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Abstract
We investigate percolation in the Boolean model with convex grains in high dimension. For each

dimension d, one fixes a compact, convex and symmetric set K ⊂ Rd with non empty interior. In
a first setting, the Boolean model is a reunion of translates of K. In a second setting, the Boolean
model is a reunion of translates ofK or ρK for a further parameter ρ ∈ (1, 2). We give the asymptotic
behavior of the percolation probability and of the percolation threshold in the two settings.

1 Introduction and main results
1.1 Setting
Boolean model. For any d ≥ 1, we denote by K(d) the set of subsets K of Rd such that:

• The set K is compact, convex and symmetric (that is, for all x ∈ K,−x ∈ K).

• The Lebesgue measure of K satisfies |K| = 1.

Note that for all K ∈ K(d), the interior set Int(K) is non empty. Otherwise K would be included in a
proper affine subspace of Rd and its Lebesgue measure would be 0.

Let d ≥ 1 and K ∈ K(d). Let ν be a finite measure on (0,+∞) with positive mass. For simplicity we
assume that the support of ν is bounded. Let λ > 0. Let ξ be a Poisson point process on Rd × (0,+∞)
with intensity measure dx⊗ λν. Consider

Σ = Σ(λ, ν, d,K) =
⋃

(c,r)∈ξ

c+ rK.

This is the Boolean model with parameters λ, ν, d and K.
We call the sets c+ rK the grains of the Boolean model. We call c the center and r the radius of the

grain c+ rK.
We can write

ξ = {(c, r(c)), c ∈ χ} (1)

where χ is a Poisson point process on Rd with intensity measure λν[(0,∞)] dx. Given χ, (r(c))c∈χ is a
family of i.i.d.r.v. with common distribution ν[(0,∞)]−1ν. As we shall not need this result, we do not
give a more formal statement. We nevertheless think that it can provide some intuition.

We denote by B(d) the Euclidean closed ball of Rd centered at the origin and such that |B(d)| = 1.
Note that B(d) belongs to K(d). Most of the times, we will write simply B. We refer to Σ(λ, ν, d,B) as
a Euclidean Boolean model. Note that, with our choice of terminology, B is a grain of radius 1 whereas
this is not a Euclidean ball of radius 1. This should create no confusion as we will use the term "radius"
only in the above sense.

We refer to the books by Kingman [8] and Last and Penrose [10] for background on Poisson point
processes.
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Percolation in the Boolean model. Fix r > 0. Recall (1) and set χ0 = χ ∪ {0} and r(0) = r. We
define an unoriented graph structure on χ0 by putting an edge between x and y if x + r(x)K touches
y + r(y)K. As K is convex and symmetric,

x+ r(x)K touches y + r(y)K ⇐⇒ x− y ∈ [r(x) + r(y)]K ⇐⇒ y − x ∈ [r(x) + r(y)]K.

Note (see (76) in Appendix A) for all λ > 0,

P[the connected component of the graph χ0 that contains 0 is unbounded]
= P[the connected component of Σ ∪ rK that contains 0 is unbounded]. (2)

We define the percolation threshold as usual (see Appendix A for details):

λc(ν, d,K)
= inf{λ > 0 : P[the connected component of the graph χ0 that contains 0 is unbounded] > 0} (3)
= inf{λ > 0 : P[the connected component of Σ ∪ rK that contains 0 is unbounded] > 0} (4)
= inf{λ > 0 : P[one of the connected components of Σ is unbounded] = 1}. (5)

In particular this does not depend on the choice of r > 0. We refer to the book by Meester and Roy [12]
for background on percolation in the Boolean model.

As K is symmetric and as the interior set Int(K) is non empty, there exists r− > 0 such that
r−B ⊂ K. As K is compact, there exists r+ > 0 such that K ⊂ r+B. Therefore, by a natural coupling
(and with an obvious generalization in our notations as r±B may not belong to K(d)),

Σ(λ, ν, r−B, d) ⊂ Σ(λ, ν, d,K) ⊂ Σ(λ, ν, r+B, d).

By standard results on percolation in the Euclidean Boolean model, we deduce that λc is always positive
and finite. Actually, we will provide lower and upper bounds on λc with independent arguments.

Scale invariant thresholds. As in [6], we define 1

cc(ν, d,K) = 1− exp
(
−λc(ν, d,K)

∫
(0,+∞)

rdν(dr)
)

and
λ̃c(ν, d,K) = −2d ln(1− cc(ν, d,K)) = λc(ν, d,K)

∫
(0,+∞)

(2r)dν(dr).

The quantity cc(ν, d,K) is the probability that a given point (say 0) belongs to the critical Boolean model
Σ(λc, ν, d,K). By ergodicity, this is also the density of the critical Boolean model. It has therefore a
clear geometrical meaning. It is moreover invariant by scaling: if all radii are multiplied by a constant,
λc changes but cc remains unchanged. For these reasons cc - and the related quantity λ̃c - are more
convenient when comparing the threshold for different measure ν. We refer to [6] for a more detailed
discussion on these topics.

