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Summary 

NF-B controls the transcriptional response to inflammatory signals by translocating into the nucleus, but 

we lack a single-cell characterization of the resulting transcription dynamics. Here we show that 

transcription of NF-B target genes is heterogeneous in individual cells but yet results in an average  

nascent transcription profile that is prompt (i.e. occurs almost immediately) and sharp (i.e. increases and 

decreases rapidly) compared to NF-B nuclear localization. Using an NF-B-controlled MS2 reporter we 

show that the single-cell nascent transcription is more heterogeneous than NF-B translocation dynamics, 

with a fraction of synchronized “first responders” that shape the average transcriptional profile and are 

more prone to respond to multiple TNF- stimulations.  A mathematical model combining NF-B mediated 

gene activation and a gene refractory state is able to reproduce these features. Our work shows how the 

expression of target genes induced by transcriptional activators can be heterogeneous across single cells 

and yet time-resolved on average. 

Introduction 

A tight control of gene expression is assumed to be fundamental for any living system, from prokaryotes to 

higher organisms. For this reason, it was surprising to find that the same gene within a clonal population of 

identical cells can be translated into different protein levels (Ko et al., 1990) which can fluctuate in time even 

within the same cell (Elowitz et al., 2002). The development of accurate techniques allowing to measure gene 

expression in single living cells showed that such variability is related to discontinuous transcriptional 

“bursts” (Tunnacliffe and Chubb, 2020), spurts of RNA production interspersed with periods of no activity, 

that emerge from fluctuations of the gene between “active” and “inactive” states whose precise origin is only 

partially understood (Chong et al., 2014).  

Transcriptional bursts have been observed for a variety of organisms (Golding et al., 2005; Pichon et al., 2018; 

Suter et al., 2011), but their functional role is also unclear, although it has been proposed as a natural 

mechanism exploited and controlled by cells to either produce variability or robustness in gene-expression 

programs, presumably in a context-specific way (Raj and van Oudenaarden, 2008). Transcriptional bursts are 

indeed modulated by external stimuli (Molina et al., 2013), by the developmental stage of the organism 

(Muramoto et al., 2012) and by chromatin state (Nicolas et al., 2018). However, we are still far from having 

a complete picture of how the delicate balance between robust control and variability in gene expression  is 

achieved (Raj and van Oudenaarden, 2008).  

Such balance is presumably gene and cell specific, and different for different biological processes. For 

example, the inflammatory response is characterized by a variable degree of transcriptional heterogeneity 

across genes, species and cell types (Hagai et al., 2018), whose connection to the dynamics of transcriptional 

bursting is unexplored. Transcription in inflammation depends on the dynamics of its master regulator 
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(Hayden and Ghosh, 2008): the transcription factor NF-B.  NF-B dimers containing the monomer p65 (that 

we refer to as NF-B in what follows) are activated by re-localizing from the cytoplasm to the nucleus upon 

inflammatory stimuli such as tumor necrosis factor alpha (TNF-). This activation by nuclear localization is 

tightly regulated by a system of negative feedbacks (Hoffmann et al., 2002) so that cells display a variety of 

nuclear localization dynamics of NF-B, including oscillations (Nelson et al., 2004; Tay et al., 2010; Zambrano 

et al., 2014a). Population-level measurements have shown that NF-B dynamics lead to different dynamical 

patterns of mRNA expression (Ashall et al., 2009; Nelson et al., 2004; Sung et al., 2009; Zambrano et al., 

2016). The NF-B mediated nascent transcriptional response to stimuli at the population level is however 

fast, comparable with the translocation dynamics of NF-B (Hao and Baltimore, 2013; Zambrano et al., 2016) 

that peaks at 30 min–1 h depending on the cell line and is accompanied by a fast binding of NF-B to the 

promoter of target genes (Saccani et al., 2001).  

Much less is known about how NF-B dynamics modulates transcriptional variability at single cell level. Time-

lapse analysis of NF-B translocation, followed by analysis of mRNA expression at a single time-point through 

RNA FISH (Lee et al., 2014)  and  scRNA-seq (Lane et al., 2017)  has  demonstrated that different NF-B 

dynamics translate into specific gene expression programs in single cells. Direct simultaneous observation of 

NF-B dynamics and its gene expression products has so far been carried out at the protein level only, using 

GFP-transgenes (Nelson et al., 2004). More recent studies have begun to interrogate systematically how the 

NF-B mediated transcriptional dynamics is modulated at the single-cell level by making use of a destabilized 

GFP transgene under the control of an HIV-LTR promoter (carrying two binding sites for NF-B (Stroud et al., 

2009)). In these studies, TNF- induced gene expression has been shown to occur in bursts that are tuned by 

the insertion site of the transgene (Dar et al., 2012) and that are amplified by TAT-mediated positive 

feedbacks upon viral activation (Wong et al., 2018). However, as these assays are based on protein reporters 

with limited temporal resolution, the relationship between NF-B nuclear localization and transcriptional 

dynamics at single cell level and its connection with the population level remains unexplored.  

To address this, here we analyzed the cellular response to TNF- at single-cell level in terms of NF-B 

localization and nascent transcription, both for multiple genes in fixed cells (by single-molecule RNA FISH) 

and for a MS2 reporter gene controlled by an HIV-LTR promoter (Tantale et al., 2016) in living cells (by time-

lapse imaging). We find that although different genes are expressed with different degrees of variability, they 

share common average population dynamics of nascent transcription that is prompt (i.e. occurs 

simultaneously with NF-B translocation) and sharp (i.e. it is limited in time and decays faster than NF-B 

nuclear localization).  Live-cell analysis combined with repeated stimulation using microfluidics reveals that 

the population’s sharp response is due to two factors: (i) a fraction of cells – first responders – that respond 

promptly and synchronously to TNF- and are more prone to respond to multiple stimuli and (ii) a 

characteristic gene inactive time, during which the gene is insensitive to reactivation, following each active 
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period. Mathematical modelling shows that indeed only the combination of transcriptional activity driven by 

NF-B localization and a gene activity module including a refractory state can recapitulate the promptness 

and the sharpness of the transcriptional response.  

