
HAL Id: hal-03044416
https://hal.science/hal-03044416

Submitted on 7 Dec 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Intersection Types and (Positive) Almost-Sure
Termination

Ugo Dal Lago, Claudia Faggian, Simona Ronchi Della Rocca

To cite this version:
Ugo Dal Lago, Claudia Faggian, Simona Ronchi Della Rocca. Intersection Types and (Pos-
itive) Almost-Sure Termination. Proceedings of the ACM on Programming Languages, 2021,
�10.1145/3434313�. �hal-03044416�

https://hal.science/hal-03044416
https://hal.archives-ouvertes.fr

32

Intersection Types and (Positive) Almost-Sure Termination

UGO DAL LAGO∗, Università di Bologna, Italy
CLAUDIA FAGGIAN, Université de Paris, IRIF, CNRS, Paris, France, France
SIMONA RONCHI DELLA ROCCA, Università di Torino, Italy

Randomised higher-order computation can be seen as being captured by a 𝜆-calculus endowed with a single

algebraic operation, namely a construct for binary probabilistic choice. What matters about such computations

is the probability of obtaining any given result, rather than the possibility or the necessity of obtaining it,

like in (non)deterministic computation. Termination, arguably the simplest kind of reachability problem, can

be spelled out in at least two ways, depending on whether it talks about the probability of convergence or

about the expected evaluation time, the second one providing a stronger guarantee. In this paper, we show

that intersection types are capable of precisely characterizing both notions of termination inside a single

system of types: the probability of convergence of any 𝜆-term can be underapproximated by its type, while

the underlying derivation’s weight gives a lower bound to the term’s expected number of steps to normal

form. Noticeably, both approximations are tight—not only soundness but also completeness holds. The crucial

ingredient is non-idempotency, without which it would be impossible to reason on the expected number of

reduction steps which are necessary to completely evaluate any term. Besides, the kind of approximation we

obtain is proved to be optimal recursion theoretically: no recursively enumerable formal system can do better

than that.

CCS Concepts: •Theory of computation→Type theory; Lambda calculus; Probabilistic computation.

Additional Key Words and Phrases: almost-sure termination, expected time, type systems, intersection types

ACM Reference Format:
Ugo Dal Lago, Claudia Faggian, and Simona Ronchi Della Rocca. 2021. Intersection Types and (Positive)

Almost-Sure Termination. Proc. ACM Program. Lang. 5, POPL, Article 32 (January 2021), 31 pages. https:

//doi.org/10.1145/3434313

1 INTRODUCTION
The study and analysis of randomised computation is almost as old as theoretical computer science

itself [De Leeuw et al. 1956; Rabin 1963; Santos 1969]. In randomised computation, algorithms

may well violate determinism by performing some inherently stochastic operations, like the one

consisting in triggering probabilistic choice. In the last fifty years, randomised computation has been

shown to enable efficient algorithms [Motwani and Raghavan 1995], but also secure cryptographic

primitives (e.g. public-key cryptosystems [Goldwasser and Micali 1984]), which are provably

impossible to define in a purely deterministic computational model.

Research on programming languages featuring various forms of random choice operators has

itself a long history [Kozen 1981; Saheb-Djahromi 1978], but has shown a strong impetus in the

∗
Also with INRIA Sophia Antipolis.

Authors’ addresses: Ugo Dal Lago, Università di Bologna, Italy, ugo.dallago@unibo.it; Claudia Faggian, Université de

Paris, IRIF, CNRS, Paris, France, France, claudia.faggian@irif.fr; Simona Ronchi Della Rocca, Università di Torino, Italy,

ronchi@di.unito.it.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2021 Copyright held by the owner/author(s).

2475-1421/2021/1-ART32

https://doi.org/10.1145/3434313

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 32. Publication date: January 2021.

https://doi.org/10.1145/3434313
https://doi.org/10.1145/3434313
https://doi.org/10.1145/3434313

32:2 Ugo Dal Lago, Claudia Faggian, and Simona Ronchi Della Rocca

last ten years, due to progress in so-called bayesian programming languages [Goodman et al. 2008;

Tolpin et al. 2015], in which not only probabilistic choice is available, but also conditioning has a

counterpart inside programs, usually in the form of observe or score statements. In an higher-

order scenario, the mere presence of a probabilistic choice operator, however, poses a number

of challenges to the underlying theory. For example, relational reasoning by way of systems of

logical relations [Bizjak and Birkedal 2015], or by way of coinduction [Dal Lago et al. 2014] has

proved to be possible, although requiring some new ideas, both definitionally, or in the underlying

correctness proof. Moreover, giving a satisfactory denotational semantics to higher-order languages

with binary probabilistic choice is notoriously hard [Jones and Plotkin 1989; Jung and Tix 1998],

and has been solved in a completely satisfactory way only relatively recently [Ehrhard et al. 2014;

Goubault-Larrecq 2015].

Types and Verification. Verification of deterministic higher-order programs can be carried out

in many ways, including model checking [Ong 2006], abstract interpretation [Cousot 1997], and

type systems [Pierce 2002]. Among the properties one is interested in verifying programs against,

safety and reachability are arguably the simplest ones. Type systems, traditionally conceived as

lightweight methodologies ensuring safety (hence the slogan “well-typed programs cannot go

wrong”), can also be employed to check reachability and termination [Hughes et al. 1996; Sørensen

and Urzyczyn 1989]. This idea has been brought to its extreme consequences by the line of work

on intersection types [Coppo and Dezani-Ciancaglini 1978; Coppo et al. 1981], which not only

guarantee termination, but also characterise it, this way providing a compositional presentation of

all and only the terminating programs. Indeed, intersection types can be seen as giving semantics

to higher-order programs [Barendregt et al. 1983], and also to support program verification in

subrecursive languages [Kobayashi 2009].

On Probabilistic Termination’s Double Nature. But what it means for a probabilistic program

to terminate or—slightly more generally—to reach a state in which certain conditions hold? A

first answer consists in considering a program terminating if the probability of divergence is

null, namely if the program is almost-surely terminating (AST for short). This way, even when the

possibility of diverging is still there, it has null probability. This, however, does not mean that

the time to termination (better, the expected time to termination) is finite: this is a stronger and

computationally more meaningful requirement, called positive
1
almost-sure termination (shortened

to PAST in the following). It is in fact well-known that checking programs for (positive) almost-sure

termination turns out to be strictly harder, recursion theoretically, than checking termination of de-

terministic programs [Kaminski et al. 2019]: both almost-sure termination and positive almost-sure

termination are not recursively enumerable, and have incomparable recursion-theoretic statuses,

the former being Π0
2-complete, the latter being Σ0

2-complete. The discrepancy with the realm of

deterministic calculi can be seen also in sub-universal languages: recently, Kobayashi, Dal Lago

and Grellois [Kobayashi et al. 2019], have shown that model checking reachability properties is

undecidable in probabilistic higher-order recursion schemes, while the same problem is well known

to be decidable in their deterministic and nondeterministic siblings [Ong 2006]. More generally, the

nature of probabilistic termination in presence of higher types is still not completely understood,

and is fundamentally different from the one of its deterministic counterpart.

Some Natural Questions. Given the rich theory that the programming language community has

been able to build for the deterministic 𝜆-calculus, a number of questions naturally arise. Is it

possible to faithfully and precisely reflect the expected time to termination by a system of types?

1
The term was introduced in [Bournez and Garnier 2006], but the requirement that the program be expected to terminate is

natural and fundamental, and was already present in [Saheb-Djahromi 1978].

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 32. Publication date: January 2021.

Intersection Types and (Positive) Almost-Sure Termination 32:3

What are the limits to the expressive power of such a system, given the aforementioned recursion

theoretic limitations? Do intersection types can be of help, given their successes in characterising

various notions of termination in a deterministic setting? These questions are natural ones, but

have remained unanswered so far. This paper is the first one giving answers to them.

Contributions. We show here that intersection types indeed capture both forms of probabilistic ter-

mination in untyped probabilistic 𝜆-calculi. More specifically, we define a system of non-idempotent

intersection types such that from any type derivation for a given term𝑀 , one can extract (in an

effective, and even efficient, way) both a lower bound to the expected time to termination for

𝑀 , and a lower bound to 𝑀’s probability of termination. Remarkably, both kinds of bounds are

tight, i.e. for every 𝜀 > 0 there is a type derivation for 𝑀 which gives an 𝜀-precise bound to

both the probability of and the expected time to termination. The main novelty of the proposed

methodology is the presence of distinct ingredients within the same type system, namely monadic

types [Dal Lago and Grellois 2019], intersection types [Coppo and Dezani-Ciancaglini 1978], and

non-idempotency [de Carvalho 2018]. Their contemporary presence forces us to switch from a

purely qualitative notion of intersection (i.e. multisets) to a quantitative one (i.e. scaled multisets).

This is necessary to appropriately deal with the multiple uses of program variables in presence

of probabilistic choice. In view of the non-recursive enumerability of either kinds of probabilistic

termination, taking type derivations as approximate witnesses to termination, rather than proper

ones, indeed makes sense, and is the best one can do: we prove that any (recursively enumerable)

system of types for a probabilistic 𝜆-calculus is either unsound or incomplete as a way to precisely

verify termination properties of pure 𝜆-terms. In other words, one cannot do better than what

we do. Remarkably, all results we give in this paper hold for both call-by-value and call-by-name

evaluation, but we prefer to give all the details of the a system of the former kind, arguably a more

natural one in presence of effects.

An extended version of this paper with proofs and more details is available [Dal Lago et al. 2020].

2 A GENTLE INTRODUCTION TO INTERSECTION TYPES, TERMINATION, AND
RANDOMIZATION

This section is meant to introduce the non-specialist to intersection types seen as a characterisation

of terminating deterministic programs, and to the challenges one faces when trying to generalise

intersection types to calculi featuring binary probabilistic choice.

2.1 Intersection Types and Termination
Suppose we work within a simple functional programming language, expressed as a call-by-value

(CbV) 𝜆-calculus Λcbv
in A-normal form. Values and terms are generated through the following

grammars:

𝑉 ::= 𝑥 | 𝜆𝑥 .𝑀 Values,Vcbv

𝑀 ::= 𝑉 | 𝑉𝑉 | let 𝑥 = 𝑀 in𝑀 Terms, Λcbv

Evaluation of closed terms is captured by two reduction rules, namely (𝜆𝑥 .𝑀)𝑉 → 𝑀{𝑉 /𝑥}
and let 𝑥 = 𝑉 in𝑀 → 𝑀{𝑉 /𝑥}, which can be applied in any evaluation contexts, i.e. in any

expression from the grammar 𝐸 ::= [·] | let 𝑥 = 𝐸 in𝑀 . As customary when working with

functional languages, evaluation is weak (i.e., no reduction can take place in the body of a 𝜆-

abstraction).

This language can be seen as a fragment of Plotkin’s CbV 𝜆-calculus [Plotkin 1975] in which the

latter can be faithfully embedded
2
. As such, the calculus is easily seen to be Turing-universal, and

2
an application𝑀𝑁 becomes the term let 𝑥 = 𝑀 in let 𝑦 = 𝑁 in 𝑥𝑦.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 32. Publication date: January 2021.

32:4 Ugo Dal Lago, Claudia Faggian, and Simona Ronchi Della Rocca

A ::= 𝛼 | A→ A

Γ, 𝑥 : A ⊢ 𝑥 : A

Γ, 𝑥 : A ⊢ 𝑀 : B

Γ ⊢ 𝜆𝑥 .𝑀 : A→ B

Γ ⊢ 𝑉 : A→ B Γ ⊢𝑊 : A
Γ ⊢ 𝑉𝑊 : B

Γ ⊢ 𝑁 : A Γ, 𝑥 : A ⊢ 𝑀 : B

Γ ⊢ let 𝑥 = 𝑁 in𝑀 : B

Fig. 1. Simple Types

A ::= A → A
A ::= {A1, . . . , A𝑛}

Γ, 𝑥 : A ⊢ 𝑥 : A
Γ, 𝑥 : A ⊢ 𝑀 : B

Γ ⊢ 𝜆𝑥.𝑀 : A → B
{Γ𝑖 ⊢ 𝑉 : A𝑖 }𝑖∈𝐼⋃
𝑖 Γ𝑖 ⊢ 𝑉 : {A𝑖 }𝑖∈𝐼

Γ ⊢ 𝑉 : A → B Γ ⊢𝑊 : A
Γ ⊢ 𝑉𝑊 : B

Γ ⊢ 𝑁 : A Γ, 𝑥 : A ⊢ 𝑀 : B
Γ ⊢ let 𝑥 = 𝑁 in𝑀 : B

Fig. 2. Idempotent Intersection Types for Λcbv

termination is thus an undecidable—although recursively enumerable—problem. How could we

compositionally guarantee termination of those 𝜆-terms? The classic answer to the question above

consists in endowing the calculus with a system of types. As an example, a system of simple types

for the terms in Λcbv
is in Figure 1, where types are either an atom 𝛼 or an arrow type A→ B. A

simple reducibility-like argument indeed shows that typability ensures termination. The converse

does not hold, i.e. simple types are highly incomplete as a way to type terminating terms. As an

example, self application, namely the value 𝜆𝑥.𝑥𝑥 , is not simply-typable even if terminating, since

the variable 𝑥 cannot be assigned both the type A and the type A→ B.

One way to go towards a type system complete for termination consists in resorting to some form

of polymorphism. For example, parametric polymorphism in the style of System F [Girard 1971]

dramatically increases the expressive power of simple types by way of a form of (second-order)

quantification: the type ∀𝛼.A stands for all types which can be obtained as formal instances of A.

Parametric polymorphism, however, is not enough to get to a complete system, which can instead

be built around ad-hoc polymorphism: rather than extending simple types by way of quantifiers,

one can enrich types with intersections in the form of finite sets of types A = {A1, . . . , A𝑛}, and
take arrow types as expressions in the form A → B. The type A can be assigned to terms which

have type A𝑗 for every 𝑗 ∈ {1, . . . , 𝑛}. The resulting type system is in Figure 2, and is well-known to

be both sound and complete for termination.

There is even more. One can make type derivations capable of reflecting quantitative kinds

of information such as the number of required evaluation steps, rather than merely termination

(which is qualitative in nature). This requires taking intersection types not as sets, but rather as

multisets, i.e.A = [A1, . . . , A𝑛]. This form of intersection type is dubbed non-idempotent, due to the

non-idempotency of multiset unions and intersections. Type environments need now be treated

multiplicatively rather than additively, this way giving a linear flavour to the type system. In

non-idempotent intersection types, a natural number𝑤 can be assigned to any type derivation in

such a way that

𝑤⊢ 𝑀 : [] (where [] is the empty multiset seen as an intersection type) if and only if

𝑀 can be reduced to normal form in exactly 𝑤 steps. The resulting system is in Figure 3, and is

essentially the one from [Accattoli et al. 2019].

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 32. Publication date: January 2021.

Intersection Types and (Positive) Almost-Sure Termination 32:5

A ::= A → A
A ::= [A1, . . . , A𝑛]

𝑥 : A 0⊢ 𝑥 : A

Γ, 𝑥 : A 𝑤⊢ 𝑀 : B

Γ
𝑤+1⊢ 𝜆𝑥.𝑀 : A → B

{Γ𝑖
𝑤𝑖⊢ 𝑉 : A𝑖 }𝑖∈𝐼

⊎𝑖Γ𝑖
∑

𝑖 𝑤𝑖⊢ 𝑉 : [A𝑖]𝑖∈𝐼

Γ
𝑤⊢ 𝑉 : A → B Δ

𝑣⊢𝑊 : A
Γ ⊎ Δ

𝑤+𝑣⊢ 𝑉𝑊 : B

Γ
𝑤⊢ 𝑁 : A Δ, 𝑥 : A 𝑣⊢ 𝑀 : B

Γ ⊎ Δ
𝑤+𝑣+1⊢ let 𝑥 = 𝑁 in𝑀 : B

Fig. 3. Non-Idempotent Intersection Types for Λcbv

2.2 Typing Termination in a Probabilistic Setting
How about probabilistic 𝜆-calculi? Can the story in Section 2.1 be somehow generalised to such

calculi? Endowing the class of terms with an operator for fair
3
binary probabilistic choice is

relatively easy: the grammar of terms needs to be extended by way of the production𝑀 ::= 𝑀 ⊕𝑀 ,

and the term𝑀 ⊕ 𝑁 evolves to either𝑀 or 𝑁 with probability
1
2 , turning reduction on terms from

a deterministic transition system to a Markov Chain with countably many states. Let us illustrate

all this by way of an example, which will be our running example throughout the paper.

Example 1 (Running Example). Let us consider the term 𝐷𝐷 where 𝐷 = 𝜆𝑥 .(𝑥𝑥 ⊕ 𝐼), and 𝐼 is the
identity 𝜆𝑦.𝑦. The program 𝐷𝐷 reduces to 𝐷𝐷 ⊕ 𝐼 , which in turn reduces to either 𝐷𝐷 or to 𝐼 with

equal probability 1/2. It is easy to see that after 2𝑛 steps, 𝐷𝐷 has terminated with probability

∑𝑛
1

1
2𝑛 :

while running 𝐷𝐷 , only one among the 2𝑛 possible outcomes of the 𝑛 coin-flips results in the term

staying at 𝐷𝐷 , all the others leading to 𝐼 . Noticeably, the expression above tends to 1 when 𝑛 tends to

infinity. By weighting the steps with their probability, we have that the expected number of steps for

𝐷𝐷 to terminate is 4. In other words 𝐷𝐷 is not only almost-surely terminating, but positively so.