1.2 Known results in the Euclidean setting
1.2.1 The case of a constant radius

Framework. We are interested here in the case ν = δ1/2 and K = B. In other words, each grain is a
translate of 1

2B. For λ > 0 and d ≥ 1, let

C0 = C0(λ, δ1/2, d, B)

be the connected component of
Σ(λ, δ1/2, d, B) ∪ 1

2B

that contains the origin. As mentioned in (4),

λc(δ1/2, d, B) = inf{λ > 0 : P[C0(λ, δ1/2, d, B) is unbounded] > 0}.
1In [6] there is an extra factor vd which is the volume of the unit Euclidean ball. This is due to the fact that, in [6], the

unit grain is the unit Euclidean ball whereas here the unit grain is a set K of volume 1.
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Link with a Galton-Watson process. In order to provide some intuition, let us describe the link
between C0 and some Galton-Watson process. A more precise description will be given later.

Fix λ > 0 and d ≥ 1. Denote by Nd the number of balls that belongs to C0. The set C0 is unbounded
if and only if Nd is infinite. Call 1

2B the ball of generation 0. Define the balls of generation 1 as the
random balls of Σ that touch 1

2B. Define the balls of generation 2 as the random balls of Σ that touch
at least of ball of generation 1 without being a ball of generation 0 or 1 and so on.

Note that x+ 1
2B touches x′ + 1

2B if and only if x′ ∈ x+B. Therefore the number of random balls
that intersect a given deterministic ball x+ 1

2B is a Poisson random variable with parameter λ. Indeed,
this is the number of points of a Poisson point process on Rd with intensity λ dx that belongs to x+B
and |B| = 1. If there where no geometrical interference between children (a ill defined term) of different
balls, then Nd would be the total population Zd of a Galton-Watson process with offspring distribution
Poisson(λ). See Section 3.2.1 for details. Taking into account interaction, one can see that Nd is actually
stochastically dominated by Zd.

Let S(λ) denote the survival probability of a Galton-Watson process with Poisson(λ) offspring. Turn-
ing the above intuition into a proof, one can easily prove

P[C0(λ, δ1/2, d, B) is unbounded] ≤ S(λ)

and therefore
λc(δ1/2, d, B) ≥ 1.

Result. In [13], Penrose proves that these bounds are asymptotically sharp when d tends to ∞.

Theorem 1.1 ([13]). For any λ > 0,

lim
d→∞

P[C0(λ, δ1/2, d, B) is unbounded] = S(λ).

Moreover,
lim
d→∞

λc(δ1/2, d, B) = 1.

The idea is to prove that, when d tends to infinity, the geometrical interference vanish and the
genealogy of the balls becomes closer and closer to the genealogy of the Galton-Watson process.

1.2.2 The case of radii that can take two values 1 and ρ with 1 < ρ < 2.

Framework. Let ρ > 1 and d ≥ 1. We consider here the case

ν = νd,ρ = δ1/2 + 1
ρd
δρ/2 (6)

and K = B. We refer to [6] for the motivation of the choice of νd,ρ. Basically, the idea is to keep constant
in d the relative influence of grains of different radii.

For all λ > 0, let
C0 = C0(λ, νd,ρ, d, B)

be the connected component of
Σ(λ, νd,ρ, d, B) ∪ ρ2B

that contains the origin. As before, we are interested in the percolation probability, that is the probability
that C0 is unbounded, and the percolation threshold λc.

Link with a two-type Galton-Watson process. As in the constant radius case, there is a natural
genealogy for the balls of C0 and this genealogical structure is stochastically bounded from above by
a Galton-Watson process. In this setting, the Galton-Watson is a two-types Galton-Watson process:
there are 1

2B grains and ρ
2B grains. One can check easily that the probability that C0 is unbounded is

bounded from above by the survival probability of this Galton-Watson process. This gives a lower bound
on λc(νd,ρ, d, B) which is equivalent to κc(ρ)d, when d tends to ∞, where

κc(ρ) =
2√ρ
1 + ρ

< 1. (7)
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Result. In [6], Gouéré and Marchand prove that if 1 < ρ < 2, when d tend to infinity, geometrical
interference vanish and the behavior of the percolation threshold is roughly given by the behavior of the
critical parameter of the two type Galton-Watson process.
Theorem 1.2 ([6]). For all ρ ∈ (1, 2),

lim
d→∞

1
d

ln (λc(νd,ρ, d, B)) = ln (κc(ρ)) . (8)

Note λ̃c(δ1/2, d, B) = λc(δ1/2, d, B) and λ̃c(νd,ρ, d, B) = 2λc(νd,ρ, d, B). Therefore, by Theorems 1.1
and 1.2, for d large enough,

λ̃c(νd,ρ, d, B) < λ̃c(δ1/2, d, B)
and then

cc(νd,ρ, d, B) < cc(δ1/2, d, B).
This result, which refutes a conjecture based on numerical estimations in low dimension and some
heuristics in any dimension, was one of the motivations of [6]. We refer to [6] for more details.

1.2.3 The case of radii that can take two values 1 and ρ with ρ > 2: geometry still plays a
role in high dimension

In [7], Gouéré and Marchand prove that (8) does not hold when ρ > 2. In that case, when d tend to
infinity, geometrical interference do not vanish and the behavior of the percolation threshold is given by
a competition between geometrical effects (dependencies due to the lack of space in Rd) and genealogical
aspects (given by the associated Galton-Watson process).

