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Tropical differential equations are introduced and an algorithm is designed which tests solvability of a system of tropical linear differential equations within the complexity polynomial in the size of the system and in its coefficients. Moreover, we show that there exists a minimal solution, and the algorithm constructs it (in case of solvability). This extends a similar complexity bound established for tropical linear systems. In case of tropical linear differential systems in one variable a polynomial complexity algorithm for testing its solvability is designed.

We prove also that the problem of solvability of a system of tropical non-linear differential equations in one variable is N P -hard, and this problem for arbitrary number of variables belongs to N P . Similar to tropical algebraic equations, a tropical differential equation expresses the (necessary) condition on the dominant term in the issue of solvability of a differential equation in power series.

Introduction

Tropical algebra deals with the tropical semi-rings Z + of non-negative integers or Z + ∪ {∞} endowed with the operations {min, +}, or with the tropical semifields Z or Z ∪ {∞} endowed with the operations {min, +, -} (see e. g. [START_REF] Itenberg | Tropical algebraic geometry[END_REF], [START_REF] Maclagan | Introduction to tropical geometry[END_REF], [START_REF] Theobald | On the frontiers of polynomial computations in tropical geometry[END_REF]).

A tropical linear differential equation is a tropical linear polynomial of the form min i,j {a

(j) i + x (j) i , a} (1) 1 
where the coefficients a, a

i ∈ Z + ∪{∞}, and a variable x (j)

i is treated as "j-th derivative of x i := x (0) i ". For a subset S i ⊂ Z + we define the valuation V al S i ({j ≥ 0}) := V al S i ({x (j) i } j≥0 ) : Z + → Z + ∪ {∞} of variable x i as follows. For each j ≥ 0 take the minimal s ∈ S i (provided that it does exist) such that s ≥ j and put V al S i (j) := s -j: in case when such s does not exist put V al S i (j) := ∞. We use a shorthand

V al S 1 ,...,Sn := V al S 1 × • • • × V al Sn : Z n + → (Z + ∪ {∞}) n .
Observe that if X i is a power series in t with the support {t s , s ∈ S i } then V al S i (j) is the order ord t (X (j) i ) at zero of the j-th derivative X (j) i . We say that S 1 , . . . , S n is a solution of the tropical linear differential equation [START_REF] Akian | Tropical polyhedra are equivalent to correspondence mean payoff games[END_REF] if the minimum min i,j {a (j) i + V al S i (j), a} is attained at least twice or is infinite (as it is accustomed in tropical mathematics [START_REF] Itenberg | Tropical algebraic geometry[END_REF], [START_REF] Maclagan | Introduction to tropical geometry[END_REF]). The latter is a necessary condition of solvability in power series in t of a linear differential equation i,j A i,j • X (j) i = A in several indeterminates X 1 , . . . , X n . Namely, the orders of power series coefficients equal ord t (A i,j ) = a i,j , ord t (A) = a and the support of X i is S i . More precisely, (1) expresses that at least two lowest terms of the expansion in power series of the differential equation have the same exponents, which is similar to that the tropical equations concern the lowest terms of the expansions in Puiseux series of algebraic equations.

We study solvability of a system of tropical linear differential equations min i,j {a

(j) i,l + x (j) i , a l }, 1 ≤ l ≤ k (2)
where 1 ≤ i ≤ n, 0 ≤ j ≤ r and for all finite coefficients a (j)

i,l , a l ∈ Z we have 0 ≤ a (j) i,l , a l ≤ M . Thus, the bit-size of (2) is bounded by knr log 2 (M + 2). We say that a solution T 1 , . . . , T n of (2) is minimal if the inequality V al T 1 ,...,Tn ≤ V al S 1 ,...,Sn holds pointwise for any solution S 1 , . . . , S n of (2).

Note that (2) extends tropical linear systems when for all the occurring derivatives x (j) i we have j = 0. Thus, the complexity bound of testing solvability of (2) in the next theorem generalizes the similar complexity bound of solvability of tropical linear systems from [START_REF] Akian | Tropical polyhedra are equivalent to correspondence mean payoff games[END_REF], [START_REF] Butkovic | Min-plus systems: theory and algorithms[END_REF], [START_REF] Grigoriev | Complexity of solving tropical linear systems[END_REF].