As this example shows, despite the minimal changes to the underlying operational semantics,

reasoning about randomised computations can be more intricate than in the usual deterministic

setting. More specifically:

• Output. While a deterministic program maps inputs to outputs, a probabilistic program maps

inputs to distributions of outputs. For example, 𝐷𝐷 evaluates to the Dirac distribution where all

the probability is concentrated in the term 𝐼 . Notice that this level of certitude is reached only

at the limit, not in any finite amount of steps.

• Termination. A deterministic program either terminates on a given input or not. Aswementioned

in the Introduction, a probabilistic program may give rise to diverging runs, still being almost-

surely terminating. This is precisely what happens when evaluating𝐷𝐷 : there is one run, namely

the one always staying at 𝐷𝐷 , which diverges, but this run has of course null probability.

• Runtime. If a deterministic program terminates, it reaches its final state in finitely many steps,

and we interpret this number as the time to termination. In the probabilistic case, what interests

us is rather the expected number of steps, that is the average number of steps of the program’s

runs. Such expected value may or may not be finite, even in the case of AST programs. When

evaluating𝐷𝐷 , this number is finite, but it arises (once again) as the sum of an infinite numerical

series.

Small variations on Example 1 are sufficient to obtain terms whose behavior is more complex

than that of 𝐷𝐷 . The following example illustrate that a term𝑀 can reach countably many distinct

normal forms and intermediate values, and that almost-sure termination does not imply positive

almost-sure termination.

3
Accommodating an operator for general binary probabilistic choice (e.g. in the form ⊕𝑞 , where 𝑞 is a rational between 0

and 1) would be harmless, but would result in heavier notation; we thus prefer to stick to the fair case.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 32. Publication date: January 2021.

32:6 Ugo Dal Lago, Claudia Faggian, and Simona Ronchi Della Rocca

Example 2. For every natural number 𝑛, let 𝑛 be an encoding of it as a 𝜆-term, and let SUCC and

EXP be terms which encode the successor and the exponential function, respectively.

• Consider the term 𝐶𝐶 where 𝐶 = 𝜆𝑥.(succ(𝑥𝑥) ⊕ 0), and where succ(𝑀) is syntactic sugar for
(let 𝑧 = 𝑀 in SUCC 𝑧). Note that succ(𝑛) reduces to 𝑛 + 1 in constant time 𝑠 (𝑠 ∈ N), of course
depending on the chosen encoding. The program𝐶𝐶 reduces—at the limit—to each natural number

𝑛 with probability
1

2𝑛+1 . It is clear that𝐶𝐶 is AST, and it is easy to check that it is also PAST; indeed
it is expected to terminate in 4 + 𝑠 steps. However its reduction graph, contrarily to the one of 𝐷𝐷 ,

involves infinitely many normal forms.

• The term exp(𝐶𝐶), where exp(𝑀) is syntactic sugar for (let 𝑧 = 𝑀 in EXP 𝑧), is a term which

is still almost-surely terminating, but not positively. Indeed, its expected runtime is infinite.

All this shows that typing probabilistically terminating programs requires us to go significantly

beyond classic intersection type theories, but also beyond the few attempts on type theories for

probabilistic 𝜆-calculi in the literature.

Let us now take a look at how the term𝐷𝐷 could be given an intersection type, in a way reflecting

its being (positively) almost-surely terminating. Let us write 𝐷𝐷 as 𝐷1𝐷2. The term 𝐷1 uses its

argument 𝐷2 in two different ways, the first as a function and the second as an argument to the

same function. We already know that intersection types are there precisely for this purpose. But

there are some fundamental differences here compared to the deterministic case: first of all, the two

copies of 𝐷2 that the function 𝐷1 consumes are used only with probability
1
2 . Moreover, 𝐷1 returns

two different results, namely 𝐼 and 𝐷2𝐷2, each with equal probability. These two observations

inform how non-idempotent intersection types can be generalised to a 𝜆-calculus with probabilistic

choice. Indeed, the multisets A and B in an arrow type A → B have to be enriched with some

quantitative information:

• in order to capture the termination probability, the intersection type B needs to be turned into

a distribution of intersection types, reflecting the fact that the output of a computation is not

one single value, but rather a distribution of them.

• capturing time expectations requires typing to become even more sophisticated, introducing

two novelties:

• The multiset of types A needs to carry some information about the probability of each

copy of the argument to be actually used. In other words, elements of A needs to be scaled.

Note the discrepancy between the waysA and B are treated: in the former a form of scaled

multiset suffices, while in the latter a distribution of intersection types is needed.

• Moreover, the type system needs to be capable of dubbing divergent terms as having

arbitrarily large evaluation time expectations. Consider, as an example, the program𝑀 =

𝐼 ⊕ ΔΔ, where Δ = 𝜆𝑥 .𝑥𝑥 . In one evaluation step, such a term reduces to the value 𝐼 with

probability
1
2 or to the diverging term ΔΔ, with equal probability

1
2 . The expected runtime

of𝑀 is therefore infinite: 1 +∑∞𝑖=1 1
2 . Since typing𝑀 requires giving a type to ΔΔ, the latter

has to be attributed arbitrary large weights, although the only type it can receive is for

obvious reasons the empty distribution.

We come back to all this in Section 5, after formally introducing the type system.

The aforementioned ones are not the only novelties of the type system we introduce in this paper.

Given the already mentioned results by Kaminski et al. on the hardness of probabilistic termina-

tion [Kaminski et al. 2019], in which both notions of termination are proved not to be recursively

enumerable, there is simply no hope to obtain results like the classic ones on deterministic terms,

in which correctness of one derivation can serve as a termination certificate (this, to be fair, if

checking type derivations for correctness remains decidable). The way out consists in looking at a

characterisation by way of approximations: a type derivation would not be a witness of (positive)

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 32. Publication date: January 2021.

Intersection Types and (Positive) Almost-Sure Termination 32:7

almost-sure termination by itself, but a witness of some lower-bound on the probability of termina-

tion or on the expected number of steps to termination. The type system needs to be tailored for

this purpose.

3 A PROBABILISTIC CALL-BY-VALUE 𝜆-CALCULUS
In this section, we formally introduce the minimalistic probabilistic functional programming

language we have sketched in Section 2.1, and that we indicate in the following as Λcbv
⊕ . We start

with some technical definitions, which we will use throughout the paper.

3.1 Mathematical Preliminaries
Multisets. We denote a finite multiset (over a set X) as

[
a𝑗

]
𝑗 ∈𝐽 , where the index set 𝐽 is finite and

possibly empty. The empty multiset is denoted as [], while elements of a non-empty multiset are

often enumerated, like in [𝑎, 𝑏, 𝑐]. Multiset union is noted ⊎.

Distributions. Let Ω be a countable set. A function 𝜇 : Ω → [0, 1] is a probability subdistribution

if its norm ∥𝜇∥ := ∑
𝜔 ∈Ω 𝜇 (𝜔) is less or equal to 1. It is a distribution if ∥𝜇∥ = 1. Subdistributions

are the standard way to deal with possibly diverging probabilistic computations. We write D(Ω)
for the set of subdistributions on Ω, equipped with the standard pointwise partial order relation :

𝜇 ≤ 𝜌 if 𝜇 (𝜔) ≤ 𝜌 (𝜔) for each 𝜔 ∈ Ω. The support of 𝜇 is the set {𝜔 | 𝜇 (𝜔) > 0}.

Multidistributions. Suppose X is a countable set and let m be a finite multiset of pairs of the

form 𝑝𝑀 , with 𝑝 ∈ (0, 1], and 𝑀 ∈ X. Then m = [𝑝𝑖𝑀𝑖]𝑖∈𝐼 is said to be a multidistribution

on X if ∥m∥ :=
∑
𝑖∈𝐼 𝑝𝑖 ≤ 1. For multidistributions, we use the notation m = ⟨𝑝𝑖𝑀𝑖⟩𝑖∈𝐼 . The

empty multidistribution is indicated as 0 (note that ∥0∥ = 0). We denote byM(X) the set of all
multidistributions on X. We indicate the multidistribution ⟨1𝑀⟩ simply as ⟨𝑀⟩. The (disjoint) sum
of multidistributions is denoted as

*
, and is a partial operation. The product 𝑞 · m of a scalar 𝑞 < 1

and a multidistribution m is defined pointwise: 𝑞 · ⟨𝑝1𝑀1, . . . , 𝑝𝑛𝑀𝑛⟩ = ⟨(𝑞𝑝1)𝑀1, . . . , (𝑞𝑝𝑛)𝑀𝑛⟩.
Intuitively, a multidistribution m is an intensional representation of a probability distribution:

multidistributions do not satisfy the equation m = 𝑝 · m*(1 − 𝑝) · m. This being said, every

multidistribution can be made to collapse to a distribution, by taking the sum of all of its elements

referring to the same𝑀 ∈ X.

3.2 The Language Λcbv
⊕

This section is devoted to introducing the language. Values and terms are defined by the grammar

𝑉 ::= 𝑥 | 𝜆𝑥 .𝑀 Values,Vcbv
⊕

𝑀 ::= 𝑉 | 𝑉𝑉 | 𝑀 ⊕ 𝑀 | let 𝑥 = 𝑀 in𝑀 Terms, Λcbv
⊕

where 𝑥 ranges over a countable set of variables. Λcbv
⊕ and Vcbv

⊕ denote respectively the set of

terms and of values. Free and bound variables are defined as usual, while 𝑀{𝑁 /𝑥} denotes the
term obtained from the capture-avoiding substitution of 𝑁 for all the free occurrences of 𝑥 in𝑀 .

As usual, a program is a closed term. Throughout the paper we frequently use the following terms

as examples:

𝐼 := 𝜆𝑥.𝑥 ; Δ := 𝜆𝑥.𝑥𝑥 ; 𝐷 := 𝜆𝑥 .(𝑥𝑥 ⊕ 𝐼).
The program ΔΔ is the paradigmatic diverging term, while 𝐷𝐷 is our running example.

3.3 The Operational Semantics
The operational semantics of Λcbv

⊕ is formalized through the notion of multidistribution as intro-

duced in Section 3.1, following [Avanzini et al. 2020]. To understand why this is a convenient way

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 32. Publication date: January 2021.

32:8 Ugo Dal Lago, Claudia Faggian, and Simona Ronchi Della Rocca

to describe the probabilistic dynamics of programs, let us consider how terms in Λcbv
⊕ could be

evaluated.

The intended dynamics of the term 𝑀 ⊕ 𝑁 is that it reduces to either 𝑀 or 𝑁 , with equal

probability
1
2 . That is, the state of the program after one reduction step is𝑀 with probability

1
2 and

𝑁 with probability
1
2 . Consider, as an example, the term (𝐼 ⊕ (𝐼 𝐼)) ⊕ 𝐼 𝐼 . Its evaluation is graphically

represented in Figure 4a. The first computation step consists in performing a probabilistic choice,

I II ⊕ (I I)

(I ⊕ (I I)) ⊕ I I

I I I

1
2 (I ⊕ (I I)), 12 I

1
4 I ,

1
4 I I ,

1
2 I

I

I

(I ⊕ (I I)) ⊕ I I

1
4 I ,

1
4 I ,

1
2 I

(a) Evaluating (𝐼 ⊕ 𝐼 𝐼) ⊕ 𝐼 𝐼

DD

DD ⊕ I

DD I

DD ⊕ I

DD I
⋮

DD

DD ⊕ I

1
2DD,

1
2 I

1
2 (DD ⊕ I), 12 I

1
4 (DD),

1
4 I ,

1
2 I

⋮

(b) Evaluating 𝐷𝐷

Fig. 4. Evaluating some Terms in Λcbv
⊕

proceeding as 𝐼 ⊕ (𝐼 𝐼) or as 𝐼 𝐼 according to its outcome. While the latter branch ends up in 𝐼 (which

is a value) in one deterministic step, the former branch proceeds with another probabilistic choice,

which results in either 𝐼 or 𝐼 𝐼 . Finally, after another reduction step, 𝐼 𝐼 is reduced to the identity. To

the right of the reduction tree in Figure 4a, one can see, for each time step, a summary of the “status”

of all probabilistic branches, each paired with its probability. After three steps, all branches reduce

to 𝐼 , and indeed the probability of observing 𝐼 when reducing the term is altogether
1
4 +

1
4 +

1
2 = 1.

A more interesting example is in Figure 4b, and consists in the evaluation of our running example

𝐷𝐷 .

All this can be conveniently formalised by means of multidistributions; each element corresponds

to a branch, i.e. to a possible reduction path of the underlying program — a multidistribution is

essentially a distribution on such paths
4
. If switching to distributions, we would loose the precise

correspondence with probabilistic branches, since many branches are collapsed into one. This is

the ultimate reason why we adopt multidistributions, and will be discussed further in Section 8.2.

LetM(Λcbv
⊕) denote the set of multidistributions on (closed) terms. We define a reduction relation

⇒⊆ M(Λcbv
⊕) ×M(Λcbv

⊕), given in Figure 5 and Figure 6, respectively. More precisely, we proceed

as follows:

• We first define a reduction relation→ from terms to multidistributions, e.g.,𝑀⊕𝑁 →
〈
1
2𝑀,

1
2𝑁

〉
.

The one-step reduction→⊆ Λcbv
⊕ ×M(Λcbv

⊕) is defined in Figure 5. A term𝑀 is normal, or in

normal form, if there is no m such that 𝑀 → m. Please notice that closed terms are in normal

form precisely when they are values. Finally,→ is deterministic, i.e., for every term𝑀 there is

at most one m such that𝑀 → m.

• Then we lift reduction of terms to reduction of multidistributions in the natural way, obtaining

⇒, e.g.,

〈
1
2 𝐼 𝐼 ,

1
2 (𝑀 ⊕ 𝑁)

〉
⇒

〈
1
2 𝐼 ,

1
4𝑀,

1
4𝑁

〉
. The relation→⊆ Λcbv

⊕ ×M(Λcbv
⊕) lifts to a relation

⇒⊆ M(Λcbv
⊕) ×M(Λcbv

⊕) as defined in Figure 6. The way⇒ is defined implies that all reducible

terms in the underlying multidistributions are actually reduced according to→.

4
In the spirit Markov Decision Processes, see e.g. [Puterman 1994].

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 32. Publication date: January 2021.

Intersection Types and (Positive) Almost-Sure Termination 32:9

(𝜆𝑥.𝑀)𝑉 → ⟨𝑀{𝑉 /𝑥}⟩ 𝛽 let 𝑥 = 𝑉 in𝑀 → ⟨𝑀{𝑉 /𝑥}⟩ let𝑉

𝑀 ⊕ 𝑁 →
〈
1
2𝑀,

1
2𝑁

〉 ⊕ 𝑁 → ⟨𝑝𝑖𝑁𝑖⟩𝑖∈𝐼
(let 𝑥 = 𝑁 in𝑀) → ⟨𝑝𝑖 (let 𝑥 = 𝑁𝑖 in𝑀)⟩

let𝐶

Fig. 5. The One-step Reduction Relation→

⟨𝑉 ⟩ ⇒ ⟨𝑉 ⟩
𝑀 → m

⟨𝑀⟩ ⇒ m

(⟨𝑀𝑖⟩ ⇒ m𝑖)𝑖∈𝐼
⟨𝑝𝑖𝑀𝑖 | 𝑖 ∈ 𝐼 ⟩ ⇒

*
𝑖∈𝐼 𝑝𝑖 · m𝑖

Fig. 6. The Lifting of→

Reduction Sequences. A⇒-sequence (or reduction sequence) from m is a sequence m = m0, m1, m2, . . .

such that m𝑖 ⇒ m𝑖+1 for every 𝑖 . Notice that since multidistribution reduction is deterministic, each

m0 has a unique maximal reduction sequence, which is infinite and which we write {m𝑛}𝑛∈N. We

write m0 ⇒
∗
m to indicate the existence of a finite reduction sequence from m0, and m0 ⇒

𝑘
m to

specify the number 𝑘 of⇒-steps. Given a term 𝑀 and m0 = ⟨𝑀⟩, the sequence m0 ⇒ m1 ⇒ · · ·
naturally models the evaluation of𝑀 ; each m𝑘 expresses the “expected” state of the system after 𝑘

steps.

Example 3. The term 𝐷𝐷 from Example 1 evaluates as follows:

⟨𝐷𝐷⟩ ⇒ ⟨𝐷𝐷 ⊕ 𝐼 ⟩ ⇒
〈
1

2
𝐷𝐷,

1

2
𝐼

〉
⇒

〈
1

2
𝐷𝐷 ⊕ 𝐼 , 1

2
𝐼

〉
⇒

〈
1

4
𝐷𝐷,

1

4
𝐼 ,
1

2
𝐼

〉
⇒

〈
1

4
𝐷𝐷 ⊕ 𝐼 , 1

4
𝐼 ,
1

2
𝐼

〉
⇒

〈
1

8
𝐷𝐷,

1

8
𝐼 ,
1

4
𝐼 ,
1

2
𝐼

〉
⇒ · · ·

The first three reduction steps match precisely what we have informally seen in Figure 4b.