To sum up, geometrical interference do not always vanish in high dimension and geometry can still
play a role. This is one of the motivation of this work where we investigate percolation in the Boolean
model in high dimensions beyond the Euclidean case.

1.3 Our main results.
1.3.1 The case of a constant radius

We consider the case ν = δ1/2. For d ≥ 1, K ∈ K(d) and λ > 0, let

C0 = C0(λ, δ1/2, d,K)

be the connected component of
Σ(λ, δ1/2, d,K) ∪ 1

2K

that contains the origin. As mentioned in (4),

λc(δ1/2, d,K) = inf{λ > 0 : P[C0(λ, δ1/2, d,K) is unbounded] > 0}.

Exactly as in the Euclidean case, one can check that the probability that C0(λ, δ1/2, d,K) is unbounded
is bounded from above by S(λ), the survival probability of a Galton-Watson process with progeny
Poisson(λ). This yields λc(δ1/2, d,K) ≥ 1. This is stated as Proposition 3.1.

Our first main result is a generalization of Theorem 1.1.
Theorem 1.3. • For any λ > 0,

lim
d→∞,K∈K(d)

P[C0(λ, δ1/2, d,K) is unbounded] = S(λ).

The convergence is uniform in K ∈ K(d) 2.

• Moreover,
lim

d→∞,K∈K(d)
λc(δ1/2, d,K) = 1.

The convergence is uniform in K ∈ K(d).
2The statement "f(d,K) converges to ` uniformly in K ∈ K(d) when d tends to ∞" means:

∀ε > 0,∃d0 ≥ 1,∀d ≥ d0, ∀K ∈ K(d), |f(d,K)− `| ≤ ε.
.
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1.3.2 The case of radii that can take two values 1 and ρ with 1 < ρ < 2.

Framework. Let ρ > 1 and d ≥ 1. We are interested in the case ν = νd,ρ defined in (6). With β > 0
we associate the intensity

λ = βκc(ρ)d

where κc(ρ) is defined in (7). This choice is natural because of Theorem 1.2. Let

C0 = C0(βκc(ρ)d, νd,ρ, d,K)

be the connected component of
Σ(βκc(ρ)d, νd,ρ, d,K) ∪ ρ2K

that contains the origin. As before, we are interested in the percolation probability, that is the probability
that C0 is unbounded, and the percolation threshold

βc(ρ, d,K) = inf
{
β > 0 : P

[
C0(βκc(ρ)d, νd,ρ, d,K

)
is unbounded

]
> 0
}
.

Link with a two-type Galton-Watson process. As explained above, there is a natural genealogy
for the balls of C0. This genealogical structure is bounded from above by a Galton-Watson process. In
this setting, the Galton-Watson is a two-types Galton-Watson process: there are 1

2K grains and ρ
2K

grains. We will call them 1-particles and ρ-particles. Let

M = M(β, ρ, d) = β


(

2√ρ
1+ρ

)d (
1√
ρ

)d
(√
ρ
)d (

2√ρ
1+ρ

)d
 . (9)

This is the mean matrix of the Galton-Watson process. Denote by N1 the random number of children of
a 1-particle which are 1-particle. Denote by Nρ the random number of children of a 1-particle which are
ρ-particle. Then N1 and Nρ are independent Poisson random variables with parameters given (in that
order) by the first row of M . The children of a ρ behave in a similar way described by the second row of
M . Note that the Galton-Watson process does not depend on K. However, its link with the cluster of
the origin depends on K. The Galton-Watson process starts with one ρ-particle. Denote by S(β, ρ, d) its
survival probability. As before, one can easily check that the probability that C0 is unbounded is bounded
from above by S(β, ρ, d). This gives a lower bound on βc(ρ, d,K). This is formalized in Proposition 4.3.

Result. In our second main result we prove that, if 1 < ρ < 2, the above mentioned inequalities are
asymptotically sharp when d tends to ∞. As above, S(β2) denotes the survival probability of Galton-
Watson process with Poisson(β2) progeny.

Theorem 1.4. • Let β > 0 and ρ ∈ (1, 2). Then

lim
d→∞,K∈K(d)

P
[
C0(βκc(ρ)d, νd,ρ, d,K

)
is unbounded

]
= S(β2).

The convergence is uniform in K ∈ K(d).

• Let ρ ∈ (1, 2).
lim

d→∞,K∈K(d)
βc(ρ, d,K) = 1.

The convergence is uniform in K ∈ K(d).

The second item can be rephrased as follows:

λc(ρ, d,K) ∼ κc(ρ)d as d→∞.

This is a strengthening and a generalization of Theorem 1.2 which only provides a logarithmic equivalent
of λc(ρ, d,B). This is the more delicate result of the article.
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Open questions and conjectures. There is no hope to generalize such a result for any ρ. Indeed,
by [7], we know that the behavior of the critical threshold of percolation is not given by the critical
threshold of the associated Galton-Watson process when ρ > 2 and K = B. However, for K belonging
to some families of convex, the result of Theorem 1.4 could hold for ρ in a larger interval. Actually, the
proof suggests that it is in the Euclidean case that the link between the Galton-Watson process and the
cluster of the origin is the weakest. We give more details in Section 3.2.2 and a state a related conjecture
in Section 2.6.