Our results show how the interaction of NF-B localization dynamics and target gene activity can produce a 

timely and gene-specific collective response upon inflammatory stimuli. 
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Results 

Population-level NF-B-mediated  transcription is prompt and sharp, despite being heterogeneous 

in single cells 

To characterize transcriptional dynamics of inflammatory genes at single-cell level, HeLa cells were exposed 

to TNF- and mature and nascent transcripts of three  NF-B target genes (NFKBIA coding for NF-B main 

inhibitor IB, IL6 for the cytokine IL6 and TNF for the cytokine TNF-) (Rabani et al., 2011; Sung et al., 2009; 

Zambrano et al., 2016) were quantified at different timepoints (Figure S1) using single molecule fluorescence 

in-situ hybridization (Tsanov et al., 2016) (smFISH, see Transparent Methods). smFISH allows counting both 

nascent RNA molecules at active transcription sites  (TS), which appear as 1 or 2 bright dots in the nucleus, 

and mature mRNA molecules, which appear  as individual dots scattered in the nucleus and in the cytoplasm 

(Figure 1A and Figure S2A). In response to 10 ng/ml TNF-transcription of the three tested genes was 

induced with different degrees of cell-to-cell variability (Figure 1A and 1B). Such variability is captured by the 

Gini coefficient (Shaffer et al., 2017), a metric that ranges between 0 -when all cells express the same number 

of mRNAs- and 1 -when all mRNAs are detected in just one cell. NFKBIA displayed the most uniform 

expression (Gini ranging between 0.21 and 0.26, comparable to what previously reported for housekeeping 

genes (Shaffer et al., 2017)), while IL6 (Gini from 0.41 to 0.55) and TNF (Gini from 0.29 to 0.33)  were more 

unevenly expressed.  Such different degrees of heterogeneity of the analyzed genes can be related to 

different bursting kinetics (Tunnacliffe and Chubb, 2020).  By fitting the distribution of mature RNAs in single 

cells to a simple negative binomial model (Tunnacliffe and Chubb, 2020) whose parameters depend on the 

bursts’ features (Raj et al., 2006) (Figure S2B) we estimate a higher relative burst frequency for TNF and 

NFKBIA than for IL6. The gene activity at single-cell level, estimated as the fractions of cells carrying active 

TS, indeed strongly differed among the genes considered: after stimulation NFKBIA TS were detectable in the 

largest fraction of cells (ranging from 84% at 20 min to 44% at 3h post TNF-  followed by IL6 TS (ranging 

from 32% to 21%) and  TNF TS (from 16% to 9%) (Figure 1C). 

Surprisingly, despite the observed heterogeneity in mRNA levels and active TS numbers at single cell level, 

the population average of the nascent transcriptional dynamics was remarkably similar for all genes, peaking 

at 20 min post stimulation as measured by either smFISH (Figure 1D) or intron-targeted qPCR (Figure S2C 

and Transparent Methods). Published models for NF-B mediated gene expression suggest that RNAs are 

generated proportionally to NF-B nuclear abundance (Lee et al., 2014; Zambrano et al., 2014b). We tested 

this notion by comparing nascent transcriptional dynamics with the abundance of nuclear NF-B –a classical 

measure of NF-B activation– obtained by immunofluorescence (see Transparent Methods) at different time 

points. Similar to previous reports (Lee et al., 2014), nuclear NF-B accumulated rapidly and rather 

homogeneously across the cell population, peaking after 20 minutes and then decreasing in the following 

three hours (Figure 1D and S2D). Surprisingly, following its peak at 20 minutes, average nascent transcription 
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decreased faster than nuclear NF-B abundance (Figure 1D): the time t1/2 for the average nascent RNA signal 

to decrease to half of the peak value is ~30 min, whereas it is ~100 min for the average NF-B nuclear 

localization (Figure 1D).  

Taken together, our data show that the transcriptional activation of NF-B target genes is gene- and cell-

dependent. However, at population level their nascent transcription is prompt, since it peaks synchronously 

with NF-B nuclear localization within our temporal resolution, and sharp, since it decays faster than NF-B 

nuclear localization. We then decided to investigate further how these population-level features emerge 

from single-cell bursting dynamics using a live-cell reporter for nascent transcription.    

A live-cell reporter of NF-B-driven nascent transcription recapitulates the dynamics of endogenous 

genes 

To monitor transcription induced by NF-B in single living cells we used the HeLa 128xMS2 cell line (Tantale 

et al., 2016) (see Transparent Methods). Briefly, these cells harbor a single integration of a reporter gene 

containing 128 intronic repeats of the MS2-stem loop that are bound by a phage coat protein fused to GFP 

(MCP-GFP), such that bright spot within the nucleus denotes an active TS (Figure 2A). The reporter gene is 

under the control of the HIV-1 LTR, which contains two NF-B binding sites (Stroud et al., 2009); this 

compares with the promoters of classic NF-B targets, which typically harbor from 1 to 5 binding sites (Siggers 

et al., 2010). TNF- stimulation induces transcription, as assessed by PCR after 1 hour of stimulation with 10 

ng/ml TNF- (Figure S3A). We visualized transcription in our cells using a sensitive widefield microscope (see 

Transparent Methods), which allows to visualize both the TS and the single molecules of released transcripts 

(RNAs, see Transparent Methods and insets of Figures 2B-C). Similar to what observed for IL6 and TNF, we 

found active TS in only a relatively small fraction of cells (20%) 1 hr after TNF-induction; an additional 20% 

of cells displayed mature RNAs but not active TS (Figures 2C and 2D). This fractional response was confirmed 

by smFISH using probes targeting the MS2 RNA (Figure S3B) and cannot be ascribed to reporter loss, since 

active TS were present in 10 out of 10 clonal sub-populations generated (Figure S3C). Interestingly, as for the 

endogenous genes, a fraction of unstimulated cells (5%) also displayed active TSs while 20% displayed only 

released RNAs  (Figures 2B and 2D), suggesting previous transcriptional activity potentially due to nonzero 

nuclear NF-B basal levels or spontaneous activations, as reported (Zambrano et al., 2014a) – or to infrequent 

activation of our reporter by independent  pathways. Importantly, the population average of MS2 nascent 

transcriptional dynamics is similar to that of the selected endogenous genes, and specifically displays a 

prompt and sharp response (Figure S3D). Hence, our MS2 reporter reproduces both single-cell and 

population-level features of endogenous NF-B target genes and thus can be considered a faithful tool to 

study NF-B regulated transcription.  
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NF-B mediated transcriptional response is bursty and shaped by a population of “first responders”  