Example 4. The term 𝐶𝐶 of Example 2 (where 𝐶 = (𝜆𝑥 .succ(𝑥𝑥) ⊕ 0)), evaluates as follows:

⟨𝐶𝐶⟩ ⇒
〈
succ(𝐶𝐶) ⊕ 0

〉
⇒

〈
1

2
succ(𝐶𝐶), 1

2
0

〉
⇒

〈
1

2
succ

(
succ(𝐶𝐶) ⊕ 0

)
,
1

2
0

〉
⇒

〈
1

4
succ

(
succ(𝐶𝐶)

)
,
1

4
succ(0), 1

2
0

〉
⇒ · · ·

where succ𝑛 (0) ⇒𝑛𝑠 𝑛. Observe that the evaluation of 𝐶𝐶 is similar to that of 𝐷𝐷 . However, while in

Example 3 the term 𝐼 is a value, succ𝑛 (0) is not. It still has to perform 𝑛𝑠 steps (where 𝑠 is a constant,

see Example 2) in order to reduce to the value 𝑛.

Values and Multidistributions. Given a multidistribution m ∈ M(Λ⊕), we indicate by m
V

its

restriction to values. Hence if m = ⟨𝑝𝑖𝑀𝑖⟩𝑖∈𝐼 , then ∥mV ∥ :=
∑
𝑀𝑖 ∈V 𝑝𝑖 . The real number ∥mV ∥ is

thus the probability that m is a value, and we will refer to it this way. Looking at Example 3, observe

that after, e.g., four reduction steps, 𝐷𝐷 becomes the value 𝐼 with probability
1
2 +

1
4 . More generally,

after 2𝑛 steps, 𝐷𝐷 is a value with probability

∑𝑛
𝑘=1

1
2𝑘
.

3.4 Probabilistic Termination in Λcbv
⊕

Let𝑀 be a closed term, and ⟨𝑀⟩ = m0 ⇒ m1 ⇒ m2 ⇒ · · · the reduction sequence which models its

evaluation. We write PTerm𝑘

(
𝑀
)
for ∥mV

𝑘
∥, which expresses the probability that𝑀 terminates in

at most 𝑘 steps.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 32. Publication date: January 2021.

32:10 Ugo Dal Lago, Claudia Faggian, and Simona Ronchi Della Rocca

Termination. Given a closed term 𝑀 , the probability of termination of 𝑀 is easily defined by

PTerm
(
𝑀
)
:= sup𝑛{PTerm𝑛

(
𝑀
)
}. As an example PTerm

(
𝐷𝐷

)
is sup𝑛

∑𝑛
𝑘=1

1
2𝑘

=
∑∞
𝑘=1

1
2𝑘

= 1.

Expected Runtime. We now define the expected runtime of𝑀 , following the literature [Avanzini

et al. 2020; Fioriti and Hermanns 2015; Kaminski et al. 2019]. As pointed out in [Fioriti and Hermanns

2015] the expected runtime can be expressed
5
in a very convenient form as, informally,

ETime
(
𝑀
)
=
∑︁
𝑘≥0

Pr[“𝑀 runs more than 𝑘 steps ”]

=
∑︁
𝑘≥0
(1 − Pr[“𝑀 terminates within 𝑘 steps ”]) .

Within our setting, the above is easily formalised as follows:

ETime
(
𝑀
)
=
∑︁
𝑘≥0

(
1 − PTerm𝑘

(
𝑀
))
.

This formulation admits a very intuitive interpretation: given the reduction sequence ⟨𝑀⟩ = m0 ⇒
m1 ⇒ m2 ⇒ · · · , each tick in time (i.e. each⇒ step) is weighted with its probability to take place

—more precisely, the probability that a redex is fired. Since only (and all) terms which are not in

normal form reduce, the system in state m𝑖 reduces with probability 1 − ∥mV
𝑖
∥.

Finite Approximants. Given a term𝑀 , the number PTerm𝑛

(
𝑀
)
is a finite approximant (the 𝑛-th

approximant) of PTerm
(
𝑀
)
. It is useful to define finite approximants for ETime

(
𝑀
)
too:

ETime𝑛

(
𝑀
)
:=

𝑛−1∑︁
𝑘=0

(
1 − PTerm𝑘

(
𝑀
))
.

Clearly ETime
(
𝑀
)
= sup𝑛

{
ETime𝑛

(
𝑀
)}
.

Example 5 (Expected runtime, and its approximants). Consider again the evaluation of the

term 𝐷𝐷 ; let us decorate each step m𝑘 ⇒ m𝑘+1 with the expected probability that a redex is actually

fired in m𝑘 , that is 1 − ∥mV𝑘 ∥:

⟨𝐷𝐷⟩
1
⇒ ⟨𝐷𝐷 ⊕ 𝐼 ⟩

1
⇒

〈
1

2
𝐷𝐷,

1

2
𝐼

〉 1
2

⇒

〈
1

2
𝐷𝐷 ⊕ 𝐼 , 1

2
𝐼

〉 1
2

⇒

〈
1

4
𝐷𝐷,

1

4
𝐼 ,
1

2
𝐼

〉
1
4

⇒

〈
1

4
𝐷𝐷 ⊕ 𝐼 , 1

4
𝐼 ,
1

2
𝐼

〉 1
4

⇒

〈
1

8
𝐷𝐷,

1

8
𝐼 ,
1

4
𝐼 ,
1

2
𝐼

〉
⇒ · · ·

It is immediate to verify that ETime
(
𝑀
)
= 4. As for the approximants, we have that, e.g. ETime2

(
𝑀
)
=

2, ETime4
(
𝑀
)
= 3, ETime6

(
𝑀
)
= 3 + 1

2 .

(Positive) Almost-Sure Termination in Λcbv
⊕ . We now have all the ingredients to define the two

concepts this paper aims to characterise, namely the two canonical notions of termination. The

definition turns out to be very easy.

Definition 6. Let 𝑀 be a closed term. We then say that 𝑀 is almost-surely terminating (AST) if
PTerm

(
𝑀
)
= 1. Furthermore, we say that 𝑀 is expected to terminate, or positively almost-surely

terminating (PAST) if ETime
(
𝑀
)
is finite.

5
This because the runtime is a random variable taking values into N; we therefore can easily compute its expectation by

using the telescope formula, see e.g. [Brémaud 2017], page 27. The equivalence with the formulations we give below is

spelled out in [Avanzini et al. 2020].

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 32. Publication date: January 2021.

Intersection Types and (Positive) Almost-Sure Termination 32:11

As is well-known, PAST is strictly stronger than AST. Indeed, it is easily seen that PAST implies

AST:

Fact 7. For every closed term𝑀 , ETime
(
𝑀
)
< ∞ implies that PTerm

(
𝑀
)
= 1. Indeed,

∑
𝑖≥1 (1 −

PTerm𝑖

(
𝑀
)
) < ∞ implies lim𝑖→∞

(
1 − PTerm𝑖

(
𝑀
))

= 0, hence lim𝑖→∞ PTerm𝑖
(
𝑀
)
= 1.

However, a program may be AST, and still have infinite expected runtime. The paradigmatic

example of this is a fair random walk [Billingsley 1979]. With a slight abuse of notation, we often

use AST and PAST both as acronyms and as sets of terms.

4 NON-IDEMPOTENT MONADIC INTERSECTION TYPES
In the previous section, we have introduced a call-by-value paradigmatic programming language

for probabilistic computation, endowed it with an operational semantics, and defined two notions

of probabilistic termination for it. In this section, we present a type system which is able to capture

both the probability of termination and the expected runtime of a program. The system will in turn

allow us to characterise AST and PAST.
One of the main ingredients of the type system we are going to introduce is the non-idempotency

of intersections. As sketched in Section 2.1, such a type system is usually based on two mutually

recursive syntactic categories of types, namely simple (or arrow) types and intersection types,

which are finite multisets of arrows. The intuition is that an arrow type corresponds to a single use

of a term, and that if an argument is typed with a multiset containing 𝑘 arrows types, it will be

evaluated 𝑘 times.

In our probabilistic setting, the type system is based on three, rather than two, layers, namely

arrow types, intersection types, and multidistribution types, also known as monadic types. More

precisely:

• An arrow type corresponds to a single use of a value, as usual. In a purely applicative language

like ours, indeed, the only way to destruct a value is to pass another value to it.

• An intersection type, instead, is no longer a multiset of arrows like in usual non-idempotent

intersection type disciplines, but a multiset of pairs 𝑞...A, where A is an arrow type, and 𝑞 ∈
(0, 1] ∩ Q. The intuition is that each single use of a term will happen with some probability 𝑞,

and that 𝑞 is recorded in the intersection type together with the corresponding arrow. So, e.g.,

in the evaluation of 𝐷𝐷 (see Example 3) the argument 𝐷 is first used with certitude (probability

1); its next use happens with probability
1
2 , the following use with probability

1
4 , and so on.

Each use is typed with an (appropriately scaled) arrow type.

• Finally, a term𝑀 cannot in general be typed “with certitude” namely by a single intersection

typeA, but rather with a multidistribution of intersection types ⟨𝑝1A1, . . . , 𝑝𝑘A𝑘⟩. Indeed, the
evaluation of𝑀 can result in possibly many values depending on the probabilistic choices the

term encounters along the way. In turn, those values can be copied, and each possible use of

them must be taken into account.

We now formally introduce the type system. In Section 5 we expand the intuitions above by

analysing some type derivations of our main example 𝐷𝐷 . To understand the typing, the reader

should not hesitate to jump back and forth between the examples and the formal system.

4.1 The Type System, Formally
Types. Types are defined by means of the following grammar:

A, B ::= A → a Arrow Types
A,B ::= [𝑞1...A1, ..., 𝑞𝑛...A𝑛], 𝑛 ≥ 0 Intersection Types
a, b ::= ⟨𝑝1A1, ..., 𝑝𝑛A𝑛⟩ , 𝑛 ≥ 0 Type Distributions

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 32. Publication date: January 2021.

32:12 Ugo Dal Lago, Claudia Faggian, and Simona Ronchi Della Rocca

𝑥 : A 0⊢ 𝑥 : A
Var

0⊢ 𝑀 : 0
Zero

Γ
𝑤⊢ 𝑉 : [A → b] Δ

𝑣⊢𝑊 : A

Γ ⊎ Δ
𝑤+𝑣⊢ 𝑉𝑊 : b

@
Γ
𝑤⊢ 𝑀 : a Δ

𝑣⊢ 𝑁 : b

1
2 ...Γ ⊎

1
2 ...Δ

1
2
𝑤+ 1

2
𝑣+1
⊢ 𝑀 ⊕ 𝑁 : 1

2a
* 1

2b

⊕

Γ, 𝑥 : A 𝑤⊢ 𝑀 : b

Γ
𝑤+1⊢ 𝜆𝑥.𝑀 : A → b

𝜆
Γ
𝑣⊢ 𝑁 : ⟨𝑝𝑘A𝑘 ⟩𝑘∈𝐾 (Δ𝑘 , 𝑥 : A𝑘

𝑤𝑘⊢ 𝑀 : b𝑘)𝑘∈𝐾

Γ ⊎𝑘 𝑝𝑘 ...Δ𝑘
𝑣+∑𝑘 𝑝𝑘𝑤𝑘+1⊢ let 𝑥 = 𝑁 in𝑀 :

*
𝑘 𝑝𝑘b𝑘

let

Γ
𝑤⊢ 𝑉 : A

Γ
𝑤⊢ 𝑉 : ⟨A⟩

Val

(Γ𝑖
𝑤𝑖⊢ 𝑉 : A𝑖)𝑖∈𝐼 (𝑞𝑖)𝑖∈𝐼 scale factors

⊎𝑖 (𝑞𝑖 ...Γ𝑖)
∑

𝑖 𝑞𝑖𝑤𝑖⊢ 𝑉 : [𝑞𝑖 ...A𝑖]𝑖∈𝐼
!

Fig. 7. Non-Idempotent Intersection Type Rules for Λcbv
⊕

In other words, an intersection type A is a multiset of pairs 𝑞...A where A is an arrow type, and

𝑞 ∈ (0, 1] ∩Q is said to be a scale factor. Note that 𝑞 > 0. Letters 𝑢, 𝑞 range over scale factors. Given
A = [𝑞𝑖 ...A𝑖]𝑖∈𝐼 , we write 𝑢...A for [(𝑢𝑞𝑖)...A𝑖]𝑖∈𝐼 .
It is useful to notice that an intersection type is not a multidistribution, because the sum of

the 𝑞𝑖 such that A = [𝑞𝑖 ...A𝑖]𝑖∈𝐼 is not bounded by 1 in general; this is reflected in distinct bracket

notations. Intersection types and type distributions are indeed fundamentally different. Each

element in an intersection type corresponds to one use of the term, e.g., ΔΔ can have a type of

the form [1.A, 1. [A] → a]. Instead, type distributions are probabilistic sums of possibly different

intersection types. We often need to multiply intersection types or type distributions by scalars,

getting other objects of the same kind. Moreover, intersection types and type distributions being

multisets, they support the (respective) operation of disjoint union (see Section 3.1).

Contexts. A typing context Γ is a (total) map from variables to intersection types such that

only finitely many variables are not mapped to the empty multiset []. The domain of Γ is the

set dom (Γ) := {𝑥 | Γ(𝑥) ≠ []}. The typing context Γ is empty if dom (Γ) = ∅. Multiset union ⊎
is extended to typing contexts pointwise, i.e. (Γ ⊎ Δ) (𝑥) := Γ(𝑥) ⊎ Δ(𝑥), for each variable 𝑥 . A

typing context Γ is denoted as [𝑥1 : A1, ..., 𝑥𝑛 : A𝑛] if dom (Γ) ⊆ {𝑥1, ..., 𝑥𝑛} and Γ(𝑥𝑖) = A𝑖 for
all 1 ≤ 𝑖 ≤ 𝑛. Given two typing contexts Γ and Δ such that dom (Γ) ∩ dom (Δ) = ∅, the typing
context Γ,Δ is defined as (Γ,Δ) (𝑥) := Γ(𝑥) if 𝑥 ∈ dom (Γ), (Γ,Δ) (𝑥) := Δ(𝑥) if 𝑥 ∈ dom (Δ), and
(Γ,Δ) (𝑥) := [] otherwise. Observe that Γ, 𝑥 : [] is equal to Γ. If Γ = 𝑥1 : A1, . . . , 𝑥𝑛 : A𝑛 , we write
𝑞...Γ for [𝑥1 : 𝑞...A1, . . . , 𝑥𝑛 : 𝑞...A𝑛].

Typing rules. The type assignment system in Figure 7 proves judgments of the shape Γ
𝑤⊢ 𝑀 : T,

where Γ is a type context,𝑀 is a term,𝑤 ∈ Q is a weight, and T is a type in one of the three forms,

i.e. T ::= A | a | A. If Π is a formal derivation of Γ
𝑤⊢ 𝑀 : T, then 𝑤 is said to be the weight of Π.

Please notice in Figure 7 the use of the notation 𝑞...Γ defined above.

4.2 Some Comments on the Typing Rules
This section provides some explanation on the shapes and roles of the typing rules.

The leaves of type derivations seen as trees can be of two kinds, namely the Var-rule and

the Zero-rule. In both cases the underlying weight is set to 0. While the former is standard in

intersection type disciplines, the latter attributes the empty distribution 0 to any term 𝑀 . So for

example, ΔΔ is typed as 0. The purpose of Zero is to allow for approximations, by allowing the

typing process to stop at any point.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 32. Publication date: January 2021.

Intersection Types and (Positive) Almost-Sure Termination 32:13

The next four rules are concerned with the four term constructors Λcbv
⊕ includes, namely appli-

cations, probabilistic sums, abstractions, and lets. The following discusses each of them:

• The 𝜆 rule types a lambda abstraction, and assigns an arrow type to it. This poses no problem,

because the type assigned to the variable 𝑥 in the underlying typing context is an intersection

type, and this matches the shape of the left-hand-side of an arrow type. The weight is increased

by one: whenever this abstraction will be used as a function, a 𝛽-redex would fire, and this

takes one reduction step, which needs to be counted.

• The ⊕ rule types𝑀 ⊕ 𝑁 by “superimposing” the derivations for𝑀 and for 𝑁 . The data carried

by each such derivation (context, weight and type) are scaled by a factor of
1
2 . The counter is

increased by 1, to record a ⊕-step in the evaluation.

• The let rule serves to type the let construct, and is probably the most complex one. In

particular, the argument𝑀 needs to be typed multiple times, one for each scaled multiset in

the multidistribution ⟨𝑝𝑘A𝑘⟩, which is the type for the first argument 𝑁 . Each subderivation

will be used with probability 𝑝𝑘 , therefore in the conclusion of the let-rule, the data of each of

the leftmost premisses (typing context Δ𝑘 , weight 𝑤𝑘 , and type b𝑘) are scaled by a factor 𝑝𝑘 .

Moreover, the weight is further increased by 1, to record a let𝑉 -step in the evaluation; such a

step consumes the let when the first argument is a value.

• Finally, the @ rule typing applications is quite standard in shape. Just a couple of observations

could be helpful. First of all, the function 𝑉 is required to be typed with a multiset, rather than

a distribution, and this is not restrictive since 𝑉 is a value, and not a term. Secondly, the weight

is taken as the sum of the weights of the two derivations, without any increase. Notice that the

corresponding 𝛽-step is recorded by the 𝜆-rule.