Organization of the paper. In Section 2 we gather some notations and some results from analysis
and high dimension geometry. In Section 3 we prove Theorem 1.3. In Section 4 we prove Theorem 1.4.
In both cases, the difficult part is to establish the lower bound on percolation probabilities. The plans
of the proofs are given in Section 3.4.4 and 4.5.4 once the objects are defined.

2 Some tools and notations
2.1 A couple of notations for random variables
When d ≥ 1 and K ∈ K(d) are given, we shall denote by XK , X

′
K , X

′′
K independent random variables

with uniform distribution on K. In the whole of this paper, N will denote a standard Gaussian random
vector in R2.

2.2 Log-concavity
In this section, we gather some well known facts about log-concave functions. A map f : Rd → R+ is
log-concave if, for all x, y ∈ Rd and all λ ∈ (0, 1), the following inequality holds:

f(λx+ (1− λ)y) ≥ f(x)λf(y)1−λ.

For example, the indicator of a convex set is log-concave.
If g, h : Rd → R+ are log-concave and measurable and if their convolution is defined everywhere, then

g ∗ h is log-concave. This is a consequence of Prékopa-Leindler inequality (see for example [5] or [14]).
In particular, for all d ≥ 1 and K ∈ K(d), XK and XK + X ′K (see Section 2.1 for notations) have a

log-concave density.
Let f : Rd → R+ be log-concave. Let us also assume that f is symmetric, that is, for all x ∈ Rd,

f(x) = f(−x). Then, for all x ∈ Rd, f(x) ≤ f(0). Indeed, for all x ∈ Rd,

f(0) ≥ f(x)1/2f(−x)1/2 by log-concavity
= f(x) by symmetry.

2.3 A central limit theorem for random variables with log-concave density
The total variation distance between two random variables X and Y with values in R2 is

dTV (X,Y ) = sup
A∈B(R2)

|P[X ∈ A]− P[Y ∈ A]|.

The following result is a rewriting of a weak version of Theorem 1.3 in [9].

Theorem 2.1. There exists a sequence (εCLT (d))d which tends to 0 such that, for any centered random
variable X in Rd with log-concave density, there exists a linear map L : Rd → R2 such that

dTV (L (X) ,N ) ≤ εCLT (d).

We will apply this result to random variables XK or XK +X ′K (see Section 2.1 for notations).

Proof. In [9], the result is stated for an isotropic random vector X with log-concave density. One says
that X is isotropic if E(X) = 0 and var(X) = Id. The random variable X may not be isotropic. But as
X has a density, var(X) is positive definite. As moreover X is centered, there there exists an inversible
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linear map T : Rd → Rd such that T (X) is isotropic. Moreover T (X) still have a log-concave density.
Therefore Theorem 1.3 of [9] applies to T (X) and provides, for any ε > 0 and any d large enough
depending only on ε, an orthogonal projection π on a plane P ⊂ Rd such that π(T (X)) is close in total
variation distance to a standard Gaussian random vector NP on P : dTV (π(T (X)),NP ) ≤ ε. From this
result, one gets Theorem 2.1 with L = ϕ ◦ π ◦ T where ϕ is an isometry between P and R2.

2.4 A concentration result for random variables with uniform distribution
on convex sets

Let d ≥ 1. One says that a random variable on Rd is isotropic if E(X) = 0 and var(X) = Id. Let
K ∈ K(d). Let XK be a random variable with uniform distribution on K. We will need the following
definition:

T is adapted to XK if T is an invertible linear map from Rd to Rd such that T (XK) is isotropic. (10)

There always exists such maps. The following result is a rewriting of a weak version of Theorem 1.4 in
[9].

Theorem 2.2. Let ε > 0. Let ` ≥ 1. There exists d0 such that, for all d ≥ d0, all K ∈ K(d) and all T
adapted to XK ,

P

[∣∣∣∣∣
∥∥T (X1

K + · · ·+X`
K)
∥∥

2√
d

−
√
`

∣∣∣∣∣ ≥ ε
]
≤ ε

where X1
K , . . . , X

`
K are independent random variables with uniform distribution on K.

Proof. By Theorem 1.4 in [9], there exists absolute constants c, C > 0 such that the following holds. For
all d ≥ 1, all isotropic random variable X on Rd with a log-concave density and all η ∈ [0, 1],

P
[∣∣∣∣‖X‖2√

d
− 1
∣∣∣∣ ≥ η] ≤ Cd−cη2

.

Let d ≥ 1, ` ≥ 1,K ∈ K(d) and T a map adapted to XK . The random variable

X = T (X1
K + · · ·+X`

K)√
`

is isotropic. Furthermore, as K is convex, the common density of the Xi
K is log-concave. Therefore the

common density of the T (Xi
K) is log-concave. By stability by convolution (see Section 2.2), the density

of T (X1
K + · · ·+X`

K) is log-concave. Therefore, the density of X is log-concave.
Let ε ∈ (0,

√
`). We apply the result stated at the beginning of the proof with X defined as above

and η = ε/
√
`. We get

P

[∣∣∣∣∣
∥∥T (X1

K + · · ·+X`
K)
∥∥

2√
d
√
`

− 1
∣∣∣∣∣ ≥ ε√

`

]
≤ Cd−cε

2`−1
.

