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Qubit readout is an indispensable element of any quantum information processor. In this work, we
experimentally demonstrate a nonperturbative cross-Kerr couplingbetween a transmon and polariton
mode which enables an improved quantum nondemolition (QND) readout for superconducting qubits.
The new mechanism uses the same experimental techniques as the standard QND qubit readout in the
dispersive approximation, but due to its nonperturbative nature, it maximizes the speed, the single-shot
fidelity, and the QND properties of the readout. In addition, it minimizes the effect of unwanted decay
channels such as the Purcell effect. We observe a single-shot readout fidelity of 97.4% for short 50-ns
pulses and we quantify a QND-ness of 99% for long measurement pulses with repeated single-shot
readouts.

DOI: 10.1103/PhysRevX.10.011045 Subject Areas: Quantum Physics, Quantum Information

I. INTRODUCTION

In noisy intermediate scale quantum devices [1], mea-
surements are usually the last step of the algorithm. Here, a
high-fidelity readout is an interesting asset that reduces the
overhead in error mitigation [2] and in the characterization
of gate fidelities [3]. However, high-fidelity quantum
nondemolition (QND) single-shot measurements become
a requirement once we consider scaling up quantum
technologies [4] to large devices, using quantum error
correction [5,6] and fault-tolerant quantum computation
[7,8]. In this context, lowering the readout and QND errors
is as important as decreasing the single- and two-qubit gate
errors below the scaling thresholds.
A fast and high-fidelity QND measurement demands a

strong coupling to the measurement device combined with
a good preservation of the qubit state. In trapped ion qubits,
this dilemma is solved by encoding information in two
long-lived states, only one of which couples to incoming
radiation [9]. Fluorescence counting gives a projective

measurement with errors below 1%, limited by the collection
time [10]. Cavity-QED [11–13] setups follow a different
strategy. Inserting the qubit inside a cavity allows us to
generate a strong coupling between the qubit and the
cavity electromagnetic (EM) field and also to increase the
collection efficiency. An optical or microwave signal probes
the resonator, implementing an indirect projective QND
readout of the qubit polarization σ̂z [12,14]. In these
cavity-QED experiments it is very important to engineer
the qubit-resonator coupling so as to maximize the mea-
surement’s (i) single-shot readout fidelity, (ii) speed, and
(iii) QND-ness—preservation of the qubit’s excited and
ground state probabilities.
To illustrate this point, we consider the ubiquitous trans-

mon qubit [15], Ĥq ≃ ℏωqq̂†q̂þ ℏðαq=2Þq̂†2q̂2 ≃ 1
2
ℏωqσ̂z, a

slightly anharmonic oscillator with frequency ωq, anharmo-
nicity αq, and ladder operator q̂. Three types of couplings,
summarized in Table I, will be discussed. Qubits and
resonators are usually coupled via the interaction between
the electric field of the qubit dipole q̂þ q̂† and the electric
field of the resonator ĉþ ĉ†. This field-field interaction is
known as the transverse coupling and results in a term
∼gxðq̂þ q̂†Þðĉþ ĉ†Þ in the Hamiltonian [11,13]. In the
dispersive limit [15], the qubit-cavity detuning, Δ ¼
ωq − ωc, largely exceeds the coupling strength, jgxj ≪
jΔj;ωq;ωc, so that the cavity experiences an effective
energy-energy interaction ∼χdσ̂zĉ†ĉ, with χd ¼ αqgx2=
½ΔðΔþ αqÞ� [14] known as the dispersive or cross-Kerr
interaction. It gives rise to a qubit-dependent frequency shift,
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mapping the state of the qubit to the signal phase probing
the resonator and thus providing a good QND projective
measurement [14,16]. This transverse coupling has been
extensively used in most circuit-QED experiments. State-of-
the-art measurement fidelities and speeds using this standard
dispersive technique are summarized in the first row of
Table I. However, the dispersive readout is fundamentally
limited by unavoidable higher-order corrections to pertur-
bation theory, which distort the qubit dynamics [17–19] and
induce additional decay channels [20].
Several works have investigated how to overcome these

limitations, designing new quantum circuits [22–29].
Implementing a coupling scheme that involves natively
the energy of the qubit—as opposed to an effective energy
interaction—resolves these limitations. Along this line,
the longitudinal coupling ∼gzq̂†q̂ðĉþ ĉ†Þ is remarkable

(cf. second row of Table I). It induces a qubit-dependent
displacement of the cavity field ĉþ ĉ† [28]. When com-
bined with a parametric modulation gzðtÞ at the cavity
frequency ωc, this interaction results in a faster separa-
tion of the pointer states with a QND-ness as high as Q ¼
98.4% [21,30].
In this work we experimentally demonstrate a new qubit-

cavity coupling scheme based on a nonperturbative cross-
Kerr interaction ∼gzzðq̂þ q̂†Þ2ðĉþ ĉ†Þ2 (cf. third row of
Table I). It leads to an alternative readout mechanism for
superconducting qubits. This new process is fast, has a
large single-shot fidelity, maximizes the QND nature of the
process, and does not require any parametric modulation.
Similar nonperturbative cross-Kerr couplings have been
recently proposed for the readout of a flux qubit [31] and of
a spin qubit [32]. However, our experimental setup builds
on ideas previously proposed in Ref. [23], and it is realized
with an artificial transmon molecule with one emergent
qubitlike transmon degree of freedom and a bosonic ancilla
that couples to the readout cavity [cf. Fig. 1(a)]. The qubit
develops a Kerr-type interaction with the ancilla-cavity
polariton branches [cf. Fig. 1(b)]. This interaction enables a
detection scheme analogous to the standard dispersive
measurement. Nevertheless, since our coupling is not
perturbative, it does not imply any cavity-mediated exci-
tations or decay. Moreover, the strength of the readout shift
2gzz can be made as large as a few hundred megahertz, and
is independent of the qubit-cavity detuning. Thus the effect
of any stray transverse coupling can be made arbitrarily
small by increasing the detuning between the qubit and the
cavity. This results in a very efficient single-shot QND
readout of the qubit even in its first demonstration: it has a
record QND-ness of 99%, a fidelity of 97.4%, and it only
requires a short measurement time of 50 ns. This readout
mechanism can be combined with other paradigms of direct
qubit-qubit interactions [33], as an upgrade to existing
quantum computing and simulation architectures.

II. TRANSMON MOLECULE INSIDE A CAVITY

In this section we give details on the physical mechanisms
for the qubit readout using a nonperturbative cross-Kerr

TABLE I. State-of-the-art parameters for three different coupling types between a harmonic readout mode and a superconducting
qubit. The second column shows the direct coupling terms between the qubit, described as an anharmonic oscillator with ladder
operators (q̂, q̂†), and a harmonic readout mode described by (ĉ, ĉ†). Column three shows the effective coupling obtained after the
rotating wave approximation (RWA), and two-level system approximation for all couplings plus the dispersive approximation in the case
of the transverse coupling. Note that the present experimental work implements two nonperturbative cross-Kerr couplings of the type
presented here, since two polariton modes ĉu and ĉl are used for the readout [see Fig. 1 and Sec. II B for more details].

Elementary Effective QND QND Single-shot Detection State of the art
Type readout coupling readout coupling fidelity readout fidelity time Ref.

Transverse ∼gxðq̂þ q̂†Þðĉþ ĉ†Þ ∼fαqgx2=½ΔðΔþ αqÞ�gσ̂zĉ†ĉ Not given 99.1%–99.6% 48–88 ns [14]
Longitudinal ∼gzðtÞq̂†q̂ðĉ† þ ĉÞ ∼gzðtÞσ̂zðĉ† þ ĉÞ 98.4% 98.9% 750 ns [21]
Cross-Kerr ∼gzzðq̂þ q̂†Þ2ðĉþ ĉ†Þ2 ∼gzzσ̂zĉ†ĉ 99%� 0.6% 97.4%� 0.7% 30–50 ns Present work

(a)

(b)

FIG. 1. Schematics of the circuit QED setup with the transmon
molecule used for a high-fidelity and fast qubit QND readout.
(a) A cavity mode ĉ is strongly and transversely coupled to an
ancilla system â, which in turn couples diagonally to the qubit σ̂z
as ∼gzzσ̂zâ†â. (b) The strong hybridization between cavity and
ancilla is manifested by two orthogonal polariton modes ĉu and
ĉl, which couple to the qubit with a nonperturbative cross-Kerr
coupling ∼σ̂zðχuĉ†uĉu þ χlĉ

†
l ĉlÞ (see text). This allows us to infer

the state jgi or jei of the qubit by measuring the resonance shifts
of the polaritons at the cavity transmission output.
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coupling. The setup demonstrating this new readout mecha-
nism uses a transmon molecule circuit, composed of two
transmons coupled by a parallelLC circuit [cf. Fig. 2(c)], and
this is inserted inside a cavity. We start by introducing
the specific experimental system in Sec. II A, and then, in
Sec. II B, wewrite down the theoretical model describing the
open quantum dynamics of the system. We consider the
strong-coupling regime between cavity and ancilla, getting
two strongly hybridized polariton modes. A single effective
qubit then couples strongly to these two polaritons via
nonperturbative cross-Kerr couplings χj. This allows for
an efficient readout of the qubit state via the transmission
output of the cavity as shown below.