The last two rules, namely Val and !, are the only ones not associated to any term construc-

tion, and are meant to allow a term typable with arrow types to be attributed an intersection or

distribution type. Of course, this makes sense only when the term is actually a value.

Remark 8. While designing the type system, we made a simplifying choice in the typing rule

let. As we said, the counter is increased by 1 to record the let𝑉 -step. Note however that if 𝑁 is

a non-terminating term, it never becomes a value, and therefore the let𝑉 -step never happens. Are

we counting too much here? Obviously not, because if 𝑁 never become a value, then any reduction

sequence from let 𝑥 = 𝑀 in 𝑁 can be extended with an extra reduction step, without affecting the

analysis in any way.

Some Interesting Boundary Cases. The type system we have just introduced is remarkably simple

in structure, despite its expressive power, which we will analyse in Section 6. Let us now take a

look at a few degenerate cases of the typing rules:

(1) In the 𝜆 rule,A is allowed to be the empty intersection type, this way allowing to type vacuous

abstractions, i.e., we can always abstract a variable 𝑥 which does not explicitly occur in the

context Γ, since if 𝑥 ∉ 𝑑𝑜𝑚(Γ), then Γ, 𝑥 : [] is equal to Γ.
(2) In the !-rule, 𝐼 can be empty, and the following rule is thus a derived rule:

0⊢ 𝜆𝑥.𝑀 : []
(3) In the let rule, the term 𝑁 can well have null type 0, and in this case the whole term

let 𝑥 = 𝑁 in𝑀 is given itself type 0, without any need to type 𝑀 . In other words, the

following is another derived rule

Γ
𝑤⊢ 𝑁 : 0

Γ
𝑤+1⊢ let 𝑥 = 𝑁 in𝑀 : 0

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 32. Publication date: January 2021.

32:14 Ugo Dal Lago, Claudia Faggian, and Simona Ronchi Della Rocca

4.3 Some Basic Properties of the Type System
In this section, we derive some easy but useful properties of the type system, which will turn out

to be essential in the following. Like in linear type systems, typing contexts tell us everything we

need to know about free variables:

Lemma 9 (Contexts and Free Variables). Let Γ ⊢ 𝑀 : a. Then dom (Γ) ⊆ 𝑓 𝑣 (𝑀), and𝑀 closed

implies Γ = ∅.

The way intersection types are assigned to values is completely determined by the underlying

arrow types:

Property 10 (Partitioning Intersections). For every value 𝑉 , the following are equivalent:

(1)

𝑤⊢ 𝑉 : A and A = ⊎𝑖∈𝐼A𝑖 ;
(2)

𝑤𝑖⊢ 𝑉 : A𝑖 for every 𝑖 ∈ 𝐼 and𝑤 =
∑
𝑤𝑖 .

We often use the aforementioned property together with the following lemma:

Lemma 11 (Scaling). Given any scalar 0 < 𝑞 ≤ 1 and any value 𝑉 , it holds that
𝑞𝑣
⊢ 𝑉 : 𝑞...A

iff

𝑣⊢ 𝑉 : A.

5 PRECISELY REFLECTING THE RUNTIME: SOME EXAMPLES
Our type system is designed to keep track of the probability of reaching a value and the expected

time to termination. And as it should by now be clear, the information relevant to derive the latter

is kept track by the weight. Since the expected runtime is computed as an infinitary sum, working

with exact measures is essential. Think for example at

∑∞
𝑘=1

1
𝑘2

and

∑∞
𝑘=1

1
𝑘
: the first converges,

while the second diverges.

We thus need to count steps neither “too much” nor “too little”. Two crucial features make this

possible: the arrows in an intersection type are scaled by a factor 𝑞, and we allow type derivations

also for terms which receive the null type 0, such as ΔΔ. The first feature allows us not to count
“too much”, the second not to count “too little”. In this section, we illustrate these aspects by way of

some concrete examples.

5.1 Not Too Much
In intersection type systems for the 𝜆-calculus such as those by Lengrand and co-authors [Accattoli

et al. 2018, 2019; Bernadet and Lengrand 2013], the weight of any type derivation accounts for how

many times redexes can be fired. Roughly speaking, to each 𝜆-abstraction in the type derivation

corresponds a 𝛽-redex being fired, therefore to measure the runtime of a 𝜆-term, the weight is

increased by one at each instance of the 𝜆 rule. The only difficulty consists in distinguishing between

those abstractions which are used as functions, and those abstractions which will turn out to be

the final value.

In a probabilistic setting, we want to compute the expected runtime. Increasing the weight by

one at each instance of the 𝜆 rule as in the deterministic case is simply too much. Consider our

running example 𝐷𝐷 , where 𝐷 = 𝜆𝑥 .𝑥𝑥 ⊕ 𝐼 , and ETime
(
𝐷𝐷

)
= 4. It is easy to see that for each

𝑘 ∈ N, there is a derivation Π which contains 𝑘 instances of 𝜆 rule. If each is counted 1, we would

have a derivation Π
𝑘⊢ 𝐷𝐷 : a for every 𝑘 , and so sup{𝑘 |𝑘⊢ 𝐷𝐷 : a} = ∞. Instead, we need to scale

each instance of 𝜆 (say, with conclusion A) by the probability 𝑝 of the 𝜆 abstraction to be involved in

a redex. Such an information is stored as a scalar somewhere else in the derivation.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 32. Publication date: January 2021.

Intersection Types and (Positive) Almost-Sure Termination 32:15

To clarify, let us examine our running example. We want to capture ETime𝑛

(
𝐷𝐷

)
and the fact

that PTerm2𝑛

(
𝐷𝐷

)
is

(
1
2 +

1
4 + · · · +

1
2𝑛

)
. We define the types A𝑛 and A𝑛 as follows.

A0 = [] A𝑛 = A𝑛−1 →
𝑛+
𝑘=1

〈
1

2𝑘
[]
〉

A𝑛 =
1

2
...A𝑛−1 ⊎

1

2
...[A𝑛]

For the reader’s convenience, we explicitly give some cases:

A1 = [] →
〈
1

2
[]
〉
, A2 = A1 →

〈
1

4
[], 1

2
[]
〉
, A3 = A2 →

〈
1

8
[], 1

4
[], 1

2
[]
〉

A1 =

[
1

2
...A1

]
, A2 =

[
1

4
...A1,

1

2
...A2

]
, A3 =

[
1

8
...A1,

1

4
...A2,

1

2
...A3

]
The value 𝐷 can be given all the arrow types A𝑖 , for every 𝑖 , all these derivations having weight

equal to 2, i.e. for every 𝑖 ≥ 1 there is a derivation Σ𝑖 such that Σ𝑖 ⊲
2⊢ 𝜆𝑥.𝑥𝑥 ⊕ 𝐼 : A𝑖 . For example,

the type derivations Σ1 to Σ3 can be built as follows:

Σ1 ⊲

0⊢ 𝐼 : ⟨[]⟩
1⊢ 𝑥𝑥 ⊕ 𝐼 :

〈
1
2 []

〉
2⊢ 𝜆𝑥 .𝑥𝑥 ⊕ 𝐼 : [] →

〈
1
2 []

〉
Σ2 ⊲

𝑥 : [A1]
0⊢ 𝑥 : [[] →

〈
1
2 []

〉
] 𝑥 : [] 0⊢ 𝑥 : []

𝑥 : [A1]
0⊢ 𝑥𝑥 :

〈
1
2 []

〉 0⊢ 𝐼 : ⟨[]⟩

𝑥 : [12 ...A1]
1⊢ 𝑥𝑥 ⊕ 𝐼 :

〈
1
4 [],

1
2 []

〉
2⊢ 𝜆𝑥 .𝑥𝑥 ⊕ 𝐼 : [12 ...A1] →

〈
1
4 [],

1
2 []

〉

Σ3 ⊲

𝑥 : [A2]
0⊢ 𝑥 : [[12 ...A1] →

〈
1
4 [],

1
2 []

〉
] 𝑥 : [12 ...A1]

0⊢ 𝑥 : [12 ...A]

𝑥 : [A2, 12 ...A1]
0⊢ 𝑥𝑥 :

〈
1
4 [],

1
2 []

〉 0⊢ 𝐼 : ⟨[]⟩

𝑥 : [12 ...A2,
1
4 ...A1]

1⊢ 𝑥𝑥 ⊕ 𝐼 :
〈
1
8 [],

1
4 [],

1
2 []

〉
2⊢ 𝜆𝑥 .𝑥𝑥 ⊕ 𝐼 : [12 ...A2,

1
4 ...A1] →

〈
1
8 [],

1
4 [],

1
2 []

〉
One can attribute to 𝐷 also any intersection type A 𝑗 , by collecting and scaling the 𝑗 derivations

(Σ 𝑗 , . . . , Σ1) by way of the rule ! (with scale factors
1
2 , . . . ,

1
2𝑗), thus obtaining the type derivation

Θ𝑗 , this time with weight 2(∑𝑗

𝑘:1
1
2𝑘
) = 2 − 1

2𝑗−1 . Finally, Σ 𝑗+1 and Θ𝑗 can be aggregated in the

derivation Φ𝑗+1, typing 𝐷𝐷 . Note that the weight is now 2(∑𝑗

𝑘:0
1
2𝑘
).

Φ𝑗+1 ⊲

Σ 𝑗+1 ⊲
2⊢ 𝐷 : A 𝑗 →

*𝑗+1
𝑘:1

〈
1
2𝑘
[]
〉

Θ𝑗 ⊲
2(∑𝑗

𝑘:1
1

2𝑘
)

⊢ 𝐷 : A 𝑗

2(∑𝑗

𝑘:0
1

2𝑘
)

⊢ 𝐷𝐷 :
*𝑗+1
𝑘:1

〈
1
2𝑘
[]
〉

For example, we have the following derivation, which indeed corresponds to the (2 · 3)-
approximant of ETime

(
𝐷𝐷

)
: recall from Example 5 that ETime6

(
𝐷𝐷

)
= 3 + 1

2 (and that

PTerm6

(
𝐷𝐷

)
= 7

8).

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 32. Publication date: January 2021.

32:16 Ugo Dal Lago, Claudia Faggian, and Simona Ronchi Della Rocca

Φ3 ⊲

Σ3 ⊲
2⊢ 𝜆𝑥.𝑥𝑥 ⊕ 𝐼 : [12 ...A2,

1
4 ...A1] →

〈
1
8 [],

1
4 [],

1
2 []

〉 Σ2
2⊢ 𝐷 : A2 Σ1 ⊲

2⊢ 𝐷 : A1
1+ 1

2⊢ 𝐷 : [12 ...A2,
1
4 ...A1]

!

3+ 1
2⊢ 𝐷𝐷 :

〈
1
8 [],

1
4 [],

1
2 []

〉
5.2 Not Too Little
Our type system allows to count the reduction steps of diverging terms. That is, a term such as

ΔΔ has a derivation of weight 𝑛, for each 𝑛 ∈ N. This is essential to precisely capture the expected

runtime. Think of the term𝑀 := 𝐼 ⊕ ΔΔ. Its evaluation proceeds as follows:

⟨𝐼 ⊕ ΔΔ⟩
1
⇒

〈
1

2
𝐼 ,
1

2
ΔΔ

〉 1
2

⇒

〈
1

2
𝐼 ,
1

2
ΔΔ

〉 1
2

⇒

〈
1

2
𝐼 ,
1

2
ΔΔ

〉
. . .

Clearly, ETime
(
𝑀
)
= ∞. However, any derivation only taking into account the evaluation time to a

value (namely the ⊕ reduction step only), would necessarily have finite weight. In the following,

we prove that any diverging program𝑀 can be typed as

𝑛⊢ 𝑀 : 0, for every natural number 𝑛.

Here, we show this fact, concretely, for the paradigmatic diverging term ΔΔ. First of all, consider
the arrow types A𝑖+1 = [A1, . . . , A𝑖] → 0 (so, in particular, A1 = [] → 0, A2 = [A1] → 0). For each 𝑖 ,
one can build a derivation Σ𝑖 having weight 1 and typing Δ with A𝑖 . Here are a couple of examples:

Σ1 ⊲

0⊢ 𝑥𝑥 : 0
1⊢ 𝜆𝑥 .𝑥𝑥 : [] → 0 Σ2 ⊲

𝑥 : [[] → 0] 0⊢ 𝑥 : [[] → 0] 0⊢ 𝑥 : []

𝑥 : [[] → 0] 0⊢ 𝑥𝑥 : 0
1⊢ 𝜆𝑥.𝑥𝑥 : [[] → 0] → 0

From the Σ𝑖 ’s, it is thus easy to build derivations typing ΔΔ with 0 and having any weight 𝑛. As an

example, if 𝑛 = 3, we have the following one:

Σ3 ⊲
1⊢ 𝜆𝑥.𝑥𝑥 : [[[] → 0] → 0, [] → 0] → 0 Σ2 ⊲

1⊢ 𝜆𝑥.𝑥𝑥 : [[] → 0] → 0 Σ1 ⊲
1⊢ 𝜆𝑥.𝑥𝑥 : [] → 0

3⊢ (𝜆𝑥.𝑥𝑥)𝜆𝑥.𝑥𝑥 : 0
@

6 CHARACTERISING PROBABILISTIC TERMINATION
This section presents the main result of this paper, namely the characterisation of both forms of

probabilistic termination by typing. This will be done by relating type derivations for a program𝑀

and the probability of termination and the expected runtime of𝑀 . To achieve the latter, we need

to focus on tight derivations, since not all type derivations of𝑀 underapproximate the expected

runtime of𝑀 .

We show that in the tight case, ETime
(
𝑀
)
(respectively, PTerm

(
𝑀
)
) bounds from above theweight

𝑤 (respectively, the norm ∥a∥) of any type derivation Π ⊲
𝑤⊢ 𝑀 : a. This is the soundness property,

and is in Section 6.2. We also prove the converse, i.e. the completeness property, in Section 6.3.

6.1 Tight Typings
The need for tight typings can be grasped easily by considering the following example.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 32. Publication date: January 2021.

Intersection Types and (Positive) Almost-Sure Termination 32:17

Example 12. The term 𝐼 is in normal form, and therefore ETime
(
𝐼
)
= 0. It can be given the type 0

(by way of the Zero typing rule), or the type ⟨1[]⟩ (by way of ! and Val). In both cases, the underlying
weight is 0. However, 𝐼 also admits derivations whose weight is strictly positive, such as

𝑥 : [] 0⊢ 𝑥 : []
Var

1⊢ 𝜆𝑥.𝑥 : [] → []
𝜆

More generally, without any restrictions on the shape of types, one can easily assign grossly overap-

proximated weights to terms, e.g., the term 𝜆𝑥.(ΔΔ), which is a value but which can receive arbitrarily

large weights when given the type [] → 0, (immediate consequence of the example in Section 5.2

above).

The purpose of arrow types is to give types to terms which are not supposed to be reduced alone,

but only when applied to an argument. If, instead, a term is not supposed to be used as a function,

its type must be the empty multiset. This is the key idea for understanding the following definition:

Definition 13 (Tight Types and Derivations). A type a is said to be tight if it is a multidistribution

on the empty intersection type []. Accordingly, a derivation Π ⊲
𝑤⊢ 𝑀 : a is said to be tight if a is

tight.

A tight type has therefore shape a = ⟨𝑞𝑘 []⟩𝑘∈𝐾 , where 𝐾 is possibly empty. In particular the null

type 0 is a tight type. Observe that if a is tight, then ∥a∥ = ∑
𝑘 𝑞𝑘 (which, again, is null when 𝐾 is

empty). The following can be proved by quickly inspecting the typing rules:

Lemma 14 (Tight Typings for Values). If 𝑉 is a closed value, then there are precisely two tight

derivations for 𝑉 , both of weight 0:

0⊢ 𝑉 : []
!

0⊢ 𝑉 : ⟨1[]⟩
Val

0⊢ 𝑉 : 0
Zero

Looking back at Example 12, one immediately realises that tightness allows us to get rid of

overapproximations, at least for values. Does this lift to all terms? The next two subsections will

give a positive answer to this question. The following property, which is immediate from the

definitions, will be useful in the rest of this section.

Property 15. For any closed term 𝑀 and any 𝑘 ∈ N, it holds that PTerm𝑘
(
𝑀
)
≤ PTerm𝑘+1

(
𝑀
)

and ETime𝑘

(
𝑀
)
≤ ETime𝑘+1

(
𝑀
)
. Moreover, if𝑀 → ⟨𝑞𝑖𝑀𝑖⟩𝑖∈𝐼 then

PTerm𝑘+1
(
𝑀
)
=
∑︁
𝑖∈𝐼

𝑞𝑖
(
PTerm𝑘

(
𝑀𝑖

))
, ETime𝑘+1

(
𝑀
)
= 1 +

∑︁
𝑖∈𝐼

𝑞𝑖
(
ETime𝑘

(
𝑀𝑖

))
.

6.2 Soundness
In this section, we prove the correctness of our type system. Namely, we prove that if

𝑤⊢ 𝑀 : a is

(tightly) derivable, then 𝑀 has probability of termination at least ∥a∥, and expected runtime at

least𝑤 .