The result follows.

2.5 Rearrangement inequalities
We will need to following version of Riesz’s rearrangement inequality. This is Theorem 3.7 in [11] in the
simple setting of indicator function. When A is a Borel subsets of Rd with finite Lebesgue measure, we
denote by A∗ the Euclidean ball centered at the origin such that |A| = |A∗|.

Theorem 2.3. Let d ≥ 1. Let A1, A2, A3 be Borel subsets of Rd with finite Lebesgue mesure. Then∫
Rd
1A1 ∗ 1A2(x)1A3(x) dx ≤

∫
Rd
1A∗1 ∗ 1A∗2 (x)1A∗3 (x) dx.
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2.6 A conjecture
This section in not necessary for the main results of the article. Let d ≥ 1 and K ∈ K(d). Let ‖ · ‖K
be the norm defined by ‖x‖K = inf{r > 0 : x ∈ rK}. In particular ‖ · ‖B = ‖ · ‖2. For any r > 0, by
Theorem 2.3,

P[‖XK +X ′K‖K ≤ r] =
∫
Rd
1K ∗ 1K(s)1rK(s) ds ≤

∫
Rd
1B ∗ 1B(s)1rB(s) ds = P[‖XB +X ′B‖2 ≤ r].

In other words, ‖XB +X ′B‖B is stochastically dominated by ‖XK +X ′K‖K . Similar results holds for the
sum of more copies of XB or XK . Numerical simulations suggest the following related conjecture. For
any p ∈ [1,+∞] we denote by ‖ · ‖p the usual `p norm on Rd and by Bp ∈ K(d) the associated ball of
volume 1 centered at 0. In particular, Bp = B.

Conjecture 2.4. For any r > 0, the map from [1,+∞] to [0, 1] defined by

p 7→ P
[
‖XBp +X ′Bp‖p ≤ r

]
is increasing on [1, 2] and decreasing on [2,+∞].

When d tends to ∞, ‖XBp +X ′Bp‖p converges in probability to a constant N(p). Using the represen-
tation of uniform random variables on Bp given in [3] one easily gets, for p ∈ [1,∞),

N(p) =
[

p

4Γ2(1 + p−1)

∫
Rd×Rd

|x+ y|pe−|x|
p−|y|p dxdy

] 1
p

where Γ is the Gamma function. One also easily check that N(∞) = 2. Here is a related easy looking
conjecture: N is decreasing on [1, 2] and increasing on [2,∞]. We have not been able to prove this result.
However, as a consequence of the above discussion, on can check that one always has N(p) ≥ N(2) =

√
2.

We formulate similar conjecture for the sum of a higher number of copies of XBp .

2.7 Sum of independent random variable uniformly distributed on an Eu-
clidean ball

We state and proof here a well known result for which we have no ready reference. Recall that B(d)
denotes the Euclidean closed ball of Rd centered at the origin such that |B(d)| = 1.

Lemma 2.5. For all ε > 0, P[XB(d) +X ′B(d) ∈ (
√

2− ε)B(d)]→ 0 as d→∞.

Proof. Let X(d) and X ′(d) be independent random variable with uniform distribution on the unit ball
B̃(d) of Rd. We will prove that ‖X(d) + X ′(d)‖2 tends to

√
2 in probability when d tends to ∞. By a

scaling argument, this yields the required result.
By independence and isotropy,

E
[∣∣(X(d), X ′(d))

∣∣] = E
[∣∣(X(d), ‖X ′(d)‖2e1)

∣∣] ≤ E
[
|(X(d), e1)|

]
(11)

where (·, ·) denotes the scalar product in Rd and e1 the first vector of the canonical basis. But

(X(d), e1)2 + · · ·+ (X(d), ed)2 = ‖X(d)‖22 ≤ 1.

Therefore, by symmetry, E
[
(X(d), e1)2] ≤ d−1 → 0 and then E

[
|(X(d), e1)|

]
→ 0. By (11) and Markov

inequality, we deduce from the above limit that (X(d), X ′(d)) tends to 0 in probability. As moreover
‖X(d)‖22 and ‖X ′(d)‖22 tends 1 in probability, we get that ‖X(d) +X ′(d)‖22 tends to 2 in probability as
d tends to ∞.
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2.8 Notations for branching random walks (BRW)
Let λ > 0 and d ≥ 1. Let ∆ be a random variable on Rd. Let S be a finite subset of Rd. Let k be an
integer. Let L be a map from Rd to R2. Let M > 0.

• τλ denotes a Galton-Watson tree with Poisson(λ) progeny. The generation |x| of a particle x of τλ
is the graph distance from x to the root. If x is not the root we denote by ←x the parent of x, that
is the unique particle of generation |x| − 1 on the shortest path from the root to x.

• We see a BRW as a a random tree (or forest) where each node x is called a particle and possesses
a location V (x) ∈ Rd. The notation τλ,d,∆;S denotes a BRW such that:

– The process starts with one particle located at each point of S.
– Each particle x has N(x) children located at V (x) + ∆(x, 1), . . . , V (x) + ∆(x,N(x)) where

the distribution of N(x) is Poisson(λ), where the ∆(x, ·) have the same distribution as ∆ and
where all variables N(·) and ∆(·, ·) are independent.