 

We then used our reporter to characterize nascent transcriptional dynamics by monitoring the TS signal in 

single 128xMS2 cells over time, using a confocal microscope (Figure 3A, upper panels).  We recorded 3D 

stacks of 10 m depth every 3 minutes for 3 hours. A custom software allows to track the cell and detect the 

TS after a high pass filter of the stack maximal projection (see Transparent Methods and Fig. S4A). The 

maximum signal intensity of the TS is informative of the total TS intensity, since they correlate (see Figure 

S4B), while it is independent from the expression level of MCP-GFP in the cell (Figure S4C). The TS signal is 

then compared to the MCP-GFP background intensity to distinguish between transcriptionally “active” and 

“inactive” cells (see Transparent Methods and Figure S4D). Our time-lapse analyses showed that the MS2 

transcriptional activity induced by TNF-appears as discrete peaks, heterogeneous both in height and 

frequency, confirming experimentally the “bursty” feature that has been postulated from indirect 

measurements (Dar et al., 2012; Wong et al., 2018). In addition, “active” and “inactive” cells coexisted both 

after stimulation Movie S1 and Fig. 3A) or no stimulation (Movie S2 and Fig. 3A). 

We repeated the time lapse imaging of our cells for different TNF- doses and measured TS signals in 

hundreds of cells (Figure 3B). In color-plots, each line corresponds to a single TS observed for 180 minutes 

and the color reflects the TS signal intensity. The measured transcriptional response is strongly 

heterogeneous (Movies S3 to S5), but controlled by TNF-, as the timing, the amplitude and the integrated 

intensity of the detected bursts are modulated by the dose (Figure S5A), as reported for bulk populations 

(Tay et al., 2010). Shear stress (Baeriswyl et al., 2019) potentially associated to plain addition of TNF--free 

medium does not lead to observable TS activity (Figure S5B).  

Following previous work, we adapted the random telegraph model of transcription (Suter et al., 2011) to our 

MS2 reporter gene (Figure 3C) (see Transparent Methods) to determine the timespan of gene activations 

and estimate the evolution of the number of nascent transcripts in time, n(t).  The model accounts for the 

promoter switching between an active and an inactive state with rates 𝑘𝑜𝑛 and  𝑘𝑜𝑓𝑓. Once the promoter is 

in its active state, new transcripts are generated with a rate equal to 𝑘+ and processed/realeased with a rate 

equal to 𝑘−. After verifying that the stochastic model could faithfully infer gene activation from synthetically 

generated TS time traces (Figure S6A), we fitted our experimental data with the model (Figure 3C) by 

imposing that the average number of nascent transcripts observed after 20 minutes of stimulation with TNF-

 (10 ng/ml) would match with the average TS signal observed by smFISH (6 RNAs/cell). As the TS signal of 

our reporter can decrease in tens of transcripts per minute (Tantale et al., 2016), -the limited temporal 

resolution of our experiments  does not allow to retrieve unique estimates for 𝑘−, with multiple (𝑘+, 𝑘−)  

pairs fitting the data equally well. Only the ratio of 𝑘+  and 𝑘− that determines the average burst amplitude 

could be determined. The behavior of the burst size is indeed informative: 
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in agreement with our previous analysis, the amplitude of the first burst is modulated by the dose of TNF-

(Figure 3D) and, more generally, the reporter transcriptional activity (estimated as AUC of n(t)) increases 

upon treatment with TNF- (Figure 3E), due to an increase in the gene activation rate 𝑘𝑜𝑛 and a decrease in 

the deactivation rate 𝑘𝑜𝑓𝑓 (Figure S6B). 

Importantly, we found a fraction of cells responding almost synchronously and within few minutes after TNF-

 stimulation. This first response occurred earlier upon higher doses of TNF-, as evinced by plotting the 

time 𝑡𝑚𝑎𝑥 at which maximal TS activity was observed (Figure 3F). At 10ng/ml of TNF-the distribution of 

𝑡𝑚𝑎𝑥 was found to be bimodal (as evidenced by a change in the slope of the cumulative distribution, Figure 

3G) allowing to identify a fraction of cells (approximately 40%) that respond within 30 minutes post-

stimulation, that we define as  ‘first responders’ (Figure 3G). Surprisingly, first responders display a stronger 

transcriptional activity than the other cells (Figure 3H), despite being indistinguishable from the rest of the 

cell population before stimulation with TNF-(Figure S6C). 

 

After this first burst of transcription, stochastic bursting dominates the individual cell response, as can be 

quantified by the evolution in time of the coefficient of variation of the number of nascent transcripts n(t). 

The coefficient of variation has a minimum at 20 minutes (Figure S6D), which indicates an early synchronous 

round of transcription in a fraction of cells. The high synchronicity of bursting of these first responders at 

approximately 20 min post TNF- lead to the observed prompt transcriptional response at population level. 

First responders are more likely to respond strongly to consecutive pulses of TNF -. 
 We next used our live-cell reporter to characterize to what extent cells are capable to respond to repeated 

stimulation. Using our previously described microfluidics setup (Zambrano et al., 2016) , we challenged our 

MS2x128 cells with two independent 1 hour pulses of 10 ng/ml TNF- separated by a 2 hours washout (see 

Transparent Methods) and followed TS activity in hundreds of cells (Figure 4A). Similarly to what we 

observed for a single stimulation, the bursting parameters extracted from this two-pulses experiment were 

found to be modulated by TNF- (Figure S7A). We then determined the fraction of cells responding to the 

first, to the second, and to both pulses (Figure 4B and Movie S6).  A majority of responding cells responded 

to both pulses, and a fraction of cells responded to only one. Surprisingly, the fraction of cells responding to 

both pulses was significantly higher than what could be expected from statistically independent 

transcriptional activations (Figure 4B and Transparent Methods). Moreover, the maximum TS signal, 

expressed as number of nascent transcripts nmax for each pulse, was higher for cells responding to both TNF-

 pulses than for cells responding to only either one of them (Figure 4C); the AUC behaves analogously 

(Figure S7B). Further, the timing to the maximum TS signal (tmax) after a TNF- pulse was shorter on average 
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for cells that respond to both pulses than for cells that respond to just one (Figure 4D), and similar to the tmax 

of the previously identified “first responders”.  

