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Abstract

Bacterial chemotaxis, the directed movement of cells along “chemoattractant” gradients, is among 

the best-characterized subjects of molecular biology1–10. Much less is known about its 

physiological roles11. Commonly, it is seen as starvation response when nutrients run out, or as 

escape response from harmful situations12–16 . Here, we establish an alternative role of chemotaxis 

by systematically examining the spatiotemporal dynamics of Escherichia coli in soft agar12,17,18: 

Chemotaxis in nutrient-replete conditions promotes the expansion of bacterial populations into 

unoccupied territories well before nutrients run out in the current environment. We show how low 

levels of chemoattractants act as aroma-like cues in this process, establishing the direction and 

enhancing the speed of population movement along the self-generated attractant gradients. This 

navigated range expansion process spreads faster and yields larger population gains than unguided 

expansion following the canonical Fisher-Kolmogorov dynamics19,20 and is therefore a general 

strategy to promote population growth in spatially extended, nutrient-replete environments.
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Decades of quantitative studies have elucidated how molecular signaling modulates the 

random run-tumble motion of individual bacterial cells, and moves them up chemoattractant 

gradients1–7. In contrast, the physiological role of chemotaxis remains much more 

unexplored11. Notably, many of the chemicals sensed by bacteria are also consumed by 

them17,21. Hence, cells do not only follow the chemoattractants set by their environment, but 

also shape the spatial profile of attractant abundance and adjust their movement accordingly. 

In particular, a small group of cells can already form strong attractant gradients that drive 

cell movement9,10,22–24. Here we perform a quantitative, physiological study of bacterial 

chemotaxis by taking into account not only chemotaxis itself, but also cell growth and 

metabolic reactions that lead to the self-generated attractant gradients. We use a motile strain 

of E. coli K-12 whose growth physiology has been extensively characterized25. As with 

other motile E. coli strains studied, motility in our strain is enabled by an insertion element 

that activates the expression of the motility machinery (Supplementary Text 1.1). When 

inoculated at the center of a soft-agar plate, these cells swim and readily expand outwards 

via chemotaxis; migrating cells form a visible ring that propagates with a well-defined speed 

(Figure 1ab), in line with classical observations12,17.

Bacterial expansion dynamics

To characterize this expansion process quantitatively, we first investigated the dependence of 

this expansion speed on the state of cell growth. We used medium containing saturating 

amounts of a primary carbon source supplemented by small amounts of aspartate or serine 

as the chemo-attractant (see Supplementary Table 1 and Supplementary Text 1 for strains 

and growth conditions). Growth rate was determined largely by the primary carbon source, 

with little contribution from the aspartate and serine supplement (Supplementary Table 2). 

Expansion speed was clearly affected by the carbon sources used (Extended Data Figure 1a, 

Supplementary Table 3). This was not due to the chemotactic effect of these carbon sources, 

as different expansion speeds were obtained for cells growing in the same medium (glycerol 

+ aspartate, Extended Data Figure 1b), with different steady-state growth rates attained by 

titrating the uptake of glycerol26, which is not an attractant21 (Supplementary Table 2). The 

measured expansion speeds follow a common increasing trend with the batch culture growth 

rate in the respective medium, with either aspartate or serine as the attractant (red and blue 

symbols, Figure 1c). The very same relation was also obtained for two other widely studied 

motile E. coli strains (Extended Data Figure 1c), both harboring insertion elements that 

activate the expression of the motility machinery27 (Supplementary Text 1.1). More complex 

medium based on Casamino acids commonly used in chemotaxis studies supports even 

faster growth and may be seen as extension along the same general trend (orange symbols, 

Figure 1c). In contrast, the expansion became much slower in the absence of a supplemented 

attractant, even if the primary carbon source was an attractant itself (e.g., with glucose or 

aspartate only), and for a Δtar mutant incapable of sensing the attractant aspartate; see 

Extended Data Figure 1d.

The positive growth-expansion relation is surprising in light of a widely held view, 

supported by gene expression data14,25,28,29, that bacterial chemotaxis is specifically 

triggered by nutrient shortage to find better environments14,21,30. To probe the origin of this 

positive relation, we thus first characterized the swimming speed for individual cells in 
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different media by recording cell trajectories in well-mixed liquid culture devoid of 

chemotactic gradients (see Supplementary Text 1.3 for method description). Consistent with 

previous reports14,15, swimming speeds were found to vary strongly in different growth 

phases (Extended Data Figure 2ab). However, such variations resulted from long adaptation 

periods during outgrowth from starvation, not due to transition out of exponential growth as 

commonly thought: For all the E.coli strains we probed, the swimming speed actually 

remained high throughout steady exponential growth, but declined rapidly upon entering 

starvation in both minimal and rich media (Extended Data Figure 2cd). Such behaviors, 

consistent with early communication by Adler31, suggest that motility is instead favored by 

E. coli during exponential growth. We next quantified the swimming characteristics during 

exponential growth for different growth conditions, and found that neither swimming speed 

nor run duration showed substantial variation at different growth rates (Extended Data 

Figure 2ef). It follows that cellular “diffusion” due to the random movement by run and 

tumbling dynamics changed little over the broad range of growth rates examined (Extended 

Data Figure 2g). Thus, the striking relation between expansion speed and growth rate in 

Figure 1c is likely a property of the collective dynamics of the propagating population rather 

than direct consequence of single cell characteristics.

To understand the collective expansion dynamics and its dependence on cell growth, we next 

observed the spatiotemporal dynamics of fluorescently labeled cells using confocal 

microscopy at both the population and single-cell levels (Figure 2a). At the single-cell level, 

we characterized the random motion of cells in agar by tracking their trajectories over time 

(Extended Data Figure 3ab). The results, quantified by the effective cellular diffusion 

coefficients across different growth conditions examined, recapitulate the finding from liquid 

culture that the swimming characteristics is nearly growth-rate independent over the range 

examined (Extended Data Figure 3c orange symbols). At the population level, we quantified 

bacterial growth and density profiles over long distance across the entire agar plate. We first 

established that the growth of bacteria in agar is indistinguishable from that in batch culture 

(Extended Data Figure 4a–c). Next, we analyzed the time-lapsed radial density profiles of 

the expanding population in minimal medium, with glycerol as the primary carbon source 

and a low amount of aspartate as the attractant (Figure 2b and Supplementary Video 1). The 

chemotactic ring is seen as a bulge in the density profile following the steep (exponential) 

increase at the front (Extended Data Figure 4d). Strikingly, the advance of the front bulge 

(~3.2 mm/h) is steadily followed by a trailing region with a broad, exponentially increasing 

density profile, suggesting that the outward migration of the ring is tightly coupled to the 

growth of bacteria behind the ring. This important feature is also observed for a population 

in glycerol supplemented by serine, by aspartate and serine, and in complex media (Figure 

2c, Extended Data Figure 4e–h, and Supplementary Videos 2–4), suggesting that the 

underlying dynamical phenomenon is independent of the nature of the attractant. In contrast, 

for WT cells grown in glycerol alone and for Δtar cells grown in glycerol and aspartate, the 

much reduced expansion speeds (Extended Data Figure S1d) are accompanied by very 

different (flat) density profiles trailing the steep exponential rise, without recognizable 

density bulges; see top 2 panels of Figure 2d, with full dynamics in Supplementary Video 1 

(gray line). As these populations do not chemotax, their expansion result from a combination 

of growth rate and random (diffusive) cell movement that may be modeled by the Fisher-

Cremer et al. Page 3

Nature. Author manuscript; available in PMC 2020 May 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Kolmogorov (FK) equation32,33. Detailed quantitative analysis established that bacterial 

dynamics in these cases are indeed described by the FK solution without adjustable 

parameters; see Extended Data Figure 5.

Interestingly, even though glucose is an attractant18,21, cells grown in a glucose plate 

exhibited a flat density profile following a bulge at the front (Figure 2d 3rd panel, 

Supplementary Video S5), and the population expanded not much faster than that in plates 

with glycerol alone (Figure 2e black symbols). Conversely, the combination of glucose and 

low amounts of aspartate exhibited again the distinct density profile with a broad 

exponential region trailing the front bulge (Figure 2d bottom panel and Extended Data 

Figure 4i), along with a much faster expansion dynamics (Figure 2e red squares). Thus, it 

appears that the combination of an abundant primary carbon source – regardless of whether 

it is itself an attractant – supplemented by low amounts of attractant, is the minimal nutrient 

requirement needed to generate the type of behaviors generically encountered in rich media 

(Figure 2f). Consequently, we will adopt the simple medium used in Figure 2b, glycerol + 

aspartate, as our model medium (or “reference condition”) in the ensuing quantitative study.