If A is a subset of Rd, we write
τλ,d,∆;S(A)

as a short notation for ∑
x∈τλ,d,∆;S

1A(V (x)),

that is the number of particles of the BRW located in A.

• τλ,d,∆ is a short notation for τλ,d,∆;{0}.

• If τ is a BRW, then τ≤k denotes the restriction of τ to the k first generations and τk denotes its
restriction to the k-th generation.

Let moreover β > 0 and ρ > 1. In Section 4, we will use a BRW which will alternate ρ-particles for
even generations and 1-particles for odd generations.

• τβ,ρ,d,∆;S denotes a two-types BRW. There are 1-particles and ρ-particles. It starts with one
ρ-particle located at each point of S.

– Each 1-particle x has N(x) children which are ρ-particles located at V (x)+∆(x, 1), . . . , V (x)+
∆(x,N(x)) where the distribution ofN(x) is Poisson(β√ρ−d), where the ∆(x, ·) have the same
distribution as ∆ and where all variables N(·) and ∆(·, ·) are independent.

– Each ρ-particle x has N(x) children which are 1-particles located at V (x)+∆(x, 1), . . . , V (x)+
∆(x,N(x)) where the distribution of N(x) is Poisson(β√ρd), where the ∆(x, ·) have the same
distribution as ∆ and where all variables N(·) and ∆(·, ·) are independent.

• As above we will omit S when S = {0}.

• We define the event

Smallρ
(
τβ,ρ,d,∆;S
≤k ,M

)
= {the number of ρ particles of τβ,ρ,d,∆;S

≤k is at most M

and the number of children of any ρ particle is at most M√ρd}.

We will need some ordering on the nodes of a tree. We can for example formalize trees using Neveu
formalism. In this formalism, nodes are finite sequences of positive integers (the idea is that (4, 2) is the
second child of the forth child of the root ∅). See for example Section 2.2 of [15]. We can then order the
nodes by lexicographic order. We will refer to this order as Neveu order.
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3 Proof of Theorem 1.3
3.1 Framework and Ĉ0

Let λ > 0, d ≥ 1 and K ∈ K(d). Let χ be a Poisson point process on Rd with intensity measure
λ dx. Note that ξ = {(c, 1/2), c ∈ χ} is a Poisson point process on Rd × (0,+∞) with intensity measure
dx ⊗ λδ1/2. Set χ0 = χ ∪ {0}. As in Section 1.1, we define an unoriented graph structure on χ0 by
putting an edge between x, y ∈ χ0 if y − x ∈ K. Let Ĉ0 be the connected component of the graph χ0

that contains 0. We are interested (see (2) with r = 1/2) in

P[#Ĉ0 =∞]

and in
λc(δ1/2, d,K) = inf{λ > 0 : P[#Ĉ0 =∞] > 0}.

3.2 Branching random walk and cluster of the origin
The content of this section (with the exception of Section 3.2.2) is essentially contained in Section 5 of
[13]. Roughly, the aim is to explain than Ĉ0, or a subset of Ĉ0, can be seen as the set of positions of a
pruned BRW. The framework is the same as in Section 3.1.

3.2.1 Basic construction

Exploring a subset of Ĉ0. We explore some part of Ĉ0 by revealing successively parts of the point
process χ. We will define inductively a tree with root 0 and where each node is a point of Ĉ0. We will
call the graph distance from a node x to the root 0 the generation of x. Start with A = {0} and B = ∅.
At each stage of the algorithm, perform the following steps.

1. Select one of the elements of A according to any given rule and call it x.

2. Add each point of
χ ∩

(
(x+K) \ (B +K)

)
to A where

B +K =
⋃
b∈B

b+K.

Put an arrow from x to each of the points y we have just added to A. We think about each such
y as a child of x.
The idea is the following. Before performing Step 2:

• The points y ∈ χ such that there is an edge between x and y are the points of χ ∩ (x+K).
• All the points of χ ∩ (B +K) have been revealed. All of them are in A ∪B and in Ĉ0.
• None of the points of χ \ (B +K) have been revealed.

3. Move x from A to B.

4. If A is non-empty, go back to Step 1.
There are two cases.

• The algorithm terminates. In that case it provides a tree whose set of nodes is B. We have B = Ĉ0.

• The algorithm does not terminate. In that case it provides a sequence of growing trees. We can
consider the limit tree. Denote its set of nodes by B. We have B ⊂ Ĉ0 and #B = #Ĉ0 =∞.

In all cases, we have
B ⊂ Ĉ0 and #B = #Ĉ0.

Note that, when Ĉ0 is infinite, it may happen that B 6= Ĉ0. This depends on the rule used to select x in
Step 1. If we use the rule "Select one of the elements of A of minimal generation according to any given
rule" or the rule "Select the element of A of minimal Euclidean distance to 0", then B = Ĉ0. We shall
not need this result and, on the contrary, we will find it convenient to have some freedom in the choice
of the point x in Step 1.
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Building a subset of Ĉ0 by pruning a BRW. The key is the following. Before Step 2 in the above
exploration process, condition to what we have revealed,

χ ∩
(
(x+K) \ (B +K)

)
is a Poisson point process of intensity

λ1(x+K)\(B+K)(y) dy.