Overall, our results suggest that despite an intrinsic variability in gene activation (cells can respond to either 

one TNF- pulse or to both), there is a higher than expected proportion of cells that respond to both pulses, 

which excludes the statistical independence of the two responses. The data indicate that those cells are in a 

“first responder” state lasting longer than 180 minutes; first responders are activated faster, higher and more 

often than other cells. 

The timing of the nascent transcriptional response does not depend on NF-B nuclear localization 

dynamics at single-cell level 

Once we established that the population-level transcriptional response to TNF- is the result of 

heterogeneous transcriptional activation in single cells, we asked whether the latter emerged from 

heterogeneous nuclear localization dynamics of NF-B. We stably transfected our MS2x128 cells with a 

previously validated RFP-p65 construct (Bosisio et al., 2006) (Figure 5A) and measured concomitantly TS 

signal intensity and NF-B nuclear localization in single living cells (see Transparent Methods,  Figure 5A and 

Movie S7). Although NF-B nuclear localization dynamics varies across single responding cells (see 

Transparent Methods), as previously reported  (Lee et al., 2014; Tay et al., 2010), we find  that the nascent 

transcriptional response is even more heterogeneous (Movies S8-S10)  as shown in previous experiments, 

and includes a fraction of “first responders”. Parameters governing the bursting kinetics were found similar 

to those obtained from untransfected cells (Figure S8A), excluding an effect of transfection on results. At the 

single cell level, the fold change NF-B nuclear abundance does not correlate with the peak value of nascent 

transcription nor its integrated value, neither when such correlations are evaluated for prompt responders  

(r2<0.1 for all of them) (Figure S8B-C). This is somehow in contrast with reports showing a correlation 

between the fold change nuclear NF-B and mature transcriptional output by smFISH (Lee et al., 2014; Wong 

et al., 2019). This discrepancy can have different experimental sources, the most evident one is that, 

differently from smFISH, our live-cell assay has no direct access to the amount of mature RNA released from 

the TS. Another possibility is that, since the ectopic (labeled) NF-B is expressed heterogeneously across our 

population of transfected cells, the proportionality of the fold change of RFP- NF-B and the endogenous one 

varies between cells and this blurs correlations. In any case, our data shows how a relatively uniform and 

synchronous nuclear translocation of NF-B drives highly non-uniform transcription at single cell level, which 

highlights the apparent stochastic nature of the transcriptional activation process. Such stochasticity 

presumably arises as a combination of the intrinsic molecular noise of the transcriptional process and the 

concomitant action of other regulatory players alongside NF-B, whose activity might further determine the 

transcriptional output. 
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Time-resolved measurements allowed us to quantify more finely the promptness of the transcriptional 

response. By superimposing the average data for NF-B translocation and MS2 reporter transcriptional 

activity we found that both peak almost simultaneously at about 20 minutes post stimulation (both for 

transfected and untransfected cells, Figure 5B). Of note, ChIP-seq data on macrophage-like cells (Saccani et 

al., 2001) show a peak 20 min post-LPS stimulation in NF-B binding to the promoter of a subset of certain 

NF-B target genes, consistent with our observation for nascent transcription.  The time at which NF-B 

nuclear translocation peaks (typically the only peak, see Figure S8D) is relatively uniform compared to the 

first peak of nascent transcription (Figure 5C). Indeed the timing of the peak in NF-B translocation matches 

on average that of the transcriptional response of the cells previously identified as “first responders”(Figure 

5C), indicating that nuclear NF-B might act at population level as  a “limiting factor” for transcriptional 

activation of our reporter. This is compatible with the observation that NF-B can find its targets rapidly 

(search time ~2 min), as can be derived from recent single molecule imaging data (Callegari et al., 2019) (see 

Transparent Methods). Of note, a small fraction of cells keeps transcribing even if NF-B nuclear 

concentration has decreased (see e.g. Movie S9), which might reflect a population heterogeneity in NF-B 

binding to the promoter, as indicated by other studies (Callegari et al., 2019).  We also quantified the 

sharpness of the nascent transcriptional response and of NF-B localization by computing their time t1/2. The 

TS signal decayed faster than NF-B nuclear abundance, in agreement with what observed for endogenous 

genes by smFISH. Thus, sharpness is reproduced faithfully by time-lapse imaging of our reporter gene (Figure 

5D).  

 

In short, these results illustrate how the nascent transcriptional response to TNF- is more heterogeneous 

than NF-B nuclear localization among the cells in the population. Moreover, we identify a fraction of first 

responder cells whose maximum transcriptional activity occurs simultaneously to NF-B maximum nuclear 

translocation and is stronger than for the rest of the cells, so it is responsible for the prompt and sharp 

transcriptional response emerging at population level.  

 

A model combining NF-B mediated gene activation and a refractory state recapitulates the prompt 

and sharp nascent transcriptional response  

To gain insights on the origin of the prompt and sharp NF-B mediated transcriptional response, we explored 

mathematical models for NF-B-driven transcription. We performed stochastic and deterministic simulations 

of gene activity (see Transparent Methods) and compared their results to our experimental data. A first 

candidate for our exploration was the random telegraph model of transcription, where the gene switches 

between on and off states in a purely stochastic fashion, with constant switching rates. This model however 

could not recapitulate our experimental data. For example, the experimentally measured gene off-times are 
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described by a unimodal distribution with a shape that varies between unstimulated and stimulated 

conditions (Figure 6A), rather than by the exponential that would be expected from the random telegraph 

model (Model 0, Figure 6B). Two alternative mechanism have been suggested to give rise to these unimodal 

distributions:  a) the presence of a gene refractory state (Molina et al., 2013; Suter et al., 2011) that prevents 

the gene from immediately starting a second round of transcription after the first one is over and b) an 

oscillatory modulation of the gene activation (Zambrano et al., 2015). As shown below, the combination of 

these two features could reproduce the experimental features that we observed.  