Theorem 0.1 If a system (2) of tropical linear differential equations is solvable then it has the (unique) minimal solution. There is an algorithm which tests solvability of (2) and in case of solvability yields its minimal solution within the complexity polynomial in knrM .

Note that S ⊂ T ⊂ Z + iff the inequality V al S ≥ V al T holds pointwise. For S 1 , . . . , S n , T 1 , . . . , T n ⊂ Z + we have for the pointwise minimum V al (S 1 ,...,Sn)∨(T 1 ,...,Tn) := V al S 1 ∪T 1 ,...Sn∪Tn = min{V al S 1 ,...,Sn , V al T 1 ,...,Tn }.

Assume now that (2) has solutions S 1 , . . . , S n and T 1 , . . . , T n . Then S 1 ∪ T 1 , . . . , S n ∪ T n is also a solution. This is a tropical analogue of that the sum of solutions of a system of linear differential equations is again its solution. If s ∈ S i such that s ≥ r then one can replace S i by adding to it all the integers greater than s (while keeping S 1 , . . . , S n still to be a solution of (2)). Therefore, one can suppose w.l.o.g. that for every 1 ≤ i ≤ n either S i is finite and moreover S i ⊂ {0, . . . , r -1} or the complement Z + \ S i is finite. Thus, if we define V := V al (S 1 ,...,Sn) where ranges over all the solutions S 1 , . . . , S n of (2) then can be taken over a finite number of solutions, hence it can be reduced to a single solution T 1 , . . . , T n , thereby V = V al T 1 ,...,Tn and T 1 , . . . , T n is the minimal solution of (2) which proves the first statement of Theorem 0.1.

Also we design a polynomial complexity algorithm for solving systems of the type (2) in case of one variable (n = 1). Theorem 0.2 There is an algorithm which tests solvability of a system (2) of tropical linear differential equations in one variable x and yields its minimal solution in case of solvability within the polynomial complexity. More precisely, the complexity is bounded by O(kr log(rM )).

1 Bound on the minimal solution of a system of tropical linear differential equations

Our next goal is to bound the (finite) complements Z \ S i . For each 1 ≤ i ≤ n with a finite Z \ S i denote by m i ∈ S i the minimal element of S i such that m i ≥ r. If for some 1 ≤ l ≤ k the inequality min i,j {a (j) 
i,l +V al S i (j), a l } > M +r holds then for every 1 ≤ i 0 ≤ n, 0 ≤ j 0 ≤ r for which this minimum is attained: a

(j 0 ) i 0 ,l + V al S i 0 (j 0 ) = min i,j {a (j) i,l + V al S i (j), a l } we have V al S i 0 (j 0 ) = m i 0 -j 0 . Consider a graph G which for each finite S i , 1 ≤ i ≤ n contains a vertex w i and for each S i with a finite complement Z + \ S i contains two vertices w i , w ∞ i . A derivative x (j) i corresponds to a vertex w ∞ i iff V al S i (j) = m i -j (provided that Z + \ S i is finite), else x (j) i corresponds to w i . Also G contains a vertex w 0 to which corresponds every free term a l , 1 ≤ l ≤ k. If there are 1 ≤ l ≤ k, 1 ≤ i 0 , i 1 ≤ n, 0 ≤ j 0 , j 1 ≤ r such that a (j 0 ) i 0 ,l + V al S i 0 (j 0 ) = a (j 1 ) i 1 ,l + V al S i 1 (j 1 ) = min i,j {a (j) i,l + V al S i (j), a l } < ∞ (3)
then we connect in G by an edge vertices which correspond to the derivatives x

(j 0 ) i 0 and x (j 1 ) i 1 . Instead of a (j 0 )
i 0 ,l + V al S i 0 (j 0 ) could be a l , then we consider the vertex w 0 .