The Growth-Expansion model

To describe the fast expansion dynamics in media with nutrient and attractant, we developed 

a mathematical model by extending the classical model of a propagating chemotactic ring by 

Keller and Segel34,35. The original Keller–Segel front was unstable given a realistic limit of 

chemotactic sensitivity36. Ingenious models proposed to remedy the problem37–39 appear 

too restrictive to capture the simplicity and ubiquity of the observed ring propagation. We 

focus instead on the crucial role of bacterial growth driving population expansion. Although 

the inclusion of growth in chemotactic models also dates back a long time40,41, a satisfactory 

understanding under general conditions is still lacking30,42; see Extended Data Figure 6 for a 

review. Guided by our experiments, which established the distinct effects of a primary 

nutrient and a low amount of attractant on expansion (Figures 1 and 2), we explicitly 

modeled these two ingredients as separate dynamical variables driving bacterial growth and 

motility; see Figure 3a for a summary of this Growth-Expansion (GE) model and 

Supplementary Text 2 for details.

To test predictions of the GE model, we determined most model parameters directly by 

independent experiments in the reference condition, including growth rates in agar 

(Extended Data Figure 4c), diffusion coefficients in agar (Extended Data Figure 3c), and 

uptake rates of aspartate (Extended Data Figure 7a–c); Supplementary Table 4 shows the full 

parameter list. With the molecular parameters available from the literature (Supplementary 

Text 2.4), only one parameter remained unknown, the chemotactic coefficient χ0 (Figure 

3a). Fixing this lone parameter by matching the asymptotic expansion speed of the model 

with the observed value under reference condition (Figure 3b inset), the GE model 

quantitatively captured main features of the population dynamics in reference condition: The 

dynamics of the front position (Figure 3B, red line) captures the data (red circles), including 

the overlap with FK dynamics (grey circles and line) at early times. The gross shape of the 

steady-state density profiles matches well with the experimental profile (compare Figures 

3cd); in particular, the slope of the exponential trailing region (Figure 3c solid black line) is 
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much flatter than what FK dynamics predicts (Figure 3c dashed black line). A zoomed-in 

analysis of the front region by using single-cell tracking allowed for additional comparisons 

regarding the details of the front region (Extended Data Figure 3d–h). The model also 

adequately accounted for the dependence of the expansion speed on the attractant 

concentration, long known to peak at a moderate level43, for both glycerol and glucose as the 

primary carbon source (Extended Data Figure 7d–f). Further, the same model can 

quantitatively capture the slow expansion dynamics for the case where the attractant is the 

sole nutrient (e.g., glucose only); see Extended Data Figure 8.

We next applied the GE model to investigate the origin of the positive growth-expansion 

relation (Figure 1c). Since the cell diffusion coefficient depends weakly on the growth rate 

(Extended Data Figure 3c) while the attractant uptake rate yields a strong dependence 

(Extended Data Figure 7c), the latter provides a possible rationalization of the positive 

growth-expansion relation. Indeed, faster depletion of attractant could naively be thought to 

allow the front to advance faster. However, this turns out not to be case, as changing the 

uptake rate hardly affected the expansion dynamics, in agreement with model prediction 

(Extended Data Figure 7g–i and Supplementary Text 2.2). The observed growth-expansion 

relation (Figure 1c) can in fact be approximately accounted for within the GE model by just 

changing the growth rate while keeping all other parameters fixed (Figure 3e, dashed grey 

line). Qualitatively, the faster expansion in richer medium results from higher cell density at 

the front bulge, leading to faster depletion of the attractant (Extended Data Figure 7jk). More 

quantitatively, a simple scaling analysis captures the square-root form of the growth-rate 

dependence (Extended Data Figure 9a–c), and a linear dependence on the chemotactic 

coefficient χ0 (Extended Data Figure 9d, which stands in contrast to the square-root 

dependence on χ0 when the attractant is the sole nutrient, Extended Data Figure 8k). The 

full model, including the observed growth-rate dependencies of the macroscopic parameters 

(Extended Data Figures 3c, 7c) and assuming the independence of the molecular parameters 

(Supplementary Text 2.1.3), describes the observed data very well (Figure 3e, green line), 

without any adjustable parameters. Less is known quantitatively about how serine alone or in 

combination with aspartate affect the chemotactic parameters. However, the existing data 

appear to be captured well by the square-root form when analyzed separately for each 

attractant (lines of different colors in Extended Data Figure 1g), suggesting that different 

attractants and their combinations affect the magnitude but not the functional dependence of 

population expansion.

Further analysis of the GE model yields insight on how population growth and expansion are 

generated in a coordinated way. As indicated by the solution of the GE model (Figure 4a) 

and confirmed by experimental observation (Extended Data Figure 3g), cells in the front 

bulge region have positive drift velocities and move forward on average; they are the 

‘pioneers’ of the population. Conversely, cells behind the bulge experience little chemotactic 

drift and can only grow locally; they are the ‘settlers’. As the pioneers advance with the front 

and grow in number, some pioneers would remain behind due to randomness in cellular 

motion (described by diffusion of cell density), effectively seeding the void region left 

behind by the propagating front (black arrow, Figure 4b) for colonization in the future. This 

coupled expansion-colonization process is illustrated explicitly in Extended Data Figure 9e 

by using a discrete agent-based simulation including stochastic cell movement and division 
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(see SI Text 3). Cell-to-cell variations in swimming characteristics24,44, which has not been 

included in this calculation for simplicity, is expected to further enhance the transitions 

between the pioneers and the settlers.

Navigated range expansion

At the population level, the expansion-colonization process sustained by a primary nutrient 

source and low amounts of attractant provides an effective dispersal mechanism and a clear 

fitness advantage. This is illustrated by the observed gain in the total population size on 

plates (‘population fitness’) during the expansion process (Figure 4c). In glycerol medium 

supplemented with aspartate, the faster propagation of the population front (Extended Data 

Figure 1e) accompanies the more rapid increase of the total population size compared to a 

population seeded in the same medium without aspartate (filled and open red circles, 

respectively, in Figure 4c top panel). This fitness advantage for the population is not due to 

the addition of aspartate as a nutrient supplement, since a Δtar mutant not able to respond to 

asparate chemotactically (Figure 2d) does not gain any fitness advantage with aspartate 

supplement (gray triangles). Further, the aspartate supplement significantly increases the 

population fitness even if the primary nutrient is itself an attractant, e.g., glucose (purple 

squares, Figure 4c bottom panel). Thus, the fitness gain specifically requires an environment 

with an attractant supplementing an abundant primary nutrient source regardless of whether 

it is an attractant itself, reflecting the requirement for attaining a boost in expansion speed as 

established earlier (Extended Data Figure 1e). This advantage of chemotaxis further relies 

on sufficiently low concentrations of the supplemented attractant (Figure 4d). Notably, this 

requirement is at odds with the notion of cells seeking the attractant as a source of nutrient 

for growth and suggests instead the role of the supplemented attractant as a signaling cue to 

navigate and accelerate population expansion. Indeed, by separating the roles of nutrients 

and navigation cues, E. coli is able to use metabolites such as aspartate and serine that are 

rapidly taken up45,46 as strong attractants without concerns for their poor ability to support 

growth (Supplementary Table 2), while maintaining fast growth on better nutrient sources 

such as glucose and glycerol.

In summary, chemotaxis along self-generated gradients of low-dose attractant supplements 

provides a local “guide” for populations to expand rapidly into unoccupied territories, 

thereby giving them strong fitness advantages to grow in nutrient-replete environments. This 

“navigated” mode of range-expansion (upper panel, Figure 4e) is to be contrasted with the 

canonical, “unguided” mode of range expansion (i.e., Fisher-Kolmogorov dynamics19,20,47 

as characterized in Extended Data Figure 5), in which the population advances through the 

growth and random motion of cells at the front, leaving no nutrients behind the front (lower 

panel, Figure 4e). Notably for the navigated expansion, the guide is provided well before the 

population experiences any starvation. It thus manifests a built-in diversification strategy for 

a population with the ‘foresight’ to conquer new territories well before nutrients are depleted 

in the current environment. This foresight is important as turning on cell motility upon 

experiencing starvation will likely be too late to facilitate effective population expansion; see 

Extended Data Figure 10c–g.
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The strategy of navigated range-expansion in nutrient-replete conditions, analyzed here for 

E. coli K-12 strains, is one of a number of ways chemotaxis can contribute to bacterial 

fitness. In other conditions, chemotaxis can be used to respond to starvation or escape from 

harsh enviornments such as non-optimal temperatures/pH ranges14,15,21,30. On the other 

hand, navigated range expansion, involving a diversified population of pioneers and settlers 

to enable rapid occupation of open habitats for future colonization, may well be employed in 

range expansion beyond bacteria. To efficiently guide the movement of the population along 

the desired direction for expansion, all that is needed is a component of the unoccupied 

environment that can be easily sensed and modified (e.g., degraded but not 

consumed48{Seymour:2010hp}), tasks that are actually much easier for higher organisms to 

accomplish. Thus, navigated range expansion may be readily adoptable also by higher 

organisms to rapidly colonize spatially extended habitats.

