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NULL-CONTROLLABILITY OF EVOLUTION EQUATIONS

ASSOCIATED WITH FRACTIONAL SHUBIN OPERATORS THROUGH

QUANTITATIVE AGMON ESTIMATES

PAUL ALPHONSE

Abstract. We consider the anisotropic Shubin operators (−∆)m + |x|2k acting on the
space L2(Rn), with k,m ≥ 1 some positive integers. We provide sharp quantitative es-
timates in Gelfand-Shilov spaces for the eigenfunctions of these selfadjoint differential
operators with a strategy based on the classical approach to obtain Agmon estimates
in spectral theory. By using a Weyl law for the eigenvalues of the anisotropic Shubin
operators, we also describe the smoothing properties of the semigroups generated by the
fractional powers of these operators, with precise estimates in short times. This descrip-
tion allows us to prove positive null-controllability results for the associated evolution
equations posed on the whole space Rn, from control supports which are thick with re-
spect to densities and in any positive time. We generalize in particular results known for
the evolution equations associated with fractional harmonic oscillators.

1. Introduction

This paper is devoted in studying the smoothing properties and the null-controllability
of the evolution equations associated with fractional anisotropic Shubin operators Hs

k,m

and posed on the whole space Rn. These non-local operators Hs
k,m are defined through the

functional calculus as the fractional powers of the following anisotropic selfadjoint elliptic
operators

(1.1) Hk,m = (−∆)m + |x|2k, x ∈ Rn,

which we consider equipped with the domains

(1.2) D(Hk,m) =
{
g ∈ L2(Rn) : Hk,mg ∈ L

2(Rn)
}
,

where k,m ≥ 1 are two positive integers and s > 0 is a positive real number. These op-
erators naturally arise in physical models. For example, the fractional harmonic oscillator
Hs

1,1 appears in the kinetic theory of gases [29, 30, 31]. Another example is given by the
quantum anharmonic oscillators H1,k involved in quantum mechanics.

The study of the null-controllability of evolution equations posed on the whole space Rn,
of elliptic type or degenerate of hypoelliptic type, and also the Schrödinger counterparts
of such equations, has been much addressed in the last years [3, 4, 7, 8, 9, 24, 25, 32,
33]. Although considerable progress have already been made, the understanding of these
equations is still at an early stage, in opposite to the same models posed on bounded
domains of Rn, for which many behaviors have been highlighted, see e.g. the introduction
of [9]. In this work, we tackle null-controllability issues for the following evolution equations
associated with fractional anisotropic Shubin operators

(Es,k,m)

{
∂tf(t, x) +Hs

k,mf(t, x) = h(t, x)1ω (x), t > 0, x ∈ Rn,

f(0, ·) = f0 ∈ L
2(Rn).

On the one hand, we prove that the equation (Es,k,m) is null-controllable from thick control
supports ω ⊂ Rn in any positive time T > 0, under the large diffusion assumption 2sm > 1.
The notion of thickness has appeared to be central in the null-controllability theory since
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the works [18, 41], where the authors established that this is a necessary and sufficient
geometric condition that ensures the null-controllability of the heat equation posed on Rn.
The same phenomena holds true more generally for the evolution equations associated
with fractional Laplacians (−∆)s under the same setting and when s > 1/2, as proven
in [4], and also quite surprisingly for the Schrödinger counterpart of this equation in the
one dimensional setting and when s ≥ 1/2, see [33]. It is also known from [24, 25] that in
the cases 0 < s ≤ 1/2, the fractional heat equations are not null-controllable from thick
control supports anymore. In the recent work [6], the notion of thickness has appeared to
be a necessary and sufficient condition to ensure the stabilization or the approximate null-
controllability with uniform cost (which are notions weaker than the null-controllability) of
a very large class of diffusive equations posed on Rn, including in particular the half heat
equation associated with the operator (−∆)1/2. Finally, let us mention that other classes
of degenerate parabolic equations of hypoelliptic type, as evolution equations associated
with accretive quadratic operators or (non-autonomous) Ornstein-Uhlenbeck operators,
were proven to be null-controllable from thick control supports, see [3, 7, 8]. On the
other hand, we establish that in the isotropic case where k = m = l, the equation (Es,l,l)
is null-controllable in any positive time T > 0 from control supports which are thick

with respect to densities. This notion, which is an extension of the thickness property,
was introduced in the work [32] in order to tackle null-controllability issues for evolution
equations enjoying strong smoothing properties in symmetric Gelfand-Shilov spaces. In
particular, we generalize a result from [32] concerning the null-controllability of fractional
heat harmonic equations. Finally, we prove that in the more specific case k = m = 1 and
s > 1, the equation (Es,1,1) is always null-controllable in any positive time T > 0 from any
support control ω ⊂ Rn which is measurable with positive Lebesgue measure.

These null-controllability issues motivate the study of the smoothing properties of semi-
groups generated by selfadjoint or non-seladjoint accretive operators, which is also natural
and interesting in itself [3, 4, 5, 7]. The major part of the present work consists in fact
in describing the regularizing effects of the semigroups generated by fractional anisotropic
Shubin operators Hs

k,m on L2(Rn). Precisely, we prove that the evolution operators gener-
ated by these operators enjoy smoothing properties in Gelfand-Shilov spaces in any positive
time t > 0,

∀t > 0,∀g ∈ L2(Rn), e−tHs
k,mg ∈ S

µs,k,m
νs,k,m (Rn),

with the regularity exponents νs,k,m > 0 and µs,k,m > 0 given by

νs,k,m = max

(
1

2sk
,

m

k +m

)
and µs,k,m = max

(
1

2sm
,

k

k +m

)
,

by providing the following quantitative estimates for the associated seminorms in short
times 0 < t≪ 1,

∥∥xα∂βx (e−tHs
k,mg)

∥∥
L2(Rn)

≤
C |α|+|β|

tνs,k,m|α|+µs,k,m|β|+n(k+m)
2skm

(α!)νs,k,m (β!)µs,k,m ‖g‖L2(Rn).

The strategy consists in first obtaining the following sharp quantitative Agmon estimates

for the eigenfunctions associated with the anisotropic Shubin operators as follows
∥∥ec1t〈x〉σ(1+ k

m )

ψ
∥∥
L2(Rn)

+
∥∥ec1t〈Dx〉

σ(1+m
k

)

ψ
∥∥
L2(Rn)

≤ c2e
c2tλ

σ( 1
2k

+ 1
2m )

‖ψ‖L2(Rn),

where λ > 0 is eigenvalue associated with the eigenfunction ψ of the operators Hk,m and
0 ≤ t ≤ T , 0 ≤ σ ≤ 1 are some parameters. These Agmon estimates combined with a
Weyl law from [11] then allows to obtain the above smoothing properties of the semigroups
generated by the fractional anisotropic Shubin operators. From a spectral point of view, the
anisotropic Shubin operators have been widely studied in the last decades, from the work
[40] on the quartic oscillator H1,4 and the works [20, 21] on a class of anharmonic oscillators
containing the quantum harmonic oscillators H1,k, or the papers [19, 37] considering the
symmetric case k = l. The regularity of the eigenfunctions of general anisotropic Shubin
operators has already been studied qualitatively in the work [13]. Let us also mention
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the paper [15] in which a general class of anisotropic Shubin operators is studied within
the framework of the Weyl-Hörmander calculus and where spectral properties in terms of
Schatten-von Neumann classes for the negative powers of these operators are obtained.

Outline of the work. In Section 2, we present in details the main results contained in this
work. Section 3 is devoted to the proofs of the positive null-controllability results for the
evolution equations associated with fractional anisotropic Shubin operators. Quantitative
Agmon estimates for the eigenfunctions of these operators are obtained in Section 4, which
allow to describe the smoothing properties of the semigroups generated by their fractional
powers in Section 5. The proof of these Agmon estimates require a technical Gårding type
inequality obtained in Section 6. Finally, basics of Gelfand-Shilov spaces are presented
in Section 7, which is an Appendix also containing a microlocal result dealing with the
density of the Schwartz space in the graph of the differential operators.

Notations. The following notations and conventions will be used all over the work:

1. The canonical Euclidean scalar product of Rn is denoted by · and | · | stands for the
associated canonical Euclidean norm. The Japanese bracket 〈·〉 is defined for all x ∈ Rn

by 〈x〉 =
√

1 + |x|2.

2. For all measurable subset ω ⊂ Rn, the inner product of L2(ω) is defined by

〈u, v〉L2(ω) =

∫

ω
u(x)v(x) dx, u, v ∈ L2(ω),

while ‖ · ‖L2(ω) stands for the associated norm.

3. For all function u ∈ S(Rn), the Fourier transform of u is defined by

û(ξ) =

∫

Rn

e−ix·ξu(x) dx.

With this convention, Plancherel’s theorem states that

∀u ∈ L2(Rn), ‖û‖L2(Rn) = (2π)n/2‖u‖L2(Rn).

4. We denote the gradient by ∇x and the Laplacian operator by ∆. Moreover, we set
Dx = −i∇x and for all q > 0, we define by 〈Dx〉

q the Fourier multiplier associated with
the symbol 〈ξ〉q.

5. We use the notation Hq(Rn) for the Sobolev spaces, with q ≥ 0 non-negative real

numbers, and we denote by Ḣq(Rn) their homogeneous counterparts.

6. The space C∞
b (Rn) stands for the set of smooth functions g ∈ C∞(Rn) with bounded

derivatives.

7. For all measurable subset ω ⊂ Rn, 1ω stands for the characteristic function of ω.

2. Statement of the main results

This section is devoted in presenting in details the main results contained in this work.
Let us begin by quickly recalling the definition of the fractional powers of the operator
Hk,m, defined in (1.1) and equipped with the domain (1.2), that we will consider in the
following. Since the operator Hk,m is a positive anisotropic elliptic operator, there exists a
Hilbert basis (ψj)j of L2(Rn) composed of eigenfunctions of the operatorHk,m, see e.g. [38].
Moreover, denoting λj > 0 the eigenvalue associated with the eigenfunction ψj ∈ L

2(Rn),
the family (λj)j satisfies limj λj = +∞. Given s > 0 a positive real number, one can define
the operator Hs

k,m in the following way

(2.1) ∀g ∈ D(Hs
k,m), Hs

k,mg =
+∞∑

j=0

λsj〈g, ψj〉L2(Rn)ψj,
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equipped with the domain

(2.2) D(Hs
k,m) =

{
g ∈ L2(Rn) :

+∞∑

j=0

λ2sj
∣∣〈g, ψj〉L2(Rn)

∣∣2 < +∞

}
.

Notice that the above domain coincides with (1.2) in the case where s = 1, from Parseval’s
formula. The fractional anisotropic Shubin operator Hs

k,m is then a selfadjoint operator

that generates a strongly continuous semigroup on L2(Rn) explicitly given by

∀t ≥ 0,∀g ∈ L2(Rn), e−tHs
k,mg =

+∞∑

j=0

e−tλs
j 〈g, ψj〉L2(Rn)ψj,

see e.g. [39] (Propositions 2.6.2 and 2.6.5).

2.1. Quantitative Agmon estimates and smoothing properties. First of all, we
aim at understanding the smoothing properties enjoyed by the semigroup generated by the
fractional anisotropic Shubin operator Hs

k,m. In order to carry out this study, we begin by
establishing Agmon estimates for the eigenfunctions associated with the operator Hk,m.
Generally, Agmon estimates, which originate in the pioneer works [1, 2], aim at quantifying
the exponential decaying properties of eigenfunctions associated with some large classes of
selfadjoint operators.

Theorem 2.1. Let k,m ≥ 1 be positive integers and Hk,m be the associated anisotropic

Shubin operator defined in (1.1) and equipped with the domain (1.2). We also consider

0 ≤ σ ≤ 1 a non-negative real number. There exist some positive constants c1, c2 > 0 and

T > 0 such that for all eigenfunction ψ ∈ L2(Rn) of the operator Hk,m and 0 ≤ t ≤ T ,

∥∥ec1t〈x〉σ(1+ k
m )

ψ
∥∥
L2(Rn)

+
∥∥ec1t〈Dx〉

σ(1+m
k

)

ψ
∥∥
L2(Rn)

≤ c2e
c2tλ

σ( 1
2k

+ 1
2m )

‖ψ‖L2(Rn),

with λ > 0 the eigenvalue associated with the eigenfunction ψ.

This result allows to recover the Gelfand-Shilov regularity of the eigenfunctions of the
operator Hk,m, which is a consequence of Theorem 1.1 in [13]. We refer to Subsection 7.1 in
Appendix for a definition of the Gelfand-Shilov spaces Sµ

ν (Rn) and their basic properties,
with µ, ν > 0 some positive real numbers satisfying µ + ν ≥ 1. The merit of Theorem
2.1 is to provide a quantitative description of the regularity of those eigenfunctions. Its
proof is based on the classical strategy employed to obtain Agmon estimates in spectral
theory, which requires in our context to obtain a quite technical Gårding type inequality.
Combined to a Weyl law for the eigenvalues of the anisotropic Shubin operators, Theorem
2.1 allows to describe the smoothing properties of the evolution operators generated by the
fractional operator Hs

k,m.

Corollary 2.2. Let k,m ≥ 1 be positive integers, s > 0 be a positive real number, and

Hs
k,m be the associated fractional anisotropic Shubin operator defined in (2.1) and equipped

with the domain (2.2). There exist some positive constants c1, c2 > 0 and 0 < T < 1 such

that for all 0 < t < T and g ∈ L2(Rn),

∥∥ec1t〈x〉
1

νs,k,m
(e−tHs

k,mg)
∥∥
L2(Rn)

+
∥∥ec1t〈Dx〉

1
µs,k,m

(e−tHs
k,mg)

∥∥
L2(Rn)

≤
c2

t
n(k+m)
2skm

‖g‖L2(Rn),

the exponents νs,k,m > 0 and µs,k,m > 0 being given by

νs,k,m = max

(
1

2sk
,

m

k +m

)
and µs,k,m = max

(
1

2sm
,

k

k +m

)
.

Notice that Corollary 2.2 and Lemma 7.2 also imply that there exists a positive constant
C > 0 such that for all 0 < t < T , (α, β) ∈ N2n and g ∈ L2(Rn),

(2.3)
∥∥xα∂βx (e−tHs

k,mg)
∥∥
L2(Rn)

≤
C |α|+|β|

tνs,k,m|α|+µs,k,m|β|+
n(k+m)
2skm

(α!)νs,k,m (β!)µs,k,m ‖g‖L2(Rn).
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This result highlights the existence of a critical diffusion index 0 < scr ≤ 1, given by

(2.4) scr =
1

2k
+

1

2m
,

for which the semigroup generated by the operator Hs
k,m enjoys different smoothing prop-

erties, depending on whether s ≤ scr or s > scr. The existence of this critical index is in
fact a consequence of an uncertainty principle. Indeed, when s ≤ scr, according to (2.3),
the evolution operators generated by the operator Hs

k,m enjoy the following smoothing
properties

(2.5) ∀t > 0,∀g ∈ L2(Rn), e−tHs
k,mg ∈ S

1/2sm
1/2sk (Rn).