A. Physical implementation

The device consists of an aluminium Josephson circuit,
which is deposited on an intrinsic silicon wafer and inserted
in a 3D copper cavity [cf. Fig. 2(a)]. An optical image of
the molecule circuit is shown Fig. 2(d), which implements
the lumped element circuit of Fig. 2(c). The molecule is
realized by two identical transmon qubits with Josephson
energy EJ and capacitance CS, coupled through a parallel
LC circuit with inductance La and capacitance Ct. Here, CS

represents the capacitance between either of the two small
rectangular electrodes and the central larger one, while Ct
represents the capacitance between the two small rectan-
gular electrodes. The coupling inductor La is implemented
by a chain of 10 small SQUID loops of area SSQUID, which
are tunable by an external fluxΦS [cf. Fig. 2(d)]. The circuit
also contains a large loop of enclosed area A that is
approximately r ¼ A=SSQUID ≃ 26 times larger than the
SQUIDs. Consequently, the flux Φ ¼ rΦS generates a
circulating current passing through both La and the two
small Josephson junctions of the transmons. As already
discussed in previous work [22] and also detailed in the
Appendix B, when the applied flux satisfiesΦ ¼ nΦ0 (with
n an integer and Φ0 the magnetic flux quantum), the
dynamics of the system effectively behaves as a single
transmon qubit with cross-Kerr coupling to a slightly
anharmonic ancilla mode, described by the Hamiltonian

Ĥmol ¼ 4ECq
n̂2q − 2EJ cosðφ̂qÞ

þ 4ECa
n̂2a − 2EJ

�
cosðφ̂aÞ −

LJ

LaðnÞ
φ̂2
a

�

−
EJ

2
φ̂2
qφ̂

2
a þO6: ð1Þ

Here, the phase average φ̂q and phase difference φ̂a

between the two Josephson junctions describe the effective
transmon qubit and the ancilla mode, respectively. Their
conjugate charge number operators are denoted by n̂q
and n̂a. The charging energies of qubit and ancilla are
given by ECq

¼ e2=ð2CqÞ and ECa
¼ e2=ð2CaÞ, with

effective capacitances Cq ¼ 2CS and Ca ¼ 2ðCS þ 2CtÞ,
respectively. We considered the system in the transmon
regime, EJ ≫ ECq

; ECa
, so that φ̂q; φ̂a ≪ 1 and therefore

expanded the coupling term between φ̂q and φ̂a up to fourth
order in the phases. In addition, LJ ¼ ðΦ0=2πÞ2ð1=EJÞ
describes the Josephson inductance of each junction and
LaðnÞ denotes the value of the coupling inductance for
given magnetic flux ΦS ¼ ðn=rÞΦ0. Importantly, the last
term in Eq. (1) originates the nonlinear cross-Kerr coupling
between transmon qubit and ancilla as shown in the next
section.
To measure the transmon molecule, we insert the silicon

chip inside a 3D copper cavity with a volume 24.5 × 5 ×
35 mm3 (length × height × width) along the ac, bc, and cc
directions, respectively [cf. Fig. 2(b)]. The cavity mode
considered hereafter is the fundamental TE101 modewith the
microwave electric field aligned along the bc direction. All
the circuit parameters of our setup are measured via spec-
troscopy and are summarized in Table V of Appendix F 4.

B. Qubit-polaritons model

To analyze the dynamics of the transmon molecule from
a quantum optics point of view, it is convenient to express

(c)(a)

(b)

(d)

FIG. 2. Quantum circuit with nonperturbative cross-Kerr cou-
pling. (a) Picture of the two parts of the Copper-OFHC 3D cavity
with the input-output pin connectors. The sample is placed at the
center of the cavity. (b) The electric field distribution of the first
EM mode of the cavity in the center plane is sketched in red. The
cavity directions (ac, bc, cc) and sample directions (as, bs, cs) are
represented. (c) Lumped element of the transmon molecule
circuit. (d) Optical microscope and SEM pictures of the transmon
molecule sample. The Josephson junctions are highlighted in red.
The SQUID Josephson junctions implementing the coupling
inductance La are highlighted in green.
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Eq. (1) in the number representation and treat the qubit and
ancilla modes as coupled anharmonic oscillators described
by the Hamiltonian (cf. Appendix C):

Ĥmol

ℏ
¼ ωqq̂†q̂þ αq

2
q̂†q̂†q̂ q̂þωaâ†âþ Ua

2
â†â†â â

−
gzz
2
ðâþ â†Þ2ðq̂þ q̂†Þ2 þO6: ð2Þ

The first two terms in Eq. (2) correspond to the Hamiltonian
of a transmon with frequency ωq ¼ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ECq

EJ
p

=ℏþ αq,
anharmonicity αq ¼ −ECq

=ℏ, and ladder operators q̂, q̂†.
Importantly, the transmon anharmonicityαq is designed to be
larger than any driving in the system so that only its two
lowest levels will be populated.We can thus approximate the
trasmon as a two-level system or “qubit” with Hamiltonian
Ĥq ¼ ℏωqq̂†q̂þ ðℏαq=2Þq̂†q̂†q̂ q̂≃ðωq=2Þσ̂z, where σ̂z ¼
2q̂†q̂ − 1 corresponds to the diagonal Pauli operator.
The third and fourth terms in Eq. (2) describe the ancilla

mode with frequency ωa¼4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EJECa

f1þ2½LJ=LaðnÞ�g
p

=
ℏþUa, anharmonicity Ua¼−ðECa

=ℏÞf1þ2½LJ=LaðnÞ�g−1,
and ladder operators â, â†. Both ancilla frequency and
anharmonicity are a function of the externally applied
integer flux Φ ¼ nΦ0 and we design the inductance LaðnÞ
and capacitance Ct so that the ancilla anharmonicity jUaj is
much weaker than the qubit one jαqj. In our experiments,
the ancilla will be weakly populated (hâ†âi≲ 2), allowing
us to safely neglect the anharmonicity Ua, and regard
it as a simple harmonic oscillator, Ĥa ¼ ℏωaâ†âþ
ðℏUa=2Þâ†â†â â≃ℏωaâ†â. Interesting nonlinear and bist-
ability effects arise when the ancilla is strongly populated
(hâ†âi ≫ 1), but these effects will be discussed elsewhere.
The last term in Eq. (2) describes an energy-energy

cross-Kerr coupling between qubit and ancilla with a
strength gzz ¼

ffiffiffiffiffiffiffiffiffiffiffi
αqUa

p
. This is not only a direct conse-

quence of the Josephson junction’s nonlinearity but also of
the circuit symmetry [34], which avoids any transverse
field-field and longitudinal field-energy coupling to appear
at a lower order than q̂4; â4 (cf. Appendix E for imperfec-
tions in the symmetry). Since gzz is much weaker than ωq,
ωa and the detuning between them jωq − ωaj, we can
neglect fast oscillating terms in the cross-Kerr coupling
and obtain Ĥqa ¼ðgzz=2Þðâþ â†Þ2ðq̂þ q̂†Þ2≃−gzzσ̂zâ†â−
ðgzz=2Þσ̂z−2gzzâ†â. In addition to the energy-energy
qubit-ancilla interaction ∼ −gzzσ̂zâ†â, the cross-Kerr cou-
pling also produces a renormalization of the qubit and
ancilla frequencies.
Our final aim is to engineer a cross-Kerr coupling

between the qubit and some polariton modes which will
allow the QND readout of the qubit’s state. To obtain
such effect, we strongly couple the ancilla to a microwave
cavity mode via a standard transverse interaction. The
Hamiltonian reads Ĥcav ¼ ℏωcĉ†ĉþ ℏgacðâ†ĉþ ĉ†âÞ,
with ωc the cavity frequency, gac ≪ ωa;ωc the strength

of the ancilla-cavity coupling, and ĉ, ĉ† the cavity ladder
operators. A precise alignment between the sample direc-
tion bs the cavity direction bc is crucial to maximize the
ancilla-cavity coupling gac, while minimizing and neglect-
ing any residual qubit-cavity coupling gqc. This is also
guaranteed by the symmetry of the transmon molecule and
of the TE101 mode of the cavity. Imperfections due to
misalignment and a small asymmetry in the Josephson
junctions are treated in Appendix E.
The total Hamiltonian of the system which includes the

transmon molecule Ĥmol ¼ Ĥq þ Ĥa þ Ĥqa and the prop-
erly oriented cavity Ĥcav is then given by