Methods

Strains used in this study

The reference strain for this study is HE206, a motile variant of E.coli K-12 strain 

NCM3722 whose physiology has been well-characterized25,26,50–53. Similar to other motile 

E.coli strains previously studied27,54, the strain carries an insertion element upstream of the 

flhDC operon to enable motility. See Supplementary Text 1.1. for the strain context. Details 

on all used strains (deletion mutants, titratable carbon uptake strains and fluorescently-

labeled strains) and their construction are provided. As indicated in the text, comparisons are 

made with MG1655 and RP437, other commonly used motile E.coli strains. All strains used 

in this study are listed in Supplementary Table 1.

Growth medium

All growth media used in this study were based on a modified MOPS-buffered minimal 

medium used by Cayley et al55. Trace micronutrients were not added into the MOPs 

medium, since the metal components were reported to inhibit motility of E. coli56. To 

change growth conditions, different carbon sources were supplemented in the medium. 

When indicated, Casamino acids (CAA) and TB were used. Minimal medium for the growth 

of RP437, involves 4 additional amino acids. For the strains with titratable carbon uptake 

(glycerol or glucose), 3-methylbenzyl alcohol (3-MBA) was additionally provided as the 

inducer. Full details on media composition and concentrations are provided in 

Supplementary Text 1.2.

Strain culturing and growth rate measurement

Growth measurements were performed in a 37°C water bath shaker operating at 250 rpm. 

The culture volume was no more than 4.5 ml in 18 mm × 150 mm test tubes (Fisher 

Scientific) to limit the depth of the culture in the tube for aeration purpose. Each growth 

experiment was carried out in three steps: “seed culture” in LB broth, “pre-culture” and 

“experimental culture” in identical minimal medium. For the seed culture, one colony from 

fresh LB agar plate was inoculated into liquid LB and cultured at 37°C with shaking. After 

4–5 hrs, cells were centrifuged and washed once with desired minimal medium. Cells were 

then diluted into the minimal medium and cultured in a 37°C water bath shaker overnight 
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(pre-culture). The starting OD600 in pre-culture was adjusted so that exponential cell growth 

was maintained overnight, preventing cells from reaching saturation. Cells from the 

overnight pre-culture were then diluted to OD600 = 0.005–0.02 in identical pre-warmed 

minimal medium, and cultured in a 37°C water bath shaker (experimental culture). After 

cells were grown at least for three generations, OD600 was measured around every half 

doubling of cell growth. At each time point, OD600 was measured by collecting 200 μl cell 

culture in a cuvette (Starna Cells, Atascadero, CA) and using a spectrophotometer (Thermo 

Scientific). About 4–6 OD600 data points within the range 0.04 to 0.3 were used for 

calculating growth rate. All the growth rates measured in this study are summarized in 

Supplementary Table 2.

Measurement of expansion speeds

Expansion speeds were measured using soft-agar plates containing 0.25% agar and growth 

media resembled to the liquid culture conditions introduced above. Attractants were 

additionally provided and a detailed preparation protocol is provided in Supplementary Text 

1.4. Expansion speeds were either measured by the manual tracking of expanding ring 

positions over time (manual observation, ring position is clearly visible by eye) or by using 

confocal microscopy. For the manual observation, 15 ml of freshly prepared and still warm 

soft-agar medium was transferred into a Petri dish with 10 cm diameter, resulting a 2mm 

thick soft-agar layer. Agar was left to solidify for a minimum of 10 minutes at room 

temperature. For the confocal experiments, GFP expressing plasmids were used as 

fluorescent markers, strains as indicated in the legends. 8μg/ml chloramphenicol was 

additionally supplied into the soft-agar medium to maintain the plasmid. To prepare the soft-

agar plates, 2.7 ml of the medium was transferred into a glass bottom Petri dish (Ted Pella 

Inc). The final thickness of the agar was approximately 1.2 mm. All the plates were freshly 

prepared before the assay. To start the soft-agar assay (manual observation), 2μl of cell 

culture from the (exponentially growing) experimental culture was transferred onto a pre-

warmed soft-agar plate. The primary carbon source of the liquid culture was chosen such 

that it matched the growth conditions provided in the soft-agar plate. The plates were 

incubated at 37°C. After the population covered a circular area of at least 2 cm in radius, the 

radius of the population (front with chemotactic ring is clearly visible) was measured every 

1–2 hours for 4–6 different time points. Expansion speeds were obtained as linear fits of the 

observed radii vs observation times (Fig. 1B). For convenience, the initial inoculation OD600 

used for the manual assay was varied depending on culture conditions such that ring 

movements could be captured during the day. The expansion speeds examined in this study 

are listed in Supplementary Tables 3, 9, 10. For expansion observation and density scans 

using microscopy, cells were always inoculated at OD600 = 0.2 and observation was started 

immediately after the 2 μl cell culture was added to the agar. Expansion dynamics was 

analyzed by looking at the emerging spatial intensity profiles. Details of confocal imaging, 

intensity analysis and calibration, and the determination of growth rates within soft-agar by 

confocal microscopy are provided in Supplementary Text 1.4.2 – 1.4.5. Custom-made code 

used is available via GitHub at https://github.com/jonascremer/

chemotaxis_imageanalysisexpansiondynamics.
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Measurements of swimming characteristics

To quantify swimming behavior of cells in liquid culture (no gradients), we grew cells 

similarly as introduced before but used higher attractant concentrations to avoid the 

formation of temporal gradients, see Supplementary Text 1.3.1. Polyvinylpyrrolidone was 

added into the medium to prevent cells from binding to surfaces and to protect flagella57. 

Sample volumes of about 200μl were taken at different timepoints over the course of cell 

growth to quantify swimming behavior, see Supplementary Text 1.3.1 for details on timing. 

Immediately after collection, samples were diluted to a lower OD600 ≈ 0.005 using filtered 

medium. The diluted sample was then used to load a rectangular capillary and cells within 

the capillary were observed by acquiring videos for one minute, using a phase contrast 

microscope. Using a custom-made Python script, cells were detected and cell trajectories 

were derived. Subsequently, cell trajectories were analyzed to derive the swimming 

characteristics as previously reported58. Full details on data acquisition and analysis are 

provided in Supplementary Text 1.3. Used custom made code is available via GitHub at 

https://github.com/jonascremer/chemotaxis_swimming.

Cell trajectory analysis in soft agar

To quantify diffusion behavior (undirected run and tumbling) and drift (directed run and 

tumbling) of swimming cells within the agar, we used time-lapse confocal microscopy 

allowing for the detection and tracking of individual fluorescently labeled cells (see 

Extended Data Figure 3 for a shorter method introduction; axes orientation and sample 

images shown in panels A and B). The measurement allows for the spatiotemporal 

resolution of swimming behavior within an expanding population. To optimize the tracking 

of single cells, the number of fluorescent detecetable cells was adjusted by mixing 

fluorescent cells with non-flucorescent cells (carrying a non-fluorescence protein59 to 

minimize physiological differences of strains). Detailed methods on image acquisition, cell 

tracking and the statistical analysis to derive diffusion coefficients and drift are given in 

Supplementary Text 1.5.

Measurements of aspartate uptake

To quantify aspartate uptake, cells were grown in minimal medium supplemented with 

different carbon sources and 800 μM aspartate. Samples were collected at different OD 

during steady state growth and aspartate concentration was determined using calorimetric 

aspartate kit (ab102512 Abcam). Additional details are provided in Supplementary Text 

1.2.2. The aspartate consumption rates measured in this study are summarized in 

Supplementary Table 7. For each growth condition, measurements were repeated twice.