The proof of correctness is based on the following, namely a form of weighted subject reduction,

that for good reasons has a probabilistic flavor here. The size of a type derivation Π (denoted |Π |) is
the standard one, and is defined as the number of rules in Π (excluding the !-rule and the Val-rule,

which cannot be iterated).

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 32. Publication date: January 2021.

32:18 Ugo Dal Lago, Claudia Faggian, and Simona Ronchi Della Rocca

Lemma 16 (Weighted Subject Reduction). Suppose that Π ⊲
𝑤⊢ 𝑃 : b, with 𝑤 > 0, and that

𝑃 → ⟨𝑞𝑖𝑃𝑖⟩𝑖∈𝐼 . Then for every 𝑖 ∈ 𝐼 there exists a derivation Π𝑖 such that Π𝑖 ⊲
𝑤𝑖⊢ 𝑃𝑖 : b𝑖 , and

|Π | > |Π𝑖 |. Moreover, b =
*
𝑖∈𝐼 𝑞𝑖b𝑖 and𝑤 = 1 +∑𝑖∈𝐼 𝑞𝑖𝑤𝑖 .

The proof is in the Extended Version of this paper. Notice how the type stays the same, at least

on the average, while the weight strictly decreases. This in turn implies that whenever a term is

(tightly) typable, its weight is a lower bound to its expected time to termination, while the norm of

its type is a lower bound to the probability of termination. This is proved by way of approximations,

as follows:

Theorem 17 (Finitary Soundness). Let𝑀 be a closed term. For each tight typing

𝑤⊢ 𝑀 : b, there
exists 𝑘 ∈ N such that ∥b∥ ≤ PTerm𝑘

(
𝑀
)
and𝑤 ≤ ETime𝑘

(
𝑀
)
.

Proof. By induction on the size |Π | of the type derivation Π such that Π ⊲
𝑤⊢ 𝑀 , distinguishing

some cases. Recall that for closed terms, the normal forms are exactly the values.

• If 𝑀 is a value, the claim holds by Lemma 14, where we observe that 𝑤 = 0. Notice that

PTerm0

(
𝑀
)
= ∥ ⟨𝑀⟩V ∥ = 1 and ETime0

(
𝑀
)
= 0.

• Otherwise, if𝑀 is not a value, we further distinguish some cases:

• If 𝑤 = 0, then by inspecting the rules, we see that the only derivable tight judgment is

0⊢ 𝑀 : 0 which trivially satisfies the claim, with 𝑘 = 0.
• If𝑤 > 0, then since𝑀 is not normal, it has a reduction step𝑀 → ⟨𝑞𝑖𝑀𝑖⟩𝑖∈𝐼 . By Weighted

Subject Reduction (Lemma 16), we derive that for each 𝑖 ∈ 𝐼 there exists a derivation

Π𝑖 ⊲
𝑤𝑖⊢ 𝑀𝑖 : b𝑖 , with |Π𝑖 | < |Π |. Since b is tight, necessarily each b𝑖 also is tight, again by

Lemma 16 (observe also that, if b = 0, then b𝑖 = 0). By i.h., for each𝑀𝑖 (𝑖 ∈ 𝐼) there exists
𝑘𝑖 ∈ N which satisfies the conditions on ∥b𝑖 ∥ and 𝑤𝑖 . Let ℎ = 𝑚𝑎𝑥{𝑘𝑖 }𝑖∈𝐼 . Since ℎ ≥ 𝑘𝑖 ,
for each 𝑖 ∈ 𝐼 we have ∥b𝑖 ∥ ≤ PTermℎ

(
𝑀𝑖

)
and 𝑤𝑖 ≤ ETimeℎ

(
𝑀𝑖

)
. Moreover, Weighted

Subject Reduction implies also that ∥b∥ = ∑
𝑖 𝑞𝑖 ∥b𝑖 ∥ and𝑤 = 1 +∑𝑖 𝑞𝑖𝑤𝑖 . The claim follows

easily by Property 15, with 𝑘 = ℎ + 1. Indeed PTermℎ+1
(
𝑀
)
=

(∑
𝑖∈𝐼 𝑞𝑖PTermℎ

(
𝑀𝑖

))
≥(∑

𝑖∈𝐼 𝑞𝑖 ∥b𝑖 ∥
)
= ∥b∥ and ETimeℎ+1

(
𝑀
)
=
(
1 +∑𝑖∈𝐼 𝑞𝑖ETimeℎ

(
𝑀𝑖

))
≥

(
1 +∑𝑖∈𝐼 𝑞𝑖𝑤𝑖

)
= 𝑤 .

Since there are no other cases, we are done. □

Observe that Theorem 17 holds for every tight type b, including the null type. Thus it has the

following immediate consequence:

Corollary 18 (Finitary Soundness of Null Typing). Let𝑀 be a closed term such that

𝑤⊢ 𝑀 : 0.
Then there exists 𝑘 ∈ N such that𝑤 ≤ ETime𝑘

(
𝑀
)
.

6.3 Completeness
The last section showed that type derivations provide lower bounds on the probability of con-

vergence, and on the expected time to termination. It is now time to prove that tight derivations

approximate with arbitrary precision the aforementioned quantities. The proof of completeness is

based on the following probabilistic adaptation of Subject Expansion.

Lemma 19 (Weighted Subject Expansion). Let 𝑃 be a closed term. Assume that 𝑃 → ⟨𝑞𝑖𝑃𝑖⟩𝑖∈𝐼
and that for each 𝑖 ∈ 𝐼 , Π𝑖 ⊲

𝑤𝑖⊢ 𝑃𝑖 : a𝑖 . Then, there exists a single derivation Π ⊲
𝑤⊢ 𝑃 : a such that

a =
*
𝑖 (𝑞𝑖a𝑖) and𝑤 ≥ 1 +∑𝑞𝑖𝑤𝑖 .

The proof is in the extended version of this paper [Dal Lago et al. 2020]. We can now thus prove

the dual to Theorem 17 above:

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 32. Publication date: January 2021.

Intersection Types and (Positive) Almost-Sure Termination 32:19

Theorem 20 (Finitary Completeness). Let 𝑀 be a closed term. For each 𝑘 ∈ N there exists a

tight derivation Π ⊲
𝑤⊢ 𝑀 : a, such that ∥a∥ = PTerm𝑘

(
𝑀
)
and𝑤 ≥ ETime𝑘

(
𝑀
)
.

Proof. By induction on 𝑘 , distinguishing some cases.

• If𝑀 is a value, then for each 𝑘 , PTerm𝑘
(
𝑀
)
= 1 and ETime𝑘

(
𝑀
)
= 0. The derivation

0⊢ 𝑀 : ⟨1[]⟩
(Lemma 14) satisfies the claim.

• Otherwise, if𝑀 is not a value:

• If 𝑘 = 0, we have PTerm0
(
𝑀
)
= 0 = ETime0

(
𝑀
)
; the Zero-rule satisfies the claim.

• If 𝑘 > 0, assume𝑀 → ⟨𝑝𝑖𝑀𝑖⟩𝑖∈𝐼 . By i.h., for each 𝑖 ∈ 𝐼 , there exists a tight derivation Π𝑖 ⊲
𝑤𝑖⊢

𝑀𝑖 : a𝑖 , such that ∥a𝑖 ∥ = PTerm𝑘−1
(
𝑀𝑖

)
and 𝑤𝑖 ≥ ETime𝑘−1

(
𝑀𝑖

)
. By Weighted Subject

Expansion, there exists a tight derivation Φ ⊲
𝑤⊢ 𝑀 : a such that ∥a∥ = ∑

𝑖∈𝐼 𝑝𝑖 ∥a𝑖 ∥, and
𝑤 ≥ ∑

𝑖∈𝐼 𝑝𝑖𝑤𝑖 . We conclude by Property 15, because PTerm𝑘

(
𝑀
)
=
∑
𝑖∈𝐼 𝑝𝑖PTerm𝑘−1

(
𝑀𝑖

)
=∑

𝑖∈𝐼 𝑝𝑖 ∥a𝑖 ∥ = ∥a∥ and ETime𝑘
(
𝑀
)
= 1 +∑𝑖∈𝐼 𝑝𝑖ETime𝑘−1

(
𝑀𝑖

)
≤ 1 +∑𝑖∈𝐼 𝑝𝑖𝑤𝑖 ≤ 𝑤 .

□

6.4 The Various Flavours of a Correspondence
This section is devoted to characterisation results relating typing and termination. The latter can

be given in three different ways, and we devote a subsection to each of them.

6.4.1 A Uniform Characterization. A characterization of both PTerm
(
𝑀
)
and ETime

(
𝑀
)
by the

same class of derivations, namely tight derivations, can be given as follows:

Theorem 21 (Tight Typing and Termination). Let𝑀 be a closed term. Then

PTerm
(
𝑀
)
= sup{∥a∥ | ∃Π.Π ⊲ ⊢ 𝑀 : a is a tight derivation}

ETime
(
𝑀
)
= sup{𝑤 | ∃Π.∃a.Π ⊲

𝑤⊢ 𝑀 : a is tight derivation}

Proof. Let us first of all define N(𝑀) and W(𝑀) as follows:
N(𝑀) := sup{∥a∥ | ∃Π.Π ⊲ ⊢ 𝑀 : a is a tight derivation}

W(𝑀) := sup{𝑤 | ∃Π.∃a.Π ⊲
𝑤⊢ 𝑀 : a is tight derivation}

We now proceed by proving the following two statements:

• On the one hand, we prove that N(𝑀) = PTerm
(
𝑀
)
, recalling that we defined PTerm

(
𝑀
)
as

sup{PTerm𝑛
(
𝑀
)
| 𝑛 ∈ N}.

• Let Φ ⊲ ⊢ 𝑀 : a be a tight derivation. By Correctness (Theorem 17), ∥a∥ ≤ PTerm
(
𝑀
)
.

Hence N(𝑀) ≤ PTerm
(
𝑀
)
.

• By Finitary Completeness (Theorem 20), for each 𝑘 ∈ N there exists a tight derivation

Π ⊲ ⊢ 𝑀 : a such that PTerm𝑘

(
𝑀
)
≤ ∥a∥. Hence N(𝑀) = PTerm

(
𝑀
)
.

• On the other hand, we prove thatW(𝑀) = ETime
(
𝑀
)
, recalling that ETime

(
𝑀
)
is defined as

sup{ETime𝑛
(
𝑀
)
| 𝑛 ∈ N}.

• Let 𝑤 be the weight of a tight derivation Φ ⊲
𝑤⊢ 𝑀 : a. By Correctness (Theorem 17),

𝑤 ≤ ETime
(
𝑀
)
. HenceW(𝑀) ≤ ETime

(
𝑀
)
.

• Again by Finitary Completeness (Theorem 20), for each 𝑘 ∈ N there exists a tight derivation

Π ⊲
𝑤⊢ 𝑀 : a such that ETime𝑘

(
𝑀
)
≤ 𝑤 . HenceW(𝑀) = ETime

(
𝑀
)
.

□

By definition, 𝑀 is AST iff PTerm
(
𝑀
)
= 1, while 𝑀 is PAST iff ETime

(
𝑀
)
is finite. As a conse-

quence:

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 32. Publication date: January 2021.

32:20 Ugo Dal Lago, Claudia Faggian, and Simona Ronchi Della Rocca

Corollary 22 (Tight Typing, AST, and PAST). Let 𝑀 be a closed term. Then: 𝑀 is AST iff

sup{∥a∥ | ∃Π.Π ⊲ ⊢ 𝑀 : a is a tight derivation} = 1. Moreover,𝑀 is PAST iff sup{𝑤 | ∃Π.∃a.Π ⊲
𝑤⊢

𝑀 : a is tight derivation} < ∞.

Example 23. In Section 5 we have discussed tight derivations for our running example 𝐷𝐷 . Each

derivation Σ𝑖 for 𝐷 has constant weight 2. Collecting and scaling the 𝑗 + 1 derivations Σ 𝑗+1, Σ 𝑗 , . . . , Σ1,

we obtained a derivation Φ𝑗+1 for 𝐷𝐷 , with weight 2(1 + 1
2 + ... +

1
2𝑗) = 2(∑𝑛≤ 𝑗

1
2𝑛) < 4. Let us also

sketch how type derivations can be built for the terms 𝐶𝐶 and exp(𝐶𝐶) from Example 2.

• We can build a tight type derivation Ξ𝑖 for 𝐶 =

(
𝜆𝑥 .(let 𝑧 = 𝑥𝑥 in 𝑆𝑈𝐶𝐶 𝑧) ⊕ 0

)
by following

the blueprint of the derivation Σ𝑖 for 𝐷 . The weight of each Ξ𝑖 is 2 + 1
2𝑣𝑖 , where the weight 𝑣𝑖

is contributed by the let rule, and increases as 𝑖 increases, because the let rule has more than

one premiss. By collecting and appropriately scaling the derivations Ξ𝑗 , . . . ,Ξ1, and putting this

together with Ξ𝑗+1, we then obtain a type derivation Ψ𝑗+1 for 𝐶𝐶 (similarly to what we have done

to obtain Φ𝑗+1). The weight has now a bound similar to that for Φ𝑗+1, plus an overhead which is

obtained by summing the scaled
1
2𝑣𝑖 ’s, giving an overall weight𝑤 < 4 + 𝑠 .

• An even more interesting term is exp(𝐶𝐶). We can build tight derivations for it from appropriate

derivations for 𝐶𝐶 . It is clear that the term EXP 𝑛 can be given a tight derivation of weight (at

least) 2𝑛 , in a standard way. From there, for every 𝑗 , a tight type derivation having weight at least

1
2

∑
𝑛≤ 𝑗

2𝑛

2𝑛 =
𝑗+1
2 can be built, so the set of tight weights is unbounded.

6.4.2 Focusing on Expected Runtimes. Remember that PAST ⊂ AST. The previous characterisation
may give the impression that analysing the runtime of a term somehow requires studying its

probability of termination. In fact, intersection types allow us to establish PAST independently from

AST, by looking only at the type 0 rather than at all tight typings. The results we are going to prove

tell us that if we are only interested in the expected runtime, we can indeed limit the search space

to the derivations of the null type 0. First of all, a strengthening of Finitary Completeness can be

given.

Proposition 24 (Finitary Completeness of Null Typing). Let𝑀 be a closed term. Then, for

each 𝑘 ∈ N there exists a derivation Π ⊲
𝑤⊢ 𝑀 : 0, such that𝑤 ≥ ETime𝑘

(
𝑀
)
.

Proof. The proof is a simplification of Theorem 20. We only need to observe that the 0 typing

is preserved by subject expansion, and the weight strictly increases along it. □

Since Finitary Soundness holds at all types, we can easily reach the following:

Theorem 25 (Null Typing, Expected Runtimes, and PAST). Let𝑀 be a closed term. Then:

ETime
(
𝑀
)
= sup{𝑤 | Π ⊲

𝑤⊢ 𝑀 : 0} 𝑀 ∈ PAST⇔ sup{𝑤 | Π ⊲
𝑤⊢ 𝑀 : 0} < ∞

The Running Example, Revisited. Let us go back to our running example 𝐷𝐷 , and show that its

runtime can be analysed by way of null types. We can indeed build type derivations of the form

Π ⊲
𝑤⊢ 𝐷𝐷 : 0 in such a way that 𝑤 is bounded by ETime

(
𝐷𝐷

)
= 4, and for each approximant

ETime𝑘

(
𝐷𝐷

)
there is a derivation which has at least that weight. The structure of these type

derivations are identical to the ones we gave in Section 5. The only difference is in how the

underlying types are defined. Let us define the families of types {B𝑛}𝑛∈N and {B𝑛}𝑛∈N as follows:

B0 = [] B𝑛 =
1

2
...B𝑛−1 ⊎

1

2
...[B𝑛] B𝑛 = B𝑛−1 → 0

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 32. Publication date: January 2021.

Intersection Types and (Positive) Almost-Sure Termination 32:21

For example:

B1 = [] → 0, B2 = B1 → 0, B3 = B2 → 0,

B1 =

[
1

2
...B1

]
B2 =

[
1

4
...B1,

1

2
...B2

]
, B3 =

[
1

8
...B1,

1

4
...B2,

1

2
...B3

]
The given types are structurally very similar to those from Section 5. We can thus mimic the

constructions given there, and get derivations Σ𝑖 , each having weight 2 and typing 𝐷 with B𝑖 ,

but also derivations having weights converging to 4, this time typing 𝐷𝐷 with 0. So for example,

recalling that ETime6

(
𝐷𝐷

)
= 3 + 1

2 , here is the corresponding type derivation:

𝑥 : [[12 ...B1] → 0] 0⊢ 𝑥 : [[12 ...B1] → 0] 𝑥 : [12 ...B1]
0⊢ 𝑥 : [12 ...B1]

𝑥 : [B2, 12 ...B1]
0⊢ 𝑥𝑥 : 0

0⊢ 𝐼 : 0

𝑥 : [12 ...B2,
1
4 ...B1]

1⊢ 𝑥𝑥 ⊕ 𝐼 : 0
⊕

Σ3 ⊲
2⊢ 𝜆𝑥.𝑥𝑥 ⊕ 𝐼 : [12 ...B2,

1
4 ...B1] → 0

Σ1 ⊲
2⊢ 𝐷 : B1 Σ2

2⊢ 𝐷 : B2

Σ ⊲
1+ 12⊢ 𝐷 : [12 ...B2,

1
4 ...B1]

!