Ĥtot

ℏ
¼ ω0

q

2
σ̂z þ ω0

aâ†âþ ωcĉ†ĉ

− gzzσ̂zâ†âþ gacðĉ†âþ â†ĉÞ; ð3Þ

with ω0
q ¼ ωq − gzz and ω0

a ¼ ωa − 2gzz the renormalized
qubit and ancilla frequencies. All the parameters of our
system are measured via spectroscopy in Appendix F and
they are summarized in Appendix F 4.
To strongly hybridize the cavity and ancilla modes we

tune them close to resonance, jωc − ω0
aj≲ gac. This leads to

two new normal modes called upper and lower polariton
modes, ĉu and ĉl, which are a linear combination of ancilla
and cavity fields, â† þ â and ĉ† þ ĉ. In the rotating-wave
approximation (RWA), they are given by a rotation ĉu ¼
cosðθÞâþ sinðθÞĉ and ĉl ¼ cosðθÞĉ − sinðθÞâ, where the
cavity-ancilla hybridization angle reads tanð2θÞ ¼ 2gac=
ðω0

a − ωcÞ. In terms of these polariton modes, the total
Hamiltonian takes the form (cf. Appendix D)

Ĥtot

ℏ
¼ ωq0

2
σ̂z þ

X
j¼u;l

ωjĉ
†
j ĉj þ σ̂z

X
j¼u;l

χjĉ
†
j ĉj; ð4Þ

where ωu ¼ sin2ðθÞωcþ cos2ðθÞωa0þ sinð2θÞgac and ωl ¼
cos2ðθÞωc þ sin2ðθÞωa0 − sinð2θÞgac are the frequencies of
the upper and lower polariton modes, respectively.
Importantly, each polariton mode is in some propor-
tion cavitylike and therefore can be used for readout.
Similarly, each polariton is also ancillalike and thus inherits
the nonperturbative cross-Kerr coupling to the qubit. The
corresponding interaction strengths read χu ¼ −gzzcos2ðθÞ
and χl ¼ −gzzsin2ðθÞ, for the upper and lower polariton,
respectively. In this way, we implement the coupling
between a qubit and a readout mode presented in the third
row of Table I. It is relevant to note that these cross-Kerr
coupling strengths χu and χl are nonperturbative in the
sense that they are not derived by a perturbative dispersive
approximation of a transverse coupling. Thus they do not
depend on the qubit-resonator detuning but only on the
hybridization angle θ and the native ancilla-qubit cross-
Kerr coupling gzz.
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C. Conditional polariton spectroscopy

Inspecting Eq. (4) we see that, except for dissipation and
dephasing effects treated in Appendix D, the population of
the qubit remains constant during the dynamics, hσ̂zi ¼
hσ̂zðt0Þi, with t0 the initial time. The qubit’s main effect is
thus simply to shift the transition frequency of each polariton
mode and to renormalize the hybridization angle as

ωj → ω̄jðhσ̂ziÞ ¼ ωj þ χjhσ̂zi; ð5Þ

θ → θ̄ðhσ̂ziÞ ¼
1

2
arctan

�
2gac

ω0
a − gzzhσ̂zi − ωc

�
: ð6Þ

The shift of the polariton resonances can be measured by
shining a weak continuous coherent drive on the cavity and
recording the amplitude of the field at the transmissionoutput
hĉoutiss [cf. Fig. 1]. Figure 3 shows a typical spectroscopic
measurement as a function of the driving frequency ωd, with
the blue and red curves corresponding to the case where the
qubit is prepared in state jgi (hσ̂zi ≈ −1) and in jei
(hσ̂zi ≈þ1), respectively. We clearly observe two peaks,
for the given qubit state, and these are well described by
Lorentzian line shapes as (cf. Appendix D)

hĉoutiss ¼ sinðθ̄Þhĉuiss þ cosðθ̄Þhĉliss
¼ −iΩsin2ðθ̄Þ

κu=2 − iðωd − ω̄uÞ
þ −iΩcos2ðθ̄Þ
κl=2 − iðωd − ω̄lÞ

: ð7Þ

The resonances are centered at the upper and lower polariton
frequencies,ωd ≈ ω̄l andωd ≈ ω̄u, and theirwidths are given
by the effective polariton decay rates κu ¼ κcsin2ðθ̄Þ þ
κacos2ðθ̄Þ and κl ¼ κccos2ðθ̄Þ þ κasin2ðθ̄Þ, respectively,

with κc denoting the cavity decay and κa the ancilla decay
(cf. Appendix D). In addition, the height of the peaks is
proportional to the strength of the weak microwave drive
Ω ≪ κl; κu. In Fig. 3 the transmitted signal ismeasured using
a 500-ns square microwave pulse applied immediately after
preparing the qubit in jgi or jei states. The line shapes are
fitted using Eq. (7) and the qubit-dependent frequency shifts
are clearly visible. Thepeaks of the lower and upper polariton
branches are indeed shifted by∼2χj, up to small errors in the
calibration and initial state preparation of the qubit states jgi
and jei. This effect is exploited to implement the QND qubit
measurement as shown in the following.

III. SINGLE-SHOT QUANTUM NONDEMOLITION
MEASUREMENTS

A. Individual measurement records
and quantum trajectories

Readout is performed using a standard microwave setup
including a high saturation-power Josephson parametric
amplifier made from a SQUID chain [35]. Next we
consider the readout performance at zero flux measuring
the signal transmitted through the lower polariton j ¼ l.
To read out the qubit state, a coherent microwave tone
is applied at a frequency ωd=2π ¼ ðω̄l þ 2χlÞ=2π ¼
7.029 GHz. The amplitude of the readout tone is n̄l ¼
hc†l cli ≃ 2 based on a calibration using ac-Stark shift
[36,37]. Since the polariton resonance frequency is con-
ditioned to the qubit state, the coherent tone is detuned by
ð2χlÞ=ð2πÞ ≈ −9 MHz, or in resonance, when the qubit is
in jgi or in jei, respectively. Therefore the transmitted
signal presents weak or large amplitude conditioned to the
qubit state jgi and jei, respectively. The amplifier is
operated in phase-sensitive mode leading to squeezed
signal at the amplifier output. We define IðtÞ and QðtÞ
the in-phase and the quadrature microwave signal. Its phase
has been adjusted so the information about the qubit state is
only contained in IðtÞ.
One thousand individual trajectories have been measured

when the qubit is prepared either in jgi or jei state. Four
typical individual records are plotted in Fig. 4. The duration
pulse is 1000 ns acquired over a larger time window
(around 1300 ns). These measurement records give an
insight on the real time dynamics of the qubit from single-
shot trajectories. Notice that after a time of few κ−1l ∼ 15 ns,
the qubit state can already be inferred from a single
trajectory, and that in Fig. 4(b) a quantum jump [38] of
the qubit appears clearly. In addition to the individual
trajectories, the mean value averaged over the 1000 trials,
as well as the related standard deviation, is plotted as a
function of time. Because of qubit relaxation, the averaged
excited state response (red solid line) decays toward the
ground state response, while its corresponding standard
deviation (red shaded area) grows in time. This finite qubit
lifetime can limit the distinguishability of the qubit states

FIG. 3. Polariton spectroscopy via the transmitted amplitude of
the cavity as a function of the driving frequency ωd at Φ ¼ 5Φ0.
The resonances at lower and higher frequency correspond to the
lower and upper polariton modes, respectively. In addition, both
polariton resonances are cross-Kerr shifted depending on the
prepared qubit state (ground jgi in blue and excited jei in red).
The highlighted red and blue lines correspond to the theoretical
prediction in Eq. (7) with the parameters given in Table IV, valid
for Φ ¼ 5Φ0.
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when the measurement itself takes a non-negligible fraction
of T1, highlighting the need for a fast readout. The qubit
decay under drive is equal to the one measured without
drive, T1 ≃ 3.3 μs, within the measurement error bars. This
observation suggests a QND measurement, which we
quantify in more detail in the following.

B. Quantum nondemolition fidelity

To check the QND-ness of the measurement, we quantify
the repeatability of successive measurements. We now
consider only the measurement records between time
10κ−1l ∼ 150 and 1000 ns to be in the steady-state regime
of the applied squared pulse. It corresponds to the ground
state if IðtÞ < Ith or to the excited state if IðtÞ > Ith with

Ith ¼ 15.5 mV. We define four conditional probabilities,
Pα;β, the probability to measure α in the first measurement
and β in the second measurement, where α; β ¼ g, e can
correspond to ground or excited states. From these prob-
abilities, the QND fidelity [21] is obtained to be
Q ¼ ½ðPg;g þ Pe;eÞ=2� ¼ 99%. In Pe;e ¼ 98.3%, we esti-
mate 0.7% to be explained by relaxation during measure-
ment, and in Pg;g ¼ 99.6%, we estimate only 0.02% to be
due to thermal excitation during measurement. Moreover,
each probability has a statistical uncertainty, due to finite
number of realizations of �0.6%. These results are com-
parable to the QND fidelity obtained in Touzard et al. [21]
using a parametric modulation scheme and corresponds, to
the best of our knowledge, to the state-of-the-art values.