The Growth-Expansion Model

Full details of the Growth-Expansion Model introduced in Figure 3 are provided in 

Supplementary Text 2. This includes the specific biological motivations for different terms 

used in the equations, including the terms describing attractant consumption and the nutrient 

dependent local growth rate (Monod type dependence60–62. The drift term describing the 

directed movement along sensed gradients features Weber’s law7,63 and response 

rescaling64–66 and parameters were taken from published receptor characterications23,67–69. 
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Reflecting boundary conditions and initial conditions matching the experimental conditions 

were used, see Supplementary Text 2 for details and equations. Numerical solution of the 

partial differential equations was done employing an implicit scheme using Python and the 

module FiPy70. Integration over time was performed with time steps dt = 0.25s, and a grid 

resolution with spacing dx = 10μm. Simulations were performed using a custom-made 

Python code which is available via GitHub at https://github.com/jonascremer/

chemotaxis_simulation. Parameter used are provided in Supplementary File 

simulationparameters.txt; see also Supplementary Text 2.5 for additional information.

Data availability statement

Major experimental data supporting this study are provided in this manuscript or available 

via figshare repositories: doi.org/10.6084/m9.figshare.9639209 (confocal expansion data) 

and doi.org/ 10.6084/m9.figshare.9643001 (data swimming observation). Simulation data 

can be generated with the provided simulation code and parameter sets.

Code availability statement

Custom-made code is available via GitHub as indicated in Methods for the analysis of 

swimming characteristics, the analysis of expanding populations using confocal microscopy, 

and the numerical simulations of the Growth-Expansion Model.

Extended Data
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Extendend Data Figure 1. Expansion speed measurements.
(a) Temporal evolution of front position for a population of E. coli HE206 cells (wild type) 

grown on soft agar plate with saturating amounts of different carbon sources (as indicated by 

the legend) and 100μM aspartate as attractant. Lines show linear fits. Experiments were 

repeated at least twice with similar results. (b) Temporal evolution of front position for 

HE443 cells grown on 40mM glycerol and 100μM aspartate, with different amounts of the 

inducer 3MBA (as indicated by legend) that titrate glycerol uptake26, resulting in different 

growth rates (Supplementary Table 2). The experiments were repeated at least twice with 

similar results. (c) Expansion speed and its dependence on growth rate for the commonly 

used E.coli K12 strain MG1655B (red symbols) sequenced by Blattner et al and the K12 

variant RP437 (blue symbols) frequently used in motility studies, see Supplementary Text 

1.1. Growth conditions were changed by varying carbon source (from lower to higher 

growth rates: acetate, mannose, glycerol, glucose); see legend table. 100μM aspartate was 

added as the attractant. For the experiments with RP437, four amino acids (methionine, 

leucine, threonine, histidine) were provided at 1mM each into medium to sustain cell 

growth. Data in Figure 1C are shown in grey for comparison. Data points represent the mean 

of two biological replicates, except for growth rates in acetate and mannose that were from a 

single experiment. (d) Expansion speeds plotted against the batch culture growth rate for 

population grown in glycerol, glucose or aspartate as the only carbon source, without 

supplement of additional attractant (purple symbols). [Growth on serine is very slow (< 

0.1/h) and not shown on the plot.] Expansion speeds were much slower in these media 

without the supplement of chemoattractant, even though glucose and aspartate are both 

attractants themselves46,68. The same was observed for a Δtar knockout strain when both 

glycerol and aspartate were present (open triangle). See Supplementary Tables S2 and S3 for 

data values and sample sizes. Data of Figure 1c are shown in grey for comparison. (e, f) The 
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difference between migration with and without additional attractant is further illustrated for 

growth on glycerol when growth rates are titrated (e), and for expansion when other carbon 

sources are provided (f). Hashed bars highlight additional increase of expansion speed (red) 

and growth rate (blue) when attractant is provided. In each case, supplementing low amounts 

of attractant(s) is seen to increase expansion speed a lot without affecting growth rate much. 

The graphs were created based on mean values listed in Supplementary Table S2–3. (g) 
Expansion speed and its dependence on growth rate when two attractants are present (20mM 

glycerol + 100μM asp + 100μM ser, green symbols) or for complex media (CAA + carbon 

source, orange symbols). Data for one attractant (taken from Figure 1C) are shown for 

comparison (20mM glycerol + 100μM aspartate, red symbols; 20mM glycerol + 100μM 

serine, blue symbols). Lines indicate fits to square-root dependencies as anticipated from a 

simple scaling analysis (Extended Data Figure 9d). Data points in asp + ser (green points) 

represent means of two biological replicates (n=2), except growth rates of HE433 and 

HE443 that were from a single experiment (n=1).
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Extended Data Figure 2. Swimming characteristics in liquid media (well-mixed conditions, no 
gradients).
(a-d) Average swimming speed (purple circles) and the fraction of motile cells (gray 

squares) were characterized for cells taken from batch cultures along a growth curve at 

different optical densities (OD600) as indicated by the green triangles. For each condition, 

data points are collected from a single experiment. (a) Culture was grown in LB, starting 

with an overnight LB culture which was sitting in saturation for 18 hours before dilution into 

fresh LB media at time zero. This experiment was essentially a repeat of what was done in 

Refs.14,15; similar results were obtained, with motility increasing as growth progressed. Our 

data in the following panels suggest most of the increase in swimming speed resulted from 

the increased fraction of motile cells in the first two hours. (b) Culture was grown in 

minimal medium with 10mM glycerol and 1.7mM aspartate, starting with an overnight pre-

culture (same medium) that was in saturation for about 18 hours before inoculation into 

fresh medium (time zero). Like what was observed for LB (panel A), it took several hours 

for both the motile fraction and swimming speed to recover. (c) Culture was grown in LB 

continuously for 10 generations, with bacterial density always kept below OD600=0.5 before 

dilution to fresh LB at time zero. Both the motile fraction and the swimming speeds are high 

in the exponential growth phase (0–2 h) except for a dip at OD600 ≈ 0.5. Swimming speed 

and motile fraction decline after the stationary phase was reached. (d) Culture was grown in 

the same minimal medium (glycerol + aspartate) for ~20 generations, with bacterial density 

maintained below OD600 = 0.6 before measurement. As with LB (c), swimming speed and 

motile fraction remained high in the exponential growth phase (0–4 hr), before sharply 

declining after entering the stationary phase. The strong variation of the fraction of motile 

cells observed here is in line with previous observation on the cell-to-cell variation of 
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swimming behavior71,72 and can strongly affect the dynamics of migrating populations as 

has been investigated recently24,73. (e-f) Swimming behavior observed in steady state 

growth (as for example observed in panel d for the first ~3 hours) for different (relatively 

fast) growth conditions and different E.coli strains (Supplementary Table 5). Swimming 

speeds (v) and durations between tumbling events (τ) obtained from trajectory analysis are 

shown in (e) and (f) respectively. Black symbols show results for the NCM3722B derived 

strains (HE206, HE433, HE443; growth at 37C) mainly used in this study. A similar weak 

dependence of quantities on growth was observed for MG1655B (red symbols, growth at 

37C) and RP437 (blue symbols, growth at 30C). (g) Estimated effective diffusion 

coefficient, D = ν2τ, for the different growth conditions in NCM3722B derived strains. In 

panels (e-g), data points show the means of two biological replicates for strains HE433 and 

HE443 and the results of single experiments for strains HE206, MG1655B and RP437. See 

Supplementary Text 1.2–1.3 for methods and Supplementary Table S5 for data values and 

conditions. Strain details are discussed in Supplementary Text 1.1.
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Extended Data Figure 3. Single-cell motility analysis in agar by confocal microscopy.
30 second videos allowing to track the movement of single cells were acquired, see 

Supplementary Video S7 for an example. (a) Example of trajectories derived from cell 

tracking analysis. Each color indicates the trajectory of one cell over a span of on average 75 

frames (5.1 s). (b) Diffusive behavior was obtained by a linear fit of displacement variance 

over time [var(Δx) = 2DΔt]. This analysis was performed for strain HE274 (WT) growing in 

40mM glycerol and 100μM aspartate (reference condition); see Supplementary Text 1.5 for 

a detailed method description. Data shown here are for measurements in front of the 

expanding population, i.e., ahead of the density peak (however diffusion coefficient obtained 

at different locations does not exhibit much positional dependences: see below). Repeat of 

experiment showed similar results. (c) Similar effective diffusion coefficients for swimming 

in soft-agar were obtained for other growth conditions (orange symbols, Supplementary 

Table 6) following the same trend as predicted from liquid culture measurements (black 

symbols, same as those shown in Extended Data Figure 2g). The diffusion measurements in 

soft-agar were repeated twice yielding similar results. The data points represent means of 

two biological replicates. Supplementary Table S6 for data values and conditions. (d) To 

resolve cellular swimming behavior of the expanding population at different spatial positions 

in the agar plate, videos allowing to track single cells were acquired sequentially at a fixed 

position (of the agar plate) over time, for different acquisition times tacq over which videos 

were taken (up to several hours for each). Image direction x was aligned with direction of 

migration. In this setup, the migrating population (with speed u) passes the point of 

acquisition at a determined time, allowing us to determine the local drift speeds and 

diffusion coefficients relative to the front position: x = x0 – u tacq; see Supplementary Text 

1.5 for experimental details. (e) Density obtained in this way (by cell-counting, green line) is 

compared to population density obtained using the approach of Extended Datat Figure 4 

(fluorescence scans, red line). Spatial resolution of the latter is much coarser, each 

measurement point being a black dot on the red line. For comparison, the simulation result 

(GM model, Fig. 3) is shown in green and moderately deviates from the measured profile. 