In previous explorations we simulated NF-B response to TNF- using a simple mathematical model 

(Zambrano et al., 2014b) (see Figure 6B and Transparent Methods); here, we analyzed the transcriptional 

dynamics of a prototypical target gene by modelling different NF-B controlled gene activation-deactivation 

schemes inspired by experimental observations, among which our own. We used deterministic modeling to 

simulate population-average gene activity dynamics (Figure S9A) and stochastic modeling to simulate bursty 

stochastic transcription at single cell level, including the distribution of the off times (Figure S9B). The key 

parameters considered are the gene inactivation (koff) and activation rates (kon), which we varied four orders 

of magnitude around values used in the literature (Tay et al., 2010; Zambrano et al., 2014b) (see Transparent 

Methods). To constrain our exploration, we modeled first the gene activation rate as depending linearly (non-

cooperatively) on NF-B nuclear concentration, as proposed in a number of models (Tay et al., 2010; 

Zambrano et al., 2014b) and deduced from previous experiments and thermodynamic considerations 

(Siggers et al., 2010) (Model i, Figure 6B). This model allows to reproduce the non-monotonocity of the off 

times observed experimentally (Figure 6B), as predicted (Zambrano et al., 2015), but is unable to reproduce 

the prompt and sharp gene activation observed in our experiments (Figure 6C).  

A recently proposed mechanism that in principle could rapidly shut down transcriptional activity and produce 

“sharpness” is molecular stripping, by which IBactively induces the dissociation of NF-B from its binding 

sites on DNA (Dembinski et al., 2017; Potoyan et al., 2016) (Model ii, Figure 6B). A model based on molecular 

stripping reproduces the unimodal distribution of the inactivation times (Figure 6B) and we could indeed 

identify a sector of parameter space – low kon and high koff  values – resulting in sharp transcriptional 

responses at the population level (Figure 6B). However, these parameters were not compatible with a 

prompt transcriptional activation, which was found for high kon values instead (see purple areas in Figure 6C 

and examples in Figure S9C). To test these predictions, we co-treated our cells with TNF- and cycloheximide 

(CHX), which blocks protein synthesis and hence IB synthesis and stripping. CHX is effective as 

demonstrated by the progressive decay observed in the nuclear fluorescence of MCP-GFP (Movie S11) and 

by higher NF-B nuclear localization post TNF-stimulation (Figure S9D), as expected from blocking IB re-

synthesis. However, the decay time of the TS signal after reaching its maximum at tmax is almost unchanged 

by CHX, indicating that it does not depend on IB re-synthesis and stripping (Figure S9E).  
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Finally, we tested a model that combines the two previously mentioned mechanisms: NF-B mediated 

activation by nuclear translocation and a gene refractory state (Model iii, Figure 6B). It is important to 

distinguish this gene refractory state from the “refractory state” in the NF-B system arising due to feedback 

signaling (via the protein A20); the latter might preclude NF-B response to consecutive TNF- pulses 

(Adamson et al., 2016; Zhang et al., 2017). Here we do not explore how these two type of refractoriness 

might interact, an interaction that deserves future exploration.  As previously reported (Molina et al., 2013), 

our model with a gene refractory state reproduces the non-monotonous distribution of “off times” of our 

bursty transcription data (Figure 6B). Interestingly, we find a wide region of parameter space (characterized 

by high kon and koff) compatible with both prompt and sharp gene activation (see green squared areas in 

Figure 6C and examples in Figure S10A). Furthermore, the simulated bursts have a structure clearly 

reminiscent of our experimental data, differently from the ones obtained from the other models (Figure 

S10B). Importantly, model iii is able to reproduce two key features: (i) the temporal evolution of the 

coefficient of variation of nascent transcription that we observed experimentally, with maximum 

synchronization of the bursts approximately 20 min post-stimulation (Figure S10C), and (ii) the presence of 

a fraction of first responders in the cell population (Figure S10D). When using the experimentally determined 

NF-B nuclear dynamics as input to simulate the gene activation rates of each single cell following the scheme 

of Model iii, we also reproduced a population-level prompt and sharp nascent transcriptional response 

(Transparent Methods and Figure S10E).  

Hence, a gene refractory state is necessary to recapitulate the experimentally determined features of NF-B 

mediated nascent transcription upon TNF-, including a prompt and sharp transcriptional response emerging 

from a fraction of first responders.    
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Discussion  

NF-B dynamics is fundamental for the proper temporal development of inflammation. Previous reports 

(Ashall et al., 2009; Nelson et al., 2004; Sung et al., 2009) had shown that the NF-B mediated transcriptional 

response to TNF-can display a variety of dynamics, including genes whose mature transcripts peak early 

(at 30 min) or late (>3 hours), and even oscillating and non-oscillating gene expression patterns (Zambrano 

et al., 2016). We and others (Hao and Baltimore, 2013; Zambrano et al., 2016) suggested that such mRNA 

expression patterns arise from a common nascent transcriptional response, that peaks typically 20-30 

minutes post stimulation. However, all these observations were based on population-level transcriptional 

measures, so how single-cell transcriptional response contributes to these features remained an open 

question that we have addressed in this work. 

Different endogenous genes are expressed with different degrees of variability among individual cells upon 

TNF-, but share a common population-level prompt and sharp nascent transcriptional response. Using 

single-cell smRNA-FISH for three bona-fide NF-B target genes at different time points post TNF- 

stimulation, we found that all of them were expressed heterogeneously across the population, although 

NFKBIA (coding for the inhibitor IB) was expressed more uniformly than IL6 and TNF, coding for cytokines. 