C. Single-shot readout fidelity

In the early days of circuit QED, averaging was necessary
to infer the qubit state with high fidelity. However, thanks to
the advent of a Josephson-based amplifier [39–41], high-
fidelity, single-shot discrimination of the qubit state is now
possible [42]. Since then, works have been performed on
Purcell filters and amplifiers in an attempt to increase further
the readout fidelity [16,43–45], which is now culminating at
99.6% in 88 ns [14]. Readout fidelity is currently limited by
the balance between the timeneeded to discriminate the qubit
state and the qubit relaxation time T1.
To quantify the readout fidelity, we perform heralding

[46] by first applying a 50-ns square readout pulse. In the
analysis, we keep only the sequences where the qubit is
found in the ground state for this first measurement. After
this pulse, we wait 300 ns∼20κ−1l for the resonator to decay
back into its vacuum state before preparing the qubit in the
ground or in the excited state. Then, another 50-ns square
readout pulse is applied. The two measurement pulses
correspond to a steady-state amplitude of n̄l ≃ 2. Via the
heralding procedure, we estimate a thermal equilibrium
population of the excited state of 2.4%, corresponding to an
effective temperature of ∼80 mK. In Fig. 5, histograms of
24 × 103 single-shot readouts are plotted as the function of
the in-phase amplitude when the qubit is prepared in jgi and
jei states. A weight function is used to maximize the
distinguishability between the two qubit states [14]. The
histograms are fitted by the sum of two Gaussians (colored
solid lines) as discussed in the Appendix of Ref. [14].
The intersection of these two fitted histograms defines
a threshold Ith (vertical dashed line) distinguishing the
two qubit states. The readout fidelity is defined as F ¼
1 − ½PðejgÞ þ PðgjeÞ�=2 ≃ 1 − ðϵg þ ϵeÞ=2, where PðxjyÞ
is the probability of reading out xwhile having prepared the
state y. In addition, ϵg and ϵe are the fraction of measured
events of detecting I ≥ Ith when the qubit was prepared in g
and I ≤ Ith when the qubit was prepared in e, respectively.
Finally, we obtained a readout fidelity of F ¼ 97.4%
affected by the imperfections ϵg ¼ 1.0% and ϵe ¼ 4.3%.

(a)

(b)

(c)

FIG. 4. Typical individual measurement records as a function of
time, using the pulse sequence sketched in (a). We show typical
quantum trajectories of the qubit in the presence (b) and absence
(c) of a quantum jump. Blue and red points refer to the case the
qubit is initially prepared in states jgi and jei, respectively
(t ¼ 0). The readout pulse with amplitude n̄l ¼ 2 starts at t ¼
0 ns and stops at t ¼ 1000 ns. Each point is measured with a
30-ns integration, corresponding to the resonator rising time
2κ−1l . An average over 1000 measurement records is plotted in
solid blue and red lines, as well as their standard deviation
represented by corresponding shaded areas.
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The following discussion is to distinguish different
sources of error. One source of error is the overlap (or
separation) error ϵo, which is due to the detector noise along
with the finite acquisition time. We computed from the
overlap of the two main fitted Gaussians (green shaded area
in Fig. 5) an overlap error of ϵo ¼ ϵo;g þ ϵo;e ¼ 0.8% with
ϵo;g ¼ ϵo;e ¼ 0.4%. For the remaining errors, ϵr;g ¼ ϵg −
ϵo;g ¼ 0.6% (blue shaded area) and ϵr;e ¼ ϵe − ϵo;e ¼ 3.9%
(red shaded area), we analyzed two types of sources: ϵp, the
error of false qubit state preparation, and ϵt, the transition
during measurement error. In ϵt;e, we expect ∼1.5% due to
relaxation during measurement. For ϵp;e, we expect ∼1.4%
error due to finite π-pulse time compared to the Rabi decay
time. We also roughly estimate ∼0.5% error due to having
prepared the f state, the second excited state of the
transmon, because of the frequency spreading of the square
π pulse. The leftover errors may be attributed to an
imperfect heralding procedure or possibly to measure-
ment-induced transitions [18], but they are within the
statistical uncertainty due to finite counting of �0.7%.
We believe that the readout fidelity can be further

increased by implementing pulse envelope optimization
such as DRAG (derivative removal via adiabatic gate) pulse
[47] to have less excited state preparation error or CLEAR
(cavity-level excitation and reset) pulse [48] to achieve better
discrimination in a shorter integration time and therefore
reduce error due to relaxation during measurement.

D. Coherence and readout quality factor

Both QND-ness and single-shot readout fidelity are
limited by the finite T1 of the qubit. To understand qubit
lifetime limitations, we have measured its relaxation at
several fluxes (cf. black points in Fig. 6). We found a T1

ranging from 3.3 μs at zero flux to 0.9 μs at Φ ¼ 9Φ0. We
identified two sources of imperfections in our system that
create parasitic residual transverse coupling leading to a
Purcell-limited qubit T1. The first source is the asymmetry
of critical current in the Josephson junctions and the second
is the possible misalignment of the sample inside the cavity.
The effect of these two imperfections is discussed in detail
in Appendix E. There, we computed the Purcell limitation
due to these residual transverse couplings, and the results
are shown by the various red points in Fig. 6, where red
diamond points consider only the imperfection due to
asymmetry in critical current, the star points consider only
the misalignment imperfection, and the circle points con-
sider both imperfections. The overall trend of relaxation
versus flux is well described by the Purcell-limited T1;
however, further study is required to obtain better quanti-
tative agreement and to fully rule out other loss channels,
such as dielectric loss or spurious two-level systems.
Although our T1 is limited by residual transverse

couplings, it is clear that the readout shift ð2χlÞ=ð2πÞ ¼
−9 MHz is mainly produced by the nonperturbative cross-
Kerr coupling gzz=2π ¼ 34.5 MHz [cf. Fig. 9(b)], which
does not induce qubit decay. However, to show more
intuitively the benefit of the nonperturbative cross-Kerr
coupling, we estimate the qubit decay as if it would be
obtained solely by the usual dispersive transverse cou-
pling between the qubit and the dominant lower polariton.

(a)

(b)

FIG. 5. (a) Pulse sequence sketch. (b) Histograms of 50-ns
single-shot measurement for qubit prepared in ground state (blue
points) and excited state (red points) with heralding. The solid
blue and red lines are fits with a double Gaussian model. Black
line is a single Gaussian fit. The green area depicts the overlap
error ϵo ¼ 0.8%. The blue and red areas indicate the remaining
error ϵr;g ¼ 0.6% and ϵr;e ¼ 3.9%, respectively. It leads to a
readout fidelity of 97.4%.

FIG. 6. Qubit relaxation time T1 versus flux. Black points and
error bars are the extracted values of T1 from Gaussian means and
standard deviations, respectively. The various types of red points
correspond to computed values of Purcell-limited T1, assuming a
one-mode cavity, the parameters described in Appendix F 4, and
various imperfections. For instance, the red diamond points
consider only the asymmetry in Josephson energies, the star
points consider only the misalignment, and the circle points
consider both imperfections.
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For this, we consider the same readout shift ð2χlÞ=ð2πÞ ¼
−9 MHz [corresponding to the lower polariton in our case,
cf. Fig. 9(b)], but now let us suppose it is given by the
dispersive approximation, i.e., χd ¼ αqðgxÞ2=½ΔðΔþ αqÞ�.
With detuning Δl=ð2πÞ ¼ −754 MHz and anharmonicity
αq=ð2πÞ ¼ −88 MHz as measured experimentally, we then
would need a hypothetical transverse coupling gx=ð2πÞ≃
180 MHz, which would result in a Purcell-limited relax-
ation of T1 ∼ κ−1l ðΔl=gxÞ2 ≃ 0.24 μs, which is 1 order of
magnitude lower than the measured T1. In addition, if this
were the case, jΔlj=gx ∼ 4.2, far too low for the dispersive
approximation to remain valid and would not allow QND
measurements at the 99% level.
Despite this limited T1, we achieve a good steady-state

signal-to-noise ratio (SNR) per photon number as defined
in Ref. [49]. Indeed, when using the lower polariton for
readout, we obtain a readout quality factor, Qr ¼ 4χ2l κlT1=
ðκ2l =4þ χ2l Þ ≃ 360, so that the optimal steady-state SNR is
given by SNR ¼ ηnQr, with n the photon number and η the
quantum efficiency [49]. As a comparison, we compute
from the parameters given in Refs. [14,16] the quality
factors of Qr ¼ 540 and Qr ¼ 1080, respectively. Without
limitations of the Purcell effect, it should be possible to
increase our T1 and maintain large values of κl for fast
measurements, while optimizing jχlj ≃ κl=2 to maximize
the readout quality factor Qr. In this way, we believe that 1
order of magnitude increase in Qr is within reach.
Moreover, we expect the limitation in photon number n
to be less restrictive for the nonperturbative cross-Kerr
coupling compared to the standard dispersive one [15].
Therefore, the steady-state SNR may be further improved
with n without being restricted by the QND-ness of the
readout. Nonetheless, some other limitations on the photon
number may arise due to the non-RWA terms of type
∼q̂†q̂†â â, but these and other related aspects will be
discussed elsewhere.

IV. CONCLUSIONS AND OUTLOOK

We have developed and demonstrated an original qubit
readout scheme relying on a nonperturbative cross-Kerr
coupling, in contrast to the usual cross-Kerr coupling that is
perturbatively obtained from the transverse coupling in the
dispersive regime. Therefore, our new experimental meas-
urement design does not suffer from cavity-mediated
excitations or decay, and the strength of the readout shifts
can be made large and independent of the detuning. This
allows for a fast readout of the qubit, with a large single-
shot fidelity, and a maximization of the QND nature of the
measurement. The qubit and readout performances are
currently limited because of residual qubit-cavity trans-
verse couplings. However, no fundamental reason prevents
further suppression of this transverse coupling. In fact, in
the future, we can obtain the same readout shifts 2χj, but
with a much larger qubit-polaritons detuning, so that any
residual transverse coupling produces significantly less
unwanted consequences.