(f) Analysis of average displacement along x (direction of migration) and along y (direction 

perpendicular to migration) over time for an acquisition time tacq corresponding to a position 

at the front bulge (x = 21.3 cm, indicated by the dashed lines in panels e, g, and h). The 

average displacement (purple symbols) increased linearly in time along the direction of 
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migration but was negligible perpendicular to the direction of migration (fitted purple lines 

show drift speed in each direction, 〈Δx/Δt〉 and 〈Δy/Δt〉). (g) Position-dependence of the 

drift (in the direction of expansion) was determined at different tacq, corresponding to 

different positions of the expanding population. For the ease of reference, cellular densities 

(the data in panel e) are shown again as green symbols. Up to the resolution of the data, the 

drift velocity vanished to the left of the density trough (x < 19mm). (h) Position-dependence 

of the diffusion coefficient. Using the approach of panel b to determine the diffusion 

coefficient at different tacq, we obtain the results shown as orange symbols. A moderate 

(~20%) increase in D is observed at the very front of the population. This spatial dependence 

may be due to the accumulation of faster swimming cells at the front9. All data in panels (e-

h) were from one single expansion experiment done in reference condition (40mM glycerol

+100μM aspartate; 2:1 mixture of fluorescent variant HE274 and non-fluorescent variant 

HE339), Similar results were obtained for one biological replicate. Error bars in panels (e,h) 

denote s.d. and were calculated from repeated observations at three different times during 

the same expansion process.
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Extended Data Figure 4. Population-level observation of growth and expansion by confocal 
microscopy.
Densities of bacteria growing in the soft-agar were determined at various times using 

confocal microscopy and fluorescently labeled cells; see Supplementary Text 1.4. (a) 
Calibration of fluorescence intensity. Known amounts of cells were transferred from a batch 

culture to a fresh but cold soft agar plate. After agar solidification (< 10 min) intensity was 

measured. Fitted line gave relation between observed intensity (fluorescence integrated 

along the agar thickness) and cell density measured in batch culture (optical density OD600). 

(b) Example of experiment to obtain growth rates in agar. Data is for strain HE274 (WT) 

grown in 40mM glycerol and 200μM aspartate. A low amount of cells were mixed uniformly 

into fresh soft agar plates. After agar solidification (< 10 min), fluorescence intensity was 

observed over time. (c) Derived growth curves in soft-agar based on experiments like the 

example shown in panel b. Typically, there is a fast growth regime followed by a slower 

regime related to oxygen consumption and limitation for OD > 0.1: with oxygen running 

out, cells accumulate towards the agar surface and growth becomes slower. In this work, the 

population was always kept in the first aerobic regime. Growth rates in the first regime 

(shown as colored lines and listed in Supplementary Table S2) are obtained by an 

exponential fit of the data and comparable to those obtained in batch culture (bar graph inset 

panel c). In panels (b,c) the experiment was conducted once. (d) Photo and spatiotemporal 

density profiles (linear intensity scale) for population expansion in reference condition 

(glycerol+100μM aspartate; same data as in Fig. 1A and 2B). Scale bar in photo denotes 2 

cm. The confocal observations in reference conditions were repeated twice showing similar 

results. (e-i) Spatiotemporal density profiles (logarithmic density scale) for population 

expansion in different conditions, similar to those observed for the reference condition 

(glycerol+100μM aspartate) shown in (d). Conditions are glycerol + 100μM serine (e), 
glycerol + 100μM aspartate + 100μM serine (f), glycerol + 0.05% CAA (g), 1% tryptone 

broth (h), and glucose + 100μM apartate (i), all with strain HE274 (WT). Same color code 
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was used to indicate time for all different runs; see the color bar scale on the right. In panels 

(e-i), the experiments were conducted once; expansion speeds were highly comparable to the 

ones measured manually.
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Extended Data Figure 5. Population expansion without attractant is quantitatively captured by 
the Fisher-Kolmogorov dynamics.
The Fisher-Kolmogorov (FK) dynamics is a canonical model to describe the dynamics of 

expanding populations19,20. For example, it has been successfully applied to investigate the 

expansion and evolution of non-moving bacteria at the front of dense bacterial 

colonies47,74–77. Here, we probe the FK dynamics and its validity to describe swimming 

bacteria. The FK dynamics is driven by population growth and undirected random motion 

(diffusion)32,33. To compare the predictions of FK dynamics to the expansion of bacterial 

population in the absence of a chemoattractant, we thus independently quantified growth 

rates as well as cellular diffusion for cells homogeneously distributed in soft-agar (upper two 

panels). We then compared observed migration speed and the density profile of the 

migrating population (for growth on glycerol as the sole carbon source, same as in Fig. 2d 

top panel) with the FK predictions (lower two panels). (a) Quantification of growth by 

measuring the temporal density increase of a homogeneously distributed population in agar 

(see Extended Data Figure 4a–c and Supplementary Text 1.4 for method details). Spatially 

averaged density increased exponentially with growth rate λ = 0.59/h for densities < 0.1 

OD600. For higher densities, the growth rate decreased but this regime is not important for 

the propagation of the front where density is low. (b) Diffusion and drift of cells 

homogeneously distributed in soft-agar. Analysis of recorded cell movement confirms the 

variance of position displacement to increase linearly in time (orange symbols) with 

diffusion constant D = 41.5μm2/s (linear fit of var(x) = 2 DΔt). In comparison, the average 

displacement of cells (purple symbols) and the calculated drift (〈ΔX/Δt〉, purple line) are 

small, indicating the absence of directed chemotactic movement. Data shows average over 3 

independent repeats; see Extended Data Figure 3 and Supplementary Text 1.5 for method 

description. (c,d) Front and spatiotemporal dynamics of an expanding population. (c) 
Comparison of predicted expansion speed with the observed propagation of the population 
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front. Position of the front R(t) was determined from the observed cellular densities 

(threshold OD600 > 0.005); it increased linearly in time, i.e., R(t) = uobs · t with a speed uobs 

= 0.62mm/h. Dashed line denotes predicted expansion speed calculated as 

uFK = 2 λ ⋅ D = 0.59   mm/h. (d) Density profile of the population front. Observed density 

profile can be fitted to an exponential dependence ρ r, t e
−kobs r − R t

 with kobs ≈ 1.2/mm. 