Moreover, Theorem 7.1 stated in Appendix, which can be read as a version of the Heisen-
berg’s uncertainty principle, shows that the Gelfand-Shilov space involved in (2.5) is not
reduced to zero provided 1/2sk + 1/2sm ≥ 1, that is, s ≤ scr. As a consequence, when
s > scr, the property (2.5) cannot hold anymore and the estimates (2.3) imply that

(2.6) ∀t > 0,∀g ∈ L2(Rn), e−tHs
k,mg ∈ S

k/(k+m)
m/(k+m)

(Rn).

Roughly speaking, the Gelfand-Shilov smoothing properties of the evolution operators
generated by the operator Hs

k,m “are stationary from s = scr”.

As established in [14] (Theorem 1.4) and presented in Subsection 7.1 in Appendix (more
precisely in (7.9)), the Gelfand-Shilov spaces Sµ

ν (Rn), with µ/ν ∈ Q, can be characterized
through the decomposition into the basis of eigenfunctions of anisotropic Shubin operators.
By using this property, one could check that the qualitative properties (2.5) and (2.6) hold.
However, we absolutely need to use the Agmon quantitative estimates provided by Theorem
2.1 to obtain the quantitative Gelfand-Shilov smoothing properties stated in Corollary 2.2,
which are requested to prove the null-controllability results stated in the Subsection 2.2.

The presence of the term t−n(k+m)/2skm in the right-hand side of the inequalities pre-
sented in Corollary 2.2 was not expected and we conjecture that estimates of the following
form hold

(2.7)
∥∥ec1t〈x〉

1
νs,k,m

(e−tHs
k,mg)

∥∥
L2(Rn)

+
∥∥ec1t〈Dx〉

1
µs,k,m

(e−tHs
k,mg)

∥∥
L2(Rn)

≤ c2‖g‖L2(Rn).

In fact, by adapting arguments used in the proof of Theorem 2.1, we can prove this con-
jecture in the special case s = 1.

Theorem 2.3. Let m,k ≥ 1 be positive integers and Hk,m be the associated anisotropic

Shubin operator defined in (1.1) and equipped with the domain (1.2). There exist some

positive constants c1, c2 > 0 and 0 < T < 1 such that for all 0 ≤ t ≤ T and g ∈ L2(Rn),

∥∥ec1t〈x〉1+
k
m (e−tHk,mg)

∥∥
L2(Rn)

+
∥∥ec1t〈Dx〉

1+m
k (e−tHk,mg)

∥∥
L2(Rn)

≤ c2‖g‖L2(Rn).

We also expect that the strategy employed to prove Theorem 2.3 can be adapted to
obtain the estimates (2.7). However, this would a priori require to obtain a Gårding type
inequality far more technical than one obtained while proving Theorem 2.1. Since the
result given by Corollary 2.2 will be sufficient to obtain null-controllability results, we will
not tackle such a generalization in this work.

2.2. Null-controllability. As an application of Corollary 2.2, we therefore study the
null-controllability of the evolution equations associated with fractional anisotropic Shubin
operators and posed on the whole space Rn. More precisely, for all positive integers k,m ≥
1 and all positive real number s > 0, we consider the equation

(Es,k,m)

{
∂tf(t, x) +Hs

k,mf(t, x) = h(t, x)1ω (x), t > 0, x ∈ Rn,

f(0, ·) = f0 ∈ L
2(Rn),

where Hs
k,m is the fractional anisotropic Shubin operator defined in (2.1) and equipped

with the domain (2.2), and ω ⊂ Rn is a Borel set with a positive Lebesgue measure.
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Definition 2.4. The equation (Es,k,m) is said to be null-controllable from the support

control ω in time T > 0 if, for all initial datum f0 ∈ L2(Rn), there exists a control

h ∈ L2((0, T ) × ω) such that the mild solution of (Es,k,m) satisfies f(T, ·) = 0.

The precise knowledge of the smoothing properties of the semigroup generated by the
fractional anisotropic operator Hs

k,m plays a key in the study of the null-controllability of

the evolution equation (Es,k,m). This link, made by the Hilbert Uniqueness Method and
the Lebeau-Robbiano strategy, will be presented in details in Section 3. For now, we only
present the null-controllability results contained in this work.

We begin by studying the null-controllability of the evolution equation (Es,k,m) from
thick control supports ω ⊂ Rn.

Definition 2.5. A set ω ⊂ Rn is called γ-thick at scale L > 0, with γ ∈ (0, 1], if it is

measurable and satisfies

∀x ∈ Rn, Leb(ω ∩ (x+ [0, L]n)) ≥ γLn,

where Leb stands for the Lebesgue measure on Rn. A set ω ⊂ Rn is then called thick when

there exist γ ∈ (0, 1] and L > 0 such that ω is γ-thick at scale L.

First of all, we prove that the evolution equations (Es,k,m) are null-controllable from
thick control supports ω ⊂ Rn in any positive time T > 0, under an assumption of large
diffusion.

Theorem 2.6. Let k,m ≥ 1 be positive integers and s > 0 be a positive real number

satisfying 2sm > 1. When the control support ω ⊂ Rn is a thick set, the evolution equation

(Es,k,m) is null-controllable from ω in any positive time T > 0.

The assumption 2ms > 1 in Theorem 2.6 has to be related to the assumption s > 1/2
mentioned above that ensures the null-controllability of fractional heat equations from
thick control supports in any positive time, which formally correspond to the equations
(Es,0,1). However, in opposite to the fractional heat equations, it is still an open and
interesting equation to investigate if the equations (Es,k,m) are null-controllable from thick
sets in the low diffusion regime 0 < 2sm ≤ 1.

Let us mention that we will obtain a more quantitative result than the one stated
in Theorem 2.6. Precisely, considering a thick set ω ⊂ Rn, we will prove the following
observability estimate: there exists a positive constant C > 1 such that for all T > 0 and
g ∈ L2(Rn),

(2.8)
∥∥e−THs

k,mg
∥∥2
L2(Rn)

≤ C exp

(
C

T βs,k,m

)∫ T

0

∥∥e−tHs
k,mg

∥∥2
L2(ω)

dt,

with

βs,k,m = max

(
1

2sm− 1
,
k

m

)
.

The notions of null-controllability and observability are equivalent in our context by the
Hilbert Uniqueness Method, as explained in the beginning of Section 3. Such observability
estimates have already been obtained in the works [17, 34, 35] in the particular case where
m = 1, k ≥ 2 and s = 1. Precisely, [17] (Theorem 1.10) states that when k ≥ 2 and Γ ⊂ Rn

is a cone of the form

(2.9) Γ =
{
x ∈ Rn : |x| > r0, x/|x| ∈ Ω0

}
,

where r0 > 0 and Ω0 is an open subset of the unit sphere of Rn, there exists a positive
constant C0 > 0 such that for all T > 0 and g ∈ L2(Rn),

∥∥e−THk,1g
∥∥2
L2(Rn)

≤ exp

(
C0

T 1+ 2
k−1

)∫ T

0

∥∥e−tHk,1g
∥∥2
L2(Γ)

dt.

Since the notions of null-controllability and observability are equivalent for the equations
we are dealing with, as already mentioned, the above estimate implies that when k ≥ 2,
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the equation (E1,k,1) is null-controllable in any positive times T > 0 from any cone of the
form (2.9). Notice that under the same setting, for comparison, the observability estimate
(2.8) writes

∥∥e−THk,1g
∥∥2
L2(Rn)

≤ C exp

(
C

T k

)∫ T

0

∥∥e−tHk,1g
∥∥2
L2(ω)

dt,

and also that 1 + 2/(k − 1) ≤ k provided k ≥ 3. We will come back to the result [17]
(Theorem 1.10) a little further.

As it will appear in Subsection 3.1, the proof of Theorem 2.6 only uses the Gevrey
smoothing properties given by Corollary 2.2, that is, the estimate

∥∥ec1t|Dx|
1

µs,k,m
(e−tHs

k,mg)
∥∥
L2(Rn)

≤
c2

t
n(k+m)
2skm

‖g‖L2(Rn),

and not the full Gelfand-Shilov smoothing properties provided by the same result. In the
general case where k,m ≥ 1 are arbitrary, it is an open and very interesting problem to
know how obtaining positive null-controllability results for the equation (Es,k,m) by also
using the exponentiel decay properties of the semigroup generated by the operator Hs

k,m.
However, the result given by Theorem 2.6 can be extended in the isotropic case where
k = m, by considering a more general class of control supports, those which are thick with
respect to densities, introduced in the work [32].

Definition 2.7. Let ω ⊂ Rn and ρ : Rn → (0,+∞) be a positive continuous function. The

set ω is said to be thick with respect to the density ρ if it is measurable and satisfies

∃γ ∈ (0, 1],∀x ∈ Rn, Leb(ω ∩B(x, ρ(x))) ≥ γ Leb(B(x, ρ(x))),

where Leb stands for the Lebesgue measure on Rn.

The authors of the same paper obtained a positive null-controllability result from control
supports which are thick with respect to Lipschitz densities, for evolution equations enjoy-

ing smoothing properties in symmetric Gelfand-Shilov spaces S
1/2γ
1/2γ (R

n), with 1/2 ≤ γ ≤ 1.

This is Theorem 2.5 in [32], stated in Theorem 3.4 in the present work. An example of
such an equation is given by the equation (Es,l,l) with l ≥ 1 according to Corollary 2.2,
with γ = min(sl, 1). As a consequence, we obtain the following

Theorem 2.8. Let l ≥ 1 be a positive integer and s > 0 be a positive real number satisfying

1/2 < min(sl, 1) ≤ 1. We consider a 1/2-Lipschitz function ρ : Rn → (0,+∞), the space

Rn being equipped with the canonical Euclidean norm, satisfying that there exist some

positive constants 0 ≤ δ < min(2sl − 1, 1) and c,R > 0 such that

∀x ∈ Rn, c ≤ ρ(x) ≤ R〈x〉δ.

When ω ⊂ Rn is a thick set with respect to the density ρ, the evolution equation (Es,l,l) is

null-controllable from the control support ω in any positive time T > 0.

This result has already be proven in [32] (Corollary 2.6) in the case where l = 1 and
1/2 < s ≤ 1. Moreover, since a thick subset of Rn is thick with respect to a constant
density, Theorem 2.8 is the exact generalization of Theorem 2.6 when k = m = l.

Since the following inclusion holds

S
µs,k,m
νs,k,m (Rn) ⊂ S

max(µs,k,m,νs,k,m)

max(µs,k,m,νs,k,m)(R
n),

we get that generically, the semigroups generated by fractional anisotropic Shubin operators
Hs

k,m enjoy smoothing properties in symmetric Gelfand-Shilov spaces from Corollary 2.2.
Therefore, by still using Theorem 3.4, one could state a result for any positive integers
k,m ≥ 1, more general than Theorem 2.8. However, such a theorem would not be an
extension of Theorem 2.6 since it would require an assumption like 2smin(k,m) > 1,
instead of 2ms > 1. That is the reason why such a general null-controllability result is not
stated in the present work. This forced symmetrization seems not to be the good approach
to tackle null-controllability issues for the equation (Es,k,m) in a general setting.
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About that, it would be very interesting to unify Theorem 2.6 and Theorem 2.8, that is,
extending Theorem 2.8 in the case where the positive integers k,m ≥ 1 can be different. We
have already mentioned [17] (Theorem 1.10) which states that when k ≥ 2, the equation
(Ek,1,1) is null-controllable (since observable) in any positive time T > 0 from cones of
the form (2.9). Yet, it follows from a straightforward computation that those cones are
sets which are thick with respect to the densities R〈x〉 with R > 1. Theorem 1.10 in
[17] therefore turns out to be a first generalization of Theorem 2.8 in this particular non-
symmetric case.

Directly extending [32] (Theorem 2.5), of which Theorem 2.8 is an application (by using
Corollary 2.2), for evolution equations enjoying smoothing properties in general Gelfand-
Shilov spaces seems quite difficult. Indeed, the proof of this result is based on characteri-
zation of the symmetric Gelfand-Shilov spaces Sµ

µ(Rn) through the decomposition into the
Hermite basis of L2(Rn), and requires to use Bernstein type estimates for the Hermite func-
tions, see [32] (Section 3 and Theorem 5.2). As we have already mentioned, concerning the
possibly non-symmetric Gelfand-Shilov spaces Sµ

ν (Rn) with µ/ν ∈ Q, a similar characteri-
zation exists through the decomposition into the basis of eigenfunctions of the anisotropic
Shubin operators Hk,m, as explained in Subsection 7.1 in the Appendix. However, Bern-
stein type estimates for the eigenfunctions of the operator Hk,m have not been established
in general yet, and seem to be more difficult to obtain than for the Hermite functions, for
which we have an explicit formula. That is why the proof of [32] (Theorem 2.5) therefore
cannot be directly adapted. Nevertheless, we expect that the estimates given by Corollary
2.2 will allow to obtain a generalization of Theorem 2.8 when k ≥ 1 and m ≥ 1 may be
different.

Let us now consider the situation where l = 1 and s > 1. Theorem 2.8 states in this
case that the equation (Es,1,1) is null-controllable in any positive time T > 0 from control
supports which are thick with respect to sublinear densities. It fact this result can be
considerable sharpen, since we can prove that the equation (Es,1,1) is null-controllable in
any positive time T > 0 from any measurable control support with positive Lebesgue
measure.

Theorem 2.9. Let s > 1 be a positive real number. When ω ⊂ Rn is any measurable set

with positive Lebesgue measure, the evolution equation (Es,1,1) is null-controllable from the

control support ω in any positive time T > 0.

The statement and the proof of Theorem 2.9 have been kindly communicated to the
author by J. Martin. It is still an open question to know if Theorem 2.9 still holds for any
positive integer l ≥ 1 and any sl > 1, and even more generally for all k,m ≥ 1 and s > scr,
the critical exponent scr being defined in (2.4).

3. Null-controllability of evolution equations associated with

fractional anisotropic Shubin operators

In this section, we explain how the quantitative smoothing properties given by Corollary
(2.2) (which will be proven later in this work) and the Lebeau-Robbiano strategy allow to
obtain the null-controllability results Theorem 2.6 and Theorem 2.8 presented in Subsection
2.2 and concerning the evolution equation

(Es,k,m)

{
∂tf(t, x) +Hs

k,mf(t, x) = h(t, x)1ω (x), t > 0, x ∈ Rn,

f(0, ·) = f0 ∈ L
2(Rn),

where k,m ≥ 1 are positive integers, s > 0 is a positive real number and Hs
k,m is the

associated fractional anisotropic Shubin operator defined in (2.1) and equipped with the
domain (2.2). We will also present a proof of Theorem 2.9 communicated to the author
by J. Martin, which does not require any result proven in the present paper. Since the
operator Hs

k,m is selfadjoint, the Hilbert Uniqueness Method, see e.g. [16] (Theorem 2.44),

shows that the null-controllability of the equation (Es,k,m) is equivalent to the observability
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of the adjoint system

(Es,k,m
∗)

{
∂tg(t, x) +Hs

k,mg(t, x) = 0, t > 0, x ∈ Rn,

g(0, ·) = g0 ∈ L
2(Rn).