According to our readout error budget and our QND-
ness analysis, the measurement-induced qubit state mixing
is particularly low compared to the standard literature.
This could be explained by the nonperturbative nature of
our cross-Kerr coupling and will be the topic of future
investigations. Another appealing possibility is to extend
the current nonperturbative QND measurements to detect
single- and multi-photon propagating fields[54–58].
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APPENDIX A: EXPERIMENTAL SETUP

In this Appendix, we describe the measurement setup
shown in Fig. 7. Qubit and readout pulses are sent through
the same input line. The transmitted signal passes through
three circulators and a directional coupler before being
amplified via the Josephson parametric amplifier (JPA).
Then it passes through additional amplification stages before
it is down-converted to dc voltages via an in phase-quad-
rature mixer and digitized at 1 GS=s using an analog to
digital converter. Finally, the signal is digitally integrated.
The JPA [35] is used in the phase-sensitive regime and

thus phase stability is a key feature in this setup. The pump
and cancellation drives need to be tuned at the same
amplitude with opposite phases [14,21]. Moreover, the
phase of the JPA also needs to be tuned to amplify the
wanted quadrature. The JPA gain (20 dB) and its pump
cancellation are tuned with a vector network analyzer and
spectrum analyzer regardless of the sample.

APPENDIX B: SUPERCONDUCTING
QUANTUM CIRCUIT MODEL

In this Appendix, we derive the circuit Hamiltonian
given in Eq. (1). We start from the classical Lagrangian L of
the circuit, which depends on the generalized flux variables
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at the left and right nodes of the circuit denoted by Φ1 and
Φ2, respectively [cf. Figs. 2(c) and 2(d)]. The kinetic
energy K, stored in the capacitances, reads

K ¼ CS

2
_Φ2
1 þ

CS

2
_Φ2
2 þ

Ct

2
ð _Φ1 − _Φ2Þ2; ðB1Þ

where CS is the capacitance of each transmon and Ct the
capacitance of the coupling inductor [cf. Fig. 2(c)]. The
potential energy U is given by the Josephson energies EJ1
and EJ2 of each junction and by the inductive energy of the
coupling inductance La. Explicitly, we have

U ¼ −EJð1 − dJÞ cos
�
Φ1

ϕ0

�
− EJð1þ dJÞ cos

�
Φ2

ϕ0

�

þ 1

2La
ðΦ1 −Φ2 −ΦÞ2; ðB2Þ

where dJ ¼ ðEJ2 − EJ1Þ=ðEJ2 þ EJ1Þ is a small asymmetry
in the Josephson energies, EJ ¼ ðEJ1 þ EJ2Þ=2 is the
average Josephson energy, Φ is the externally applied flux,
and ϕ0 ¼ Φ0=ð2πÞ ¼ ℏ=ð2eÞ is the reduced magnetic flux

quantum. Here, La is the coupling inductance implemented
by a chain of SQUIDs and thus depends on the applied flux
Φ [cf. Fig. 2(d)].
It is convenient to introduce “qubit” and “ancilla”

variables Φq and Φa as the flux average Φq ¼ ðΦ1 þ
Φ2Þ=2 and the flux difference Φa ¼ ðΦ1 −Φ2Þ=2, respec-
tively. This allows us to write the Lagrangian of the circuit
L ¼ K − U as

L ¼ CS
_Φ2
q þ ðCS þ 2CtÞ _Φ2

a

þ 2EJ

�
cos

�
Φq

ϕ0

�
cos

�
Φa

ϕ0

�
−

LJ

ðϕ0Þ2La
ðΦa −Φ=2Þ2

�

þ 2EJdJ sin

�
Φq

ϕ0

�
sin

�
Φa

ϕ0

�
; ðB3Þ

with the Josephson inductance given by LJ ¼ ðϕ0Þ2=EJ.
We now calculate the conjugate charges Qq and Qa,
corresponding to the phases Φq and Φa, which read

Qq ¼
∂L
∂ _Φq

¼ 2CS
_Φq; ðB4Þ

Qa ¼
∂L
∂ _Φa

¼ 2ðCS þ 2CtÞ _Φa: ðB5Þ

Using the Legendre transformation HðQq;Qa;Φq;ΦaÞ ¼
Qa

_Φa þQq
_Φq − L, we obtain the classical Hamiltonian of

the circuit as

H ¼ Q2
q

2Cq
þ Q2

a

2Ca
− 2EJdJ sin

�
Φq

ϕ0

�
sin

�
Φa

ϕ0

�

− 2EJ

�
cos

�
Φq

ϕ0

�
cos

�
Φa

ϕ0

�
−

LJ

ðϕ0Þ2La
ðΦa −Φ=2Þ2

�
;

ðB6Þ
where we define the effective capacitances of the qubit and
ancilla variables as Cq ¼ 2Cs and Ca ¼ 2ðCS þ 2CtÞ,
respectively.
We can quantize this Hamiltonian by promoting the flux

and charge variables to operators, Φj → Φ̂j and Qj → Q̂j,
and imposing canonical commutation relations between
them, namely, ½Φ̂j; Q̂l� ¼ iℏδjl, with the indices j, l corre-
sponding to qubit and/or ancilla (j; l ¼ fq; ag). In addition,
we define dimensionless phase operators φ̂j ¼ Φ̂j=ϕ0 and
charge number operators n̂j ¼ Q̂j=ð2eÞ, and use them to
express the quantum Hamiltonian of the circuit as

Ĥmol ¼ 4ECq
n̂2q þ 4ECa

n̂2a

− 2EJ

�
cosðφ̂qÞ cosðφ̂aÞ −

LJ

La

�
φ̂a −

Φ
2ϕ0

�
2
�

− 2EJdJ sinðφ̂qÞ sinðφ̂aÞ: ðB7Þ

FIG. 7. Schematic of the experimental setup. Abbreviations:
arbitrary waveform generator (AWG), low-pass filter (LPF),
band-pass filter (BPF), local oscillator (LO), vector network
analyzer (VNA), and analog to digital converter (ADC).
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Here, we define the charging energy of qubit and ancilla
as ECq

¼ e2=ð2CqÞ and ECa
¼ e2=ð2CaÞ, respectively.

Exploiting the analogy between conjugate flux (charge)
operators and position (momentum) operators, we can
interpret the Hamiltonian Eq. (B7) as two particles with
mass mq ¼ ℏ2=ð8ECq

Þ ¼ ðϕ0Þ2Cq and ma ¼ ℏ2=ð8ECa
Þ ¼

ðϕ0Þ2Ca subjected to a nonlinear two-dimensional poten-
tial Uðφ̂q; φ̂aÞ ¼ −2EJfcosðφ̂qÞ cosðφ̂aÞ − ðLJ=LaÞ½φ̂a−
ðΦ=2ϕ0Þ�2g − 2EJdJ sinðφ̂qÞ sinðφ̂aÞ. In the transmon
regime, EJ ≫ ECq

; ECa
, the lowest energy bands are deep

inside the sinusoidal potentials, so that we can expand the
Hamiltonian Eq. (B7) in powers of the small flux
φ̂a; φ̂q ≪ 1. With corrections up to fourth order in the
phases, we obtain

Ĥmol ¼ 4ECq
n̂2q − 2EJ cosðφ̂qÞ

þ 4ECa
n̂2a − 2EJ

�
cosðφ̂aÞ −

LJ

La

�
φ̂a −

Φ
2ϕ0

�
2
�

−
EJ

2
φ̂2
qφ̂

2
a − 2EJdJ sinðφ̂qÞ sinðφ̂aÞ þO6; ðB8Þ

with cosðφ̂jÞ ¼ 1 − φ̂2
j=2þ φ̂4

j=24þO6 and j ¼ q, a.
The Hamiltonian in Eq. (1) of the main text is obtained

by considering an integer flux Φ ¼ nΦ0 ¼ 2πnϕ0 in
Eq. (B8) and simplifying φ̂a − nπ → φ̂a due to the cyclic
property of the phase. We also rename La → LaðnÞ to
indicate the integer value of the applied flux. Finally, we
neglect the interaction due to the small asymmetry in the
junctions provided dJ ≪ 1. This aspect is further discussed
as a small imperfection in Appendix E.