3+ 12⊢ 𝐷𝐷 : 0

6.4.3 Focusing on the Probability of Termination. In this section, we have shown that our type

system induces characterisations of both AST and PAST by the same family of derivations, namely

the tight derivations. Moreover, we proved that we can restrict the search space to the class of null

typings whenever interested in the expected number of steps, only. But there is more: if we are

interested in the probability of termination only, an orthogonal simplification is possible—we could

drop from the typing all the information on the scaling factors, as that is only used in deriving the

weight.

7 ON RECURSION-THEORETIC OPTIMALITY
The uniform characterisation of both forms of termination we described in Section 6 is remarkable,

because one single system is capable of providing precisely the kind of information one needs in

either case:

• The (norm of the) underlying type is a lower (but tight) bound to the probability of termination.

• The weight of type derivations is a lower (but again tight) bound to the expected time to

termination.

As usual in type systems, reasoning is compositional: the typings one attributes to composite terms

are derived from those one assigns to the subterms. This being said, AST and PAST can only be

verified at the limit, since all possible type derivations for the given term and having conclusions of

a certain form need, in general, to be taken into account.

At this point, one may wonder whether one can do better than Theorem 21 when characterising

probabilistic termination. Is it that one can get away from approximations, and devise a (possibly

more complicated) type system in which one type derivation is by itself a certificate? In this section,

we prove that under mild assumptions in fact one cannot, i.e. that our characterisation is the best

possible, at least recursion-theoretically.

Our results are based on the well-known ones by Kaminski et al. [Kaminski et al. 2019], which

establish that in the realm of probabilistic Turing machines, almost-sure termination is a Π0
2-

complete problem, while positive almost-sure termination is Σ0
2-complete problem. We give two

results in this section:

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 32. Publication date: January 2021.

32:22 Ugo Dal Lago, Claudia Faggian, and Simona Ronchi Della Rocca

• On the one hand, we show that probabilistic Turing machines can be faithfully encoded into

Λcbv
⊕ , witnessing the fact that the aforementioned recursion-theoretic limitations also hold for

Λcbv
⊕ .

• On the other hand, we prove by way of our type system that the class of positively almost-surely

terminating terms in Λcbv
⊕ is Σ0

2, which in view of the previous point means that our type system

is as simple as possible, recursion- theoretically. A similar result is given for almost-surely

terminating terms and Π0
2.

7.1 Probabilistic Turing Machines
Probabilistic Turing machines [Gill 1977; Santos 1969] (PTMs in the following) can be defined

similarly to ordinary deterministic ones, the main difference being the fact that the transition

function 𝛿 returns not one pair in Σ × {←, ↓,→}, but a distribution of those. Various restrictions

might be imposed on the form of those distributions, without affecting the class of representable

(random) functions, but only inducing some overhead. Here, we assume that the underlying

distribution is a Bernoulli one, assigning probability
1
2 to one pair and probability

1
2 to another one.

As usual, we can also assume to work with 1-tape Turing machines. Again, this is not restrictive.

Both notions of termination we have introduced in Section 3.4 in the realm of Λcbv
⊕ make perfect

sense for Turing machines too, e.g., given a probabilistic Turing machineM and an input 𝑥 ∈ Σ∗,
we say thatM is AST on 𝑥 ifM converges with probability 1. Like ordinary Turing machines,

PTMs can be effectively enumerated and the PTM corresponding to 𝛼 is indicated asM𝛼 . This

allows us to introduce the following classes of (pairs of) natural numbers:

ASTTM = {(𝛼, 𝑥) | the PTMM𝛼 is AST on input 𝑥}
PASTTM = {(𝛼, 𝑥) | the PTMM𝛼 is PAST on input 𝑥}

7.2 Encoding PTMs into Λ⊕

Let us now switch to the encoding of probabilistic Turing machines into Λcbv
⊕ . As a target language,

we actually take a sub-class of terms in Λcbv
⊕ , namely the one defined by the following grammar:

𝑉 ::= 𝑥 | 𝜆𝑥.𝑀 Values,Vcps

𝑀 ::= 𝑉 | 𝑀𝑉 | 𝑀 ⊕ 𝑀 Terms, Λcps

⊕

where 𝑀𝑉 is nothing more than syntactic sugar for let 𝑥 = 𝑀 in 𝑥𝑉 . In doing so, we fol-

low [Dal Lago and Accattoli 2017], and take as a target calculus for our encoding one in which only

one redex is active in any term. This way, all our results will also be valid in Section 8.1, where

intersection types will be generalised to a calculus with call-by-name evaluation.

The main ingredients of the encoding are the following ones:

• States and strings can be encoded following the so-called Scott scheme [Wadsworth 1980], e.g.,

given an alphabet Σ = {𝑎1, . . . , 𝑎𝑚} strings in Σ∗ are encoded following the recursive definition

below:

𝜀 = 𝜆𝑥1. · · · .𝜆𝑥𝑚 .𝜆𝑦.𝑦 𝑎𝑖 · 𝑠 = 𝜆𝑥1. · · · .𝜆𝑥𝑚 .𝜆𝑦.𝑥𝑖𝑠

• Similarly, one can encode any tuple of values (𝑉1, . . . ,𝑉𝑛) as 𝜆𝑥.𝑥𝑉1 · · ·𝑉𝑛 . This encoding easily
supports projections.

• We can build a fixed-point combinator𝑍 as𝑀𝑀 , where𝑀 is the term 𝜆𝑥 .𝜆𝑦.𝑦 (𝜆𝑧.𝑥𝑥𝑦𝑧). Observe
that for every value 𝑉 , it holds that 𝑍𝑉 deterministically rewrites (in a constant amount of

steps) to𝑉 (𝜆𝑥 .𝑍𝑉𝑥). Notice that the argument to𝑉 is not 𝑍𝑉 , but is “wrapped” into a value by

way of 𝜂-expansion: this is necessary, given the nature of our calculus.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 32. Publication date: January 2021.

Intersection Types and (Positive) Almost-Sure Termination 32:23

Given the above, and after a fair amount of intermediate technical results (but closely follow-

ing [Dal Lago and Accattoli 2017], except in the encoding of the transition function), one can reach

the following:

Theorem 26. For every probabilistic Turing Machine M, there is lambda term 𝑇M such that

the evaluation of 𝑇M𝑠 and the computation ofM on input 𝑠 produce the same distributions (up to

encodings). Moreover, the number of steps taken by 𝑇M is linearly related toM. Finally, the term 𝑇M
can be effectively obtained from (the code of)M.

7.3 Preliminaries from Recursion Theory
In this subsection, we give some basic definitions about the arithmetic hierarchy, for the sake of

making this paper self-contained. An excellent reference about these topics is [Odifreddi 1989].

A set 𝑋 ⊆ N is said to be Σ0
𝑛 iff there is a primitive recursive relation 𝑅 ⊆ N𝑛+1 such that

𝑥 ∈ 𝑋 ⇔ ∃𝑦1.∀𝑦2∃𝑦3.∀𝑦4 . . .︸ ︷︷ ︸
𝑛 times

𝑅(𝑥,𝑦1, . . . , 𝑦𝑛)

Dually, 𝑋 is said to be Π0
𝑛 iff there is a primitive recursive relation 𝑅 ⊆ N𝑛+1 such that

𝑥 ∈ 𝑋 ⇔ ∀𝑦1.∃𝑦2∀𝑦3.∃𝑦4 . . .︸ ︷︷ ︸
𝑛 times

𝑅(𝑥,𝑦1, . . . , 𝑦𝑛)

For both the classes Σ0
𝑛 and Π0

𝑛 , there are related notions of hardness: a set 𝑋 ⊆ N is Σ0
𝑛-difficult

(respectively, Π0
𝑛-difficult) iff it is at least as difficult as any other Σ0

𝑛 (respectively, Π0
𝑛) problem, i.e.

if for every other Π0
𝑛 problem 𝑌 there is a (recursive) reduction from 𝑌 to 𝑋 . Both in Σ0

𝑛 and in Π0
𝑛 ,

completeness stands for containment and hardness. These classes form an hierarchy which is strict;

moreover, Σ0
𝑛 and Π0

𝑛 , although having non-empty intersections, are incomparable as classes.

Where, in the arithmetical hierarchy, do ASTTM and ASTTM reside? A precise answer to this

question has been given by Kaminski et al. [Kaminski et al. 2019] in the realm of while programs,

but can easily be rephrased for PTMs:

Theorem 27 (Kaminski et al. [Kaminski et al. 2019]). ASTTM is Π0
2-complete, while PASTTM

is Σ0
2-complete.

Theorem 27 is quite surprising, in particular if seen through the lenses of ordinary, deterministic

computation. In universal deterministic computational models (like TMs or the 𝜆-calculus) termi-

nating computations form a Σ0
1-complete set: even if undecidable, the set is recursively enumerable,

and any terminating computation can be endowed with a finite certificate, itself (effectively) check-

able for correctness. This, by the way, is a recursive-theoretical justification of the possibility of

building complete systems of intersection types for the deterministic 𝜆-calculus in which type

derivations play the role of certificates, as the ones we describe in Section 2: this is possible only

because termination is in Σ0
1.

7.4 The Optimality Result
In the probabilistic 𝜆-calculus, neither form of termination is Σ0

1, and as a consequence type

derivations cannot play the role of certificates. In this section we will formally prove the statement

above, along the lines showing that the form of approximation we employ is optimal.

First of all, we can give the 𝜆-counterparts of ASTTM and PASTTM :

AST𝜆 = {𝑀 | 𝑀 is AST} PAST𝜆 = {𝑀 | 𝑀 is PAST}

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 32. Publication date: January 2021.

32:24 Ugo Dal Lago, Claudia Faggian, and Simona Ronchi Della Rocca

(𝜆𝑥 .𝑀)𝑉 → ⟨𝑀{𝑉 /𝑥}⟩ 𝛽
𝑁 → ⟨𝑝𝑖𝑁𝑖⟩𝑖∈𝐼

𝑁𝑀 → ⟨𝑝𝑖 (𝑁𝑖𝑀)⟩𝑖∈𝐼
head

Fig. 8. Reduction Steps

Theorem 26 and Theorem 27 together imply that AST𝜆 is Π
0
2-hard and PAST𝜆 is Σ

0
2-hard. But how

about containment?

Actually, our characterisation results , namely Theorem 21 and Corollary 22 can be seen as a

way to prove that AST𝜆 is in Π0
2 and that PAST𝜆 is in Σ0

2. Indeed, consider the following two sets

AST𝜆,⊢ = {𝑀 | ∀𝑟 ∈ Q[0,1) .∃Π.(Π ⊲ ⊢ 𝑀 : a) ∧ (∥a∥ > 𝑟)};

PAST𝜆,⊢ = {𝑀 | ∃𝑟 ∈ Q.∀Π.(Π ⊲
𝑤⊢ 𝑀 : a) ⇒ (𝑤 < 𝑟)}.

By Corollary 22, AST𝜆,⊢ = AST𝜆 and PAST𝜆,⊢ = PAST𝜆 . But by definition, AST𝜆,⊢ is Π0
2, because

checking whether a natural number is the encoding of a type derivation Π having the property that

(Π ⊲ ⊢ 𝑀 : a) ∧ ∥a∥ > 𝑟 for given𝑀 and 𝑟 is certainly a primitive recursive problem. Similarly for

PAST𝜆,⊢ and Σ0
2.

This is why we claim that our intersection types are optimal: there cannot be simpler (in the

sense of the arithmetical hierarchy) characterisations of AST𝜆 and PAST𝜆 .

8 VARIATIONS ON THE THEME
This section is devoted to analysing two variations on the type system we introduced in Section 4,

itself proved to satisfy some nice properties, but certainly not being the only system of intersection

types one can define in a discrete probabilistic setting.

8.1 On Call-by-Name Evaluation
Despite the fact that the call-by-value discipline is more natural in presence of effects, it is legitimate

to ask whether the system of intersection types we have designed can be adapted to CbN evaluation.

This section is devoted to showing that this is actually the case.

As a language we use here the standard probabilistic untyped 𝜆-calculus equipped with weak

head reduction, itself already studied in many papers from the literature [Dal Lago et al. 2014;

Dal Lago and Zorzi 2012]. We first define the language, called Λcbn
⊕ , and its operational semantics,

then the typing system.

The Language of Terms. Terms and values are defined by the grammar

𝑉 ::= 𝑥 | 𝜆𝑥.𝑀 Values,Vcbn
⊕

𝑀 ::= 𝑉 | 𝑀𝑀 | 𝑀 ⊕ 𝑀 Terms,Λcbn
⊕

where 𝑥 ranges over a countable set of variables. Observe how values are defined as in Λcbv
⊕ , while

terms are slightly different, and more in line with the usual 𝜆-calculus. Another remark: the class

Λcps

⊕ is trivially a subclass of Λcbn
⊕ .

Operational Semantics and Probabilistic Termination. As in CbV, we first define a one-step re-

duction relation→ from terms to multidistributions. The rules are given in Figure 8. We then lift

→ to a reduction of multidistributions, and this can be done as for Λcbv
⊕ , so following the rules in

Figure 6. Values are precisely the closed terms which cannot be further reduced. The definitions of

∥mV
𝑘
∥, PTerm𝑘

(
𝑀
)
, PTerm

(
𝑀
)
, ETime𝑘

(
𝑀
)
, and ETime

(
𝑀
)
can be given exactly as in Section 3.4

Again, observe how the semantics of all terms of Λcps

⊕ is the same if defined through CbV, as we

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 32. Publication date: January 2021.

Intersection Types and (Positive) Almost-Sure Termination 32:25

𝑥 : [1...a] 0⊢ 𝑥 : a
Var

0⊢ 𝜆𝑥.𝑀 : ⟨∗⟩
Val

0⊢ 𝑀 : 0
Zero

Γ, 𝑥 : A 𝑤⊢ 𝑀 : b

Γ
𝑤+1⊢ 𝜆𝑥.𝑀 : ⟨A → b⟩

𝜆
Γ
𝑤⊢ 𝑀 : ⟨𝑝𝑘 (A𝑘 → b𝑘)⟩𝑘∈𝐾

(
Π𝑘 ⊲ Δ𝑘

𝑤𝑘⊢ 𝑁 : A𝑘
)
𝑘∈𝐾

Γ ⊎𝑘 𝑝𝑘 ...Δ𝑘
𝑤+∑𝑘 𝑝𝑘𝑤𝑘⊢ 𝑀𝑁 :

*
𝑘 𝑝𝑘b𝑘

@

(Γ𝑖
𝑤𝑖⊢ 𝑀 : a𝑖)𝑖∈𝐼 (𝑞𝑖)𝑖∈𝐼 scale factors

⊎𝑖 (𝑞𝑖 ...Γ𝑖)
∑

𝑖 𝑞𝑖𝑤𝑖⊢ 𝑀 : [𝑞𝑖 ...a𝑖]𝑖∈𝐼
!

Γ
𝑤1⊢ 𝑀 : a Δ

𝑤2⊢ 𝑁 : b

1
2 ...Γ ⊎

1
2 ...Δ

1+ 1
2
𝑤1+ 1

2
𝑤2

⊢ 𝑀 ⊕ 𝑁 : 1
2a

* 1
2b

⊕

Fig. 9. Non-Idempotent Intersection Type Rules for Λcbn
⊕

did originally, or through CbN, as we are doing here. As a consequence, all results from Section 7.2

also hold for CbN.

8.1.1 The Type System. Non-Idempotent Intersection types for the Call-by-Name 𝜆-calculus

[de Carvalho 2018; Gardner 1994; Kfoury 2000; Neergaard and Mairson 2004] are well-studied.

We adapt them to our probabilistic setting. The types reflect the underlying dynamics, which is

simpler than that of CbV, since a term cannot be copied once evaluated. Like in the case of Λcbv
⊕ ,

the type system is based on three, rather than two layers, namely arrows, intersection types, and

multidistribution types. Notice however that now a type distribution is a (multi)-distribution over

arrows. An intersection type is a multiset of scaled types, i.e. a multiset of pairs 𝑞...a where a is a

type distribution, and 𝑞 ∈ (0, 1] ∩ Q is as usual a scale factor. Types are defined by means of the

following grammar:

A, B ::= ∗ | A → a Arrow Types
A,B ::= [𝑞1...a1, ..., 𝑞𝑛...a𝑛]𝑛 ≥ 0 Intersection Types
a, b ::= ⟨𝑝1A1, ..., 𝑝𝑛A𝑛⟩ , 𝑛 ≥ 0 Type Distributions

Observe the presence of the special arrow type ∗, which here plays the role of the empty multiset

[] in CbV.

Typing Rules. The type assignment system in Figure 7 proves judgments of the shape Γ
𝑤⊢ 𝑀 : T,

where Γ is a type context,𝑀 a term,𝑤 ∈ Q is a counter, and T is either a orA. The notation 𝑞...Γ is

as in Section 4.1, taking into account that now ifA = [𝑞𝑖 ...a𝑖]𝑖∈𝐼 , 𝑢...A is [(𝑢𝑞𝑖)...a𝑖]𝑖∈𝐼 . The notion of

a tight type needs to be appropriately adapted.

