allows us to separate variables. Below P denotes Tmλ for a partition
λ forming a Golomb ruler.

Lemma 4.4 Let mon(QR) ⊂ mon(P ) for a partition λ which forms a Golomb
ruler and homogeneous polynomials Q,R. Then there is a subset S ⊂ [n] such that
Q = Q′(xi, i ∈ S)M(xj, j ∈ [n] \ S) and R = N(xi, i ∈ S)R′(xj, j ∈ [n] \ S), where M
and N are monomials in variables xj, j ∈ [n] \ S and xi, i ∈ S, respectively.

Proof. Indeed, assume the contrary. Then there exists m ∈ [n] and four monomials

q1 = · · · xαm · · · , q2 = · · ·xβm · · · ∈ mon(Q); r1 = · · ·xγm · · · , r2 = · · ·xδm · · · ∈ mon(R)

such that α 6= β, γ 6= δ. Since

r1q1, r2q2, r1q2, r2q1 ∈ mon(RQ) ⊂ mon(P )

there are i, j, k, l ∈ [n] for which α+ γ = λi, β+ δ = λj, α+ δ = λk, β+ γ = λl. Hence
λi + λj = λk + λl, and we get a contradiction with the Golomb property. �

Thus, we have a separation of variables. We get two polynomials A := NQ′ and
B := MR′ in variable xi, i ∈ S, and xj, j ∈ [n] \ S, respectively.

At the beginning we consider a case of S = ∅. This means that Q is a monomial.

Lemma 4.5 Assume that mon(QR) ⊂ mon(P = Tmλ) where λ forms a Golomb
ruler and Q is a monomial such that c := degQ

degP
∈ [1

4
, 3

4
]. Then R has exponentially

small number of monomials wrt n!.

Proof. Throughout this Section we assume in all the bounds n to be sufficiently
big.

Let Q = xν11 · · ·xνn
n . Firstly, we observe that w.l.o.g. one can suppose that for any i

there exists j such that νi = λj. Indeed, if at least two νi1 , νi2 among {νi}i violate this
condition, we can increase νi1 by 1 and decrease νi2 also by 1, thereby not decreasing
|mon(R)| for which mon(QR) ⊂ mon(P ). Observe that herein |mon(R)| could increase
only if νi2 = λj + 1 for some j. If just a single λj > νi > λj+1 violates the condition
under discussion, we can preserve inequalities degQ

degP
∈ [1

4
, 3

4
] as follows: either replace νi

by λj which keeps |mon(R)| or replace by λj+1 which does not decrease |mon(R)|.
Let bj := {i : νi = λj}, j = n, . . . , 1. Then the number of monomials in R is equal

to
t := bn(bn + bn−1 − 1) · · · (bn + . . .+ b1 − (n− 1)).

We have ∑
biλi = c

∑
λi.

Then, we have

∑
i

λi −
∑

biλi + λ1 − λn =
n−2∑
j=0

(bn + . . .+ bn−j − j)(λn−j−1 − λn−j).
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Thus

t
∏

(λj−1 − λj) ≤
((1− c)

∑
λi + λ1 − λn
n

)n
.

We have
∑
λi ∼ 5n3

6
,
∏

(λj−1 − λj) ∼ 2n (3/2n)!
(1/2n)!

∼ (33/2

e
n)n.

Therefore it holds (taking into account that due to the choice of λi, the degree of
P is 5/6n3 +O(n2)) that

t ≤ (
5e(1− c)n

33/26
)n. (3)

Thus, for 1 − c < 6·33/2

5e2
< 31.14

38.64
, the number of monomials in R is exponentially small

wrt n!. For c ∈ [1/4, 3/4], this is the case. �

Now we complete the proof of Theorem 4.1. Let mon(QR) ⊂ mon(P ).
Recall that the polytope Pern := ch(w(λ), w ∈ Sn) is a base-polytope (see Sec-

tion 3) which is set by a submodular function bλ(T ) =
∑

i=1,...|T | λn−i+1, T ⊂ [n].

Thus, a pair of parallel facets (we agree that a facet is a face of codimension 1) labeled
by a subset W ⊂ [n], |W | = k, are defined by x(W ) = bλ(W ) =

∑k
i=1 λn−i+1 and

x([n] \ W ) = bλ([n] \ W ) =
∑n−k

i=1 λn−i+1, respectively, and any cut with the same

separation of coordinates is defined by x(W ) = a, a ∈ [
∑k

i=1 λn−i+1,
∑k

j=1 λj] (see
Proposition 3.2 and Lemma 3.3). Because of symmetry of bλ wrt permutations of coor-
dinates, facets of Pern are labeled by numbers in [n] (cardinality of set labeling facet).
The number of the vertices of a facet labeled by k ∈ [n] (recall that k corresponds to
separation of variables in groups of k = |S| and n−k variables taking into the account
Lemma 4.4) is

k!(n− k)!.

Because of this, the cardinality of monomials of the product A ·B = Q ·R is bounded
by k(A)!(n− k(A))!, where k(A) = k. Note that deg(A) = λi1 + · · · + λik for suitable
1 ≤ i1 < · · · < ik ≤ n satisfies

deg(A) ∈ [
k∑
i=1

λn−i+1,
k∑
j=1

λj].

There are two cases.
Case 1. degA, degB ≥ c′ · degP , for some sufficiently small constant c′ which we

choose later. In such a case, k = k(A), n−k = k(B) ≥ c′′ ·n for some sufficiently small
constant c′′ depending on c′ (since degP is cubic in n). This implies that A ·B has at
most k!(n− k)! number of monomials, so exponentially small wrt n! and we are done.