If a connected component of G contains only vertices of the form w ∞ i with m i > r then for each w ∞ i from this component we replace m i by m i -1, or in other terms, augment S i by m i -1, preserving so modified S 1 , . . . , S n (for which we keep the same notation) to be still a solution of (2) (in particular, in this case S 1 , . . . , S n was not the minimal solution). After that G can be modified (we use the same notation for the modified G), and we continue this process. Eventually, we arrive to a solution S 1 , . . . , S n whose graph G has no connected component satisfying the described property.

Therefore, each connected component of G contains a vertex of the form w i 0 (or perhaps, w ∞ i 0 with m i 0 = r) fulfilling (3) for suitable j 0 , l. Then V al S i 0 (j 0 ) ≤ r (there is a possibility that instead of a (j 0 ) i 0 ,l + V al S i 0 (j 0 ) we consider the free term a l ), hence V al S 1 (j 1 ) ≤ M + r follows from (3). Thus, for every vertex w ∞ i from this connected component there is a path in G of a length at most n -1 connecting it with a vertex of the form w i 2 (or perhaps, w ∞ i 2 with m i 2 = r). Therefore, there is 0 ≤ j ≤ r such that m i -j = V al S i (j) ≤ (n -1)(M + r) (one can show the latter inequality following along the path and applying the above argument). Thus, we conclude with the following lemma. Lemma 1.1 Let T 1 , . . . , T n be the minimal solution of system (2). Then for each 1 ≤ i ≤ n for which Z + \T i is finite the bound m i ≤ N := (n-1)(M + r) + r holds.

This lemma extends Lemmas 1.2, 2.2 [START_REF] Grigoriev | Complexity of solving tropical linear systems[END_REF] established for tropical linear systems.

2 Algorithm testing solvability and producing the minimal solution of a system of tropical linear differential equations

Now we proceed to design an algorithm which tests whether a system (2) is solvable and if yes then yields its minimal solution T 1 , . . . , T n . The algorithm starts with the setting T 1 = • • • = T n := {0, . . . , N } (see Lemma 1.1), perhaps, being not a solution of (2), and then modifies T 1 , . . . , T n recursively while a current T 1 , . . . , T n is not a solution. If eventually a current T 1 , . . . , T n becomes a solution then it is the minimal solution. We show by recursion that for any solution S 1 , . . . , S n of (2) the pointwise inequality V al S 1 ,...,Sn ≥ V al T 1 ,...,Tn holds for a current T 1 , . . . , T n .

the algorithm designed in this Section has a preference in discarding elements s which are less than r. As above denote by m 0 ≥ r the minimal element of T ∩ [r, ∞).

Second, let otherwise m 0 be the only candidate to be discarded from T for all the equations from (2) which are not satisfied by T . Then the algorithm from Theorem 0.1 would just discard m 0 , while the algorithm under description discards from T possibly more elements at one step.

For each 1 ≤ l ≤ k consider a unique 0 ≤ j 0 ≤ r (provided that it does exist, i. e. the l-th equation is not satisfied by T ) such that V al T (j 0 ) = m 0 -j 0 and a

(j 0 ) l +m 0 -j 0 = min j {a (j)
l +V al T (j)}. Take the maximal p l (or the infinity when it is not defined) such that a

(j 0 ) l + m 0 -j 0 + p l ≤ a (j) l + V al T (j) (4) 
for any 0 ≤ j < r for which V al T (j) = s 1 -j for suitable T s 1 < r. Observe that p l ≥ 1. Denote by p the maximum of all such p l . Let p = p l 0 for an appropriate 1 ≤ l 0 ≤ k. If p = ∞ then the algorithm discards from T all the elements s ≥ r. Else, if p < ∞ then the algorithm discards all the elements s from T such that m 0 ≤ s < m 0 +p. In other words, the algorithm replaces the minimal element m 0 of T ∩ [r, ∞) by m 0 + p, we call this step of the algorithm a jump. Clearly, the jump replaces p steps of the algorithm from Theorem 0.1 each consisting in discarding just one element from T (so, discarding consecutively m 0 , m 0 + 1, . . . , m 0 + p -1) due to the unique monomial a (j 0 ) l 0 + x (j 0 ) at which the minimum in (2) is attained for the l 0 -th equation.