Definition 28 (Tight Types and Derivations). A type a is said to be tight if it is a multidistribution

on the arrow type ∗. A derivation Π ⊲
𝑤⊢ 𝑀 : a is tight whenever a is tight.

Basic Properties. As in CbV, some basic properties of the type system are not only useful, but

reveal the nature of the type system. First of all, any closed value 𝑉 can be tightly typed with

probability 1, by
0⊢ 𝑉 : ⟨∗⟩. Moreover, a degenerate form of the rule ! allows us to derive the

following for any term 𝑀 :

0⊢ 𝑀 : []

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 32. Publication date: January 2021.

32:26 Ugo Dal Lago, Claudia Faggian, and Simona Ronchi Della Rocca

Finally, a useful instance of the @ rule is the following:

Γ
𝑤⊢ 𝑀 : 0

Γ
𝑤⊢ 𝑀𝑁 : 0

8.1.2 Characterising CbN Probabilistic Termination. The just introduced type system allows us to

transfer all results from Section 6 to Λcbn
⊕ . Finitary soundness and finitary completeness both hold,

exactly as in Theorem 17 and Theorem 20. The statement is the same, taking into account that now

𝑀 is a closed term of Λcbn
⊕ . As a consequence, we can:

• on the one hand characterise AST and PAST in a uniform way, via tight typing, exactly as in

Theorem 21 and Corollary 22;

• on the other hand characterise PAST via null typing, this time exactly like in Theorem 25.

As mentioned in Section 6.4.3, one can also obtain a (simpler) type system for AST by dropping

from the typing all the information on the scaling factors.

8.2 Multidistributions vs. Distributions
In the design of any type system, several choices are possible. Some are a matter of taste, some

other are crucial. In this section, we discuss a choice we have implicitly made throughout the

paper, namely the use of multidistributions in types. One may legitimately wonder if we could use

distributions of types instead of multidistributions. Actually, it turns out that multidistributions are

necessary to obtain a perfect match between typing and termination. This choice is in fact crucial

for completeness to hold in the call-by-value typing system. Let us see why.

Consider a term in the form let 𝑥 = 𝑁 in𝑀 . Since the argument 𝑁 is typed with a multidistri-

bution c = ⟨𝑝𝑘A𝑘⟩𝑘∈𝐾 , the continuation𝑀 must be able to receive anyA𝑘 . Indeed, the typing rule
let asks for type derivations having conclusion 𝑥 : A𝑘 ⊢ 𝑀 : b𝑘 for each 𝑘 . Each value of 𝑘 indeed

corresponds to one of the possible probabilistic evolutions of 𝑁 , due to the use of multidistributions,

in which collapsing two elements of Aℎ and A𝑙 in c is simply not possible. Going to distributions,

thus allowing for such a collapse, would not be a problem for soundness, but we would loose the

properties of weighted subject expansion (Lemma 19) on which completeness relies. We now see

why by way of a concrete example.

Example 29 (Weighted Subject Expansion relies on multidistributions). Assume 𝑃 →〈
1
2𝑃1,

1
2𝑃2

〉
. The claim of weighted subject expansion is that, given derivations Π𝑖 ⊲

𝑤𝑖⊢ 𝑃𝑖 : b𝑖 for each
𝑖 , we can obtain a derivation Π ⊲

𝑤𝑖⊢ 𝑃 : b, where 𝑤 ≥ 1 + ∑ 1
2𝑤𝑖 and b = 1

2b1
* 1

2b2. Weighted

subject expansion is proved by induction on the structure of the reduction→. The key point is the let𝐶

rule. Let us focus on it. Consider 𝑃 := (let 𝑥 = 𝑁1 ⊕ 𝑁2 in𝑀) and so 𝑃𝑖 := (let 𝑥 = 𝑁𝑖 in𝑀),
and consider the following type derivations for 𝑃1 and 𝑃2.

𝑣1⊢ 𝑁1 : ⟨A⟩ Π1 ⊲ 𝑥 : A
𝑢1⊢ 𝑀 : b1

𝑤1⊢ let 𝑥 = 𝑁1 in𝑀 : b1
let

𝑣2⊢ 𝑁2 :
〈
1
2A

〉
Π2 ⊲ 𝑥 : A

𝑢2⊢ 𝑀 : b2
𝑤2⊢ let 𝑥 = 𝑁2 in𝑀 : 1

2b2

let

By definition, 𝑃 →
〈
1
2𝑃1,

1
2𝑃2

〉
is derived as follow:

𝑁 →
〈
1
2𝑁1,

1
2𝑁2

〉
(let 𝑥 = 𝑁1 ⊕ 𝑁2 in𝑀) →

〈
1
2 (let 𝑥 = 𝑁1 in𝑀), 12 (let 𝑥 = 𝑁2 in𝑀)

〉 let𝐶

and we would like to derive a type derivation for 𝑃 out of all this. By i.h., since 𝑁 →
〈
1
2𝑁𝑖

〉
𝑖∈𝐼 , we can

assume that there exists a derivation Φ ⊲
𝑣⊢ 𝑁 : c such that 𝑣 ≥ 1+∑ 1

2𝑣𝑖 and c = 1
2 ⟨A⟩

* 1
2

〈
1
2A

〉
=

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 32. Publication date: January 2021.

Intersection Types and (Positive) Almost-Sure Termination 32:27〈
1
2A,

1
4A

〉
. And indeed, by collecting Π1 and Π2, we have a derivation which satisfies the claim

𝑣⊢ 𝑁 :
〈
1
2A,

1
4A

〉
𝑥 : (A

𝑢𝑖⊢ 𝑀 : b𝑖)𝑖∈{1,2}
𝑤⊢ let 𝑥 = 𝑁 in𝑀 : 1

2b1
* 1

4b2

let

This is possible precisely because—due to the adoption of multidistributions—the two occurrences ofA
are kept separated: notice that b1 and b2 may be very different types. If we worked with distributions,

this information would be irremediably lost. By i.h., we would have just one derivation Φ ⊲
𝑣⊢ 𝑁 : c

where c = 1
2 ⟨A⟩ +

1
2

〈
1
2A

〉
=
〈
3
4A

〉
. We would like to build the following derivation:

𝑣⊢ 𝑁 :
〈
3
4A

〉
Π

𝑤⊢ let 𝑥 = 𝑁 in𝑀 : 1
2b1

* 1
4b2

let

How could we build Π, however? There is no way to merge the two derivations Π1 and Π2, so the type

system would need to be substantially reengineered.

This issue only affects call-by-value evaluation, which is more complex than call-by-name, but

also more expressive in a setting with effects. In CbN, choosing distributions would not impact the

results, because evaluating a term before copying it (i.e. before using it in possibly many different

ways) is simply impossible.

9 RELATEDWORK
Systems of types for probabilistic programs exist in the literature. In particular, sized types [Hughes

et al. 1996], and linear dependent types [Dal Lago and Gaboardi 2011] have been generalised

to probabilistic programming languages, and have been proved to be sound methodologies for

checking almost-sure termination [Dal Lago and Grellois 2019] and positive almost-sure termina-

tion [Avanzini et al. 2019] in an higher-order setting. None of such systems is complete, however.

Recently, Breuvart and Dal Lago [Breuvart and Dal Lago 2018] introduced systems of intersection

types which are sound and complete as a way of deriving the probability of convergence of terms

in probabilistic lambda-calculi. However, the number of reduction steps to normal form is not kept

track of by types, due to the nature of the intersection operator, which in Dal Lago and Breuvart’s

system is idempotent. Moreover, relying on distributions (instead of multidistributions) of types

makes call-by-value evaluation harder to deal with, and ultimately results in a rather convoluted

set of typing rules.

Intersection types have been pioneered by Coppo and Dezani [Coppo and Dezani-Ciancaglini

1978, 1980], and developed in a series of papers in which various notions of termination for the

𝜆-calculus were characterised, and the relationship with denotational semantics was thoroughly

investigated [Barendregt et al. 1983; Coppo et al. 1980, 1987; Pottinger 1980]. They have also

been extended to calculi besides the 𝜆-calculus, like 𝜆𝜇-calculi [van Bakel et al. 2012] or object

calculi [de’Liguoro 2001]. Besides the already discussed work by Breuvart and Dal Lago [Breuvart

and Dal Lago 2018], one should also mention the work by de’ Liguoro and colleagues [de’Liguoro and

Piperno 1995; Dezani-Ciancaglini et al. 1993] about filter models and intersection type assignment

systems for extensions of 𝜆-calculi with nondeterministic choice operators, whose semantics is

however fundamentally different than that of the probabilistic choice operator we consider here:

in the former one observes may or must convergence (or combinations thereof), while here the

notion of observation is genuinely quantitative.

Non-idempotent intersection types have been known since the work by Gardner [Gardner 1994],

studied in connection with expansion variables by Carlier et al. [Carlier et al. 2004], and further

analysed in their relation to normalisation byMairson andMöller-Neergard [Neergaard andMairson

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 32. Publication date: January 2021.

32:28 Ugo Dal Lago, Claudia Faggian, and Simona Ronchi Della Rocca

2004]. The precise correspondence between non-idempotent intersection type system derivations

and the number of reduction steps necessary to normalise the underlying term has been first noticed

by De Carvalho [de Carvalho 2018], and further refined by Bernadet and Lengrand [Bernadet and

Lengrand 2013], and later by Accattoli et al. [Accattoli et al. 2018], and [Accattoli et al. 2019], the

latter being a source of inspiration for this work in its reflecting weak notions of reduction inside

intersection types. All these contributions, however, deal with deterministic 𝜆-calculi.

Formal verification techniques for probabilistic termination and complexity analysis are plen-

tiful, and ranges from model checking [Etessami and Yannakakis 2009; Kobayashi et al. 2019] to

abstract interpretation [Monniaux 2001], to the ranking supermartingales [Chakarov and Sankara-

narayanan 2013], to amortised analysis [Ngo et al. 2018] to the interpretation method from term

rewriting [Avanzini et al. 2020]. The only methodology among these that, at least so far, has

been employed for the analysis of higher-order probabilistic programs is the one by Kobayashi

et al. [Kobayashi et al. 2019], which deals with probabilistic variations on higher-order recursion

schemes. Some of the ideas which we introduced in the paper are indeed variations of similar ones

from the imperative setting (e.g. the handling of expectations by way of a quantity which decreases

on the average). The presence of higher-order functions, however, forced us to develop new tools,

since types must be more informative than just, say, ranking supermartingales. Not only the value

or the size of the input matter, but also how the input behaves turns out to be crucial, given that

it can potentially be used as a function. Looking at all this from a different perspective, we can

safely say that higher-order probabilistic programs could of course be verified by translating the

input program into a first-order equivalent one, then applying state-of-the art techniques designed

for such a setting (e.g., [Kaminski et al. 2018; McIver and Morgan 2005]). The main advantage of

thinking in terms of types, however, is that the underlying verification problem can be tackled

compositionally, so allowing for a modular analysis. In presence of higher-order functions, one

has to prove something stronger than the mere underlying termination property, namely that the

program at hand satisfies the property when seen in isolation, but also behaves well when fed

with functional inputs, provided those functions behave well themselves. Verification techniques

designed for first-order programs are not designed with all this in mind, and encoded higher-order

programs would thus be harder to verify.

The operational and denotational semantics of probabilistic 𝜆-calculi have been studied thor-

oughly themselves, starting from the pioneering contributions by Sahed-Djaromi [Saheb-Djahromi

1978] and Jones and Plotkin [Jones and Plotkin 1989]. Noticeably, Ehrhard et al.’s probabilistic

coherent spaces [Ehrhard et al. 2014] can be presented as a non-idempotent intersection type

system which, being inherently semantic, is fundamentally different from the one we have here: no

result is given about the expected time to termination of the interpreted terms, and results like

those we proved in Section 7 would be much harder to get.

10 CONCLUSION
This paper introduces and studies non-idempotent intersection type assignment systems for proba-

bilistic 𝜆-calculi, showing they can precisely characterise the expected runtime and the probability

of termination within a single framework, despite them having incomparable recursion-theoretic

difficulties, and thus an inherently different nature. The key ingredients are non-idempotency and

scaling. Noticeably, the same ideas work in the call-by-name and call-by-value paradigms.

The system of intersection types we have introduced in this work should be conceived as a tool

for the theoretical analysis of a phenomenon, rather than as a proper verification technique: type

inference is for obvious reasons highly undecidable. This does not mean, however, that the same

necessarily holds in restricted calculi, as witnessed by the fruitful use of intersection types as a

verification tool in subrecursive deterministic lambda-calculi [Kfoury and Wells 1999; Kobayashi

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 32. Publication date: January 2021.

Intersection Types and (Positive) Almost-Sure Termination 32:29

and Ong 2009; Tsukada and Kobayashi 2012]. As a consequence, it would be very interesting, e.g.,

to study which fragments of Λcbv
⊕ and Λcbn

⊕ are expressive enough to capture recursive Markov

chains [Etessami and Yannakakis 2009], in which almost-sure termination is known to be decidable

The absence of idempotency—an essential ingredient indeed—can be seen in two different forms,

namely in intersection types, where union is not an idempotent operation, and in distribution types,

which are taken as multidistributions and which thus do not form a barycentric algebra, precisely

due to the failure of idempotency. A thorough study of this phenomenon, together with an analysis

of the relationship between this work and the denotational semantics of probabilistic 𝜆-calculi is

outside the scope of this paper, but it is certainly something the authors would like to pursue in the

foreseeable future.

ACKNOWLEDGMENTS
This work was partially supported by ANR PRC project PPS (ANR-19-CE48-0014), by ERC Consol-

idator Grant DIAPASoN (818616), and by MIUR PRIN ASPRA (201784YSZ5).

REFERENCES
Beniamino Accattoli, Stéphane Graham-Lengrand, and Delia Kesner. 2018. Tight typings and split bounds. Proc. of ICFP

2018 2, ICFP (2018), 94:1–94:30. https://doi.org/10.1145/3236789

Beniamino Accattoli, Giulio Guerrieri, and Maico Leberle. 2019. Types by Need. In Proc. of ESOP 2019 (LNCS), Vol. 11423.

410–439. https://doi.org/10.1007/978-3-030-17184-1_15

Martin Avanzini, Ugo Dal Lago, and Alexis Ghyselen. 2019. Type-Based Complexity Analysis of Probabilistic Functional

Programs. In Proc. of LICS 2019. 1–13. https://doi.org/10.1109/LICS.2019.8785725

Martin Avanzini, Ugo Dal Lago, and Akihisa Yamada. 2020. On probabilistic term rewriting. Sci. Comput. Program. 185

(2020). https://doi.org/10.1016/j.scico.2019.102338

Henk Barendregt, Mario Coppo, and Mariangiola Dezani-Ciancaglini. 1983. A Filter Lambda Model and the Completeness

of Type Assignment. Journal of Symbolic Logic 48, 4 (1983), 931–940. https://doi.org/10.2307/2273659

Alexis Bernadet and Stéphane Lengrand. 2013. Non-idempotent intersection types and strong normalisation. Log. Methods

Comput. Sci. 9, 4 (2013). https://doi.org/10.2168/LMCS-9(4:3)2013

Patrick Billingsley. 1979. Probability and measure. John Wiley and Sons, New York.

Ales Bizjak and Lars Birkedal. 2015. Step-Indexed Logical Relations for Probability. In Proc. of FoSSaCS. 279–294. https:

//doi.org/10.1007/978-3-662-46678-0_18

Olivier Bournez and Florent Garnier. 2006. Proving Positive Almost Sure Termination Under Strategies. In Rewriting

Techniques and Applications, RTA. 357–371. https://doi.org/10.1007/11805618_27

Pierre Brémaud. 2017. Discrete Probability Models and Methods. Springer. https://doi.org/10.1007/978-3-319-43476-6

Flavien Breuvart and Ugo Dal Lago. 2018. On Intersection Types and Probabilistic Lambda Calculi. In Proc. of PPDP 2018.

8:1–8:13. https://doi.org/10.1145/3236950.3236968

Sébastien Carlier, Jeff Polakow, J. B. Wells, and A. J. Kfoury. 2004. System E: Expansion Variables for Flexible Typing

with Linear and Non-linear Types and Intersection Types. In Proc. of ESOP 2004 (LNCS), Vol. 2986. Springer, 294–309.

https://doi.org/10.1007/978-3-540-24725-8_21

Aleksandar Chakarov and Sriram Sankaranarayanan. 2013. Probabilistic Program Analysis with Martingales. In Proc. of

CAV 2013 (LNCS), Vol. 8044. Springer, 511–526. https://doi.org/10.1007/978-3-643-39799-8_34

Mario Coppo and Mariangiola Dezani-Ciancaglini. 1978. A new type assignment for lambda-terms. Archiv für mathematische

Logik und Grundlagenforschung 19, 1 (1978), 139–156. https://doi.org/10.1007/BF02011875

Mario Coppo and Mariangiola Dezani-Ciancaglini. 1980. An extension of the basic functionality theory for the 𝜆-calculus.

Notre Dame J. Formal Logic 21, 4 (10 1980), 685–693. https://doi.org/10.1305/ndjfl/1093883253

Mario Coppo, Mariangiola Dezani-Ciancaglini, and Betti Venneri. 1980. Principal type schemes and lambda-calculus

semantics. In To H.B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism. Academic Press, 535–560.