APPENDIX C: CIRCUIT HAMILTONIAN
IN THE NUMBER REPRESENTATION

In this Appendix, we derive the Hamiltonian Eq. (2) of
the main text starting from Eq. (1).
Since our setup works in the transmon regime of low

flux, φ̂q; φ̂a ≪ 1, we can expand the cosines in Eq. (1),
obtaining

Ĥmol ¼ 4ECq
n̂2q þ

EJq

2
φ̂2
q þ 4ECa

n̂2a þ
EJaðnÞ

2
φ̂2
a

−
EJ

12
ðφ̂4

q þ φ̂4
aÞ −

EJ

2
φ̂2
qφ̂

2
a þO6; ðC1Þ

where we have defined the effective Josephson energies
of qubit and ancilla as EJq ¼ 2EJ and EJaðnÞ ¼ 2EJf1þ
½2LJ=LaðnÞ�g, respectively. To express the Hamiltonian
Eq. (C1) in the number representation, we exploit the
analogy between the quadratic terms in Eq. (C1) and the
Hamiltonian of independent quantum harmonic oscillators
with positions x̂j ¼ ϕ̂j, momenta p̂j ¼ ℏn̂j, masses
mj ¼ ℏ2=ð8ECj

Þ, and frequencies ω̃j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8EJjECj

p
=ℏ, for

qubit and ancilla (j ¼ q, a). With these identifications, we
can use the known results from the quantization of the
quantum harmonic oscillator and express the phase and
number operators as

φ̂q ¼
�
8ECq

EJq

�
1=4 ðq̂þ q̂†Þffiffiffi

2
p ; ðC2Þ

n̂q ¼ −i
�

EJq

8ECq

�
1=4 ðq̂ − q̂†Þffiffiffi

2
p ; ðC3Þ

φ̂a ¼
�

8ECa

EJaðnÞ
�

1=4 ðâþ â†Þffiffiffi
2

p ; ðC4Þ

n̂a ¼ −i
�
EJaðnÞ
8ECa

�
1=4 ðâ − â†Þffiffiffi

2
p ; ðC5Þ

where q̂, q̂† and â, â† are standard ladder operators for the
qubit and ancilla modes, respectively.
Replacing expressions (C2)–(C5) into Eq. (C1), we

diagonalize the quadratic terms of the circuit Hamiltonian,
allowing us to interpret the qubit and ancilla modes as two
coupled anharmonic oscillators described by

Ĥmol

ℏ
¼ ω̃qq̂†q̂þ αq

12
ðq̂þ q̂†Þ4 þ ω̃aâ†â

þUa

12
ðâþ â†Þ4 − gzz

2
ðq̂þ q̂†Þ2ðâþ â†Þ2: ðC6Þ

Here, the anharmonicities of the qubit and ancilla are given
byαq ¼ −ECq

=ℏ andUa ¼−ðECa
=ℏÞf1þ2½LJ=LaðnÞ�g−1,

respectively, and gzz ¼
ffiffiffiffiffiffiffiffiffiffiffi
αqUa

p
is the strength of their cross-

Kerr coupling.
We can further simplify the Hamiltonian in Eq. (C6) by

expanding the fourth-order anharmonic terms proportional
to αq and Ua, and perform a rotating wave approximation
(RWA), provided the anharmonicities are much smaller
than the free frequencies, i.e., αq, Ua ≪ ω̃q; ω̃a. Doing so
and expressing the resulting terms in normal ordering, we
finally obtain the circuit Hamiltonian in Eq. (2) of the main
text, where the qubit and ancilla frequencies become
renormalized by the anharmonic terms as ωq ¼ ω̃q þ αq
and ωa ¼ ω̃a þUa, respectively.

APPENDIX D: QUANTUM OPTICS MODEL
FOR DECOHERENCE AND POLARITON

SPECTROSCOPY

In this Appendix, we describe the full quantum optics
model of our system and its environment, including loss
sources and the coherent driving field used in the spectros-
copies. We also derive the polariton Hamiltonian in Eq. (4)
and the cavity transmission amplitude in Eq. (7), which
models the spectroscopic measurements.
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Our experimental setup consists of a transmon molecule
circuit coupled to a microwave cavity mode as described by
the Hamiltonian in Eq. (3) of the main text. Under realistic
experimental conditions, qubit, ancilla, and cavity modes
are not perfectly isolated from their environment and they
undergo dissipation and decoherence. As a consequence,
the state of the system is represented by a density matrix
ρ̂ðtÞ, whose dynamics can be well described in a master
equation formalism as

dρ̂
dt

¼ −
i
ℏ
½Ĥtot þ Ĥdrive; ρ̂� þ κcD½ĉ�ρ̂þ κaD½â�ρ̂

þ κqD½σ̂−�ρ̂þ 2γqD½σ̂þσ̂−�ρ̂: ðD1Þ

Here, the coherent part of the dynamics is governed
by the Hamiltonian Ĥtot in Eq. (3) and by Ĥdrive ¼
ℏΩðĉeiωdt þ ĉ†e−iωdtÞ, which describes a coherent driving
field of strength Ω and frequency ωd acting on the cavity
mode ĉ. In addition, photon decay of the cavity mode is
described by the Lindblad term κcD½ĉ�ρ̂, where κc is the
cavity decay rate and D½x̂�ρ̂ ¼ x̂ ρ̂ x̂† − ðx̂†x̂ ρ̂þρ̂x̂†x̂Þ=2.
Similarly, κa is the decay rate of the ancilla mode and κq the
decay rate of the qubit. We also include pure dephasing of
the qubit with rate γq. The relaxation and pure dephasing
times of the qubit are then given by T1 ¼ 1=κq and
T�
2 ¼ 1=γq, respectively.
In our experiments the cavity and ancilla are strongly

coupled and close to resonance jω0
a − ωcj≲ gac, so that

these two modes become strongly hybridized into upper
and lower polariton modes given by ĉu ¼ cosðθÞâþ
sinðθÞĉ and ĉl ¼ cosðθÞĉ − sinðθÞâ, respectively, with
tanð2θÞ ¼ 2gac=ðω0

a − ωcÞ. Reexpressing the master
equation (D1) in terms of these polaritons, we obtain

dρ̂
dt

¼ −
i
ℏ
½Ĥtot þ Ĥdrive; ρ̂� þ

X
j¼u;l

κjD½ĉj�ρ̂

þ κqD½σ̂−�ρ̂þ 2γqD½σ̂þσ̂−�ρ̂; ðD2Þ

where Ĥtot is given in Eq. (4) of the main text, and
the coherent drive on the polariton modes is described
by Ĥdrive ¼

P
j¼u;l Ωjðĉjeiωdt þ ĉ†je

−iωdtÞ, with Ωl ¼
Ω cosðθÞ andΩu ¼ Ω sinðθÞ the effective driving strengths.
In addition, the effective decay rates of upper and lower
polariton read κu ¼ κcsin2ðθÞ þ κacos2ðθÞ and κl ¼
κccos2ðθÞ þ κasin2ðθÞ, respectively. Importantly, to derive
these effective expressions and the master equation (D2),
we have neglected fast oscillating terms in a RWA provided
gzz; κu; κl ≪ ωu;ωl; jωu − ωlj, where ωu ¼ sin2ðθÞωc þ
cos2ðθÞω0

a þ sinð2θÞgac and ωl¼ cos2ðθÞωcþ sin2ðθÞω0
a−

sinð2θÞgac are the effective polariton resonance
frequencies. We also require a low occupation of the
polariton modes, which is ensured in our experiments by
having a weak driving strength Ωj ≪ κj.

To end this Appendix, we show how to derive Eq. (7) of
the main text, which models the shape of the polariton
resonances observed in the spectroscopic measurements of
this article (cf. Sec. II C and Appendix F). We perform the
spectroscopy by shining a weak coherent drive on the
cavity as described by the master equation (D2), and then
measuring the amplitude of the cavity field leaking through
its transmission output hξ̂outi. The input-output relation,
ξ̂outðtÞ ¼ ξ̂inðtÞ þ

ffiffiffiffiffiffiffi
κoutc

p
ĉ [50,51], allows us to calculate

this output field from the knowledge of the internal
dynamics of cavity mode ĉ, the input noise ξ̂inðtÞ, and
the cavity decay on the transmission output κoutc ≤ κc.
Taking averages and assuming vacuum input noise, we
find that the normalized cavity output field reads

hĉouti ¼
hξ̂outiffiffiffiffiffiffiffi
κoutc

p ¼ hĉi ¼ sinðθÞhĉui þ cosðθÞhĉli: ðD3Þ

Importantly, the polariton averages hĉui and hĉli can be
calculated from Eq. (D2). Since the qubit couples to the
polaritons via a cross-Kerr coupling only ∼

P
j χjσ̂zĉ

†
j ĉj,

the master equation (D2) predicts that the qubit occupation
hσ̂zi will remain constant during a dynamics much shorter
than the qubit coherence times t ≪ T1; T�

2. Experimentally,
we perform the measurements in timescales shorter than
T1, T�

2, so that the main effect of the qubit is simply to shift
the resonance frequency of the polaritons ωj → ω̄j ¼ ωj þ
χjhσ̂zi and to renormalize the hybridization angle θ → θ̄,
conditioned on the initial state of the qubit, as shown in
Eqs. (5) and (6) of the main text. Putting all these together,
we neglect κq and γq in Eq. (D2) and assume a constant
hσ̂zi, so that the dynamics of the polaritons reduces simply
to two independent driven-dissipative harmonic oscillators,
whose steady-state expectation values read

hĉjiss ¼
−iΩj

κj=2 − iðωd − ω̄jÞ
; j ¼ u; l: ðD4Þ

Finally, if we replace Eq. (D4) into Eq. (D3) and use the
renormalized angle θ̄ in Eq. (6), we obtain Eq. (7) of the
main text.