Observe that after a jump either the (new current) T provides a solution of (2) or the algorithm can execute a step of the finite type because of the choice of p, see (4), so discards from T some element s < r.

As in Section 2 the algorithm terminates when either a current T provides a solution of (2) (being the minimal solution as it was proved in Section 2) or the algorithm exhausts T (which means that T ∩ [0, N ] = ∅, see Sections 1, 2). In the latter case if system (2) is homogeneous then it has the (unique) infinite solution, otherwise a non-homogeneous system has no solutions (again similar to Section 2).

To estimate the complexity of the algorithm note that after a jump the algorithm executes a step of the finite type, i. e. discards from T an element s < r. Therefore, the number of steps of the algorithm does not exceed 2r taking into the account that the number of steps of the finite type is less or equal than r. To bound the jump p observe that a 4)). Since j 0 ≤ r we deduce that m 0 + p < 2r + M , hence p < r + M . Thus, one can estimate the complexity by O(kr log(rM )), and we complete the proof of Theorem 0.2.

(j 0 ) l 0 + m 0 -j 0 + p = a (j 1 ) l 0 + s 1 -j 1 for appropriate j 1 , s 1 < r (cf. (

N P -hardness of solvability of tropical nonlinear differential equations in one variable

Now generalizing tropical linear differential equations (see the Introduction) we consider systems of tropical non-linear differential equations of the form min

{P } {a P + (i,j)∈P x (j) i } (5) 
where the coefficients a P ∈ Z + and the minimum ranges over a certain (finite) family of finite multisets P of pairs (i, j). We view |P | as the degree of the monomial a P + (i,j)∈P x (j)

i . Similar to the case of tropical linear differential equations (see the Introduction), we observe that the solvability of ( 5) is necessary for the solvability in power series in t of a non-linear differential equation {P } A P • (i,j)∈P X (j) i = 0 where ord t (A P ) = a P .

We prove that the problem of solvability (with a set S ⊂ Z + similar to tropical linear differential equations, see the Introduction) of a system of equations of the form ( 5) is N P -hard already in the case of a single variable x. Mention that in [START_REF] Theobald | On the frontiers of polynomial computations in tropical geometry[END_REF] N P -completeness of the solvability of tropical non-linear systems (in several variables) is established.

We prove N P -hardness by means of reducing a 3-SAT boolean formula Φ in n variables y 0 , . . . , y n-1 (see e. g. [START_REF] Garey | Computers and intractability: a guide to the theory of N P -completeness[END_REF]) to a system E Φ of equations of the form (5) in a single variable x, preserving the property of solvability.

The system E Φ contains (linear) equations

min{x (2j+1) , 0}, 0 ≤ j ≤ 2n -1 (6) 
These equations mean that the valuation of each even derivative x (2j) , 0 ≤ j ≤ 2n -1 equals either 0 or 1. Also E Φ contains (quadratic) equations

min{x (2j) + x (2j+2n) , 1}, 0 ≤ j ≤ n -1 (7) 
They mean that either V al(x (2j) ) = 0, V al(x (2j+2n) ) = 1 (which corresponds to the value "true" of the variable y j , 0

≤ j ≤ n -1 of Φ) or V al(x (2j) ) = 1, V al(x ( 2j+2n 
) ) = 0 (which corresponds to the value "false" of y j , respectively). Finally, for each 3-clause of Φ, say of the form ¬y j 1 ∨ y j 2 ∨ ¬y j 3 we add to E Φ a (linear) equation

min{x (2j 1 +2n) , x (2j 2 ) , x (2j 3 +2n) , 0} (8) 
Clearly, Φ is equivalent to the solvability of the system obtained by uniting (6), ( 7) and ( 8) for all 3-clauses of Φ. Thus, we have proved Proposition 4.1 The problem of solvability of systems of tropical non-linear differential equations in a single variable is N P -hard.