Definition 3.1. Given a positive time T > 0 and a Borel set ω ⊂ Rn with a positive

Lebesgue measure, the equation (Es,k,m
∗) is said to be observable from ω in time T if there

exists a positive constant C(T, ω) > 0 such that for all g ∈ L2(Rn),

(3.1)
∥∥e−THs

k,mg
∥∥2
L2(Rn)

≤ C(T, ω)

∫ T

0

∥∥g(t, ·)
∥∥2
L2(ω)

dt.

A classical method in observability theory is the Lebeau-Robbiano strategy, introduced
in the work [27] in order to study the null-controllability of the heat equation posed on
bounded domains of Rn. Essentially, this approach states that to obtain observability
estimates like (3.1), it sufficient to obtain a spectral inequality for the control support ω
and a dissipation estimate for the semigroup solution of the equation (Es,k,m

∗). In this
work, we will use a recently revised version of this method (directly or through results also
proven by the following result), due to K. Beauchard M. Egidi and K. Pravda-Starov in
[7], which is essentially a reformulation of a previous result due to L. Miller [34] (involving
a telescopic series), following the seminal ideas in [27].

Theorem 3.2 (Theorem 2.1 in [7]). Let Ω ⊂ Rn be an open set, ω ⊂ Ω be a measurable

subset, (πk)k≥1 be a family of orthogonal projections defined on L2(Ω) and (e−tA)t≥0 be a

strongly continuous contraction semigroup on L2(Ω). Assume that there exist some con-

stants c1, c
′
1, c2, c

′
2, a, b, t0,m1 > 0 and m2 ≥ 0, with a < b, such that the following spectral

inequality

(3.2) ∀g ∈ L2(Rn),∀k ≥ 1, ‖πkg‖L2(Ω) ≤ c
′
1e

c1ka‖πkg‖L2(ω),

and the following dissipation estimate

(3.3) ∀g ∈ L2(Rn),∀k ≥ 1,∀t ∈ (0, t0),
∥∥(1− πk)(e−tAg)

∥∥
L2(Ω)

≤
e−c2tm1kb

c′2t
m2

‖g‖L2(Ω),

hold. Then, there exists a positive constant C > 1 such that the following observability

estimate holds

∀T > 0,∀g ∈ L2(Rn),
∥∥e−TAg

∥∥2
L2(Rn)

≤ C exp

(
C

T
am1
b−a

)∫ T

0

∥∥e−tAg
∥∥2
L2(ω)

dt.

Notice that the spectral inequality (3.2) is an intrinsic geometric property of the control
support ω, while the dissipation estimate (3.3) only depends on the semigroup generated
by the operator A. In our context, the latter will be a consequence of Corollary 2.2.
Moreover, we will use spectral inequalities already existing in the literature for frequency
cutoff projections and projections over the first modes of the Hermite basis of L2(Rn).

3.1. Anisotropic case. Let us begin by proving Theorem 2.6. Assume that 2sm > 1 and
that the control support ω is a thick set. We consider the sequence (πk)k≥1 of orthogonal
frequency cutoff projections defined by

(3.4) πk : L2(Rn)→
{
g ∈ L2(Rn) : Supp ĝ ⊂ [−k, k]n

}
,

where ĝ ∈ L2(Rn) denotes the Fourier transform of the function g ∈ L2(Rn). In order
to apply Theorem 3.2, we need to use a spectral estimate of form (3.2) and to establish
a dissipation estimate like (3.3). Let us start with the latter. We deduce from Corollary
2.2 that there exist some positive constants c1, c2 > 0 and 0 < T < 1 such that for all
0 < t < T and g ∈ L2(Rn),

∥∥ec1t|Dx|
1

µs,k,m
(e−tHs

k,mg)
∥∥
L2(Rn)

≤
c2

t
n(k+m)
2skm

‖g‖L2(Rn),
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the exponent µs,k,m > 0 being given by

µs,k,m = max

(
1

2sm
,

k

k +m

)
.

It therefore follows from the definition (3.4) of the cutoff projections πk and Plancherel’s
theorem that for all k ≥ 1, 0 < t < T and g ∈ L2(Rn),

∥∥(1− πk)e−tHs
k,mg

∥∥
L2(Rn)

=
∥∥(1− πk)e−c1t|Dx|

1
µs,k,m

ec1t|Dx|
1

µs,k,m
(e−tHs

k,mg)
∥∥
L2(Rn)

≤
c2

t
n(k+m)
2skm

e−c1tk
1

µs,k,m
‖g‖L2(Rn).

Notice that this is a dissipation estimate of the form (3.3) with m1 = 1, m2 =
n(k+m)
2skm and

b = 1/µs,k,m. On the other hand, concerning the spectral estimate, we use O. Kovrijkine’s
following result which is taken from the work [26]:

Theorem 3.3 (Theorem 3 in [26]). There exists a universal positive constant Cn > 0
depending only on the dimension n ≥ 1 such that for all set ω ⊂ Rn being γ-thick at scale

L > 0,

∀k ≥ 1,∀g ∈ L2(Rn), ‖πkg‖L2(Rn) ≤
(Cn

γ

)Cn(1+Lk)
‖πkg‖L2(ω),

the orthogonal frequency cutoff projections πk being defined in (3.4).

In view of the definition of the orthogonal cutoff projections πk, and the control support
ω ⊂ Rn being thick by assumption, we deduce from the above theorem that there exists a
positive constant c > 0 such that

(3.5) ∀k ≥ 1,∀g ∈ L2(Rn), ‖πku‖L2(Rn) ≤ e
ck‖πku‖L2(ω).

This is the spectral estimate (3.2) with a = 1. Moreover, since we assumed 2sm > 1, we
get that 1/µs,k,m > 1, that is, b > a. We therefore deduce from Theorem 3.2 that there
exists a positive constant C > 1 such that for all T > 0 and g ∈ L2(Rn), the following
observability estimate holds

∥∥e−THs
k,mg

∥∥2
L2(Rn)

≤ C exp

(
C

T βs,k,m

)∫ T

0

∥∥e−tHs
k,mg

∥∥2
L2(ω)

dt,

with

βs,k,m = max

(
1

2sm− 1
,
k

m

)
.

This ends the proof of Theorem 2.6.

3.2. Isotropic case. In this second subsection, we prove Theorem 2.8. We therefore
assume that k = m = l. In fact, Theorem 2.8 is a direct consequence of a result from
the paper [32] by J. Martin and K. Pravda-Starov. One of the purposes of this work,
see Subsection 2.3, is to study the null-controllability of linear evolution equations posed
on the whole space Rn and enjoying smoothing properties in symmetric Gelfand-Shilov
spaces. More specifically, these authors consider strongly contraction semigroups (e−tA)t≥0

satisfying that there exist some positive constants 1/2 < γ ≤ 1, Cγ > 1, 0 < t0 < 1 and
m1,m2 ∈ R with m1 > 0,m2 ≥ 0 such that for all 0 < t < t0, (α, β) ∈ N2n and g ∈ L2(Rn),

(3.6)
∥∥xα∂βx (e−tAg)

∥∥
L2(Rn)

≤
C

1+|α+β|
γ

tm1|α+β|+m2
(α!)

1
2γ (β!)

1
2γ ‖g‖L2(Rn).

By exploiting the Lebeau-Robbiano strategy, and more precisely Theorem 3.2 applied with
spectral inequalities for finite combinations of Hermite functions obtained in the same work
[32] (Theorem 2.1), J. Martin and K. Pravda-Starov established the following positive null-
controllability result:
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Theorem 3.4 (Theorem 2.5 in [32]). Let A be a closed operator on L2(Rn) which is the

infinitesimal generator of a strongly continuous contraction semigroup (e−tA)t≥0 on L2(Rn)
that satisfies the quantitative smoothing estimates (3.6) for some 1/2 < γ ≤ 1. We consider

a 1/2-Lipschitz function ρ : Rn → (0,+∞), the space Rn being equipped with the canonical

Euclidean norm, satisfying that there exist some positive constants 0 ≤ δ < 2γ − 1, and

c1, c2 > 0 such that

∀x ∈ Rn, c1 ≤ ρ(x) ≤ c2〈x〉
δ.

If ω ⊂ Rn is a measurable set which is thick with respect to the density ρ, then the evolution

equation associated with the L2(Rn)-adjoint A∗ of the operator A
{
∂tf(t, x) +A∗f(t, x) = h(t, x)1ω (x), t > 0, x ∈ Rn,

f(0, ·) = f0 ∈ L
2(Rn),

is null-controllable from the set ω in any positive time T > 0.

Let us recall that the operator Hs
l,l we are considering in this subsection is selfadjoint.

Moreover, we deduce from (2.3) that there exists a positive constant C > 0 such that for
all 0 < t < T , (α, β) ∈ N2n and g ∈ L2(Rn),

∥∥xα∂βx (e−tHs
l,lg)

∥∥
L2(Rn)

≤
C |α+β|

t
|α+β|

min(2sl,2)
+ n

sl

(α!)
1

min(2sl,2) (β!)
1

min(2sl,2) ‖g‖L2(Rn).

The proof of Theorem 2.8 is therefore ended after using Theorem 3.4.

3.3. Fractional harmonic oscillator. To end this section, let us present the proof of
Proposition 2.9. As announced, the following proof was communicated to the author by
J. Martin. It does not directly use resuts obtained in the present work but is based on
Theorem 3.2 again. We assume that s > 1 and k = m = 1, that is, we consider the evolution
equation associated with large fractional powers of the standard harmonic oscillator. Let
us consider this time a measurable set ω ⊂ Rn with a positive Lebesgue measure and
the sequence (pk)k≥1 of orthogonal cutoff projections with respect to the Hermite basis of
L2(Rn) defined by

(3.7) pk : L2(Rn)→ VectC{Φα}|α|≤k,

where (Φα)α∈Nn denotes the Hermite basis of L2(Rn). On the one hand, since the eigen-
values of the harmonic oscillator H1,1 associated with the eigenfunction Φα is given by
2|α|+ n, we get from Parseval’s formula that for all t ≥ 0,

∥∥(1− pk)e−tHs
1,1g

∥∥2
L2(Rn)

=
∑

|α|≥k+1

∣∣〈g,Φα〉L2(Rn)

∣∣2e−2t(2|α|+n)s(3.8)

≤ e−2t(2(k+1)+n)s‖g‖2L2(Rn).

On the other hand, we use the following spectral inequalities for finite combinaisons of
Hermite functions proven by K. Beauchard, P. Jaming and K. Pravda-Starov:

Theorem 3.5 (Theorem 2.1 in [8]). If ω ⊂ Rn is a measurable set with a positive Lebesgue

measure, then there exists a positive constant C = C(ω) > 1 such that

∀k ≥ 1,∀g ∈ L2(Rn), ‖pkg‖L2(Rn) ≤ Ce
1
2
k log(k+1)+Ck‖pkg‖L2(ω),

the orthogonal cutoff projections pk being the ones defined in (3.7).

Actually, this spectral inequality was originally stated for non-empty open sets ω ⊂ Rn

in [8] and then extended to Borel sets with positive measures in the work [23] (Lemma 3.2)
by borrowing some ideas from the proof of [8] (Theorem 2.1). Since s > 1 by assumption,
we can consider 1 < s′ < s a positive real number. It follows from the above theorem that
there exists a positive constant c > 0 such that

∀k ≥ 1,∀g ∈ L2(Rn), ‖pkg‖L2(Rn) ≤ ce
cks

′

‖pkg‖L2(ω).
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This spectral inequality and the dissipation estimate (3.8) end the proof of Proposition 2.9
thanks to Theorem 3.2 (recall that s′ < s).

4. Agmon estimates for anisotropic Shubin operators

This section is devoted to the proof of Theorem 2.1. In the following, we will not use any
results existing in the literature concerning the Schwartz regularity of the eigenfunctions
of anisotropic Shubin operators, since we want to recover the Gelfand-Shilov regularity
of those eigenfunctions, with new precise estimates of the associated seminorms. Let
0 ≤ σ ≤ 1 be a non-negative real number, k,m ≥ 1 be positive integers and Hk,m be the
associated anisotropic Shubin operator defined in (1.1) and equipped with domain (1.2).
It is sufficient to prove that there exist some positive constants c1, c2 > 0 and T > 0 such
that for all eigenfunction ψ ∈ L2(Rn) of the operator Hk,m and 0 ≤ t ≤ T ,

(4.1)
∥∥ec1t〈x〉σ(1+ k

m )

ψ
∥∥
L2(Rn)

≤ c2e
c2tλ

σ( 1
2k

+ 1
2m )

‖ψ‖L2(Rn),

with λ > 0 the eigenvalue associated with the eigenfunction ψ. Indeed, notice that ψ ∈

L2(Rn) is an eigenfunction of the operator Hk,m if and only if its Fourier transform ψ̂ is an
eigenfunction of the operator Hm,k associated with the same eigenvalue. As a consequence,
once (4.1) is established, we deduce by exchanging the roles of the integers k and m that
for all eigenfunction ψ ∈ L2(Rn) of the operator Hk,m and 0 ≤ t ≤ T ,

∥∥ec1t〈x〉
σ(1+m

k
)

ψ̂
∥∥
L2(Rn)

≤ c2e
c2tλ

σ( 1
2m+ 1

2k
)

‖ψ̂‖L2(Rn),

with λ > 0 the eigenvalue associated with the eigenfunction ψ. Plancherel’s theorem then
implies that

∥∥ec1t〈Dx〉
σ(1+m

k
)

ψ
∥∥
L2(Rn)

≤ c2e
c2tλ

σ( 1
2k

+ 1
2m )

‖ψ‖L2(Rn),

which ends the proof of Theorem 2.1. We therefore focus on proving the estimate (4.1).
Let ψ ∈ L2(Rn) be an eigenfunction of the operator Hk,m associated with the eigenvalue
λ > 0. We consider the smooth function φ ∈ C∞(Rn,R) defined for all x ∈ Rn by

(4.2) φ(x) = 〈x〉σ(1+
k
m
).

In the following, we will need to deal with a compactly supported approximation of the
function ψ. To that end, let us consider a cut-off odd function χ ∈ C∞

0 (R,R) satisfying
that χ(x) = x for all 0 ≤ x ≤ 1, χ(x) = 0 when x ≥ 2 and χ(x) ≥ 0 for all x ≥ 0. For all
ε > 0, we consider the compactly supported functions χε and φε respectively defined for
all x ∈ Rn by

(4.3) χε(x) =
1

ε
χ(εx) and φε(x) = (χε ◦ φ)(x).