Dashed line indicates the slope of the exponential density profile predicted by the FK 

equation: kFK = λ/D = 1.99/mm. [The discrepancy likely resulted from the low spatial 

resolution of the very sharp density drop – the exponential dependence of the experimental 

profile is defined by just 3 points.] All experiments were conducted once with strain HE274 

(WT), using glycerol as the carbon source (no additional attractant, glycerol cannot be 

sensed). Growth and cell-tracking experiments were performed with uniform cell mixture in 

saturating glycerol conditions (40mM). Expansion experiments were performed with 1mM 
glycerol.
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Extended Data Figure 6. Different models of chemotaxis-driven migration.
To illustrate the difference among various models of chemotactic expansion, we show here 

simulation results of four different models. (a) The classical model proposed by Keller and 

Segel34 creates a self-generated attractant gradient due to attractant consumption by the 

migrating population. It neglects cell growth (i.e., λ = 0 in Eq. (3) shown in Figure 3a), 

resulting in the conservation of the total number of bacteria. It also assumes that the 

attractant gradient could be detected with infinite precision, such that log-sensing (Weber’s 

law78) can be implemented by cells down to arbitrary low attractant concentrations, (i.e., Eq. 
(4) with a− = 0). The latter biologically unrealistic assumption introduces a singularity that 

pushes all bacteria forward at a steady migration speed, which is determined by the number 

of cells in the population, the conserved quantity. (b) The model introduced by Novick-

Cohen and Segel36 fixed the singularity in the Keller-Segel model by imposing a minimal 

concentration for the sensing of attractant gradient (i.e., Eq. (4) with a− > 0). Due to the lack 

of cell growth, the total number of bacteria is still conserved. In this model, the density of 

the front bulge decays over time because once bacteria diffuse out of the front, they lose the 

chemotactic gradient and cannot catch up with the front anymore. The reduction in front 

density reduces the migration speed, which decays steadily towards zero. (c) Model 

including cell growth that depends on attractant concentration (nutrient=attractant). Due to 

growth, population size increased over time. However, since the attractant (nutrient) is 

mostly consumed at the front, there is not much growth behind the front and the trailing 

region behind the front is mostly flat. This scenario was realized and analyzed 

experimentally in Ref.18; see Extended Data Figure 5 for model details and discussion. (d) 
The Growth-Expansion model (GE) formulated in this study (Fig. 3a), including the 

chemotactic effect of an attractant, together with cell growth supplied by a major nutrient 

source. Front propagation of cells by chemotaxis is coupled to steady growth in the trailing 

region as described, see main text and Extended Data Figure 9. Parameter values for all 

models provided in Supplementary Table 8. For simplicity, simulations shown here were 

solved in 1d (non-radial). Green lines denote bacteria density, blue lines denote attractant (or 
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sole nutrient) concentration, brown lines denote concentration of nutrients (in addition to the 

attractant). Purple lines show local drift (Eq. (4)).
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Extended Data Figure 7. Aspartate uptake and further analysis of expansion dynamics.
(a-c) Characterization of aspartate uptake for different growth conditions and strains. (a) 
Aspartate uptake was determined using a colorimetric method to quantify remaining 

aspartate concentrations during growth. Full method details are provided in Supplementary 

Text 1.2.3. In brief, change of aspartate concentration in the media was measured during 

exponential growth at different cell densities (OD). Shown data are for growth with glycerol 

as the major carbon source (40mM) and 0.8mM initial aspartate concentration). 

Measurements for native aspartate uptake (WT) and for different aspartate-uptake mutants 

(mutants ΔgltJ and ΔgltP as well as the double mutant ΔgltJ ΔgltP). Lines show linear fit. 

Uptake rate was determined by multiplying obtained slope with growth rate. (b) The strains 

shown in (a) with different Asp uptake rates exhibit similar growth rates. For each strain, the 

data points were collected from a single experiment. (c) Dependence of aspartate uptake on 

growth rate for strains harboring native aspartate uptake. Growth is varied using WT cells 

(HE206, circles) grown in different sugar sources (acetate, mannose, glycerol, or glucose), 

or by using the glpK* mutant (HE433, triangle) or the glycerol titration mutant (HE443, 

squares), in glycerol with different levels of the inducer 3MBA (25, 50, or 800 μM). 0.8mM 

of aspartate was provided in each case for the measurement of aspartate uptake (see panel a). 

Line shows linear fit with parameters specified in Supplementary Text 1.2.3. Data shown in 

(a) and (b) were obtained for strains carrying fluorescence plasmids. Data shown in (c) were 

obtained for non-fluorescent strains (two biological replicates, means shown). Data, as well 

as strain information and media conditions including concentrations of carbon sources are 

provided in Supplementary Table S7. (d) Expansion dynamics with glucose as the primary 

carbon source. The dynamics of the front, shown to be described well by the GE model in 

Fig. 3b in glycerol with aspartate, is examined with the primary carbon source being glucose 

(20 mM). In the presence of 100μM aspartate, the observed front propagration dynamics 

(purple squares) is correctly captured by the GE model again (purple line), by merely 

replacing the growth rate by that in glucose (λ = 1.0 h−1) and no additional adjustment of 
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the chemotactic coefficient χ0. For reference, expansion is also shown where no additional 

chemoattractant was provided (i.e. 0μM aspartate, open green squares), and the 

corresponding data where glycerol was the primary carbon source (open black circles and 

corresponding lines taken from Fig. 3b). (e,f) Dependence of expansion speed on attractant 

concentration with glycerol or glucose being the major nutrient.The observed increase of 

expansion speed at low attractant concentrations followed by decrease at higher 

concentrations – as previously observed by Wolfe and Berg43- is qualitatively captured by 

the GE model (dashed grey lines) in both cases. A better quantitative agreement between 

model and data is obtained when the linear growth term in the GE model (Eq. (1) of Fig. 3a) 

is changed to the logistic form, i.e., λρ (1 – ρ/ρc). Here ρc is the carrying capacity, 

introduced to capture saturation of cell density in the front bulge; see Supplementary Text 

2.3 for details. Predictions by the model are shown for different carrying capacities as 

colored lines in panels (e) and (f). In line with the strict requirement for oxygen when 

growing on glycerol and the observation that cells at high density accumulate at the agar 

surface when expanding with glycerol as major nutrient source (data not shown), the 

carrying capacity needed to resemble the observations is much lower for glycerol (e) than 

for glucose (f). Shown data points represent means of biological replicates (n=2 or larger), 

with error bars (s.d.) shown for n>=3; see Supplementary Table S9 for data values and 

sample sizes. (g-i) Effect of varying aspartate uptake rate on expansion speed. The GE 

model predicts the expansion speed to be completely independent of the attractant uptake 

rate if all other parameters are kept fixed (panel g, dashed black line; Supplementary Text 

2.2), with differences in attractant uptake compensated by changes in bacterial densities at 

the front (panel h), such that the total rate of attractant depletion remains constant. This 

prediction is tested by characterizing the expansion dynamics of the aspartate-uptake 

mutants (strains HE506,HE552, HE555; see Supplementary Text 1.1, Supplementary Table 

3 and 7), which exhibited up to 3-fold difference in aspartate uptake (panel a), but only 

~20% change in expansion speed (panel g). The small changes are readily accounted for by 

incorporating the small growth rate differences between these strains (panel b) in the GE 

model while keeping all other parameters fixed (panel g, green crosses). Additionally, the 

aspartate-uptake mutants exhibited increasing peak densities at the front as predicted by 

compensation for reduced uptake (compare i, h). (j-k) Predicted and observed changes in 

density profiles when varying the growth rate by titrating glycerol uptake in strain HE486 

using 25uM, 50uM and 800uM of the inducer 3MBA. For panels (g, i, k), data were 

obtained from a single experiment for each strain and condition.
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Extended Data Figure 8. Expansion dynamics with the attractant being the sole nutrient source.
This is one of the scenarios of chemotaxis investigated previously by Koster et al18 and 

others79. Here, for comparison with the dynamics presented in the main text, we show the 

expansion dynamics of populations grown with glucose (a chemoattractant21) being the sole 

carbon source. (a) For WT cells (HE206) spotted on 0.25% agar plate with glucose as the 

sole carbon source, photographs show the existence of an outer ring at the front of the 

expanding population for a range of glucose concentrations. Scale bar indicates 2 cm. The 

experiments were repeated once with similar results. (b) Dependence of expansion speed on 

glucose concentration. Intuitively, one may expect reducing the glucose concentration would 

increase the expansion speed, as it would take shorter time for the population to consume the 

attractant. However, the data (circles) shows that reducing the glucose concentration actually 

reduced population expansion speed. Data points show means of two biological replicates. 

(c) Direct comparison of concentration dependence of expansion speeds in glucose only 

(open green squares), in glycerol only (open black circles), in glycerol or in glucose with 

aspartate supplement varied (red circles, purple squares); data for latter condition same as 

those shown in Fig. 4d and Extended Figure 7ef. Expansion speed in glucose (~ 1–2 mm/h) 

is faster than those obtained for growth in glycerol (not an attractant) but well below the 

cases for which (low) amounts of attractants are supplemented. Shown data points represent 

means of biological replicates (n=2 or larger), with error bars (s.d.) shown for n>=3; see 

Supplementary Tables S9 and S10 for data values and sample sizes.To understand the 

expansion behavior, we first used confocal scans (d,e) to obtain the density profiles: The 

ring observed in the photograph is seen as a subtle density bulge at the front bounding a flat-

density interior. Note the lack of an exponential trailing region, as observed when an 

attractant supplement is present (Fig. 2b, Extended Data Figure 4i, photographs in Fig. 1a). 