Solvability of systems of tropical non-linear differential equations is in N P

Next we prove that the problem of solvability of systems of k tropical nonlinear differential equations of the form (5) of degrees |P | ≤ d fulfilling the bounds: 0 ≤ a P ≤ M, 0 ≤ j ≤ r, 1 ≤ i ≤ n (in an arbitrary number n of variables) belongs to N P . First, similar to Lemma 1.1 and using the notations from Section 1, we show that if a system has a solution (with some S 1 , . . . , S n ⊂ Z + ) then it possesses a sufficiently small solution.

Substitute the solution into each equation of the form ( 5), then the valuations of some derivatives x (j) i can equal m i -j, the valuations of all the other derivatives consider as being fixed. We treat the system (after this substitution) as an input of the linear programming problem (expressing that the minimum in ( 5) is attained at least at two terms) with respect to the indeterminates m i (for all i for which they are defined), and the fixed valuations consider as the coefficients of the input. Therefore, this input possesses a solution with m i bounded (due to Hadamard's inequality on determinants) by

N 1 := n! • (M + rd) • d n .
Note that this bound is worse than the bound on N established in Lemma 1.1 for systems of tropical linear differential equations.

Since in order to give a solution S 1 , . . . , S n it suffices just to specify S i ∩ [0, r], 1 ≤ i ≤ n and m i ≤ N 1 (for i for which it does exist), we get the following Proposition 5.1 The problem of solvability of systems of tropical non-linear differential equations belongs to N P .

Further research

Similar to tropical linear systems (cf. [START_REF] Akian | Tropical polyhedra are equivalent to correspondence mean payoff games[END_REF], [START_REF] Butkovic | Min-plus systems: theory and algorithms[END_REF], [START_REF] Grigoriev | Complexity of solving tropical linear systems[END_REF]) it is an open problem, whether one can solve system (2) of tropical linear differential equations within the complexity polynomial in knr log M (in other words, within the proper polynomial complexity)? In Section 3 a polynomial complexity algorithm is designed for testing solvability of systems of tropical linear differential equations in one variable (n = 1). Is there a polynomial complexity algorithm for similar systems in, say a constant number n ≥ 2 of variables?

It is known (see [START_REF] Akian | Tropical polyhedra are equivalent to correspondence mean payoff games[END_REF], [START_REF] Butkovic | Min-plus systems: theory and algorithms[END_REF], [START_REF] Grigoriev | Complexity of solving tropical linear systems[END_REF]) that the problem of solvability of systems of tropical linear equations is in the complexity class N P ∩ coN P . Does the problem of solvability of systems of the type (2) of tropical linear differential equations belong to coN P ? Proposition 5.1 implies that even a more general problem of solvability of systems of the type (5) of tropical non-linear differential equations lies in N P .

It is proved in [START_REF] Speyer | The tropical Grassmanian[END_REF] the following coincidence for the closure in the euclidean topology: T rop(V (I)) = V (T rop(I)) ⊂ R n where I ⊂ K[X 1 , . . . , X n ] is a polynomial ideal over the field K of Puiseux series and V (I) ⊂ K n is the variety of I. Does there hold an analogue of this coincidence for differential ideals? In other words, is it true that for any differential ideal G in n independent variables and a family S 1 , . . . , S n ⊂ Z + being a solution of the tropical differential equation T rop(g) for any g ∈ G, there exists a power series solution of G whose tropicalization equals S 1 , . . . , S n ?

We say that S 1 , . . . , S n is a Laurent solution of (2) if for every 1 ≤ i ≤ n either S i ⊂ Z + is as we considered above or S i = {b} is a singleton for some negative integer 0 > b ∈ Z. In the latter case V al b (j) = b-j. This corresponds to the order of the j-th derivative of a Laurent series of the form ct b (1 + O(t)) for a (complex) coefficient c. If all sets among S 1 , . . . , S n are negative singletons then the solvability of (2) reduces to the solvability of a tropical linear system. The question is, what is the complexity of testing whether (2) has a Laurent solution? Actually, one can extend this setting from Laurent solutions to solutions of the form S i = {b} where b ∈ R \ Z + . This corresponds to a necessary condition of solvability of a system of linear differential equations in Puiseux series (when b ∈ Q) or in Hahn series (when b ∈ R, see e. g. [START_REF] Grigoriev | Solving ordinary differential equations in the series with real exponents[END_REF]).