Notice that by construction, the family (χε)ε>0 is an approximation of the identity function.
We also need to deal with a Schwartz approximation of the eigenfunction ψ. We therefore
consider (ψj)j a sequence in S(Rn), given by Proposition 7.3 in Appendix, and satisfying

(4.4) lim
j→+∞

ψj = ψ and lim
j→+∞

Hk,mψj = Hk,mψ in L2(Rn).

We can now tackle the proof of the estimate (4.1). Our approach is based on a classical
Agmon strategy. The first step consists in noticing that for all j ≥ 0, ε > 0 and t ≥ 0, the
term 〈Hk,mψj , e

2tφεψj〉L2 can be written in the two following ways

〈
Hk,mψj, e

2tφεψj

〉
L2(Rn)

= λ
∥∥etφεψj

∥∥2
L2(Rn)

+
〈
Hk,mψj − λψj, e

2tφεψj

〉
L2(Rn)

,

and
〈
Hk,mψj , e

2tφεψj

〉
L2(Rn)

=
〈
(−∆)mψj , e

2tφεψj

〉
L2(Rn)

+
〈
|x|2kψj , e

2tφεψj

〉
L2(Rn)

.
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The second step consists in controlling the term involving (−∆)m. After making the change
of function vj = etφεψj ∈ S(Rn), this term writes in the most useful following form

(4.5) 〈(−∆)mψj , e
2tφεψj〉L2(Rn) =

〈
etφε(−∆)m(e−tφεvj), vj

〉
L2(Rn)

.

In order to manage it, we use the estimate given by the following proposition which provides
a Gårding type inequality and whose proof is postponed in Section 6:

Proposition 4.1. There exists a positive constant c0 > 0 depending on the function φ
such that for all 0 < ε ≤ 1, 0 ≤ t ≤ 1 and v ∈ S(Rn),

〈
etφε(−∆)m(e−tφεv), v

〉
L2(Rn)

+ c0

(
‖v‖2L2(Rn) + t

∥∥〈x〉σkv
∥∥2
L2(Rn)

)
≥ 0.

We deduce from (4.5), the above proposition and Cauchy-Schwarz’ inequality that for
all j ≥ 0, 0 < ε ≤ 1 and 0 ≤ t ≤ 1,

〈
|x|2kψj , e

2tφεψj

〉
L2(Rn)

− c0
∥∥etφεψj

∥∥2
L2(Rn)

− c0t
∥∥〈x〉σketφεψj

∥∥2
L2(Rn)

≤ λ
∥∥etφεψj

∥∥2
L2(Rn)

+
∥∥Hk,mψj − λψj

∥∥
L2(Rn)

∥∥e2tφεψj

∥∥
L2(Rn)

.

This estimate also takes the following integral form

∫

Rn

(
|x|2k−c0t〈x〉

2σk−c0−λ
)
e2tφε(x)|ψj(x)|

2 dx ≤
∥∥Hk,mψj−λψj

∥∥
L2(Rn)

∥∥e2tφεψj

∥∥
L2(Rn)

.

The third step of the proof consists in managing the above integral. To that end, we will
distinguish the two regions in Rn where |x|2k > Mλ and |x|2k ≤ Mλ respectively, with
M ≫ 1 a large constant independent of the Schwartz functions ψj and the eigenvalue λ
whose value will be chosen later, by writing

(4.6)

∫

|x|2k>Mλ

(
|x|2k − c0t〈x〉

2σk − c0 − λ
)
e2tφε(x)|ψj(x)|

2 dx

≤
∥∥Hk,mψj − λψj

∥∥
L2(Rn)

∥∥e2tφεψj

∥∥
L2(Rn)

+

∫

|x|2k≤Mλ

(
λ+ c0t〈x〉

2σk + c0 − |x|
2k
)
e2tφε(x)|ψj(x)|

2 dx.

On the one hand, since 0 ≤ σ ≤ 1, there exist some positive constants 0 < t0 ≤ 1 and
c1 > 0 such that

∀t ∈ [0, t0],∀x ∈ Rn, c0t〈x〉
2σk + c0 − |x|

2k ≤ c1,

and we obtain the following upper bound

(4.7)

∫

|x|2k≤Mλ

(
λ+ c0t〈x〉

2σk + c0 − |x|
2k
)
e2tφε(x)|ψj(x)|

2 dx.

≤ (λ+ c1)

∫

|x|2k≤Mλ
e2tφε(x)|ψj(x)|

2 dx.

On the other hand, since 0 ≤ σ ≤ 1 anew, we notice that there exist other positive
constants 0 < t1 ≤ t0, r0 ≫ 1 and c2 > 0 such that for all 0 ≤ t ≤ t1 and x ∈ Rn satisfying
|x|2k ≥ r0,

|x|2k − c0t〈x〉
2σk − c0 ≥ c2|x|

2k.
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As a consequence, if the large positive constant M ≫ 1 satisfies Mλ0 ≥ r0, with λ0 > 0
the smallest eigenvalue of the operator Hk,m, we have Mλ ≥Mλ0 ≥ r0, and therefore,

∫

|x|2k>Mλ

(
|x|2k − c0t〈x〉

2σk − c0 − λ
)
e2tφε(x)|ψj(x)|

2 dx(4.8)

≥

∫

|x|2k>Mλ

(
c2|x|

2k − λ
)
e2tφε(x)|ψj(x)|

2 dx

≥ (c2M − 1)λ

∫

|x|2k>Mλ
e2tφε(x)|ψj(x)|

2 dx.

The constant M ≫ 1 can be chosen large enough so that c3 > 0, where we set c3 = c2M−1,
and its value is now fixed. We deduce from (4.6), (4.7) and (4.8) that for all j ≥ 0, 0 < ε ≤ 1
and 0 ≤ t ≤ t1,

∫

|x|2k>Mλ
e2tφε(x)|ψj(x)|

2 dx ≤
1

c3λ

∥∥Hk,mψj − λψj

∥∥
L2(Rn)

∥∥e2tφεψj

∥∥
L2(Rn)

+
1

c3

(
1 +

c1
λ

)∫

|x|2k≤Mλ
e2tφε(x)|ψj(x)|

2 dx.

Given that
∥∥etφεψj

∥∥2
L2(Rn)

=

∫

|x|2k>Mλ
e2tφε(x)|ψj(x)|

2 dx+

∫

|x|2k≤Mλ
e2tφε(x)|ψj(x)|

2 dx,

the above estimate implies that for all j ≥ 0, 0 < ε ≤ 1 and 0 ≤ t ≤ t1,

(4.9)
∥∥etφεψj

∥∥2
L2(Rn)

≤
1

c3λ

∥∥Hk,mψj − λψj

∥∥
L2(Rn)

∥∥e2tφεψj

∥∥
L2(Rn)

+
( 1

c3

(
1 +

c1
λ

)
+ 1

) ∫

|x|2k≤Mλ
e2tφε(x)|ψj(x)|

2 dx.

We need to be more precise concerning the second term of the right-hand side of the above
estimate. First, it follows from the definition of the function χ and the definitions (4.3) of
the functions χε and φε that there exists a positive constant c4 > 0 such that for all ε > 0
and x ∈ Rn,

φε(x) = χε(φ(x)) =
1

ε
χ(εφ(x)) ≤ c4φ(x).

Moreover, Minkowski’s inequality and the classical inequality

∀a, b ≥ 0,∀q > 0, (a+ b)q ≤ 2(q−1)+(aq + bq) with (q − 1)+ = max(q − 1, 0),

imply that for all x ∈ Rn,

φ(x) = 〈x〉σ(1+
k
m
) ≤ (1 + |x|)σ(1+

k
m
) ≤ 2(σ(1+

k
m
)−1)+

(
1 + |x|σ(1+

k
m
)
)
.

We deduce that for all 0 < ε ≤ 1 and x ∈ Rn satisfying |x|2k ≤Mλ,

φε(x) ≤ 2(σ(1+
k
m
)−1)+c4

(
1 + (Mλ)

σ
2k

+ σ
2m

)
.

In addition, still denoting by λ0 > 0 the smallest eigenvalue of the operator Hk,m, the
following estimate holds

1

c3

(
1 +

c1
λ

)
≤

1

c3

(
1 +

c1
λ0

)
.

We therefore deduce that there exist some positive constants c5, c6 > 0 such that for all
j ≥ 0, 0 < ε ≤ 1 and 0 ≤ t ≤ t1,

( 1

c3

(
1 +

c1
λ

)
+ 1

) ∫

|x|2k≤Mλ
e2tφε(x)|ψj(x)|

2 dx ≤ c5e
c6tλ

σ( 1
2k

+ 1
2m )

‖ψj‖
2
L2(Rn),
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and then, using anew that λ ≥ λ0 > 0, we get

∥∥etφεψj

∥∥2
L2(Rn)

≤
1

c3λ0

∥∥Hk,mψj − λψj

∥∥
L2(Rn)

∥∥e2tφεψj

∥∥
L2(Rn)

+ c5e
c6tλ

σ( 1
2k

+ 1
2m )

‖ψj‖
2
L2(Rn).

By passing to the limit j → +∞ in this estimate while using (4.4), and recalling that
Hk,mψ = λψ, we obtain the following inequality for all 0 < ε ≤ 1 and 0 ≤ t ≤ t1,

∥∥etφεψ
∥∥2
L2(Rn)

≤ c5e
c6tλ

σ( 1
2k

+ 1
2m )

‖ψ‖2L2(Rn).

The estimate (4.1) is then a consequence of Fatou’s lemma, since we get that for all
0 ≤ t ≤ t1,

∥∥etφψ
∥∥2
L2(Rn)

=
∥∥ lim inf

ε→0
etφεψ

∥∥2
L2(Rn)

≤ lim inf
ε→0

∥∥etφεψ
∥∥2
L2(Rn)

≤ c5e
c6tλ

σ( 1
2k

+ 1
2m )

‖ψ‖2L2(Rn).

Notice that both constants c5 > 0 and c6 > 0 do not depend on the eigenfunction ψ ∈
L2(Rn) nor on the associated eigenvalue λ > 0. This ends the proof of the estimate (4.1).

5. Smoothing properties of the associated semigroups

Let k,m ≥ 1 be some positive integers, s > 0 be a positive real number and Hs
k,m be

the associated fractional anisotropic Shubin operator defined in (2.1) and equipped with
the domain (2.2). The aim of this section is to study the smoothing properties enjoyed by
the evolution operators generated by the operator Hs

k,m on L2(Rn).

5.1. The general case. This subsection is devoted to derive Corollary 2.2 from Theorem
2.1. Let (ψj)j be a Hilbert basis of L2(Rn) composed of eigenfunctions of the operator Hk,m

and λj > 0 the eigenvalue associated with the eigenfunction ψj for all j ≥ 0. Moreover, let
c1, c2 > 0 and T > 0 be the positive constants given by Theorem 2.1. We first prove that
there exists a positive constant c > 0 such that for all 0 < t < T and g ∈ L2(Rn),

(5.1)
∥∥ec1t〈x〉

1
νs,k,m

(e−(1+c2)tHs
k,mg)

∥∥
L2(Rn)

≤
c

t
n(k+m)
2skm

‖g‖L2(Rn),

the regularity exponent νs,k,m > 0 being given by

νs,k,m = max

(
1

2sk
,

m

k +m

)
.

In the following, the operator Hs
k,m and the constant νs,k,m will simply be denoted Hs

and νs respectively in order to alleviate the writing. The strategy to obtain this estimate
is to prove that there exists a positive constant c > 0 such that for all 0 < t < T and
g ∈ L2(Rn),

(5.2)

+∞∑

j=0

∥∥〈e−(1+c2)tHs

g, ψj〉L2(Rn)e
c1t〈x〉

1
νs ψj

∥∥
L2(Rn)

≤
c

t
n(k+m)
2skm

‖g‖L2(Rn).

Since the normed vector space L2(Rn) is a Banach space, the above inequality implies that
for all 0 < t < T and g ∈ L2(Rn),

+∞∑

j=0

〈e−(1+c2)tHs

g, ψj〉L2(Rn)e
c1t〈x〉

1
νs ψj = ec1t〈x〉

1
νs (e−(1+c2)tHs

g) ∈ L2(Rn),

and also that the estimate (5.1) holds. We therefore focus on obtaining (5.2). To that end,
we begin by noticing that the exponent 1/νs can be written in the following way

(5.3)
1

νs
= σs

(
1 +

k

m

)
with σs = min

(
2skm

k +m
, 1

)
∈ [0, 1].
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By using that

σs

(
1

2k
+

1

2m

)
= min

(
s,

1

2k
+

1

2m

)
≤ s,

and the fact that lim+∞ λj = +∞, we deduce that

∃j0 ≥ 1,∀j ≥ j0, λsj ≥ λ
σs(

1
2k

+ 1
2m

)

j .

Cauchy-Schwarz’ inequality and Theorem 2.1 then imply that for all 0 < t < T and
g ∈ L2(Rn),

+∞∑

j=0

∥∥〈e−(1+c2)tHs

g, ψj〉L2(Rn)e
c1t〈x〉

1
νs ψj

∥∥
L2(Rn)

≤

( +∞∑

j=0

e−(1+c2)tλs
j

∥∥ec1t〈x〉
1
νs ψj

∥∥
L2(Rn)

)
‖g‖L2(Rn)

≤ c2

( +∞∑

j=0

e−(1+c2)tλs
jec2tλ

σs(
1
2k

+ 1
2m )

j

)
‖g‖L2(Rn) ≤ c0c2

( +∞∑

j=0

e−tλs
j

)
‖g‖L2(Rn),

where we set

c0 = max
0≤j≤j0−1

sup
0≤t≤T

e−c2t(λs
j−λ

σs(
1
2k

+ 1
2m )

j ) > 0.

Moreover, the result [11] (Chapter 2, Corollary 3.1) implies that the asymptotic behavior
of the eigenvalues λj is the following

λj ∼
j→+∞

ck,mj
2km

n(k+m) ,

where ck,m > 0 is a positive constant only depending on the positive integers k,m ≥ 1.
Thus, there exists a positive constant c0

′ > 0 such that for all 0 < t < T ,

+∞∑

j=0

e−tλs
j ≤

+∞∑

j=0

e−c0′tj
2skm

n(k+m)
≤

∫ +∞

−1
e−c0′tx

2skm
n(k+m)

dx.

We deduce that there exists another positive constant c > 0 such that for all 0 < t < T
and g ∈ L2(Rn),

+∞∑

j=0

∥∥〈e−(1+c2)tHs

g, ψj〉L2(Rn)e
c1t〈x〉

1
νs ψj

∥∥
L2(Rn)

≤
c

t
n(k+m)
2skm

‖g‖L2(Rn).