Furthermore, generating such a Poisson point process can be done as follows.

• Generate N a random variable with Poisson(λ) distribution. Note that λ = λ|x+K| as |K| = 1.

• Generate Y1, . . . , YN i.i.d. random variables with uniform distribution on x+K.

• The random set {Yi : Yi 6∈ B +K} has the required distribution.

This enables us to build a set which, under a suitable coupling (which we will assume implicitly
henceforth) is a subset of Ĉ0. Consider the BRW

τ = τλ,d,XK

where XK is uniformly distributed on K (see Section 2.8 for notations on BRW). Start with A = {∅}
where ∅ is the root of τ (which is located at 0) and B = ∅. At each stage of the algorithm, perform the
following steps.

1. Select one of the elements of A according to any given rule and call it x.

2. Consider successively the children (in the BRW) y of x in any order and for each of them, do the
following:

if there does not exist x′ ∈ B such that V (y) ∈ V (x′) +K, then add y to A.

Let us introduce some vocabulary for future reference. We say that the other children of x are
rejected

because of interference between x and x′ or because of interfence with x′. (12)

We say that
V (x′) +K is the region of interference of x′. (13)

In other words, we reject x because of interference with x′ when x belongs to the region of interfer-
ence of x′. A large part of our proof will be devoted to establish the fact that, in high dimension,
there is not too much interference.

3. Move x from A to B.

4. If A is non-empty, go back to Step 1.

If the algorithm terminates it provides a set B. Otherwise, it provides an increasing sequence of B (one
B for each stage) and we define B as the union of all those B at different stages. In any case,

{V (x), x ∈ B} ⊂ Ĉ0 and #B = #Ĉ0.

Note that {V (x), x ∈ B} is the set of positions of a pruned version of τ .
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3.2.2 An open question

This section is not necessary for the main result of the article. Let d ≥ 1 and K ∈ K(d). By Theorem
2.3,

P[XK +X ′K ∈ K] =
∫
Rd
1K ∗ 1K(s)1K(s) ds ≤

∫
Rd
1B ∗ 1B(s)1B(s) ds = P[XB +X ′B ∈ B].

We now use the setting and notations of Section 3.2.1. To construct Ĉ0, we have to reject because of
interference the grandchildren of the root of τλ,d,XK that belong to K. If we condition by the underlying
tree τλ,d,XK , the probability that a given grandchildren is rejected for this reason is P[XK +X ′K ∈ K].
As seen above, this probability is maximal when K = B. This remark and further similar considerations
may suggest that the percolation probability could be minimal whenK = B and therefore the percolation
threshold λc could be maximal when K = B. This would be coherent with numerical simulations in
low dimension. In particular, by reducing percolation to a local criteria and then using Monte Carlo
methods, Balister, Bollobás and Walters provided in [2] the following 99.99% confidence intervals for
λc(δ1/2,K, 2): [4.508, 4.515] when K = B and [4.392, 4.398] when K = [−1/2, 1/2]2.

3.2.3 Constructing a smaller set by over-pruning

We introduce here a variant of the previous constructions. The general idea is that, by rejecting more
than necessary at some stage, we may be able to have a better control on interference at a later stage.

Exploring a smaller subset of Ĉ0. Start with A = {0} and B = ∅. At each stage of the algorithm,
perform the following steps.

1. Select one of the elements of A according to any given rule and call it x.

2. Let K(x) be a subset of x+K defined according to any given rule. It can depend on A,B and x.
Consider successively the points of

χ ∩

(
K(x) \

⋃
b∈B

K(b)
)

in any order and add some of them to A according to any given rule. Put an arrow from x to each
of the points we have just added.
With the vocabulary introduced above, the region of interference of x is K(x).

3. Move x from A to B.

4. If A is non-empty, go back to Step 1.

We get in the end some set that we denote by B−. We have

B− ⊂ Ĉ0 and #B− ≤ Ĉ0.

Building a smaller subset of Ĉ0 by over-pruning a BRW. As in Section 3.2.1, consider the BRW
τ = τλ,d,XK and start with A = {∅} and B = ∅. At each stage of the algorithm, perform the following
steps.

1. Select one of the elements of A according to any given rule and call it x.

2. Let K(x) be a subset of V (x) + K defined according to any given rule. We say that this is the
region of interference of x. It can depend on A,B and x. Consider successively in any given order
the children y of x whose position belongs to

K(x) \
(⋃
b∈B

K(b)
)

(14)

and, for each of them, decide according to any given rule whether one adds it to A or not.
We thus distinguish (somehow artificially) two kinds of over-pruning:
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(a) By taking K(x) smaller than V (x) + K we may reduce the number of children of x in the
pruned BRW. However, as we reduced the region of interference of x, we may reject less points
at a later stage of the algorithm.

(b) Similarly, by adding to A only some of the children of x which belongs to (14), we further
reduce the number of children of x in the pruned BRW. However, we can gain some properties
on the positions of the points of the pruned BRWwhich may help us controlling the interference
at a later stage of the algorithm.

Both over-pruning amounts to rejecting some of the children y of x belonging to

(V (x) +K) \
⋃
b∈B

K(b)

according to some give rule and we will describe it this way in the specific over-pruning we will use
in this work.