The observed density profiles are comparable with reports by Koster et al18, who studied 

expansion with galactose as the attractant and the major nutrient source. Experiments here 

were done with WT (HE206) in (a-c) and fluorescence cells (HE274) in (d,e). The confocal 

experiments were conducted once (expansion speeds are highly comparable to those 
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measured manually). (f) To capture the observed behaviors, we modified the growth 

expansion model (Fig. 3a) using only one variable a to describe the attractant/nutrient. 

Consumption of the growth-enabling attractant is directly coupled to the increase in density 

via the yield Y. Fixing model parameters using available data for growth and chemotaxis on 

glucose (see Supplementary Text 2.4 and 2.6 with parameters used listed in Supplementary 

Table 4), the model generated expansion speeds (green line in panel b) and density profiles 

(g,h) which capture the experimental observations well; for comparison a coarse-grained 

spatial resolution similar to the experiments was used to display the profiles obtained by the 

simulations. (i) The model output can further be understood by a scaling analysis (SI Text 

2.6), resulting in the simple relation u2 ∝ χ0 λ (Eq. E8.e). This relation is of the same form 

as the result of the Fisher-Kolmogorov dynamics, uFK = 2 Dλ (see Extended Data Figure 5), 

but with the chemotactic coefficient χ0 replacing the diffusion coefficient D. (j,k) The 

predicted dependence of u on λ and χ0 (black lines) are validated by numerical simulations 

of the model (blue circles). Importantly, the square-root dependence of the expansion speed 

on the chemotactic coefficient χ0 stands in contrast to the linear dependence on χ0 when an 

attractant supplement is provided (Extended Data Figure 9d) and shows that the expansion 

dynamics with/without the attractant supplement are two distinct classes of mathematical 

problems. Note that the quantitative gain in expansion speed for the case with a 

supplemented attrractant comes not only from the change of the dependence on the 

chemotactic coefficient from χ0 to χ0, but also from the freedom to use attractants that 

have large χ0 but small λ, that can be compensated by nutrients that give larger λ. Both 

aspartate and serine are strong attractants but poor nutrients, and are thus most potent when 

used in combination with a good nutrient source. Thus, separating the role of sbustances as 

nutrients and as cues not only relaxes the underlying mathematical constraint but also 

relaxes the biological constraint so that good attractants need not be good nutrients. These 

results provide an important support for the central thesis of this work, that chemotactic cells 

gain fitness by expanding in nutrient-replete conditions as a ‘foresighted’ navigation strategy 

(see final discussion in the main text).
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Extended Data Figure 9. Scaling analysis of expansion dynamics and illustration of the stochastic 
migration process.
(A) The exponential trailing region of the density profile: It is fixed by the cell growth rate λ 
and expansion speed u of the front: Because cells in the trailing region do not experience 

drift (Extended Data Figure 3g), the apparent ‘movement’ of the trailing region at the same 

speed as the front bulge is only possible if it has an exponential profile, i.e., ρ(r, t) ~ ek(r−ut), 

with k = λ/u; see the illustration. (b) Scaling of the expansion speed with model parameters. 

According to the GM model (Fig. 3a), the density peak at the propagating front is 

determined by a balance between cell growth and back diffusion as depicted in Fig. 4b. 

Using a crude scaling analysis to capture this balance, we can obtain (approximately) the 

quantitative determinants of the propagating speed. For this, consider a sharply peaked 

density bulge at the front, with peak density ρpeak and width w. The number of cells 

contained in the peak region, Npeak, is given by the relation (E9.a). Cell birth rate, λ · Npeak, 

is balanced by the back-diffusion flux, which is approximated as Dρpeak/w, leading to the 

relation (E9.b). To relate to the migration speed u, we note that around the density peak the 

drift speed v is nearly maximal (Fig. 4A, purple line), and Eq. (4) becomes 

vmax ≈ χ0 ⋅ d
dx ln a . In the scaling approach, we take u ~ vmax and with the approximation 

d
dx ln a 1/w, leading to the relation (E9.c). Combining Eq. (E9.a) - (E9.c), we obtain Eq. 

(E9.d) with the expansion speed increasing with the square-root of the growth rate λ. Note 

the χ0/D factor appearing as prefactor in the expression for u, which is responsible for the 

increase in the expansion speed in the presence of chemotaxis with respect to the Fisher-

Kolmogorov dynamics (Extended Data Figure 5) and to the dynamics with the attractant 

being the sole nutrient (Extended Data Figure 8). (c,d) Scaling results are confirmed by 

simulations of the GE model when varying growth rate λ (c), and chemotactic coefficient χ0 

(d). (e) To further illustrated the intricate dynamics at the front of the expanding population, 

we performed stochastic agent-based simulations looking at the trajectory of single cells. 

Shown here are cell trajectories for a few selected ones located within the population front 

(‘pioneers’) at time t = 6.5h. Lower panel shows 38 trajectories with color indicating the 
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time the trajectory escaped from the front and cells switched from being pioneers to being 

settlers, which grow and colonize localities behind the front. Red circles indicate cell 

division events. Highlighted area (cyan) denotes front region with aspartate concentration in 

the range a− < a < a+. Upper panel shows position distribution of all simulated trajectories 

(1000) at time t = 8 h. See Supplementary Text 3 for details.
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Extended Data Figure 10. Modeled scenario of chemotaxis as a strict starvation response.
To examine the expansion characteristics of the population under the hypothetical scenario 

were chemotaxis is a strict starvation response, we modified the GE model (Fig. 3a) to 

investigate the cases when chemotaxis is either active only in slow growth conditions (a,b) 
or within intermediate density ranges (c-e). (a) To model chemotaxis being activated at slow 

growth, we introduced a strong dependence of chemotaxis on the local growth rate (orange 

line). In contrast to the original GE model (dashed red line) we used a chemotactic 

coefficient depending on growth conditions, χ0 = χ0(λ(n)) (orange line). Black dashed line 

shows the growth rate in the presence of saturating glycerol. (b) This dependence of 

chemotaxis on growth conditions leads to a dramatic decrease in the speed of expansion 

(compare orange and red dashed line). In fact, the expansion dynamics of this model 

resembles the case of the Fisher-Kolmogorov dynamics (gray dashed line), suggesting that 

chemotaxis does not boost population-level expansion when it is activated only at slow 

growth conditions. (c-e) We further studied the case of swimming being a density-dependent 

response, active only at intermediate bacterial densities as it has been observed previously in 

batch culture measurements15 (see data shown in panel c). Taking such a dependence of the 

swimming speed (v) on the local cell density (ρ) and assuming χ0 ~ v2(ρ), we looked at the 

expansion dynamics for several different maximum values of the chemotactic coefficient 

(d,e). For all the forms of χ0(ρ) shown in panel (d), we observed that population expansion 

is slowed down substantially as compared to the reference case where chemotaxis is also 

active at low densities (red dashed lines). Slow expansion dynamics is again similar to the 

Fisher-Kolmogorov dynamics, illustrating that the boost of expansion speed and population 

size by chemotaxis relies on chemotaxis being active at low densities. Note that in both 

cases analyzed, we have not included the dependence of the diffusion constant on growth 

rate or local densities but assumed a constant value as in the original GE model. Introducing 

such dependences would further reduce the speed of expansion, below even that of Fisher-

Kolmogorov. The origin of the slow expansion dynamics in these models is very simple: a 

population cannot expand faster than its front, and the front is at low density and experiences 

the fastest growth rate.

Cremer et al. Page 29

Nature. Author manuscript; available in PMC 2020 May 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Growth dependence of expansion and swimming characteristics.
(a) Population of E. coli K-12 HE206 cells (WT, see Supplementary Text 1.1 for strain 

details) expanding in 0.25% soft agar with 40mM glycerol and 100μM aspartate. 