This ends the proof of the estimate (5.2) and, therefore, the one of (5.1). Proceeding in
the very same way, we get that for all 0 < t < T and g ∈ L2(Rn),

∥∥ec1t〈Dx〉
1

µs,k,m
(e−(1+c2)tHs

k,mg)
∥∥
L2(Rn)

≤
c

t
n(k+m)
2skm

‖g‖L2(Rn),

the regularity exponent µs,k,m > 0 being this time given by

µs,k,m = max

(
1

2sm
,

k

k +m

)
.

Indeed, the proof goes the same way as before, since we have

1

µs,k,m
= min

(
2sm, 1 +

m

k

)
= σs

(
1 +

m

k

)
,

where σs ∈ [0, 1] is the same as in (5.3). The proof of Corollary 2.2 is now ended.
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5.2. The non-fractional case. To end this section, we improve the Gelfand-Shilov esti-
mates given by Corollary 2.2 in the non-fractional case, that is, when s = 1, by proving
Theorem 2.3. In the following, we will use steps or results already present in the proof of
Theorem 2.1 in Section 4. First, as we have already noticed, it is sufficient to obtain the
existence of some positive constants c1 > 0, c2 > 0 and T > 0 such that for all 0 ≤ t ≤ T
and g ∈ L2(Rn),

(5.4)
∥∥ec1t〈x〉1+

k
m (e−tHk,mg)

∥∥
L2(Rn)

≤ c2‖g‖L2(Rn).

To that end, we consider c > 0 a positive constant whose value will be chosen later and
the smooth function φ ∈ C∞(Rn,R) defined for all x ∈ Rn by

φ(x) = c〈x〉1+
k
m .

In order to work with a smooth compactly support approximation of the function φ, we
consider the family of function (χε)ε>0 defined in (4.3) anew and we set φε = χε ◦ φ. In
contrast to Subsection 5.1, where we used a Hilbert basis composed of eigenfunctions of the
operator Hk,m, the strategy adopted here consists in directly manipulating the semigroup

(e−tHk,m)t≥0 through the following time-dependent functionals

(5.5) Fε(t) =
〈
e−tHk,mg, e2tφεe−tHk,mg

〉
L2(Rn)

, ε > 0, t ≥ 0, g ∈ L2(Rn).

However, in oder to justify that the functionals Fε are well-defined on [0,+∞), we need to
call on Corollary 2.2 proven in Subsection 5.1, which states in particular that

∀t > 0,∀g ∈ L2(Rn), e−tHk,mg ∈ S(Rn).

Moreover, these functionals are differentiable on (0,+∞) and their derivatives are given
for all ε > 0, t > 0 and g ∈ L2(Rn) by

F ′
ε(t) = −2

〈
Hk,me

−tHk,mg, e2tφεe−tHk,mg
〉
L2(Rn)

+ 2
〈
e−tHk,mg, φεe

2tφεe−tHk,mg
〉
L2(Rn)

.

By using the definition of the operator Hk,m, we can expand the above equality for all
ε > 0, t > 0 and g ∈ L2(Rn),

F ′
ε(t) = −2

〈
|x|2ke−tHk,mg, e2tφεe−tHk,mg

〉
L2(Rn)

−2
〈
(−∆)me−tHk,mg, e2tφεe−tHk,mg

〉
L2(Rn)

+ 2
〈
e−tHk,mg, φεe

2tφεe−tHk,mg
〉
L2(Rn)

.

We recall from Proposition 4.1 (in the particular case where σ = 1) that there exists a
positive constant c0 > 0 depending on the function φ such that for all 0 < ε ≤ 1, 0 ≤ t ≤ 1
and v ∈ S(Rn),

〈
etφε(−∆)m(e−tφεv), v

〉
L2(Rn)

+ c0

(
‖v‖2L2(Rn) + t

∥∥〈x〉kv
∥∥2
L2(Rn)

)
≥ 0.

By applying this estimate to the Schwartz functions v = e2tφεe−tHg, we deduce that for
all 0 < ε ≤ 1, 0 < t ≤ 1 and g ∈ L2(Rn),

F ′
ε(t) ≤ −2

〈
|x|2ke−tHk,mg, e2tφεe−tHk,mg

〉
L2(Rn)

+ 2c0t
∥∥〈x〉ketφεe−tHk,mg

∥∥2
L2(Rn)

+ 2c0
∥∥etφεe−tHk,mg

∥∥2
L2(Rn)

+ 2
〈
e−tHk,mg, φεe

2tφεe−tHk,mg
〉
L2(Rn)

.

This estimate also takes the following integral form

F ′
ε(t) ≤ 2

∫

Rn

(
c0 + φε(x) + c0t〈x〉

2k − |x|2k
)
e2tφε(x)

∣∣(e−tHk,mg)(x)
∣∣2 dx.

We deduce from the definition (4.3) of the functions χε that there exists a positive constant
c1 > 0 such that for all ε > 0 and x ∈ Rn,

χε(x) =
1

ε
χ(εx) ≤ c1x.
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In particular, we get that for all ε > 0 and x ∈ Rn,

(5.6) φε(x) = χε(φ(x)) ≤ c1φ(x).

This implies that for all 0 < ε ≤ 1, 0 < t ≤ 1 and g ∈ L2(Rn),

(5.7) F ′
ε(t) ≤ 2

∫

Rn

(
c0 + c1φ(x) + c0t〈x〉

2k − |x|2k
)
e2tφε(x)

∣∣(e−tHk,mg)(x)
∣∣2 dx.

We will now distinguish two regions in Rn, namely in a neighborhood and far from the
origin, in order to control the term

c0 + c1φ(x) + c0t〈x〉
2k − |x|2k.

Let r0 > 0 be a radius whose value will be chosen later. On the one hand, since the above
term is continuous with respect to both variables t and x, we get that there exists a positive
constant Mr0 > 0, depending on r0, such that for all 0 ≤ t ≤ 1 and x ∈ Rn satisfying
|x| ≤ r0,

(5.8) c0 + c1φ(x) + c0t〈x〉
2k − |x|2k ≤Mr0 .

On the other hand, by choosing c < 1/c1, the value of the constant r0 ≫ 1 can be adjusted
large enough so that there exists a positive constant t0 > 0 such that for all 0 ≤ t ≤ t0 and
x ∈ Rn satisfying |x| ≥ r0,

(5.9) c0 + c1φ(x) + c0t〈x〉
2k − |x|2k ≤ 0.

Indeed, notice that with this choice, c1c − 1 < 0, and that the inequality 1 + k/m ≤ 2k
implies that for all 0 ≤ t ≤ 1,

c0 + c1φ(x) + c0t〈x〉
2k − |x|2k ≤ c0 + c1c〈x〉

2k + c0t〈x〉
2k − |x|2k

∼
|x|→+∞

(c0t+ c1c− 1)|x|2k .

The value of the radius r0 ≫ 1 is now fixed. We deduce from (5.7), (5.8) and (5.9) that
for all ε > 0, 0 < t ≤ t0 and g ∈ L2(Rn),

F ′
ε(t) ≤ 2Mr0

∫

|x|≤r0

e2tφε(x)
∣∣(e−tHk,mg)(x)

∣∣2 dx.

Moreover, by using (5.6) anew and the continuity of the function φ, we can find a positive
constant M > 0 such that for all 0 < ε ≤ 1, 0 < t ≤ t0 and g ∈ L2(Rn),

(5.10) F ′
ε(t) ≤M

∫

|x|≤r0

∣∣(e−tHk,mg)(x)
∣∣2 dx ≤M‖g‖2L2(Rn).

By using the definition (5.5) of the functionals Fε and integrating the above estimate, we
deduce that for all 0 < ε < ε0, 0 ≤ t ≤ t0 and g ∈ L2(Rn),

Fε(t) =
∥∥etφεe−tHk,mg

∥∥2
L2(Rn)

≤ (1 +Mt)‖g‖2L2(Rn) ≤ (1 +Mt0)‖g‖
2
L2(Rn).

Using Fatou’s lemma as in the end of Section 4 therefore ends the proof of the estimate
(5.4) and the one of Theorem 2.3.

6. A Gårding type inequality

Let φ be the smooth function defined in (4.2) and (φε)ε>0 be the family of C∞
0 (Rn)

functions given by (4.3). This section is devoted to the proof of Proposition 4.1, which
states that there exists a positive constant c0 > 0 depending on the function φ such that
for all 0 < ε ≤ 1, 0 ≤ t ≤ 1 and v ∈ S(Rn),

(6.1)
〈
etφε(−∆)m(e−tφεv), v

〉
L2(Rn)

+ c0

(
‖v‖2L2(Rn) + t

∥∥〈x〉σkv
∥∥2
L2(Rn)

)
≥ 0.

We recall that for all ε > 0 and x ∈ Rn.

φ(x) = 〈x〉σ(1+
k
m
), φε(x) = (χε ◦ φ)(x) with χε(x) =

1

ε
χ(εx),
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where 0 ≤ σ ≤ 1 is a non-negative real number, k,m ≥ 1 are positive integers and
χ ∈ C∞

0 (R,R) is a cut-off odd function satisfying that χ(x) = x for all 0 ≤ x ≤ 1, χ(x) = 0
when x ≥ 2 and χ(x) ≥ 0 for all x ≥ 0. A natural approach to prove the estimate (6.1)
would be to compute explicitly the scalar product 〈etφε(−∆)m(e−tφεv), v〉L2(Rn) by using
Leibniz’ and Faá di Bruno’s formulas, and to manage all the terms appearing. However,
due to the form of the general Faá di Bruno’s formula, these terms would not have a
manageable form, and their study would be difficult to tackle, especially since we have to
take into account the parameters 0 ≤ t ≤ 1 and 0 < ε ≤ 1. This is the reason why we
will use technics from symbolic calculus, which is particularly a well-adapted framework
to prove Gårding type inequalities like (6.1).

The first step consists in providing a more manageable form for the operators
etφε(−∆)me−tφε involved in the above estimate. To that end, we need to introduce the
following commutator notation for all compactly supported smooth function χ ∈ C∞

0 (Rn)
and all differential operator P ,

[χ,P ] = χP − Pχ.

We also define ad0χ(−∆)m = (−∆)m and for all j ≥ 0,

adj+1
χ (−∆)m = [χ, adjχ(−∆)m].

Lemma 6.1. For all compactly supported smooth function χ ∈ C∞
0 (Rn), the following

formula between differential operators holds,

(6.2) ∀t ∈ R, etχ(−∆)me−tχ =

2m∑

j=0

tj

j!
adjχ(−∆)m.

Proof. Let χ ∈ C∞
0 (Rn) be a fixed compactly supported smooth function. First notice

from a straightforward induction that

(6.3) ∀j ≥ 0,∀t ∈ R, ∂jt (e
tχ(−∆)me−tχ) = etχ adjχ(−∆)me−tχ.

Moreover, the differential operator adjχ(−∆)m is of order max(2m − j, 0), which implies
that the derivatives (6.3) are equal to zero provided j ≥ 2m+1. We therefore deduce from
Taylor’s formula applied to the analytic functions t ∈ R 7→ etχ(−∆)m(e−tχv)(x), with
v ∈ S(Rn) and x ∈ Rn, that the equality (6.2) actually holds. �

We deduce from Lemma 6.1 that for all ε > 0, t ≥ 0 and v ∈ S(Rn),

(6.4)
〈
etφε(−∆)m(e−tφεv), v

〉
L2(Rn)

= ‖v‖2
Ḣm(Rn)

+

2m∑

j=1

tj

j!

〈
adjφε

(−∆)mv, v
〉
L2(Rn)

.

The objective is now to control each term appearing in the above sum. Precisely, we will
prove that there exists a positive constant c > 0 such that for all η > 0 there exists another
positive constant Cη > 0 such that for all 1 ≤ j ≤ 2m, 0 < ε ≤ 1 and v ∈ S(Rn),

(6.5)
∣∣〈 adjφε

(−∆)mv, v
〉
L2(Rn)

∣∣ ≤ c
(
1

η

∥∥〈x〉σkv
∥∥2
L2(Rn)

+ η‖v‖2
Ḣm(Rn)

+ Cη‖v‖
2
L2(Rn)

)
.

Adjusting the value of 0 < η ≪ 1, we derive the estimate (6.1) from (6.4) and (6.5).
As announced in the beginning of this section, the strategy to obtain (6.5) is to use

results from the theory of symbolic calculus, of which we now recall some basic notions
and notations. Given Φ,Ψ ∈ C0(R2n) some sub-linear and temperate weights, and M ∈
C0(R2n) another temperate weight, we define the symbol class S(M ; Φ,Ψ) as the set of all
smooth functions a ∈ C∞(R2n) satisfying that for all (α, β) ∈ N2n, there exists a positive
constant cα,β > 0 such that for all (x, ξ) ∈ R2n,

(6.6) |(∂αx ∂
β
ξ a)(x, ξ)| ≤ cα,βM(x, ξ)Ψ(x, ξ)−|α|Φ(x, ξ)−|β|.

We refer to [36] (page 19) where the notions of sub-linear and temperate weights are defined.
We also recall from the very same reference that examples of temperate weights are given
by 〈x〉m or 〈ξ〉m, seen as functions of R2n, with m ∈ R. Associated to any a ∈ S(M ; Φ,Ψ)
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is the pseudodifferential operator aw defined by the Weyl quantization of the symbol a,
that is, formally,

(awu)(x) =
1

(2π)n

∫∫

R2n

ei(x−y)·ξa

(
x+ y

2
, ξ

)
u(y) dydξ.

We refer to [36] (Formula 1.2.3) for a rigorous definition of the operator aw. Accord-
ing to [36] (Theorem 1.2.17), for all symbols a ∈ S(M1; Φ,Ψ) and b ∈ S(M2; Φ,Ψ), the
composition awbw = (a ♯ b)w is also a pseudodifferential operator, the associated symbol
a ♯ b ∈ S(M1M2; Φ,Ψ) being given for all (x, ξ) ∈ R2n by

(6.7) (a ♯ b)(x, ξ) = e
i
2
(Dy ·Dη−Dx·Dξ)a(x, η)b(y, ξ)

∣∣∣
(y,η)=(x,ξ)

.

Moreover, we have the following asymptotic expansion

(6.8) (a ♯ b)(x, ξ) ∼
∑

α,β

(−1)|β|

2|α+β|α!β!
(∂αξ D

β
xa)(x, ξ)(∂

β
ξ D

α
x b)(x, ξ),

which is an equality when a or b is a polynomial as mentioned in [22] (Theorem 18.5.4).
This is also an exact formula when the symbol a only depends on the space variable x ∈ Rn

and the symbol b is a polynomial with respect to the frequency variable ξ ∈ Rn, see e.g.
[28] (Formula (2.1.28)) for an expression of the remainder. This asymptotic expansion
will be widely used in the following (in fact, this will be an exact formula in the futur
applications in this section).