APPENDIX E: IMPERFECTIONS

In this Appendix, we analyze the two main sources of
imperfections that can lead to nonzero transverse couplings
between qubit and polariton modes, and thus limit the
readout performance. At the end of the Appendix, we also
comment on the estimations of the Purcell-limited qubit
relaxation times T1 shown in Fig. 6.
The first source of imperfection for the readout is the

Josephson junction asymmetry dJ ¼ ðEJ2 − EJ1Þ=ðEJ1 þ
EJ2Þ in the transmon molecule circuit, which is experi-
mentally challenging to fully suppress. To estimate the
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effect of this imperfection, we evaluate the interaction term
Ĥasy

qa ¼ −2EJdJ sinðφ̂qÞ sinðφ̂aÞ, which was neglected so
far from the full Hamiltonian in Eq. (B8). Notice that EJ
denotes the mean Josephson energy of the two Josephson
junctions. At first order, this new term corresponds to a
transverse coupling between the qubit and the ancilla,
Ĥasy

qa ¼ ℏgqaðq̂þ q̂†Þðâþ â†Þ, where the coupling gqa ¼
−ðdJ=2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω̃qω̃a=½1þ 2LJ=LaðnÞ�

p
can be calculated using

the identifications of Appendix C. In order to experi-
mentally characterize dJ, we measured the room temper-
ature resistances between each pad of the sample. These
resistances have contributions from the Josephson junction
resistances RJ1 , RJ2 , the resistance of the array of SQUIDs,
and resistances from the connecting wires. The wire
resistances are estimated via measurement of wires-only
test structures on a dedicated test chip fabricated during
the same process. In the end, we solved a set of three
equations with three unknowns and found an asymmetry
dJ ¼ ðRJ2 − RJ1Þ=ðRJ1 þ RJ2Þ ¼ 1.3%, giving jgqaj=2π ¼
26.1 MHz at zero applied flux.
The second source of imperfection is a misalignment

of the sample inside the 3D cavity, creating a direct
transverse coupling between the qubit and the cavity,
Ĥasy

qc ¼ ℏgqcðq̂þ q̂†Þðĉþ ĉ†Þ. Considering the size of the
cavity groove and of the sample, we estimate a misalign-
ment angle up to θm ¼ �5 deg. Assuming that the ratio
between transverse couplings gqc=gac is roughly given by
tanðθmÞ, we estimate that the qubit-cavity transverse
coupling is bounded by jgqcj=2π ≲ 25.8 MHz. In
Fig. 6, we took the worst-case scenario of jgqcj=2π ¼
25.8 MHz ≪ gac.
Regarding the analysis of the qubit relaxation times in

Fig. 6, we can analytically estimate the Purcell-limited T1

via the decay rates of the cavity κc and the ancilla κa as
T1 ¼ 1=ΓP, with ΓP¼ κcðgqc=ΔqcÞ2þ κaðgqa=ΔqaÞ2. Here,
Δqc and Δqa are the detunings of the qubit with respect to
cavity and ancilla, respectively. For a more precise com-
putation of the Purcell-limited T1 in Fig. 6, we numerically
diagonalize the total Hamiltonian as described in
Appendix F 1 and then compute the Purcell rate as
ΓP ¼ κcjhψgjĉjψeij2 þ κajhψgjâjψeij2, where jψgi and
jψei are the dressed eigenstates of the system correspond-
ing to the ground and excited state of the qubit, respec-
tively. The red diamond points in Fig. 6 consider only
imperfections from the asymmetry in the Josephson energy
of the junctions, the star points consider only the misalign-
ment between cavity and qubit, and the circle points
consider both imperfections.

APPENDIX F: SYSTEM CHARACTERIZATION

In this Appendix, we detail the spectroscopic methods we
used to experimentally characterize all the parameters of our
system. First, in Sec. F 1 we give details on the numerical

diagonalization used to fit the spectroscopic data valid at any
value of the applied flux Φ. Then, in Sec. F 2 we show the
results of the single- and two-tone spectroscopy, allowing us
to characterize the resonance frequencies of the system. In
Sec. F 3 we extract the ancilla-cavity coupling gac and the
flux dependence of the cross-Kerr couplings between qubit
and polaritonmodes χj. Finally, in Sec. F 4we summarize all
the parameters of our experimental setup.

1. Numerical diagonalization
of the Hamiltonian valid at all flux

The theoretical model discussed in the main text and in
Appendix D accounts for the full interaction between the
transmon molecule and the microwave cavity mode, but it
is restricted to integer values of the flux only, Φ ¼ nΦ0.
Nevertheless, a complete spectroscopy of the system
requires studying the transition frequencies and couplings
of the system as a function of all possible values of the flux,
including noninteger fluxes, Φ ≠ nΦ0.
A theoretical model of the system at all flux is obtained

by the total Hamiltonian Ĥtot ¼ Ĥmol þ Ĥcav, where Ĥmol
corresponds to the general circuit Hamiltonian in Eq. (B8)
and Ĥcav ¼ ℏωcĉ†ĉþ ℏgacðâ†ĉþ ĉ†âÞ is the standard
Hamiltonian including cavity and coupling. When expand-
ing the Hamiltonian Eq. (B8) up to fourth order in
φ̂q; φ̂q ≪ 1, additional coupling terms appear on order
∼φ̂qφ̂a,∼φ̂3

a, and∼φ̂2
qφ̂a due to the noninteger values of the

flux Φ ≠ nΦ0, and due to asymmetries in the Josephson
junctions [22]. However, we numerically diagonalize this
general Hamiltonian in the number representation using 8
states in qubit, ancilla, and cavity, and for different values
of the applied flux Φ. The results are used below to fit the
single- and two-tone spectroscopy measurements shown in
Fig. 8(c). Note that around frustration points, where the low
flux expansion of the Hamiltonian becomes less valid, the
predicted eigenenergies are still fitted within 2% errors.

2. Qubit-polaritons spectroscopy

Figure 8(a) presents the single-tone spectroscopy per-
formed by measuring the cavity transmission versus mag-
netic flux Φ and driving frequency. The two resonant
polariton modes are observed as two maximal transmission
peaks that strongly vary with Φ. It demonstrates a direct
coupling to the traveling microwave signal. The bare cavity
resonant frequency ωc=2π ¼ 7.169 GHz of the fundamen-
tal mode has been measured at 4 K, but it is no longer
visible at this frequency. Indeed, because of its strong
hybridization with the ancilla mode, the cavity is now split
into the two polariton modes. From the cavity they inherit
their direct coupling to traveling microwave signal
and from the ancilla they get a flux dependence. The
two polariton frequencies vary rapidly in flux with a period
given by flux quantization in the large circuit loop.
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In addition, for both polariton modes, a slow variation is
superimposed.
The two polariton modes present a nonlinear response

inherited from the ancilla anharmonicity. When the input
microwave power is large, the polariton dynamics shows a
bistability behavior. This regime is beyond the scope of this
article and will be treated elsewhere. Here, we focus on the
linear regime of low input power.
No qubit resonance is directly detected via single-tone

spectroscopy. Therefore two-tone spectroscopy is needed
to reveal it. One tone is swept between 5.5 and 6.4 GHz in
the vicinity of the qubit resonance. The second tone
measures the transmission signal at the resonant frequency
of one of the polariton modes. This two-tone spectroscopy
reveals the qubit flux dependence [cf. Fig. 8(b)]. We
observed a flux dependence periodic in Φ but without
any superimposed slow variation.
We extract the resonance frequencies of the two polar-

iton modes and the qubit from the single- and two-tone

spectroscopy and we plot the results in Fig. 8(c) as a
function of flux Φ. They are well fitted by the numerical
model discussed in Sec. F 1, which nicely describes the flux
variation of the resonance frequencies of the qubit and the
two polariton modes. Using two-tone spectroscopy with an
increasing Rabi drive to observe the two-photon transition
from ground to second-excited state [52], we extracted the
qubit anharmonicity to be αq=2π ¼ −88 MHz.

3. Polaritons tunability

Interestingly, the different flux working points allow us
to tune the ancilla-cavity hybridization angle without
affecting the qubit frequency (cf. Fig. 8). Therefore, we
can tune in situ the parameters ω̄j and χj, which determine
the Hamiltonian of our system in Eq. (4).
In Fig. 9(a), the two polariton’s resonance frequencies

are plotted versus the integer flux quantum n. They are
quantitatively described by the lower and upper polariton
modes ĉl and ĉu previously discussed. Herewe set the cavity
frequency to the value measured at 4 K, and the ancilla
frequency, when the qubit is prepared in the ground state

(a)

(b)

FIG. 9. (a) The lower (orange) and upper (purple) polariton
resonant frequencies as function of integer quantum flux. They
are fitted (black lines) using the numerical model discussed in
Appendix B. The gray dashed lines correspond to the bare cavity
and bare ancilla frequencies. An avoided crossing between ancilla
and cavity can thus be seen. (b) Cross-Kerr strengths between
qubit and lower (orange) and upper (purple) polaritons. Black
lines are the expected cross-Kerr coupling using χl ¼ −gzzsin2ðθÞ
and χu ¼ −gzzcos2ðθÞ with gzz=ð2πÞ ¼ 34.5 MHz. The gray
diamonds are simulated points computed using black box
quantization [53] with EM simulation.