Photographs show population density at different times after inoculating exponentially 

growing cells at the center of the agar plate at initial time. Rings indicate dense bacteria at 

the population front. Images are representative of experiments repeated independently three 

times. (b) Tracking ring position over time allows precise quantification of expansion speed 

(slope). (c) Expansion speed is observed to increase with the growth rate. Expansion speeds 

are shown for HE206 cells (WT) in media with different primary carbon sources and for 

glycerol and glucose uptake mutants (HE433, HE443, HE268, HE269) that grow at different 

rates on glycerol or glucose (as controlled by varying indicuder levels, see Supplementary 

Text 1.2), in combination with different attractants (100μM asp, 100μM ser, 0.05% CAA), as 

indicated in the legend table. CAA concentration was chosen to have the same aspartate and 

serine content as the medium with only asp or ser. Growth rates were measured in batch 

culture in the presence of attractant; see Supplementary Text 1.4.2 and Supplementary Table 

2. Notably, these expansion speeds are much larger than those of the Fisher-Kolmogorov 

dynamics (no more than a few mm/hr) as will be described shortly below. Number of 

biological replicates (ngrowth rate, nexpansion speed) for growth and expansion speed 

measurements indicated in legend. Means and s.d. (for n ≥ 3) are shown.
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Figure 2. Density profiles of expanding bacterial population.
(a)Spatiotemporal evolution of the population in agar was obtained by quantifying the local 

fluorescence intensity of fluorescently labeled cells throughout the agar using confocal 

microscopy. Tracking of single cells enabled quantitative characterization of swimming 

behavior at various positions and times in agar; see Extended Data Figure 3. (b) Density 

profiles for fluorescent strain HE274 (WT) in reference condition (40 mM glycerol + 100μM 

asparate) at different times, showing an advancing front marked by a density bulge and an 

exponential trailing region. See Extended Data Figure 4d for the appearance of the same 

profiles on a linear density scale. (c) Single-time density profiles for HE274 in other media 

with attractant(s), showing the same bulge(s) and trailing exponential region. Time-lapsed 

density profiles are shown in Extended Data Figure 4e–h. (d) No front bulge nor trailing 

exponential region were seen for WT cells in 40 mM glycerol alone or Δtar cells (HE505) in 

reference condition. A bulge without exponential trailing region was seen in 20 mM glucose 

alone, but front bulge and trailing exponential region appear for WT cells in 20 mM glucose 

+ 100μM asparate. (e) Trajectory of front position vs time for WT cells in 40 mM glycerol 

or 20 mM glucose, with or without 100μM asparate. Front positions are defined by 

thresholds in density (OD600 > 0.002) from confocal scans. (f) Illustration of our model of a 

complex medium: most nutrients are lumped together and treated as a ‘primary nutrient’ 

fueling cell growth, with low amounts of major chemotactic components (here aspartate and 

serine). In panels b-e, experiments were conducted twice with similar observations for the 

reference condtion (glycerol + aspartate) and once for other conditions.
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Figure 3. The Growth-Expansion model and its predictions.
(a) The coupled dynamics of growth and migration of the bacterial density, ρ(r, t) is modeled 

by treating the concentrations of the major nutrient source and the attractant as two distinct 
variables, n(r, t) and a(r, t), with r being the radial distance from center. Dynamics of these 

variables are given by Eqs. (1)-(3). The rate of cell growth λ(n, a) and attractant uptake μ(λ, 

a) are fixed by our measurements as discussed in Supplementary Text 2.1. Nutrients and 

attractants diffuse with diffusion coefficients Dn, Da, respectively.Y denotes growth yield of 

the nutrient. Following the Keller-Segel model34 and the coarse-grained description of 

chemotaxis49, undirected swimming is described by a cell diffusion term, characterized by 

D. Directed movement is described by an advection term v  that depends on local attractant 

gradients (Eq. 4), with the chemotactic coefficient χ0 as the proportionality factor. Other 

details of the model are described in Supplementary Text 2.1. (b) The lone unknown 

parameter of the model, χ0, is fixed by adjusting the ratio χ0/D such that the expansion 

speed of the model (black line, inset) matches the experimental observation (horizontal grey 

line, inset). The corresponding value of χ0/D (red dashed line, inset) is used for other 

simulations. Prediction of the GE model on front position at various times is shown as the 

solid red line; it captures well the observed dynamics of front propagation of WT cells in 

reference condition (red circles), including the crossover from FK dynamics (black circle 

and line, from Extended Data Figure 5). Solid green and brown lines show model 

predictions if χ0/D used was 30% larger or smaller. (c,d) Observed and simulated density 

profiles at different times. The observed density bulges are less sharp due in part to limited 

spatial resolution of the data points (black dots). See Extended Data Figure 3e for a finer 

view. Black solid line indicates predicted slope of trailing region (Extended Data Figure 9a); 

dashed line shows slope of FK dynamics for comparison (Extended Data Figure 5). 

Fluorescent strain HE274 was used as the wildtype in panels (b,c), experiments were 

conducted twice with similar observations. (e) Predicted and observed changes in expansion 

speeds when varying the growth rate with different glycerol uptake rate, using HE274, 

HE484 and HE486 (square symbols). For HE486, three different inducer 3MBA 

concentration were used. Data for HE274 (n=2) represents a mean of two replicates, while 
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expansion speeds for HE484 and HE486 are shown as mean ± s.d (n=3 biological replicates) 

and growth rates from single experiments. As comparison, data from Figure 1c (glycerol as 

carbon source) are shown as red circles. Dashed line shows prediction by scaling theory 

(Extended Data Figure 9) when changing only the growth rate. Solid green line shows 

prediction of the full GE model, including the observed dependence of model parameters, 

e.g. diffusion constant and uptake rate, on growth-rate.
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Figure 4. The expansion-colonization process.
(a) Spatial profiles of the density (ρ, green), attractant (a, mauve) and drift ( v , purple) 

during steady migration in co-moving frame; dashed vertical line indicates the position of 

maximum drift. Highlighted area (cyan) indicates the region where the attractant 

concentration is in the range between a− and a+ (gray lines) where the chemotactic response 

is maximum. Full spatiotemporal dynamics of the GE model is shown in Supplementary 

Video S6 for both the laboratory and co-moving frame. (b) Illustration of the coupling 

between the front and trailing regions. Density profiles spaced by one doubling-time are 

shown. Orange line illustrates the density profile in a hypothetical case where the effect of 

diffusion is ‘turned off’ during this time. The difference, indicated by the black arrow, 

represents the effect of cells’ transfers from the front to the gap right behind the front, which 

is mediated by diffusion. (c) Size increase of populations expanding in glycerol or glucose, 

quantified by confocal microscopy (Supplementary Text 1.4). Populations of WT cells 

(colored symbols, strain HE274) increase faster with than without 100μM aspartate as 

attractant. Slower increase is also observed for a Δtar mutant not capable of sensing 

aspartate (gray triangles, strain HE505) even if aspartate was present. Differences between 

the size increases become noticeable at ~6 hours, corresponding to the crossover from 

diffusive FK dynamics to navigated range expansion (Fig. 3b). Experiments for WT cell in 

glycerol + asp were conducted twice with similar results, others once; see also 

Supplementary Table 2–3. (d) Expansion speed changing with attractant concentration. WT 

cells (HE206) expanding in glycerol or glucose with varied aspartate concentration 

(Supplementary Table 9). Expansion speeds without additional attractant are shown as 

dashed lines. These results confirm observation by Wolfe and Berg43 and can be 
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quantitatively accounted for by the GE model (Extended Data Figure 7ef). Points represent 

means of n ≥ 2 biological replicates, error bars (s.d.) shown when sample size n ≥ 3, see also 

Supplementary Tables S9–10. (e) Illustration comparing the navigated mode of range-

expansion that involves chemotaxis (upper panel) with the unguided expansion (Fisher-

Kolmogorv dynamics, bottom panel). Navigation along self-generated gradients of 

attractants (upper panel) allows faster expansion of the population. Remaining nutrients 

allow for population growth behind the front. Right panels show the corresponding density 

and nutrient/attractant profiles at the migrating front.

Cremer et al. Page 39

Nature. Author manuscript; available in PMC 2020 May 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Bacterial expansion dynamics
	The Growth-Expansion model
	Navigated range expansion
	Methods
	Strains used in this study
	Growth medium
	Strain culturing and growth rate measurement
	Measurement of expansion speeds
	Measurements of swimming characteristics
	Cell trajectory analysis in soft agar
	Measurements of aspartate uptake
	The Growth-Expansion Model
	Data availability statement
	Code availability statement

	Extended Data
	Extendend Data Figure 1.
	Extended Data Figure 2.
	Extended Data Figure 3.
	Extended Data Figure 4.
	Extended Data Figure 5.
	Extended Data Figure 6.
	Extended Data Figure 7.
	Extended Data Figure 8.
	Extended Data Figure 9.
	Extended Data Figure 10.
	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.