For a tropical linear differential monomial a + x (j) , a, j ∈ Z + define its derivative as min{a -1 + x (j) , a + x (j+1) } when a ≥ 1 or as x (j+1) when a = 0 (which mimics the usual derivation law). We spread this definition of the derivative to all tropical linear differential equations of the form (2) by the tropical linearity. The tropical ideal generated by the derivatives of all the orders of tropical linear differential equations is called the tropical linear differential ideal generated by these equations. Is it possible to test solvability of a tropical linear differential ideal? Lest there would be a misunderstanding, we note that a solution of a tropical linear differential equation is not necessary a solution of the tropical ideal generated by this equation.
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If a current T 1 , . . . , T n is not a solution of (2) then two cases can emerge. In the first case there exist 1 ≤ i 0 ≤ n, 0 ≤ j 0 ≤ r, 1 ≤ l ≤ k such that a finite minimum min i,j {a (j) i,l + V al T i (j)} < a l is attained at a single pair i 0 , j 0 . Let V al T i 0 (j 0 ) = s-j 0 where s ∈ T i 0 is the minimal element of T i 0 such that s ≥ j 0 . The algorithm modifies T i 0 discarding s from it. The inequality V al S 1 ,...,Sn ≥ V al T 1 ,...,Tn still holds for any solution S 1 , . . . , S n of (2) since S i ⊂ T i , 1 ≤ i ≤ n. Note that if s = m i 0 < N (see Lemma 1.1) then m i 0 increases by one. If s = N (= m i 0 ) then S i 0 is finite due to Lemma 1.1 and S i 0 ⊂ {0, . . . , r -1}. In the second case a l is the unique minimum in min i,j {a (j) i,l + V al T i (j), a l }, then system (2) has no solution. One can show by recursion that for a current T 1 , . . . , T n we have

The algorithm terminates when either T 1 , . . . , T n is a solution of (2), in this case T 1 , . . . , T n is the minimal solution, or the algorithm detects that (2) has no solution.

When ( 2) is homogeneous, i. e. a l = ∞, 1 ≤ l ≤ k, system (2) has a solution with all infinite functions V al S i , 1 ≤ i ≤ n. It can happen that the algorithm terminates with all T 1 , . . . , T n being void, that means that the infinite solution of ( 2) is its unique one.

To bound the complexity of the algorithm observe that it runs at most n(N +1) steps because at each step at least one of the current sets T 1 , . . . , T n ⊂ {0, . . . , N } decreases. The cost of each step is polynomial in knr log M (the algorithm for every 1 ≤ i ≤ n stores m i , provided that Z + \ T i is finite, and also stores T i ∩ {0, . . . , r -1}). This completes the proof of Theorem 0.1.

Polynomial complexity solving systems of tropical linear differential equations in one variable

We design a polynomial complexity algorithm for solving a system of tropical linear differential equations (2) in one variable x. The algorithm basically follows the algorithm from Theorem 0.1 with a few modifications. In fact, the algorithm designed in this Section is a version of the algorithm from Theorem 0.1, the modification consists in that its steps are ordered in a special way (observe that at each step of the algorithm from Theorem 0.1 there could be several choices of an element to be discarded from the current set T ). We use the notations from Section 2. First, if there exists s < r from T such that a finite minimum min j {a (j) l + V al T (j)} is attained at a unique j 0 for some 1 ≤ l ≤ k and it holds V al T (j 0 ) = s-j 0 then the algorithm discards s from T . This is also a step of the algorithm from Theorem 0.1, and we refer to it as a step of the finite type. In other words,