For all 0 ≤ j ≤ 2m and ε > 0, we consider σj,ε the Weyl symbol of the differential

operator adjφε
(−∆)m. We now need to determine in which class the symbols σj,ε belong.

This is done thanks to the following two lemmas.

Lemma 6.2. The following relation recurrence holds for all ε > 0 and 0 ≤ j ≤ 2m− 1,

(6.9) σj+1,ε = −
∑

l

1

2l−1

∑

|α|=l

1

α!
(Dα

xφε)(∂
α
ξ σj,ε),

the sum being taken over all the odd integers l satisfying 1 ≤ l ≤ 2m− j.

Proof. Let ε > 0 fixed all along this proof. We establish the relation (6.9) by induction,
also checking that each symbol σj,ε is a polynomial of degree 2m− j with respect to the ξ
variable. Let us begin with the case j = 0. Since |ξ|2m is a polynomial, the composition
formula (6.8) shows that the Weyl symbol of the operator φε(−∆)m is exactly given by

φε ♯ |ξ|
2m =

2m∑

l=0

1

2l

∑

|α|+|β|=l

(−1)|β|

α!β!
(∂αξ D

β
xφε)(∂

β
ξD

α
x |ξ|

2m)

=

2m∑

l=0

1

2l

∑

|β|=l

(−1)l

β!
(Dβ

xφε)(∂
β
ξ |ξ|

2m).

Similarly, the Weyl symbol of the operator (−∆)mφε is given by

|ξ|2m ♯ φε =
2m∑

l=0

1

2l

∑

|α|=l

1

α!
(∂αξ |ξ|

2m)(Dα
xφε).

We therefore deduce the following expression for the symbol σ1,ε,

σ1,ε = φε ♯ |ξ|
2m − |ξ|2m ♯ φε =

2m∑

l=0

1

2l

∑

|α|=l

(−1)l − 1

α!
(Dα

xφε)(∂
α
ξ |ξ|

2m)

= −
∑

l

1

2l−1

∑

|α|=l

1

α!
(Dα

xφε)(∂
α
ξ |ξ|

2m),
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the last sum being taken over all the odd integers l satisfying 1 ≤ l ≤ 2m. The above
formula shows that the symbol σ1,ε is a polynomial of degree 2m − 1 with respect to the

ξ variable. Since ad0φε
(−∆)m is the operator (−∆)m by definition, the basic case of the

induction is ended. We now consider j ≥ 1 and assume that formula (6.9) holds for j − 1.
Since the function φε only depends on the space variable x ∈ Rn and that the symbol σj,ε
is a polynomial of degree 2m−j with respect to the frequency variable ξ ∈ Rn according to
the induction hypothesis, we deduce the composition formula (6.8) anew that the symbol

of the operator φε ad
j
φε
(−∆)m is given by

φε ♯ σj,ε =

2m−j∑

l=0

1

2l

∑

|β|=l

(−1)l

β!
(Dβ

xφε)(∂
β
ξ σj,ε).

Similarly as in the basic case, we then obtain the following formula for the symbol σj+1,ε

σj+1,ε = −
∑

l

1

2l−1

∑

|α|=l

1

α!
(Dα

xφε)(∂
α
ξ σj,ε),

the sum being taken over all the odd integers l satisfying 1 ≤ l ≤ 2m − j, which is
the relation we aimed at obtaining. Notice that it implies that the symbol σj+1,ε is a
polynomial of degree 2m− j − 1 with respect to the frequency variable ξ ∈ Rn. This ends
the proof of Lemma 6.2. �

Lemma 6.3. For all (α, β) ∈ N2n, there exists a positive constant cα,β > 0 such that for

all 1 ≤ j ≤ 2m, 0 < ε ≤ 1 and (x, ξ) ∈ R2n,

(6.10)
∣∣(Dα

x∂
β
ξ σj,ε)(x, ξ)

∣∣ ≤ cα,β〈x〉
σkj
m 〈ξ〉2m−j−|β|.

Proof. We proceed by induction, beginning with the case j = 1. We deduce from Lemma
6.2 that for all ε > 0, the derivatives of the symbol σ1,ε are given by

(6.11) Dα
x∂

β
ξ σ1,ε = −

∑

l

1

2l−1

∑

|γ|=l

1

α!
(Dα+γ

x φε)(∂
β+γ
ξ |ξ|2m), (α, β) ∈ N2n,

the sum being taken over all the odd integers l satisfying 1 ≤ l ≤ 2m. On the one hand,
we need to bound the derivatives of the functions φε. By definition of the function χ and
the functions χε in (4.3), we get that for all 0 < ε ≤ 1, we have ‖χε‖L∞(Rn) ≤ 1 and

(6.12) ∀p ≥ 1,
∥∥χ(p)

ε

∥∥
L∞(Rn)

≤ εp−1
∥∥χ(p)

∥∥
L∞(Rn)

≤
∥∥χ(p)

∥∥
L∞(Rn)

.

Notice in particular that the derivatives of the function χε are uniformly bounded with
respect to the parameter 0 < ε ≤ 1. Moreover, the function φ is defined in (4.2) as a
Japanese bracket, which implies that for all ρ ∈ Nn, there exists a positive constant cρ > 0
such that for all x ∈ Rn,

(6.13)
∣∣(Dρ

xφ)(x)
∣∣ ≤ cρ〈x〉σ(1+

k
m
)−|ρ|.

Since φε = χε ◦ φ and 0 ≤ σ ≤ 1, we deduce from (6.12), (6.13) and the chain rule that
for all α, γ ∈ Nn with |γ| ≥ 1, there exists a positive constant cα,γ > 0 such that for all
0 < ε ≤ 1 and x ∈ Rn,

(6.14)
∣∣(Dα+γ

x φε)(x)
∣∣ ≤ cα,γ〈x〉σ(1+

k
m
)−1 ≤ cα,γ〈x〉

σk
m .

On the other hand, we get that for all β, γ ∈ Nn with |γ| ≥ 1, there exists a positive
constant cβ,γ > 0 such that for all ξ ∈ Rn,

∣∣∂β+γ
ξ |ξ|2m

∣∣ ≤ cβ,γ〈ξ〉2m−|β|−|γ| ≤ cβ,γ〈ξ〉
2m−1−|β|.

In view of (6.11) (notice that the first sum starts at l = 1) and the two above estimates,
the induction is ended in the basic case. We now consider 2 ≤ j ≤ 2m assume that formula
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(6.10) holds for j − 1. We deduce from Lemma 6.2 anew that for all ε > 0, the derivatives
of the symbol σj+1,ε are given by

(6.15) Dα
x∂

β
ξ σj+1,ε = −

∑

l

1

2l−1

∑

|γ|=l

1

α!
Dα

x ((D
γ
xφε)(∂

β+γ
ξ σj,ε)), (α, β) ∈ N2n,

the sum being taken over all the odd integers l satisfying 1 ≤ l ≤ 2m − j. Moreover,
Leibniz’ formula implies that

(6.16) Dα
x ((D

γ
xφε)(∂

β+γ
ξ σj,ε)) =

∑

δ≤α

(
α

δ

)
(Dδ+γ

x φε)(D
α−δ
x ∂β+γ

ξ σj,ε).

We deduce from (6.14) and the induction hypothesis that for all (α, β, γ, δ) ∈ N4n, with
|γ| ≥ 1 and δ ≤ γ, there exists a positive constant cα,β,γ,δ > 0 such that for all 0 < ε ≤ 1
and (x, ξ) ∈ R2n,

∣∣(Dδ+γ
x φε)(x, ξ)(D

α−δ
x ∂β+γ

ξ σj,ε)(x, ξ)
∣∣ ≤ cα,β,γ,δ〈x〉

σk
m 〈x〉

σkj
m 〈ξ〉2m−j−|β|−|γ|

≤ cα,β,γ,δ〈x〉
σk(j+1)

m 〈ξ〉2m−(j+1)−|β|,

since |γ| ≥ 1. In view of this estimate, formula (6.15) (notice that the first sum starts at
l = 1 anew) and (6.16), the induction is now ended. �

By using the notations for symbol classes introduced above, Lemma 6.3 shows that for
all 1 ≤ j ≤ 2m and 0 < ε ≤ 1, the symbol σj,ε belongs to the following class

(6.17) σj,ε ∈ S(〈x〉
σkj
m 〈ξ〉2m−j ; 〈ξ〉, 1),

with uniform estimates of the associated seminorms (6.6) with respect to the parameter
0 < ε ≤ 1. This property is the key stone of the proof of the next lemma, which provides
a first bound of the quantities we aim at controlling.

Lemma 6.4. There exists a positive constant c > 0 such that for all 1 ≤ j ≤ 2m, 0 < ε ≤ 1
and v ∈ S(Rn),

∣∣〈 adjφε
(−∆)mv, v

〉
L2(Rn)

∣∣ ≤ c
∥∥〈x〉

σkj
2m 〈Dx〉

m− j
2 v

∥∥2
L2(Rn)

.

Proof. Let 1 ≤ j ≤ 2m fixed all along the proof. We deduce from the property (6.17) and
the composition formula (6.8) that

〈x〉−
σkj
2m ♯ 〈ξ〉−m+ j

2 ♯ σj,ε ♯ 〈ξ〉
−m+ j

2 ♯ 〈x〉−
σkj
2m ∈ S(1; 〈ξ〉, 1) ⊂ C∞

b (R2n),

with uniform estimates of the associated seminorms (6.6) with respect to the parameter
0 < ε ≤ 1. It therefore follows from a quantitative version of the Calderón-Vaillancourt’s
theorem, see e.g. [12] (Theorem 1.2), that the following operator is bounded on L2(Rn),

〈x〉−
σkj
2m 〈Dx〉

−m+ j
2σwj,ε〈Dx〉

−m+ j
2 〈x〉−

σkj
2m : L2(Rn)→ L2(Rn),

and its norm operator can bounded uniformly with respect to 0 < ε ≤ 1. As a consequence,
there exists a positive constant c > 0 such that for all 0 < ε ≤ 1 and v ∈ S(Rn),

∣∣〈σwj,ε〈Dx〉
−m+ j

2 〈x〉−
σkj
2m v, 〈Dx〉

−m+ j
2 〈x〉−

σkj
2m v

〉
L2(Rn)

∣∣ ≤ c‖v‖2L2(Rn).

A straightforward change of variable therefore ends the proof of Lemma 6.4, since σj,ε is

the Weyl symbol of the operator adjφε
(−∆)m by definition. �

Lemma 6.4 implies that now, we only need to prove that there exists a positive constant
c > 0 such that for all η > 0 there exists another positive constant Cη > 0 such that for
all 1 ≤ j ≤ 2m and v ∈ S(Rn),

∥∥〈x〉
σkj
2m 〈Dx〉

m− j
2 v

∥∥2
L2(Rn)

≤ c

(
1

η

∥∥〈x〉σkv
∥∥2
L2(Rn)

+ η‖v‖2
Ḣm(Rn)

+ Cη‖v‖
2
L2(Rn)

)
,
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to derive the estimate (6.5) (we got rid of the parameter 0 < ε ≤ 1). Notice that the
composition formula (6.7) allows to consider the symbol

(6.18) a0 ∈ S(〈x〉
σkj
m 〈ξ〉2m−j ; 〈ξ〉, 〈x〉),

satisfying

aw0 = 〈Dx〉
m− j

2 〈x〉
σkj
m 〈Dx〉

m− j
2 .

The estimate we aim at proving is therefore the following

(6.19)
∣∣〈aw0 v, v

〉
L2(Rn)

∣∣ ≤ c
(
1

η

∥∥〈x〉σkv
∥∥2
L2(Rn)

+ η‖v‖2
Ḣm(Rn)

+Cη‖v‖
2
L2(Rn)

)
.

Moreover, the symbol 〈x〉
σkj
m 〈ξ〉2m−j can be written in the following way

(6.20) 〈x〉
σkj
m 〈ξ〉2m−j = 〈x〉

2σk
pj 〈ξ〉

2m
qj with pj =

2m

j
, qj =

2m

2m− j
.

Notice that pj and qj are Hölder conjugates, that is, 1/pj + 1/qj = 1. This observation
motivates the introduction of the following symbol classes for all positive real numbers
g, h > 0 and p, q ≥ 1 (not necessary Hölder conjugates in general),

Sg,h
p,q = S(〈x〉

g
p 〈ξ〉

h
q ; 〈ξ〉, 〈x〉).

Young’s inequality implies that when 1/p + 1/q = 1, any symbol a ∈ S2g,2h
p,q satisfies

∀η > 0,∀(x, ξ) ∈ R2n, |a(x, ξ)| .
1

η
〈x〉2g + η〈ξ〉2h,

the constant only depending on the real numbers g, h, p, q (and not on η > 0). Applying
a formal Gårding type inequality, we would conjecture that an estimate of the following
form could hold for all η > 0 and v ∈ S(Rn),

(6.21)
∣∣〈awv, v

〉
L2(Rn)

∣∣ . 1

η

∥∥〈x〉gv
∥∥2
L2(Rn)

+ η‖v‖2Hh(Rn) +Cη‖v‖
2
L2(Rn).

This is exactly the type of estimate we aim at proving. In order to make this formal deriva-
tion rigorous, we introduce the notion of anti-Wick quantization, following [36] (Section
1.7), which has the advantage to preserve positivity, in contrast to the Weyl quantization.
Given a tempered symbol a ∈ S′(Rn), we define the anti-Wick operator Aa with symbol
a as the map S(Rn)→ S′(Rn) given by

Aau = (2π)−nV ∗(aV u), u ∈ S(Rn),

where V denotes the short-time Fourier transform, see e.g. [36] (Definition 1.7.1). The idea
to use anti-Wick operators in this context was suggested to the author by J. Bernier who
(with co-authors) used this notion in the note [10] to obtain microlocal estimates. In the
next two lemmas, we explicit the relationship that exists between the anti-Wick operators

with symbols in the class Sg,h
p,q and the Weyl quantization of those symbols. Their proofs

are inspired by the one of [10] (Lemma 1).

Lemma 6.5. Let g, h > 0 and p, q ≥ 1 be positive real numbers. For all symbol a ∈ Sg,h
p,q ,

there exists remainders r1 ∈ S
g−p,h
p,q and r2 ∈ S

g,h−q
p,q such that

Aa = aw + rw1 + rw2 ,

where Aa denotes the anti-Wick operator with symbol a.

Proof. By applying [36] (Proposition 1.7.9), we know that the Weyl symbol of the operator
Aa is the symbol b ∈ C∞(R2n) given by

(6.22) b(x, ξ) =
1

πn

∫∫

R2n

a(x̃, ξ̃)e−|x−x̃|2−|ξ−ξ̃|2 dx̃dξ̃, (x, y) ∈ R2n.
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Applying Taylor’s formula with remainder term to the symbol a in (x, ξ) ∈ R2n leads to

a(x̃, ξ̃) = a(x, ξ) +

∫ 1

0
∇xa(x+ t(x̃− x), ξ + t(ξ̃ − ξ)) · (x̃− x) dt

+

∫ 1

0
∇ξa(x+ t(x̃− x), ξ + t(ξ̃ − ξ)) · (ξ̃ − ξ) dt.