(a)

(b)
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FIG. 8. (a) Single-tone transmission S21 measurements in
arbitrary units (arb. units) as function of driving frequency and
flux (coil current). (b) Two-tone measurement, where the corre-
sponding transmission Sn21 is normalized by its value without
second tone. (c) Extracted resonance frequencies of qubit ω0

q

(blue), lower polariton ω̄l (orange), and upper polariton ω̄u
(purple) as a function of the applied flux Φ=Φ0. The dashed
black lines correspond to the theoretical predictions from the
numerical diagonalization of the circuit model in Sec. F 1.
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ω̄a ¼ ω0
a þ gzz, is extracted from the expression ω̄a ¼

ω̄l þ ω̄u − ωc. On resonance (ω̄a ¼ ωc), the two polaritons
are maximally hybridized. We measure gac=2π ¼ 295 MHz
from the antilevel crossing. The hybridization weights
sin2ðθ̄Þ and cos2ðθ̄Þ between cavity and ancilla are then
fitted. At zero flux, the upper polariton mode is mainly
ancillalike while the lower polariton is mainly cavitylike.
When the cavity and ancilla are resonant, the hybridization
weight is 50%. The large value of ancilla-cavity transverse
coupling gac has been designed in order to ensure a strong
hybridization over a large flux window.
Each polariton resonance is shifted by the cross-Kerr

coupling strength 2χj conditioned on the qubit state.
The cross-Kerr coupling between the qubit and the two
polariton modes is plotted in Fig. 9(b) as a function of
integer flux quantum. A single-tone spectroscopy is per-
formed around the polariton resonances ω̄lðn; hσ̂ziÞ and
ω̄uðn; hσ̂ziÞ—which differ for each polariton, for each value
of flux n, and for each qubit occupation hσ̂zi (depending on
if the π pulse is applied or not). Because of relaxation, these
experiments are performed in the time domain with a 30-ns
π pulse immediately followed by a 500-ns readout pulse.
The cross-Kerr coupling is quantitatively described by 2χj
as predicted by the effective polariton model. We measured
large readout shifts ð2χjÞ=ð2πÞ from −9 to −57 MHz
thanks to the nonperturbative cross-Kerr coupling. These
readout shifts are not limited by the validity of the
dispersive approximation nor by the multilevel aspects
of the transmon. For instance, in Ref. [14] the effective
coupling for readout has been optimized and is reported to
be χd ¼ αqgx2=½ΔðΔþ αqÞ� ¼ −2π × 7.9 MHz. This is
on the orderof or below what we can achieve with the
present setup without doing an intense optimization of
our parameters. Interestingly, at zero flux, the upper
polariton, which is further detuned from the qubit than
the lower polariton, has a stronger readout shift than the
lower polariton.

4. Circuit parameters

In the following we summarize how we experimentally
determine all the parameters of our setup. All the resulting
quantities are displayed in Tables II–V.
First, the mode frequencies ω0

q, ω̄l, and ω̄u are obtained
from spectroscopies at different applied fluxes, at a temper-
ature of 20 mK, and with the qubit prepared in the ground
state (cf. Fig. 8). On the other hand, the cavity frequency ωc

is obtained from spectroscopy at 4 K. From these quantities
we determine the ancilla frequency, when the qubit is
prepared in the ground state ω̄a ¼ ω0

a þ gzz, using the
formula ω̄a ¼ ω̄l þ ω̄u − ωc. In the first row of Table II
we show the values of these frequencies at zero flux. In
addition, the ancilla-cavity coupling gac is fitted from the
spectroscopy of the polariton resonances at different flux
[cf. Figs. 8 and 9(a)]. The polariton cross-Kerr couplings χl
and χu are measured directly from the two-tone spectros-
copy for given flux as shown in Fig. 9(b), and the ancilla-
qubit cross-Kerr coupling gzz is fitted from the global
flux dependence of this plot. The qubit anharmonicity αq
is measured using standard methods of two-tone spec-
troscopy with an increasing Rabi drive to observe the two-
photon transition from ground to second-excited state [52].
Finally, the ancilla anharmonicity is estimated as Ua ¼
g2zz=αq, according to the circuit model in Appendix C. The
values of all the above quantities at zero flux are shown in
the second row of Table II.
In Table III, we detail the coherence times and decay of the

various modes at zero flux. We measure the polariton decay
rates κl and κu from thewidths of the polariton resonances at
20 mK [cf. Eq. (7)]. Subsequently, we determine the cavity
and ancilla decay, κc and κa, from the hybridization angle
θ̄ ¼ ð1=2Þ arctanð2gac=½ω̄a − ω̄c�Þ and the inverse relations

TABLE III. Coherence times and decay rates at zero fluxΦ ¼ 0
and T ¼ 20 mK.

T1 T2 κl=2π κu=2π κc=2π κa=2π θ̄

3.3 μs 3.2 μs 11.8 MHz 7.1 MHz 12.7 MHz 6.2 MHz 0.384 rad

TABLE IV. Parameters at nonzero flux Φ ¼ 5Φ0 and
T ¼ 20 mK. All the rest of the parameters do not strongly
depend on flux and they are the same as in Tables II and III.

ω̄a=2π ω̄l=2π ω̄u=2π χl=2π χu=2π

7.396 GHz 6.966 GHz 7.599 GHz −11.1 MHz −23.4 MHz

κa=2π κl=2π κu=2π θ̄

11.2 MHz 12.1 MHz 11.6 MHz 0.602 rad

TABLE V. Circuit parameters at zero flux Φ ¼ 0 and
T ¼ 20 mK.

IC (nA) LJ (nH) La (nH) CS (fF) Ct (fF) dJ (%)

58.6 5.63 5.32 110 59.6 1.3

EJ=ð2πℏÞ ECq=ð2πℏÞ ECa=ð2πℏÞ
(MHz)

29200 88 42.2

TABLE II. Transition frequencies, anharmonicities, and cou-
pling strengths at zero flux Φ ¼ 0 and T ¼ 20 mK.

ωq0=2π ω̄a=2π ωc=2π ω̄l=2π ω̄u=2π (GHz)
6.284 7.780 7.169 7.038 7.911

gzz=2π gac=2π χl=2π χu=2π αq=2π Ua=2π (MHz)
34.5 295 −4.5 −28.5 −88 −13.5
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κc ¼−½sin2ðθÞ=cosð2θÞ�κuþ½cos2ðθÞ=cosð2θÞ�κl and κa ¼
½cos2ðθÞ= cosð2θÞ�κu − ½sin2ðθÞ= cosð2θÞ�κl. The results are
shown in Table III. To have direct access to the cavity decay
(without hybridization into polaritons), we also performed
transmission spectroscopy at 4.2 K. Indeed, at this temper-
ature, the aluminum of the transmon molecule circuit is not
superconducting. From the resonance width we obtained
κ4 K
c =ð2πÞ ¼ 19.6 MHz, which is slightly larger than
reported in Table III at 20 mK, probably due to extra losses
in themetal and the dielectric. Finally, wemeasured the qubit
decay timeT1 and dephasing timeT2 at 20mKvia relaxation
and Ramsey experiments, respectively.
The ancilla frequency and decay depend strongly on flux

because of the SQUIDs. Therefore, in Table IV we state the
corresponding values at nonzero flux, Φ ¼ 5Φ0, which we
use in the theoretical prediction of Fig. 3. All the rest of the
parameters are the same as in Tables II and III.
In Table V we display the microscopic parameters

describing the transmon molecule circuit. The asymmetry
dJ is measured from room temperature resistance meas-
urement (cf. Appendix E). All the other parameters are
derived using the expressions from the circuit model in
Appendixes B and C, which relate the circuit parameters to
the measurable frequencies, anharmonicities, and couplings
in Table II. Explicitly, we use the formulas ECq

¼ −ℏαq,
ω̃q¼ω0

q−αqþgzz, EJ¼ðℏω̃qÞ2=ð16ECq
Þ, Cq ¼ e2=ð2ECq

Þ,
CS ¼ Cq=2, LJ ¼ ðϕ0Þ2=EJ, ω̃a ¼ ω̄a −Ua þ gzz, ECa

¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ℏUaðℏω̃aÞ2=ð16EJÞ

p
, La¼2LJ=½ECa

=ð−ℏUaÞ−1�, Ca ¼
e2=ð2ECa

Þ, Ct ¼ ðCa − 2CSÞ=4, and the critical current of
the Josephson junctions reads IC ¼ EJ=ϕ0. The resulting
values are shown in Table V with three significant digits.
They are consistent with the parameters obtained from the
numerical fit of Fig. 8(c) and also from estimations based
on a finite element high frequency simulation software
(HFSS) and room temperature resistance measurements of
the transmon Josephson junctions and SQUIDs chain.
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