Surprisingly, though, we found that the population dynamics of the nascent transcriptional response was 

very similar for these three genes, in spite of their marked differences in expression level and variability at 

single cell level, with Gini coefficients ranging from 0.2 to 0.5. Concomitant measurement of NF-B nuclear 

localization by immunofluorescence showed that their common nascent transcriptional response is prompt, 

peaking simultaneously with NF-B nuclear abundance, and sharp, decaying faster than the peak of NF-B 

nuclear localization.   

Population-level promptness and sharpness arises from heterogeneous bursting in single cells, including a 

fraction of “first responders”.  NF-B response to TNF- has been described as “digital”, giving rise to a 

transcriptional output proportional to the fraction of cells displaying NF-B translocation (Tay et al., 2010), 

which suggested a relatively uniform transcriptional response across those cells. Instead, using our MS2 

nascent transcription reporter we find that a relatively uniform translocation of NF-B in our cells (100% 

responding to 10 ng/ml of TNF-, as assessed by immunofluorescence) gives rise to an extremely 

heterogeneous transcriptional response. This includes a fraction of “first responders”, cells that reach a 

maximum transcriptional response higher and earlier than the other cells, and are more likely to respond to 

consecutive pulses of TNF-. Interestingly, a fraction of “first responders” was identified when studying 

cellular responses to viral-activated interferon-beta signaling (Patil et al., 2015). smFISH data for endogenous 

genes NFKBIA, IL6 and TNF also confirm a peak of TS activity for a fraction of cells within 20 minutes.  We 
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ascribe the nascent transcriptional response at the population level to first responders that start transcribing 

earlier and more strongly than the other cells. Such rapid surge in nascent transcription is compatible with a 

short NF-B search time on chromatin and transcriptional initiation can indeed occur nearly simultaneously 

to NF-B translocation in the nucleus, as we observe experimentally in some cells. 

The transcriptional response to consecutive TNF- pulses has a stochastic component that is relevant to HIV 

latency. When challenging our cells with two pulses of TNF- we find that while some cells respond to both 

pulses, some will respond just to the first or the second. Our cells harbor an LTR-HIV1 promoter, therefore 

this observation could represent the microscopic equivalent of a recently identified mechanism involved in   

HIV1 latency, where proviruses not induced after a first stimulation can be induced by a second one (Ho et 

al., 2013). This mechanism leads to a stochastic latency exit and it is clinically important as it may prevent 

curing patients from the virus by the "shock-and-kill" approach.  In this context, it important to point out that 

negative feedback mediated by the IKK inhibitor A20 (a target of NF-B) has also been shown to result in a 

fraction of cells where NF-B does not respond to pulsatile stimulation with TNF-(Adamson et al., 2016; 

Zhang et al., 2017). Such phenomenon is more evident for pulses separated by less than 100 minutes 

(Adamson et al., 2016) so  presumably may be uncoupled from our observed behavior of the first responders, 

although the interaction between these different layers of regulation might be important for pulses in 

different timescales and deserves further exploration.  

Analysis of transcriptional bursts highlights the existence of a characteristic inactive time after each gene 

activation. Our live cell imaging analysis of nascent transcription shows that after gene activations –during 

which multiple bursts of transcription can occur– there is typically a gene inactive time of approximately 25 

minutes. This is characterized by a unimodal distribution of the gene “off” times obtained from our stochastic 

inference framework.  Our previous theoretical work (Zambrano et al., 2015) and simulations presented here 

show that such characteristic unimodal distribution can in principle arise from NF-B-driven gene activation 

in a gene that has just two states (2-states model). However, these 2-states models (where inactivation is 

either spontaneous or driven by the inhibitor IB through “molecular stripping” (Potoyan et al., 2016)) were 

unable to reproduce our key experimental findings of promptness and sharpness.  

 Only a mathematical model combining both NF-B driven gene activation and a refractory state can 

reproduce experimental observations of promptness and sharpness.  Unimodal distributions in the gene off 

times were also observed by others (Molina et al., 2013; Suter et al., 2011; Tantale et al., 2016) and modelled 

by adding an additional gene refractory state (3-states model). A study of our gene reporter under the control 

of HIV TAT protein suggested that a non-permissive state on the timescale of tens of minutes can be related 

to the dissociation of TBP from the promoter (Tantale et al., 2016).  Here, by combining these 3-states model 

with NF-B mediated activation and a gene refractory state, we could reproduce the experimentally observed 

dynamics of transcription: a unimodal distribution of off times and a prompt and sharp response at 
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population level. This model also reproduces other features in our experiments that 2-states models cannot, 

such as the existence of a fraction of “first responders” and a peak of bursting synchrony at 20 minutes post-

stimulus. Overall, our model illustrates how a simple 3-states dynamics can produce a heterogeneous 

transcription activity at single-cell level and at the same time a sharp population-level transcriptional output. 

Further, our results confirm and reinforce recent theoretical modelling indicating that, counter-intuitively, 

gene refractory states can promote the rapid control of transcription in response to external stimuli (Li et al., 

2018). 

Sharp and prompt nascent transcriptional responses emerging from a fraction of “first responders”: a general 

feature for inducible transcription factors? Previous population-level work on transcription suggested that 

gene-specific NF-B driven expression profiles are mostly controlled by mRNA processing and degradation 

(Hao and Baltimore, 2013, 2009), while nascent transcription dynamics are shared among the different genes 

(Zambrano et al., 2016). Our work reinforces this viewpoint with a single-cell perspective, since we show how 

a uniform transcriptional dynamics emerge from prompt and bursty transcription in single cells. If mRNA 

degradation controls the temporal evolution of gene expression, a prompt and sharp peak of nascent 

transcription is a better-suited input to generate gene-dependent expression profiles as compared to a slowly 

varying transcriptional activity. The observed refractory state might have evolved from the necessity of 

sharpening the inherently stochastic transcriptional process, providing an opportunity window for decision 

(Zambrano et al., 2016). Furthermore, it is enough to provide a fraction of “first responders”, which might be 

useful to temporally stratify the population response to stimuli. It also worth to speculate what molecular 

mechanisms could define the “first responder” state. In our analysis, we could not identify first responders 

depending on the pre-stimulus transcriptional activity or on the initial NF-B nuclear concentration. 