Plugging this expansion in the definition (6.22) of the symbol b and making the change of

variables (x̃, ξ̃)← (x̃− x, ξ̃ − ξ) motivates to introduce the two following remainders

r1(x, ξ) =
1

πn

∫∫

R2n

∫ 1

0
∇xa(x+ tx̃, ξ + tξ̃) · x̃ e−|x̃|2−|ξ̃|2 dtdx̃dξ̃,

and

r2(x, ξ) =
1

πn

∫∫

R2n

∫ 1

0
∇ξa(x+ tx̃, ξ + tξ̃) · ξ̃ e−|x̃|2−|ξ̃|2 dtdx̃dξ̃.

Indeed, with these definitions of r1 and r2, we have

Aa = bw = aw + rw1 + rw2 .

Let us check that r1 ∈ S
g−p,h
p,q . By symmetry, we will also have that r2 ∈ S

g,h−q
p,q . We just

need to prove that for all (α, β) ∈ N2n, there exists a positive constant cα,β > 0 such that
for all (x, ξ) ∈ R2n,

(6.23)
∣∣(∂αx ∂βξ r1)(x, ξ)

∣∣ ≤ cα,β〈x〉
g−p
p

−|α|〈ξ〉
h
q
−|β|.

By definition of the symbol class Sg,h
p,q , we get that for all (δ, γ) ∈ N2n, there exists a positive

constant cδ,γ > 0 such that for all (x, ξ) ∈ R2n,

∣∣(∂δx∂γξ a)(x, ξ)
∣∣ ≤ cδ,γ〈x〉

g
p
−|δ|〈ξ〉

h
q
−|γ|.

We therefore deduce that for all (α, β) ∈ N2n, (x, ξ), (x̃, ξ̃) ∈ R2n and 0 ≤ t ≤ 1,
∣∣(∂αx ∂βξ∇xa)(x+ tx̃, ξ + tξ̃)

∣∣ ≤ cα,β〈x+ tx̃〉
g
p
−|α|−1〈ξ + tξ̃〉

h
q
−|β|.

Recalling Peetre’s inequality, see e.g. [36] (formula (0.1.2)),

(6.24) ∀s ∈ R,∃cs > 0,∀x, y ∈ Rn, 〈x+ y〉s ≤ cs〈x〉
s〈y〉|s|,

we get that for all (α, β) ∈ N2n, (x, ξ), (x̃, ξ̃) ∈ R2n and 0 ≤ t ≤ 1,
∣∣(∂αx ∂βξ∇xa)(x+ tx̃, ξ + tξ̃)

∣∣ ≤ cα,βc|α|,|β|〈x〉
g−p
p

−|α|
〈ξ〉

h
q
−|β|
〈x̃〉

g
p
+|α|+1

〈ξ̃〉
h
q
+|β|

.

Plugging this estimate in the definition of r1 yields to (6.23). This ends the proof of Lemma
6.5. �

In the following lemma, we perform the very same study for the symbol 1
η 〈x〉

g + η〈ξ〉h.

Lemma 6.6. Let g, h > 0 be positive real numbers. We consider the symbols

Hη(x, ξ) =
1

η
〈x〉g + η〈ξ〉h, η > 0, (x, ξ) ∈ R2n.

For all η > 0, there exists some remainders r1,η, r2,η ∈ C
∞(Rn) satisfying

∀α ∈ Nn,∃cα > 0,∀η > 0,∀x ∈ Rn,
∣∣(∂αx r1,η)(x)

∣∣ ≤ cα
η
〈x〉g−1−|α|,(6.25)

∀α ∈ Nn,∃cα > 0,∀η > 0,∀ξ ∈ Rn,
∣∣(∂αξ r2,η)(ξ)

∣∣ ≤ cαη〈ξ〉h−1−|α|,(6.26)

and such that

Aη = Hw
η + rw1,η + rw2,η,

with Aη the anti-Wick operator with symbol Hη.
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Proof. Mimicking exactly the proof of Lemma 6.5, the two remainder we need to consider
are the following ones

(6.27) r1,η(x, ξ) =
1

πn

∫∫

R2n

∫ 1

0
∇xHη(x+ tx̃, ξ + tξ̃) · x̃ e−|x̃|2−|ξ̃|2 dtdx̃dξ̃,

and

r2,η(x, ξ) =
1

πn

∫∫

R2n

∫ 1

0
∇ξHη(x+ tx̃, ξ + tξ̃) · ξ̃ e−|x̃|2−|ξ̃|2 dtdx̃dξ̃.

Let us prove that the estimate (6.25) holds. The inequality (6.26) is then obtained by
symmetry. First, notice that since the symbol ∇xHη does not depend on the variable
ξ ∈ Rn, so does the remainder r1,η and we omit this variable in the following. By definition
of the symbol Hη as the sum of Japanese brackets, we know that for all α ∈ Nn, there
exists a positive constant cα > 0 such that for all η > 0, x, x̃ ∈ Rn and 0 ≤ t ≤ 1,

∣∣(∂αx∇xHη)(x+ tx̃)
∣∣ ≤ cα

η
〈x+ tx̃〉g−1−|α|.

We then deduce from Peetre’s inequality (6.24) that for all α ∈ Nn, η > 0, x, x̃ ∈ Rn and
0 ≤ t ≤ 1,

∣∣(∂αx∇xHλ)(x+ tx̃)
∣∣ ≤

cαcg,|α|

η
〈x〉g−1−|α|〈x̃〉g+1+|α|.

Plugging this estimate in the definition (6.27) of the remainder r1,η leads to the estimate
(6.25). This ends the proof of Lemma 6.6. �

We now have all the ingredients required to tackle the proof of the estimate (6.21).

Proposition 6.7. Let g, h > 0 and p, q ≥ 1 be positive real numbers with 1/p + 1/q = 1.

For all symbol a ∈ S2g,2h
p,q , there exists a positive constant c > 0 such that for all η > 0 and

v ∈ S(Rn),

(6.28)
∣∣〈awv, v

〉
L2(Rn)

∣∣ ≤ c
(
1

η

∥∥〈x〉gv
∥∥2
L2(Rn)

+ η‖v‖2Hh(Rn)

)
.

Proof. The strategy adopted here follows the one adopted in the proof of [10] (Proposition

1). Let a ∈ S2g,2h
p,q . Since 1/p + 1/q = 1, we deduce from Young’s inequality that there

exists a positive constant c0 > 0 such that for all η > 0 and (x, ξ) ∈ R2n,

∣∣a(x, ξ)
∣∣ ≤ c0

(
1

η
〈x〉2g + η〈ξ〉2h

)
.

For all η > 0, we consider the symbol

a±η (x, ξ) = c0

(
1

η
〈x〉2g + η〈ξ〉2h

)
± a(x, ξ), (x, ξ) ∈ R2n.

By applying Lemma 6.5 and Lemma 6.6, we get the existence of remainders r1,η, r2,η ∈
C∞(Rn) satisfying that for all α ∈ Nn, there exists a positive constant cα > 0 such that
for all x, ξ ∈ Rn,

(6.29)
∣∣(∂αx r1,η)(x)

∣∣ ≤ cα
η
〈x〉2g−1−|α|,

∣∣(∂αξ r2,η)(ξ)
∣∣ ≤ cαη〈ξ〉2h−1−|α|,

and also of two more remainders r1 ∈ S
2g−p,2h
p,q and r2 ∈ S

2g,2h−p
p,q , such that

Aa±η
= (a±η )

w + rw1,η + rw2,η ± r
w
1 ± r

w
2 .

Since the symbol a±η is nonnegative and has a polynomial growth, by applying [36] (Propo-
sition 1.7.6), we obtain that the operator Aa±η

is nonnegative, which implies that for all
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v ∈ S(Rn),

〈Aa±v, v〉L2(Rn) = c0

〈(
1

η
〈x〉2g + η〈ξ〉2h

)w

v, v

〉

L2(Rn)

+
〈
rw1,ηv, v

〉
L2(Rn)

+
〈
rw2,ηv, v

〉
L2(Rn)

± 〈awv, v〉L2(Rn) ±
〈
rw1 v, v

〉
L2(Rn)

±
〈
rw2 v, v

〉
L2(Rn)

≥ 0,

that is,

(6.30)
∣∣〈awv, v

〉
L2(Rn)

∣∣ ≤ c0
(
1

η

∥∥〈x〉gv
∥∥2
L2(Rn)

+ η‖v‖2Hh(Rn)

)
+

〈
rw1,ηv, v

〉
L2(Rn)

+
〈
rw2,ηv, v

〉
L2(Rn)

+
∣∣〈rw1 v, v

〉
L2(Rn)

∣∣+
∣∣〈rw2 v, v

〉
L2(Rn)

∣∣.

We now have to control all the remainder terms. First, notice that the symbol ηr1,η does
not depend on the parameter η > 0 by definition (6.27). Moreover, we deduce from the
estimate (6.29) that

ηr1,η ∈ S(〈x〉
2g−1; 1, 〈x〉),

and the associated seminorms are of course independent of the parameter η > 0. By
applying the composition formula (6.7), we get that

〈x〉−g+ 1
2 ♯ ηr1,η ♯ 〈x〉

−g+ 1
2 ∈ S(1; 1, 〈x〉) ⊂ C∞

b (R2n).

Consequently, by applying a quantitative version of the Calderón-Vaillancourt’s theorem,
for which we refer to [12] (Theorem 1.2), there exists a positive constant c1,1 > 0 such that
for all η > 0 and v ∈ S(Rn),

∣∣〈〈x〉−g+ 1
2 ηrw1,η〈x〉

−g+ 1
2 v, v

〉
L2(Rn)

∣∣ ≤ c1,1‖v‖2L2(Rn).

Applying this estimate to the function 〈x〉g−
1
2 v, we obtain that for all η > 0 and v ∈ S(Rn),

(6.31)
∣∣〈rw1,ηv, v

〉
L2(Rn)

∣∣ ≤ c1,1
η

∥∥〈x〉g− 1
2 v

∥∥2
L2(Rn)

≤
c1,1
η
‖〈x〉gv‖2L2(Rn).

Proceeding similarly, we get that there exists another positive constant c2,1 > 0 such that
for all η > 0 and v ∈ S(Rn),

(6.32)
∣∣〈(r2,η)wv, v

〉
L2(Rn)

∣∣ ≤ c2,1η‖v‖2Hh(Rn).

Finally, we have to control the two terms 〈rw1 v, v〉L2(Rn) and 〈rw2 v, v〉L2(Rn). By symmetry,
we only focus on 〈rw1 v, v〉L2(Rn). To that end, we proceed by induction. When 2g > p, we

know by the induction assumption, since r1 ∈ S
2g−p,h
p,q , that there exists a positive constant

c1 > 0 such that for all η > 0 and v ∈ S(Rn),

∣∣〈rw1 v, v
〉
L2(Rn)

∣∣ ≤ c1
(
1

η

∥∥〈x〉g−
p
2 v

∥∥2
L2(Rn)

+ η‖v‖2Hh(Rn)

)

≤ c1

(
1

η

∥∥〈x〉gv
∥∥2
L2(Rn)

+ η‖v‖2Hh(Rn)

)
.

In the other case where 2g ≤ p, we have

r1 ∈ S(〈ξ〉
2h
q ; 〈ξ〉, 1).

Proceeding in the very same way as we did to obtain the estimate (6.31), we get the
existence of a positive constant c′1 > 0 such that for all v ∈ S(Rn),

∣∣〈rw1 v, v
〉
L2(Rn)

∣∣ ≤ c′1
∥∥〈Dx〉

h
q v

∥∥2
L2(Rn)

.
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Using Plancherel’s theorem and Young’s inequality (1/p + 1/q = 1 by assumption) then
provides the existence of a positive constant c′′1 > 0 such that for all η > 0 and v ∈ S(Rn),

∣∣〈rw1 v, v
〉
L2(Rn)

∣∣ ≤ c′′1
(
1

η
‖v‖2L2(Rn) + η‖v‖2Hh(Rn)

)
(6.33)

≤ c′′1

(
1

η
‖〈x〉gv‖2L2(Rn) + η‖v‖Hh(Rn)

)
.

Proceeding similarly, we obtain the existence of another positive constant c2 > 0 such that
for all η > 0 and v ∈ S(Rn),

(6.34)
∣∣〈rw2 v, v

〉
L2(Rn)

∣∣ ≤ c2
(
1

η
‖〈x〉gv‖2L2(Rn) + η‖v‖Hh(Rn)

)
.

Plugging the estimates (6.31), (6.32), (6.33) and (6.34) in (6.30) provides the estimate
(6.28) we aimed at proving. �

To end this section, let us propely derive the estimate (6.19). Let a0 ∈ C
∞(R2n) be the

symbol defined in (6.18). According to (6.18), (6.20) and Proposition 6.7, there exists a
positive constant c > 0 such that for all η > 0 and v ∈ S(Rn),

∣∣〈aw0 v, v
〉
L2(Rn)

∣∣ ≤ c
(
1

η

∥∥〈x〉σkv
∥∥2
L2(Rn)

+ η‖v‖2Hm(Rn)

)
.

This proves that the estimate (6.19) actually holds, since

‖v‖2Hm(Rn) . ‖v‖
2
Ḣm(Rn)

+ ‖v‖2L2(Rn).

It also ends the proof of the Gårding type inequality (6.1).

7. Appendix

7.1. Gelfand-Shilov spaces. To begin this appendix, let us define and recall basics about
Gelfand-Shilov regularity. Given µ, ν > 0 some positive real numbers such that µ+ ν ≥ 1,
we define the Gelfand-Shilov space Sµ

ν (Rn), following [36] (Definition 6.1.1), as the space
of Schwartz functions g ∈ S(Rn) satisfying that there exist some positive constants ε > 0
and C > 0 such that

∀x ∈ Rn, |g(x)| ≤ Ce−ε|x|
1
ν ,

∀ξ ∈ Rn, |ĝ(ξ)| ≤ Ce−ε|ξ|
1
µ
,

where ĝ ∈ S(Rn) denotes the Fourier transform of the function g ∈ S(Rn). We recall from
[36] (Theorem 6.1.6) the basic different equivalent characterizations of the Gelfand-Shilov
spaces:

(i) g ∈ Sµ
ν (Rn).

(ii) There exists a positive constant C > 1 such that

∀x ∈ Rn,∀α ∈ Nn,
∥∥xαg(x)

∥∥
L∞(Rn)

≤ C1+|α| (α!)ν ,

∀ξ ∈ Rn,∀β ∈ Nn,
∥∥ξβ ĝ(ξ)

∥∥
L∞(Rn)

≤ C1+|β| (β!)µ.