Mario Coppo, Mariangiola Dezani-Ciancaglini, and Betti Venneri. 1981. Functional Characters of Solvable Terms. Math. Log.

Q. 27, 2-6 (1981), 45–58. https://doi.org/10.1002/malq.19810270205

Mario Coppo, Mariangiola Dezani-Ciancaglini, and Maddalena Zacchi. 1987. Type Theories, Normal Forms and𝐷∞-Lambda-

Models. Inf. Comput. 72, 2 (1987), 85–116. https://doi.org/10.1016/0890-5401(87)90042-3

Patrick Cousot. 1997. Types as Abstract Interpretations. In Proc. of POPL 1997. 316–331. https://doi.org/10.1145/263699.263744

Ugo Dal Lago and Beniamino Accattoli. 2017. Encoding Turing Machines into the Deterministic Lambda-Calculus. CoRR

abs/1711.10078 (2017). http://arxiv.org/abs/1711.10078

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 32. Publication date: January 2021.

https://doi.org/10.1145/3236789
https://doi.org/10.1007/978-3-030-17184-1_15
https://doi.org/10.1109/LICS.2019.8785725
https://doi.org/10.1016/j.scico.2019.102338
https://doi.org/10.2307/2273659
https://doi.org/10.2168/LMCS-9(4:3)2013
https://doi.org/10.1007/978-3-662-46678-0_18
https://doi.org/10.1007/978-3-662-46678-0_18
https://doi.org/10.1007/11805618_27
https://doi.org/10.1007/978-3-319-43476-6
https://doi.org/10.1145/3236950.3236968
https://doi.org/10.1007/978-3-540-24725-8_21
https://doi.org/10.1007/978-3-643-39799-8_34
https://doi.org/10.1007/BF02011875
https://doi.org/10.1305/ndjfl/1093883253
https://doi.org/10.1002/malq.19810270205
https://doi.org/10.1016/0890-5401(87)90042-3
https://doi.org/10.1145/263699.263744
http://arxiv.org/abs/1711.10078

32:30 Ugo Dal Lago, Claudia Faggian, and Simona Ronchi Della Rocca

Ugo Dal Lago, Claudia Faggian, and Simona Ronchi Della Rocca. 2020. Intersection Types and (Positive) Almost-Sure

Termination (Extended version). CoRR 2010.12689 (2020). http://arxiv.org/abs/2010.12689

Ugo Dal Lago and Marco Gaboardi. 2011. Linear Dependent Types and Relative Completeness. Log. Methods Comput. Sci. 8,

4 (2011). https://doi.org/10.2168/LMCS-8(4:11)2012

Ugo Dal Lago and Charles Grellois. 2019. Probabilistic Termination by Monadic Affine Sized Typing. ACM Trans. Program.

Lang. Syst. 41, 2 (2019), 10:1–10:65. https://doi.org/10.1145/3293605

Ugo Dal Lago, Davide Sangiorgi, and Michele Alberti. 2014. On coinductive equivalences for higher-order probabilistic

functional programs. In Proc. of POPL 2014. 297–308. https://doi.org/10.1145/2535838.2535872

Ugo Dal Lago and Margherita Zorzi. 2012. Probabilistic operational semantics for the lambda calculus. RAIRO - Theor. Inf.

and Applic. 46, 3 (2012), 413–450. https://doi.org/10.1051/ita/2012012

Daniel de Carvalho. 2018. Execution time of 𝜆-terms via denotational semantics and intersection types. Math. Struct.

Comput. Sci. 28, 7 (2018), 1169–1203. https://doi.org/10.1017/S0960129516000396 Availabel in preprint form from 2009

https://arxiv.org/abs/0905.4251.

Karel De Leeuw, Edward F Moore, Claude E Shannon, and Norman Shapiro. 1956. Computability by probabilistic machines.

Automata studies 34 (1956), 183–198.

Ugo de’Liguoro. 2001. Characterizing Convergent Terms in Object Calculi via Intersection Types. In Proc. of TLCA 2001

(LNCS), Vol. 2044. Springer, 315–328. https://doi.org/10.1007/3-540-45413-6_25

Ugo de’Liguoro and Adolfo Piperno. 1995. Non Deterministic Extensions of Untyped Lambda-Calculus. Inf. Comput. 122, 2

(1995), 149–177. https://doi.org/10.1006/inco.1995.1145

Mariangiola Dezani-Ciancaglini, Ugo de’Liguoro, and Adolfo Piperno. 1993. Filter Models for a Parallel and NonDeterministic

Lambda-Calculus. In Proc. of MFCS 1993. 403–412. https://doi.org/10.1007/3-540-57182-5_32

Thomas Ehrhard, Christine Tasson, and Michele Pagani. 2014. Probabilistic coherence spaces are fully abstract for proba-

bilistic PCF. In Proc. of POPL 2014. ACM, 309–320. https://doi.org/10.1145/2535838.2535865

Kousha Etessami and Mihalis Yannakakis. 2009. Recursive Markov chains, stochastic grammars, and monotone systems of

nonlinear equations. J. ACM 56, 1 (2009), 1:1–1:66. https://doi.org/10.1145/1462153.1462154

Luis María Ferrer Fioriti and Holger Hermanns. 2015. Probabilistic Termination: Soundness, Completeness, and Composi-

tionality. In Proc. of POPL 2015. 489–501. https://doi.org/10.1145/2676726.2677001

Philippa Gardner. 1994. Discovering Needed Reductions Using Type Theory. In Proc. of TACS ’94, (LNCS), Vol. 789. Springer,

555–574. https://doi.org/10.1007/3-540-57887-0_155

John Gill. 1977. Computational complexity of probabilistic Turing machines. SIAM J. Comput. 6, 4 (1977), 675–695.

https://doi.org/10.1137/0206049

Jean-Yves Girard. 1971. Une Extension De l’Interpretation De Gödel a l’Analyse, Et Son Application a l’Elimination Des

Coupures Dans l’Analyse Et La Theorie Des Types. In Proceedings of the Second Scandinavian Logic Symposium. Studies

in Logic and the Foundations of Mathematics, Vol. 63. Elsevier, 63 – 92. https://doi.org/10.1016/S0049-237X(08)70843-7

Shafi Goldwasser and Silvio Micali. 1984. Probabilistic encryption. Journal of computer and system sciences 28, 2 (1984),

270–299. https://doi.org/10.1016/0022-0000(84)90070-9

Noah D. Goodman, Vikash K. Mansinghka, Daniel M. Roy, Keith Bonawitz, and Joshua B. Tenenbaum. 2008. Church: a

language for generative models. In UAI. 220–229.

Jean Goubault-Larrecq. 2015. Full Abstraction for Non-Deterministic and Probabilistic Extensions of PCF I: the Angelic Cases.

Journal of Logic and Algebraic Methods in Programming 84 (2015), 155–184. https://doi.org/10.1016/j.jlamp.2014.09.003

John Hughes, Lars Pareto, and Amr Sabry. 1996. Proving the Correctness of Reactive Systems Using Sized Types. In Proc. of

POPL 1996. ACM Press, 410–423. https://doi.org/10.1145/237721.240882

Claire Jones and Gordon D. Plotkin. 1989. A Probabilistic Powerdomain of Evaluations. In Proc. of LICS 1989. 186–195.

https://doi.org/10.1109/LICS.1989.39173

Achim Jung and Regina Tix. 1998. The troublesome probabilistic powerdomain. Electr. Notes Theor. Comput. Sci. 13 (1998),

70–91. https://doi.org/10.1016/S1571-0661(05)80216-6

Benjamin Lucien Kaminski, Joost-Pieter Katoen, and Christoph Matheja. 2019. On the hardness of analyzing probabilistic

programs. Acta Informatica 56, 3 (2019), 255–285. https://doi.org/10.1007/s00236-018-0321-1

Benjamin Lucien Kaminski, Joost-Pieter Katoen, Christoph Matheja, and Federico Olmedo. 2018. Weakest Precondition

Reasoning for Expected Runtimes of Randomized Algorithms. J. ACM 65, 5 (2018), 30:1–30:68. https://doi.org/10.1145/

3208102

Assaf J. Kfoury. 2000. A linearization of the Lambda-calculus and consequences. J. Log. Comput. 10, 3 (2000), 411–436.

https://doi.org/10.1093/logcom/10.3.411

A. J. Kfoury and J. B. Wells. 1999. Principality and Decidable Type Inference for Finite-Rank Intersection Types. In POPL ’99,

Proceedings of the 26th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, San Antonio, TX, USA,

January 20-22, 1999, Andrew W. Appel and Alex Aiken (Eds.). ACM, 161–174. https://doi.org/10.1145/292540.292556

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 32. Publication date: January 2021.

http://arxiv.org/abs/2010.12689
https://doi.org/10.2168/LMCS-8(4:11)2012
https://doi.org/10.1145/3293605
https://doi.org/10.1145/2535838.2535872
https://doi.org/10.1051/ita/2012012
https://doi.org/10.1017/S0960129516000396
https://arxiv.org/abs/0905.4251
https://doi.org/10.1007/3-540-45413-6_25
https://doi.org/10.1006/inco.1995.1145
https://doi.org/10.1007/3-540-57182-5_32
https://doi.org/10.1145/2535838.2535865
https://doi.org/10.1145/1462153.1462154
https://doi.org/10.1145/2676726.2677001
https://doi.org/10.1007/3-540-57887-0_155
https://doi.org/10.1137/0206049
https://doi.org/10.1016/S0049-237X(08)70843-7
https://doi.org/10.1016/0022-0000(84)90070-9
https://doi.org/10.1016/j.jlamp.2014.09.003
https://doi.org/10.1145/237721.240882
https://doi.org/10.1109/LICS.1989.39173
https://doi.org/10.1016/S1571-0661(05)80216-6
https://doi.org/10.1007/s00236-018-0321-1
https://doi.org/10.1145/3208102
https://doi.org/10.1145/3208102
https://doi.org/10.1093/logcom/10.3.411
https://doi.org/10.1145/292540.292556

Intersection Types and (Positive) Almost-Sure Termination 32:31

Naoki Kobayashi. 2009. Types and higher-order recursion schemes for verification of higher-order programs. In Proceedings

of the 36th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2009, Savannah, GA, USA,

January 21-23, 2009. 416–428. https://doi.org/10.1145/1480881.1480933

Naoki Kobayashi, Ugo Dal Lago, and Charles Grellois. 2019. On the Termination Problem for Probabilistic Higher-Order

Recursive Programs. In Proc. of LICS 2019. 1–14. https://doi.org/10.1109/LICS.2019.8785679

Naoki Kobayashi and C.-H. Luke Ong. 2009. A Type System Equivalent to the Modal Mu-Calculus Model Checking of

Higher-Order Recursion Schemes. In Proc. of LICS 2009. 179–188. https://doi.org/10.1109/LICS.2009.29

Dexter Kozen. 1981. Semantics of Probabilistic Programs. J. Comput. Syst. Sci. 22, 3 (1981), 328–350. https://doi.org/10.1016/

0022-0000(81)90036-2

Annabelle McIver and Carroll Morgan. 2005. Abstraction, Refinement and Proof for Probabilistic Systems. Springer. https:

//doi.org/10.1007/b138392

David Monniaux. 2001. An Abstract Analysis of the Probabilistic Termination of Programs. In Proc. of SAS 2001. 111–126.

https://doi.org/10.1145/360204.360211

Rajeev Motwani and Prabhakar Raghavan. 1995. Randomized Algorithms. Cambridge University Press. https://doi.org/10.

1017/cbo9780511814075

Peter Møller Neergaard and Harry G. Mairson. 2004. Types, potency, and idempotency: why nonlinearity and amnesia

make a type system work. In Proc. of ICFP 2004. 138–149. https://doi.org/10.1145/1016850.1016871

Van Chan Ngo, Quentin Carbonneaux, and Jan Hoffmann. 2018. Bounded expectations: resource analysis for probabilistic

programs. In Proc. of PLDI 2018. 496–512. https://doi.org/10.1145/3192366.3192394

Piergiorgio Odifreddi. 1989. Classical Recursion Theory. Elsevier.

C.-H. Luke Ong. 2006. On Model-Checking Trees Generated by Higher-Order Recursion Schemes. In Proc. of LICS 2006.

81–90. https://doi.org/10.1109/LICS.2006.38

Benjamin C. Pierce. 2002. Types and programming languages. MIT Press.

Gordon D. Plotkin. 1975. Call-by-Name, Call-by-Value and the lambda-Calculus. Theor. Comput. Sci. 1, 2 (1975), 125–159.

https://doi.org/10.1016/0304-3975(75)90017-1

Garrell Pottinger. 1980. A type assignment for the strongly normalizable lambda -terms. In To H.B. Curry: Essays on

Combinatory Logic, Lambda Caclulus and Formalism. Academic Press, 561–577.

Martin L. Puterman. 1994. Markov Decision Processes: Discrete Stochastic Dynamic Programming (1st ed.). John Wiley &

Sons, Inc., New York, NY, USA. https://doi.org/10.1002/9780470316887

Michael O Rabin. 1963. Probabilistic automata. Information and control 6, 3 (1963), 230–245. https://doi.org/10.1016/S0019-

9958(63)90290-0

N. Saheb-Djahromi. 1978. Probabilistic LCF. In Proc. of MFCS 1978 (LNCS), Vol. 64. 442–451. https://doi.org/10.1007/3-504-

08921-7_92

Eugene S. Santos. 1969. Probabilistic Turing machines and computability. Proc. Amer. Math. Soc. 22, 3 (1969), 704–710.

Morten Heine Sørensen and Pawel Urzyczyn. 1989. Lectures on the Curry-Howard Isomorphism. Elsevier. https://doi.org/10.

1016/S0049-237X(06)80005-4

David Tolpin, Jan-Willem van de Meent, and Frank D. Wood. 2015. Probabilistic Programming in Anglican. In Proc. of ECML

PKDD 2015 (LNCS), Vol. 9286. Springer, 308–311. https://doi.org/10.1007/978-3-319-23461-8_36

Takeshi Tsukada and Naoki Kobayashi. 2012. An Intersection Type System for Deterministic Pushdown Automata. In Proc.

of TCS 2012. 357–371. https://doi.org/10.1007/978-3-642-33475-7_25

Steffen van Bakel, Franco Barbanera, and Ugo de’Liguoro. 2012. Characterisation of Strongly Normalising lambda-mu-Terms.

In Proc. of , ITRS 2012 (EPTCS), Vol. 121. 1–17. https://doi.org/10.4204/EPTCS.121.1

Christopher Wadsworth. 1980. Some unusual 𝜆-calculus numeral systems. In To H.B. Curry: Essays on Combinatory Logic,

Lambda Calculus and Formalism, J.P. Seldin and J.R. Hindley (Eds.). Academic Press.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 32. Publication date: January 2021.

https://doi.org/10.1145/1480881.1480933
https://doi.org/10.1109/LICS.2019.8785679
https://doi.org/10.1109/LICS.2009.29
https://doi.org/10.1016/0022-0000(81)90036-2
https://doi.org/10.1016/0022-0000(81)90036-2
https://doi.org/10.1007/b138392
https://doi.org/10.1007/b138392
https://doi.org/10.1145/360204.360211
https://doi.org/10.1017/cbo9780511814075
https://doi.org/10.1017/cbo9780511814075
https://doi.org/10.1145/1016850.1016871
https://doi.org/10.1145/3192366.3192394
https://doi.org/10.1109/LICS.2006.38
https://doi.org/10.1016/0304-3975(75)90017-1
https://doi.org/10.1002/9780470316887
https://doi.org/10.1016/S0019-9958(63)90290-0
https://doi.org/10.1016/S0019-9958(63)90290-0
https://doi.org/10.1007/3-504-08921-7_92
https://doi.org/10.1007/3-504-08921-7_92
https://doi.org/10.1016/S0049-237X(06)80005-4
https://doi.org/10.1016/S0049-237X(06)80005-4
https://doi.org/10.1007/978-3-319-23461-8_36
https://doi.org/10.1007/978-3-642-33475-7_25
https://doi.org/10.4204/EPTCS.121.1

	Abstract
	1 Introduction
	2 A Gentle Introduction to Intersection Types, Termination, and Randomization
	2.1 Intersection Types and Termination
	2.2 Typing Termination in a Probabilistic Setting

	3 A Probabilistic Call-by-Value -Calculus
	3.1 Mathematical Preliminaries
	3.2 The Language cbv
	3.3 The Operational Semantics
	3.4 Probabilistic Termination in cbv

	4 Non-Idempotent Monadic Intersection Types
	4.1 The Type System, Formally
	4.2 Some Comments on the Typing Rules
	4.3 Some Basic Properties of the Type System

	5 Precisely Reflecting the Runtime: Some Examples
	5.1 Not Too Much
	5.2 Not Too Little

	6 Characterising Probabilistic Termination
	6.1 Tight Typings
	6.2 Soundness
	6.3 Completeness
	6.4 The Various Flavours of a Correspondence

	7 On Recursion-Theoretic Optimality
	7.1 Probabilistic Turing Machines
	7.2 Encoding PTMs into
	7.3 Preliminaries from Recursion Theory
	7.4 The Optimality Result

	8 Variations on the Theme
	8.1 On Call-by-Name Evaluation
	8.2 Multidistributions vs. Distributions

	9 Related Work
	10 Conclusion
	Acknowledgments
	References