Therefore, it is possible that for some cells  the promoters of NF-B dependent genes are primed in  cis- to 

respond rapidly to the increase in NF-B abundance, for example through higher accessibility or the pre-

loading of poised polymerase. Of note, recent genome-wide analysis of NF-B mediated nascent 

transcription in mouse embryonic fibroblasts revealed a class of very early genes (including TNF), with 

nascent transcripts peaking as early as 15 min post stimulation (Ngo et al., 2020) – earlier  than the peak in 

NF-B nuclear concentration. Detailed ChIP analysis at the promoters of these genes might therefore shed 

light on the nature of first responders.  

Prompt and sharp transcriptional profiles are observed for other inducible transcriptional programs, ranging 

from stress response to nutrient detection and development (Hafner et al., 2020; Senecal et al., 2014; 

Stevense et al., 2010). Further, other inducible transcription factors such as p53 have similar search times 

(Loffreda et al., 2017) to the one we calculated for NF-B and produce population-level gene-independent 

nascent transcription dynamics and gene-specific mRNA profiles due to differential RNA degradation (Hafner 

et al., 2017; Koh et al., 2019; Porter et al., 2016). It is then tempting to speculate that other transcription 
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factors that need to respond rapidly to intracellular (e.g. p53) (Hafner et al., 2017) or extracellular cues (e.g. 

c-FOS, STAT3, GR),(Alonzi et al., 2001; Stavreva et al., 2019) might exploit a similar design principle to produce 

a time-resolved, prompt and sharp nascent transcriptional response.  

In conclusion, our data and models show how the expression of NF-B target genes can be coordinated at 

cell population level and yet be heterogeneous across single cells, and further provide a framework for 

understanding how transcription factors can achieve prompt and sharp transcriptional responses. 

Limitations of study 
This study is focused on the transcriptional response of HeLa cells to TNF-; the behavior of nascent 

transcription for other cells–including primary cells- might vary from what we report here. We find a 

population-level prompt and sharp response to TNF- in a panel of representative NF-B targets and in an 

MS2 reporter driven by NF-B, however we cannot exclude other NF-B controlled genes might show a 

different dynamics of the nascent transcriptional response. Finally, to find the precise relation between NF-

B nuclear abundance and nascent transcriptional output at single-cell level it would be necessary to 

fluorescently tag the endogenous p65; our use of an ectopic tagged p65 only allows us to establish a 

qualitative – population level - relationship between nascent transcriptional dynamics and NF-B nuclear 

localization dynamics. 
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Figure legends 

Figure 1. Nascent transcription of NF-B target genes is prompt and sharp. A. Exemplary smFISH acquisitions 

using probes targeting NFKBIA, IL6 and TNF RNAs 20 min after induction with TNF- Maximum projection, 

scale bar 10 m. B. Mature MS2 transcripts per cell measured at different times following TNF-Also 

displayed is the Gini coefficient measured at 20’, 1 hour and 3 hour after stimulation, as an estimate of the 

heterogeneity in the cell-by-cell expression of the three targets (ncells =219, 270, 250, 206 for 0’, 20’, 1 hour, 

3 hours; IL6: ncells =187, 193, 220, 220 for 0’, 20’, 1 hour, 3 hours; TNF: ncells =117, 90, 157, 140 Kruskal-Wallis 

test (KW), * p<0.05, ** p< 0.01, *** p<0.001, **** p<0.0001). C.  Fraction of cells with either 0,1,2 or >2 

active transcription sites for MS2 measured by smFISH (ncells, statistical tests and p-value thresholds as in 

Figure 1B). D. Average number of nascent transcripts per cell measured by smFISH (black, error bars: SEM. 

ncells, as in Figure 1B-C, KW test – not shown - provides the same pair-wise p-values as in Figure 1C) and 

normalized nuclear- NF-B fluorescence intensity. The transcriptional peak is prompt, as it is almost 

simultaneous to that of NF-B nuclear localization within our temporal resolution, and sharp, since it is 

sharper than the peak of NF-B nuclear localization, as evaluated by linear interpolation as the time t1/2 

between maximal activation, max(𝐴), and 0.5 × max(𝐴) (indicated by a dashed line) (right panel, error bars 

calculated by computing the minimal and maximal slope of the lines passing through the 20’ and 1h time-

points). See also Fig. S1-2 and Table S1. 

Figure 2. Probing NF-B transcription in single cells using a MS2 reporter. A. The MS2 reporter of TNF- 

induced transcriptional activity. 128 MS2 stem loops RNAs are transcribed by the gene under the control of 

the NF-B controlled LTR-HIV1 promoter, RNAs are bound by constitutively expressed MCP-GFP protein. As 

a result, a bright spot appears in the cell nuclei. B. Representative image of unstimulated cells observed with 

a high illumination microscope, allowing to observe cells with a visible active TS (inset, red frame), cells with 

single RNAs but no visible active TSs (inset, green frame) and none observed (inset, blue frame). C. Same for 

stimulated with 10 ng/ml of TNF-. D. Quantification of the fraction of cells with visible RNAs and visible TSs 

show statistical difference between TNF treatment or no treatment (mean and SD of 2 independent 

experiments is plotted, t-test). See also Fig S.3. 

Figure 3. Live cell imaging of MS2 reporter for different doses and stochastic modeling highlights a dose-

dependent bursting behavior and the existence of a fraction of first responders to TNF-. A. Exemplary 

images of a cell stimulated with 10 ng/ml TNF- and acquired with our live cell imaging setup (maximum 

projection, scale bar 10 m). Arrows indicate the detected TS signal. Tracks show TS signal for unstimulated 

and stimulated cells, either displaying bursts (green) and no bursts (red). Transcribing TS are identified by 

having signal above or below the threshold (dashed black line) established as four times the standard 

deviation of the background signals. B. TS signal for hundreds of cells, either unstimulated or stimulated with 

1 or 10 ng/ml TNF-, sorted for increasing TS signal. C. Scheme of the simple mathematical model of nascent 
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transcription n(t) with the activation and inactivation rates of the gene (kon and koff), the RNA accumulation 

rate (𝑘+) and the RNA release rate (𝑘−). Example of the inferred transcript levels n(t) from a time series of 

TS signal. D. Transcriptional activity during the first burst, and E. Transcriptional activity during the whole 

time course inferred as area under the curve (AUC) of n(t), for the three doses of TNF. F.  Distribution of the 

timing of the maximum TS signal 𝑡𝑚𝑎𝑥,  that decrease with the TNF- dose . G. The cumulative distribution 

of 𝑡𝑚𝑎𝑥 for the cells treated with 10ng/ml allows defining the fraction of cells as first responders, as those 

with 𝑡𝑚𝑎𝑥 < 30 min.  H.  The peak transcriptional activity nmax is higher in first responders. In all panel, 

statistical significance is calculated with pairwise Kolmogorov-Smirnov tests. See also Fig. S4-S6. 