Case 2. Either degA < c′ degP or degB < c′ degP . Let for definiteness degA <
c′ degP . Then, the degree of the monomial M satisfies degM

degB
∈ [1

4
, 3

4
] since c′ is suffi-

ciently small.
Then, the same reasoning as above in the proof of Lemma 4.5, provides a bound

|mon(R′)| ≤ (c0(n − k))n−k for any fixed c0 >
5e(1−c)
33/26

(see (3)) due to an appropriate
choice of sufficiently small c′ in Case 1. We take c0 < 1/e. Because of this and that A
has at most k! monomials we get that

|mon(RQ)| = |mon(AB)| ≤ k!(c0(n− k))n−k < n!/cn1

for some c1 > 1. This finishes the proof of Theorem 4.1 making use of Lemma 4.2. �
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5 Tropical skew Schur polynomials

Skew Schur functions form an important class of symmetric functions and is of impor-
tance in many areas, especially in physics, see, for example [14]).

Recall that, for a skew Young diagram λ \ µ (where µ ≤ λ, which denotes the
coordinate-wise inequality of the partitions), a semi-standard Young tableaux (SSYT)
of a shape λ \ µ (in the alphabet [n]) is a filling of the Young diagram λ \ µ with
entries from [n] strictly increasing along the columns and non-decreasing along the
rows ([16]). We accept the French style to draw Young diagram. Here is an example
of a skew SSYT of shape (5, 3, 3, 1) \ (2, 1)

3
2 2 4

1 2
1 1 2

The weight of such a tableau T is the tuple wt(T ) := (#1(T ),#2(T ), . . . ,#n(T )),
where #i(T ) denotes the number of times integer i occurs in T . The skew Schur
polynomial sλ\µ is defined by (see [16])

sλ\µ(x) =
∑
T

xwt(T ),

where the sum runs over the set of all skew semistandard Young tableaux of shape
λ \ µ.

A skew Schur function sλ\µ(x) is symmetric function and its decomposition in the
basis of Schur functions involve famous Littlewood-Richardson coefficients:

sλ\µ(x) =
∑
ν

cλµ,νsν(x). (4)

The Littlewood-Richardson coefficients cλµ,ν are the structure constants in the algebra
of symmetric functions with respect to the basis of Schur functions

sµ(x)sν(x) =
∑
λ

cλµ,νsλ(x).

Another instance of LR-coefficients is as the multiplicities of irreducible representation-
sin the induced tensor product of representations of the symmetric group. The fourth
occurrence is as intersection numbers in the Schubert calculus on a Grassmanian. (For
details on LR-coefficients see [10]).

The computation of LR-coefficients is #P -complete [17], while verification cλµ,ν 6= 0
is polynomial (the problem cλµ,ν 6= 0 is equivalent to existence a solution in a linear
system with 3n2 equations, see for example [15]).

The tropical Schur polynomial Tsλ\µ(x) is a piece-wise linear function defined by
the tropicalization of the above formula in the tropical semi-ring, that is

Tsλ\µ(x) = max
T

(x,wt(T )).

9



where max is taken over all SSYT T of shape λ \ µ. For µ = 0, we obtain a usual
tropical Schur polynomial (cf. Section 1).

Thus, Tsλ\µ(x) is a piece-wise linear function of the form of the maximum of a
linear function (x, ·) over the set of points ν := wt(T ), while T runs over the set of all
skew semistandard Young tableaux of shape λ \ µ.

This set of weights constitute the set of integer points of the polytope GC(λ, µ)
defined by the inequalities

λ([1, |I|])−∆|I| ≥ ν(I), λ([n])−∆n = ν([n]),

where λ([1, |I|]) = λ1 + · · ·λ|I|, ν(I) =
∑

i∈I νi, ∆|I| = ∆1 + . . .∆|I|, ∆k := max{0, µ1−
λk+1} + max{0, µ2 − λk+2}+ · · ·+ max{0, µn−k − λn} (for details see [3]).

For given λ and µ we get a function Λ : 2[n] → R, Λ(I) = λ([1, |I|])−∆|I|, I ⊆ [n].
The properties of this function depend on shape λ \µ. For example, for µ = 0, this

function is submodular (see Section 3).

Proposition 5.1 Let λ and µ be such that the function Λ is submodular. That is, for
any |I|, it holds

λ([1, |I|])−∆|I|−λ([1, |I|+1])−∆|I|+1 ≥ λ([1, |I|+1])−∆|I|+1−λ([1, |I|+2])−∆|I|+2.

Then the complexity of computation of Tsλ\µ(x) is polynomial in n.

Proof. In such a case, the polytope GC(λ, µ) is a base-polytope. Hence the com-
plexity of computation of Tsλ\µ(x) as a tropical function is polynomial in n due to the
greedy algorithm (see Theorem 3.1). �

For λ and µ, for which Λ fails to be submodular, the problem of finding maximum
can be hard, since some of the vertices of GC(λ, µ) do not even corresponds to the
weights of skew semi-standard Young tableaux.

Our conjecture is that the complexity of computation of the tropical polynomial
Tsλ\µ(x) is exponential as well over the semi-ring (R,+,max).

Modulo this conjecture, we speculate that difference of computational complexities
between the Schur functions and skew Schur functions reflects in ’complexities’ of
domains of summations in (1) and (4).

Let us note, over the semi-field (R,max,+,−), the complexity of the tropical skew
Schur polynomial Tsλ\µ(x) is polynomial independently of λ and µ. This follows from
the tropicalization of the subtraction-free algorithm in [8] which computes skew Schur
polynomials.
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