(iii) There exists a positive constant C > 1 such that

∀x ∈ Rn,∀α ∈ Nn,
∥∥xαg(x)

∥∥
L2(Rn)

≤ C1+|α| (α!)ν ,

∀x ∈ Rn,∀β ∈ Nn,
∥∥∂βx g(x)

∥∥
L2(Rn)

≤ C1+|β| (β!)µ.

(iv) There exists a positive constant C > 1 such that

∀(α, β) ∈ N2n,
∥∥xα∂βxg(x)

∥∥
L2(Rn)

≤ C1+|α|+|β| (α!)ν (β!)µ.
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(v) There exists a positive constant C > 1 such that

∀(α, β) ∈ N2n,
∥∥xα∂βxg(x)

∥∥
L∞(Rn)

≤ C1+|α|+|β| (α!)ν (β!)µ.

The assumption µ + ν ≥ 1 is justified by the following result, coming from the book [36]
anew, which can be read as a version of the Heisenberg’s uncertainty principle. It shows
that the Gelfand-Shilov class Sµ

ν (Rn) as defined above is trivial when µ+ ν < 1.

Theorem 7.1 (Theorem 6.1.10 in [36]). Any Schwartz function g ∈ S(Rn) satisfying that

there exist some positive constants µ, ν > 0 with µ+ ν < 1, ε > 0 and C > 0 such that

(i)
∀x ∈ Rn, |g(x)| ≤ Ce−ε|x|

1
ν ,

∀ξ ∈ Rn, |ĝ(ξ)| ≤ Ce−ε|ξ|
1
µ
,

is identically equal to zero. Moreover, the same holds when the assumption (i) is replaced

by any of the above conditions (ii), (iii), (iv) or (v).

Gelfand-Shilov regularity can also be defined in terms of exponential decrease in L2(Rn)
as shown in the following result whose proof is given in order to make explicit the various
implied constants.

Lemma 7.2. Let µ, ν > 0 be some positive real numbers satisfying ν+µ ≥ 1. There exists

a positive constant C > 0 such that for all Schwartz function g ∈ S(Rn) satisfying that

there exist some positive constants 0 < Λ1,Λ2 < 1 and Λ3 > 0 such that

(7.1)
∥∥eΛ1|x|

1
ν g

∥∥
L2(Rn)

+
∥∥eΛ2|Dx|

1
µ
g
∥∥
L2(Rn)

≤ Λ3,

then g ∈ Sµ
ν (Rn), with the following estimates for the associated seminorms

∀(α, β) ∈ N2n,
∥∥xα∂βxg

∥∥
L2(Rn)

≤
C |α|+|β|

Λ
ν|α|
1 Λ

µ|β|
2

(α!)ν (β!)µ Λ3.

Proof. We refer to [36] (Subsection 0.3) for the various factorial estimates and estimates
involving binomial coefficients used in the following. Let g ∈ S(Rn) be a Schwartz function
satisfying (7.1) for some 0 < Λ1,Λ2 < 1 and Λ3 > 0. We first deduce from (7.1) and the
estimates

∀p, q > 0,∀x ≥ 0, xpe−xq

≤

(
p

eq

)p
q

,

coming from a straightforward study of function, and

∀α ∈ Nn, |α||α| ≤ e|α||α|! ≤ (ne)|α|α!,

that for all α ∈ Nn,

(7.2)
∥∥xαg

∥∥
L2(Rn)

=
∥∥xαe−Λ1|x|

1
ν eΛ1|x|

1
ν g

∥∥
L2(Rn)

≤

(
ν|α|

eΛ1

)ν|α|

Λ3 ≤

(
νn

Λ1

)ν|α|

(α!)ν Λ3.

The very same arguments and Plancherel’s theorem also imply that for all β ∈ Nn,
(7.3)

∥∥∂βx g
∥∥
L2(Rn)

=
∥∥∂βxe−Λ2|Dx|

1
µ
eΛ2|Dx|

1
µ
g
∥∥
L2(Rn)

≤

(
µ|β|

eΛ2

)µ|β|

Λ3 ≤

(
µn

Λ2

)µ|β|

(β!)µ Λ3.

Let (α, β) ∈ N2n fixed. An integration by parts shows that

∥∥xα∂βxg
∥∥2
L2(Rn)

=
〈
xα∂βx g, x

α∂βx g
〉
L2(Rn)

= (−1)β
〈
∂βx (x

2α∂βxg), g
〉
L2(Rn)

,
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while Leibniz’ formula provides

∂βx (x
2α∂βxg) =

∑

γ≤β

(
β

γ

)
∂γx(x

2α) ∂β−γ
x (∂βx g)

=
∑

γ≤β γ≤2α

(
β

γ

)
(2α)!

(2α− γ)!
x2α−γ ∂2β−γ

x g

=
∑

γ≤β γ≤2α

(
β

γ

)(
2α

γ

)
γ! x2α−γ ∂2β−γ

x g.

We therefore deduce from Cauchy-Schwarz’ inequality that

(7.4)
∥∥xα∂βxg

∥∥2
L2(Rn)

≤
∑

γ≤β γ≤2α

(
β

γ

)(
2α

γ

)
γ!

∥∥x2α−γg
∥∥
L2(Rn)

∥∥∂2β−γ
x g

∥∥
L2(Rn)

,

with the following estimates coming from (7.2) and (7.3),

(7.5) γ!
∥∥x2α−γg

∥∥
L2(Rn)

∥∥∂2β−γ
x g

∥∥
L2(Rn)

≤

(
νn

Λ1

)ν|2α−γ|(µn
Λ2

)µ|2β−γ|

γ! ((2α− γ)!)ν ((2β − γ)!)µ (Λ3)
2.

Since 0 < Λ1,Λ2 < 1, notice that

(7.6)

(
νn

Λ1

)ν|2α−γ|

≤
max(1, νn)2ν|α|

Λ
2ν|α|
1

and

(
µn

Λ2

)µ|2β−γ|

≤
max(1, µn)2µ|β|

Λ
2µ|β|
2

.

Moreover, since ν + µ ≥ 1, we also get while exploiting the following factorial estimates,

∀δ, η ∈ Nn, δ!η! ≤ (δ + η)! ≤ 2|δ+η|δ!η!,

that

γ! ((2α − γ)!)ν ((2β − γ)!)µ ≤ (γ! (2α − γ)!)ν (γ! (2β − γ)!)µ(7.7)

≤ ((2α)!)ν ((2β)!)µ ≤ 4ν|α|+µ|β| (α!)2ν (β!)2µ.

We also have from classical results concerning binomial coefficients that

(7.8)
∑

γ≤β γ≤2α

(
β

γ

)(
2α

γ

)
≤

∑

γ≤β

(
β

γ

) ∑

γ≤2α

(
2α

γ

)
= 22|α|+|β|.

Finally, we deduce from (7.4), (7.5), (7.6), (7.7) and (7.8) that there exists a positive
constant C > 0 only depending on ν > 0 and ν > 0 (and not on the function g) such that
for all (α, β) ∈ N2n,

∥∥xα∂βx g
∥∥
L2(Rn)

≤
C |α|+|β|

Λ
ν|α|
1 Λ

µ|β|
2

(α!)ν (β!)µ Λ3.

This ends the proof of Lemma 7.2. �

In the case where the ratio µ/ν ∈ Q is a rational number, the Gelfand-Shilov space
Sµ
ν (Rn) can also be nicely characterized through the decomposition into the basis of eigen-

functions of a large class of anisotropic Shubin operators, whose basic model is the operator
Hk,m defined in (1.1), with k,m ≥ 1 two positive integers. Let (ψj)j be an orthonormal
basis of L2(Rn) composed of eigenfunctions of the operator Hk,m. Given a positive real
number a ≥ 1, we can characterize the Gelfand-Shilov space Sµ

ν (Rn), with

µ =
ka

k +m
and ν =

ma

k +m
,
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in the following way, according to the result [14] (Theorem 1.4) by M. Cappiello, T. Gram-
chev, S. Pilipović and L. Rodino,

g ∈ S
ka

k+m
ma
k+m

(Rn)⇔ ∃ε > 0,

+∞∑

j=0

∣∣〈g, ψj〉L2(Rn)

∣∣2eελ
k+m
2kma
j < +∞,(7.9)

⇔ ∃ε > 0, sup
j≥0

∣∣〈g, ψj〉L2(Rn)

∣∣2eελ
k+m
2kma
j < +∞,

⇔ ∃c > 0,∃ε > 0,∀j ≥ 0,
∣∣〈g, ψj〉L2(Rn)

∣∣ ≤ ce−εj
1
an ,

where λj > 0 denotes the eigenvalue associated with the eigenfunction ψj ∈ L
2(Rn). Notice

that such a characterization in the case where µ/ν /∈ Q has not been found yet, see [14]
(Section 3).

7.2. Density in the graph. The purpose of this second subsection is to prove that the
Schwartz space S(Rn) is dense in the domain of the maximal realizations on L2(Rn) of
the differential operators equipped with the graph norm. More precisely, by using results
of Weyl calculus introduced in Section 6, we aim at proving the following

Proposition 7.3. Let p : R2n → C be a polynomial and pw be the associated differential

operator equipped with the following domain

D(pw) =
{
u ∈ L2(Rn) : pwu ∈ L2(Rn)

}
.

Then, for all u ∈ D(pw), there exists a sequence (uj)j in S(Rn) such that

lim
j→+∞

uj = u and lim
j→+∞

pwuj = pwu in L2(Rn).

This proof is based on the symbolic calculus and we will need to use the following
approximation result coming from [28] (Lemma 1.1.3). This proposition is originally stated
in the context of standard symbolic calculus, but can easily be adapted in the context of
Weyl calculus. This can be done by using [28] (Proposition 1.1.10) e.g. which makes the
link between the standard and the Weyl quantizations.

Proposition 7.4 (Lemma 1.1.3 in [28]). Let (aj)j be a sequence in S(R2n) being bounded

in the space C∞
b (R2n) and converging in C∞(R2n) to a function a ∈ C∞(R2n). Then, a

belongs to C∞
b (R2n) and for all u ∈ S(Rn),

lim
j→+∞

awj u = awu in S(Rn).

Let us now tackle the proof of Proposition 7.3. Let χ ∈ C∞
0 (R2n) be a smooth function

satisfying that 0 ≤ χ ≤ 1 and χ = 1 on the unit ball B(0, 1). For all j ≥ 1, we consider
the compactly supported function χj defined by χj(x, ξ) = χ(x/j, ξ/j) for all (x, ξ) ∈ R2n.
Since the function χ is compactly supported, we get that

(7.10) ∀j ≥ 1, χw
j : L2(Rn)→ S(Rn).

Let us begin by checking the following property

(7.11) ∀u ∈ L2(Rn), lim
j→+∞

χw
j u = u in L2(Rn).

Let u ∈ L2(Rn). We consider ε > 0. By density, there exists a Schwartz function v ∈ S(Rn)
such that ‖u− v‖L2(Rn) ≤ ε. We can write

(7.12) χw
j u− u = χw

j (u− v) + χw
j v − v + v − u.

By construction, the sequence of Schwartz symbols (χj)j is bounded on C∞
b (R2n) and

converges to 1 in C∞(R2n). Proposition 7.4 therefore implies that

(7.13) lim
j→+∞

χw
j v = v in L2(Rn).



EVOLUTION EQUATIONS ASSOCIATED WITH FRACTIONAL SHUBIN OPERATORS 31

Moreover, the boundedness of the sequence (χj)j in C∞
b (R2n) and a quantitative version

of the Calderón-Vaillancourt’s theorem, see e.g. [12] (Theorem 1.2), provide the existence
of a positive constant c > 0 such that

(7.14) ∀j ≥ 1,
∥∥χw

j

∥∥
L(L2(Rn))

≤ c,

where L(L2(Rn)) denotes the space of bounded operators on L2(Rn). We therefore deduce
from (7.12), (7.13) and (7.14) that

lim sup
j→+∞

∥∥χw
j u− u

∥∥
L2(Rn)

≤ (c+ 1)ε.

Since ε > 0 is arbitrary, this proves that (7.11) actually holds.
Now, let us consider u ∈ D(pw) and set uj = χw

j u for all j ≥ 1. According to (7.10)

and (7.11), (uj)j is a sequence of Schwartz functions that converges to u in L2(Rn). Since
pwu ∈ L2(Rn) by definition of the domain D(pw), we can apply once again (7.11) to get
that

lim
j→+∞

χw
j p

wu = pwu in L2(Rn).

If the operators χw
j and pw were commutative, Proposition 7.3 would be proven. It is not

the case but to conclude, it is sufficient to check that

(7.15) lim
j→+∞

[
pw, χw

j

]
u = 0 in L2(Rn).

Let j ≥ 1 and aj be the Weyl symbol of the commutator [pw, χw
j ]. The strategy to establish

(7.15) is to check that the sequence (aj)j is bounded in C∞
b (R2n) and converges to 0 in

C∞(R2n). Once this is done, Proposition 7.4 implies that

∀v ∈ S(Rn), lim
j→+∞

[
pw, χw

j

]
v = 0 in L2(Rn),

and the very same arguments as the ones used to obtain (7.11) show that this convergence
holds for all v ∈ L2(Rn), and in particular for the function u. To that end, we will derive a
formula for the symbol aj . By using the same strategy as in the beginning of the proof of
Lemma 6.2, that is, by using the fact that the symbol p is a polynomial (of degree d ≥ 1
say) and the composition formula (6.8), we get that the symbol aj is explicitly given by

(7.16) aj = p ♯ χj − χj ♯ p = 2
∑

l

1

(2i)l

∑

|α|+|β|=l

(−1)|β|

α!β!
(∂αξ ∂

β
xp)(∂

β
ξ ∂

α
xχj),

the sum being taken over all the odd integers l satisfying 1 ≤ l ≤ d. Notice that by
definition of the cutoff function χj,

∀(α, β) ∈ N2n,∀(x, ξ) ∈ R2n, (∂αξ ∂
β
xχj)(x, ξ) = j−|α+β|(∂αξ ∂

β
xχ)(x/j, ξ/j).

This combined with Leibniz’ formula shows that the sequence (aj)j is bounded in C∞
b (R2n).

Moreover, the function χ is constant equal to 1 in a neighborhood of 0, which implies that
for all (α, β) ∈ N2n satisfying |α+ β| ≥ 1 and (x, ξ) ∈ R2n,

lim
j→+∞

(∂αξ ∂
β
xχj)(x, ξ) = 0.

By using Leibniz’s formula anew, we also deduce that the sequence (aj)j converges to 0
in C∞(R2n), the integers l involved in (7.16) satisfying 1 ≤ l ≤ d. This ends the proof of
(7.15) as announced, and therefore the one of Proposition 7.3.
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