Figure 4. Pulsed TNF- stimulation shows that transcriptional bursts are not purely stochastic. A. TS signal 

for hundreds of cells for after two pulses of one hour of 10 ng/ml TNF- separated by a two hours washout, 

sorted for increasing TS signal. Cells are clustered as non-responding – within 90 minutes of each pulse– 

responding to only one of the two pulses or responding to both pulses.  B. Fraction of cells responding to 

none of the TNF- pulses, just the first or just the second (mean and standard deviation of 3 independent 

experiments), and predicted fraction for statistically independent activation (random). C. Maximum TS signal 

(in number of transcripts) after the first and second pulse for the sub-populations identified above. Cells 

responding to both TNF pulses display a stronger response to both the first and the second pulse. D. The 

timing of the maximum of the TS signal after each TNF- pulse, indicating that cells that are primed to 

response do so more quickly upon the first pulse that the remaining populations, in particular those 

responding only to the first or the second. See also Fig. S7. 

Figure 5. Simultaneous imaging of NF-B translocation and MS2 transcriptional activity highlights the 

promptness and sharpness of the transcriptional response. A. Top: exemplary images of cells stimulated 

with 10 ng/ml TNF- before and after 30 minutes stimulation with 10 ng/ml TNF-. Note the activation of 

NF-B in all the cells, while the TS appears active in the indicated ones (arrows) at that specific time point. 

Bottom: TS signal activity and nuclear NF-B activation for hundreds of cells sorted for increasing TS signal. 

B. Plot of the normalized average TS signal for three experiments of (green, standard deviation is 

represented), superimposed with the average NF-B nuclear intensity assessed by live cell imaging (red) with 

standard deviation inferred from imaging data. The dark green line represents the TS activity of transfected 

cells, within the range of variability observed for untransfected cells. The plot indicates that both signals peak 

simultaneously but TS activation decrease more sharply. C. The quantification of the timing of the first 

maximum of NF-kB nuclear localization and of TS activity, showing that the medians are similar but the latter 

is more heterogeneous with prompt and late responders. D. Estimation of the variability of the decay time 

t1/2 for the TS signal and NF-B nuclear localization, obtained from panel B. The decay time of the 

transcription signal is much lower than that of NF-B, indicating a sharper response. See also Fig S8 
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Figure 6. Identification of a minimal mathematical model recapitulating NF-B mediated transcription 

dynamics. A. Example of the inferred transcript levels n(t) given a TS signal time series. The off times toff are 

computed as described (top). Unimodal distribution of the off times obtained from our experimental data 

(bottom). B. Scheme of a simple mathematical model where gene activation is modulated by NF-B while 

inactivation is governed by the concentration of the inhibitor IB. Different possible mechanisms of 

activation of the target gene are considered. The classical telegraph model of transcription (Model 0) with 

constant activation and inactivation rates gives rise to exponential distribution of the off times (inset) so 

cannot describe experimental data. Based on the literature and our observation we propose alternative 

models: linear activation (Model i), molecular stripping (Model ii) and gene with a refractory state (Model 

iii). All of them reproduce the unimodal distribution of toff (insets). C. We screened the timing of the peak of 

the gene activity (top panels) and the sharpness (bottom panels) of the peak for Models i to iii, two orders of 

magnitude above and below reference values (kon,0 and koff,0). The color-code indicates the promptness and 

the sharpness of the peak, respectively, as compared to the peak of nuclear NF-B. Model i does not give 

prompt and sharp responses. Model ii gives prompt responses in a region that does not overlap with the 

region giving a sharp response, both highlighted with a purple square. Finally, Model iii with NF-B mediated 

activation and a refractory state is the only one giving parameters combination (high kon and koff) leading to 

a prompt and sharp transcriptional response, highlighted with a green square. See also Fig. S9-S10. 

Supplemental Movie Legends 
 

Movie S1, related to Figure 3. Exemplary time-lapse acquisition for cells treated with 10ng/ml TNF-Shown 

are maximal projections. 

Movie S2, related to Figure 3 Exemplary time-lapse acquisition for untreated cellsShown are maximal 

projections. 

Movie S3, related to Figure 3. Exemplary single-cell analysis of the MS2 signal intensity in a single cell upon 

treatment with 10ng/ml. The displayed cell shows a prompt response in minutes upon stimulation. 

Movie S4, related to Figure 3. Exemplary single-cell analysis of the MS2 signal intensity in a single cell upon 

treatment with 10ng/ml. The displayed cell shows a late response. 

Movie S5, related to Figure 3. Exemplary single-cell analysis of the MS2 signal intensity in a single cell upon 

treatment with 10ng/ml. The displayed cell shows no response. 

Movie S6, related to Figure 4. Exemplary time-lapse acquisition for cells treated with two pulses of 10ng/ml 

TNF-as described in figure 4Shown are maximal projections. 
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Movie S7, related to Figure 5. Exemplary simultaneous acquisition of NF-kB translocation (left) and MS2 

transcription dynamics (center, maximum projection shown). The overlay of the two channels is also shown. 

Movies S8-S10, related to Figure 5. Exemplary single-cell analysis of the MS2 signal intensity (left, displayed 

in green in the plot) and NF-kB translocation (center, displayed in red in the plot) in single cells upon 

treatment with 10ng/ml.  

Movie S11, related to Figure 6. Exemplary time-lapse acquisition for cells treated with TNF-CHXShown 

are maximal projections. 
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