3. Move x from A to B.

4. If A is non-empty, go back to Step 1.

If the algorithm terminates it provides a set B. Otherwise, it provides an increasing sequence of B (one
B for each stage) and we define B as the union of all those B at different stages. In any case,

{V (x), x ∈ B} ⊂ Ĉ0 and #B ≤ #Ĉ0.

The set {V (x), x ∈ B} is the set of positions of an over-pruned version of τ .

Intuitive rephrasing. Let us rephrase one of the key ideas at a more intuitive level. When we look for
the children of a particle x, we reveal the relevant Poisson point process in a (subset of) the interference
region K(x). Therefore at any later stage of the construction we have to reject any particle which fall in
K(x). However, we do not have to care about any rejected particle or about any particle whose children
we never consider: they generate no interference.

3.3 Proof of the upper bound on percolation probability
The aim is to prove the following proposition, which is the easy part of Theorem 1.3. We refer to Section
1.3.1 for notations.

Proposition 3.1. • For all λ > 0, d ≥ 1 and K ∈ K(d), P[C0(λ, δ1/2, d,K) is unbounded] ≤ S(λ).

• For all d ≥ 1 and K ∈ K(d), λc(δ1/2, d,K) ≥ 1.

Proof. We use the framework of Section 3.1 and the BRW τ = τλ,d,XK of Section 3.2. By the discussion
in Section 3.2.1, we know that #Ĉ0 has the same distribution as the total population of a pruned version
of τ . Therefore #Ĉ0 is stochastically dominated by the total population of τ , that is by the population
of a Galton-Watson tree τλ. Using (2) for the first equality, we thus get

P[C0(λ, δ1/2, d,K) is unbounded] = P[#Ĉ0(λ, δ1/2, d,K) =∞] ≤ P[#τλ =∞] = S(λ).

This is the first part of Proposition 3.1. The second part follows as S(λ) = 0 for λ ≤ 1 and as λc(δ1/2, d,K)
is the infimum of all λ > 0 such that P[C0(λ, δ1/2, d,K) is unbounded] is positive.

3.4 Proof of the lower bound on percolation probability
We use the framework of Subsection 3.1. Our aim is to prove the following result.

Theorem 3.2. Let λ > 0 and ε > 0. There exists d0 ≥ 1 such that, for all d ≥ d0 and all K ∈ K(d),

P[#Ĉ0(λ, δ1/2, d,K) =∞] ≥ S(λ)− ε.
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Proof of Theorem 1.3 using Theorem 3.2. Let λ > 0 and ε > 0. Let d0 be as given by Theorem 3.2. Let
d ≥ d0 and K ∈ K(d). We then have,

S(λ) ≥ P[C0(λ, δ1/2, d,K) is unbounded] = P[#Ĉ0(λ, δ1/2, d,K) =∞] ≥ S(λ)− ε.

The first inequality is Proposition 3.1. The equality is (2). The second inequality is due to our choice of
d0. We have proved the first part of Theorem 1.3.

Let λ > 1. Then S(λ) > 0. Set ε = S(λ)/2 > 0. By the first part of Theorem 1.3, there exists d0
such that, for all d ≥ d0 and K ∈ K(d),

P[C0(λ, δ1/2, d,K) is unbounded] ≥ S(λ)− ε = S(λ)/2 > 0.

Therefore, for all d ≥ d0 and all K ∈ K(d), λc(δ1/2, d,K) ≤ λ. Combined with the second part of
Proposition 3.1, this gives the second part of Theorem 1.3.

3.4.1 Good gaps

Result. Let d ≥ 1. For any K ∈ K(d), denote as usual by XK , X
′
K i.i.d.r.v. uniformly distributed on

K. For all η > 0, set
G(d,K, η) = {z ∈ Rd : P(z +X ′K 6∈ K) ≥ 1− η}

where G stands for "good gap". Note that G is symmetric because K is symmetric.
Lemma 3.3. There exists a sequence (εG(d))d that tends to 0 such that for all d ≥ 1, all K ∈ K(d), all
a ∈ Rd and all η > 0 :

P[a+XK 6∈ G(d,K, η)] ≤ η−1εG(d).
Proof. Let d ≥ 1. For all K ∈ K(d) and all a ∈ Rd we have

P(a+XK +X ′K ∈ K) =
∫
Rd
1K ∗ 1K(x)1K−a(x) dx

≤
∫
Rd
1B ∗ 1B(x)1B(x) dx by Theorem 2.3 (rearrangement inequality)

= P(XB +X ′B ∈ B).

So, for all η > 0,

P[a+XK 6∈ G(d,K, η)] = P[P(a+XK +X ′K 6∈ K|XK) < 1− η]
= P[P(a+XK +X ′K ∈ K|XK) > η]
≤ η−1E[P(a+XK +X ′K ∈ K|XK)]
= η−1P(a+XK +X ′K ∈ K)
≤ η−1P(XB +X ′B ∈ B) by the above discussion.

But P(XB +X ′B ∈ B)→ 0 when d tends to ∞. This is (up to a scaling) (21) of Lemma 3 in [13]. This
is also a consequence of Lemma 2.5. This concludes the proof.

3.4.2 Embedding of a two-dimensional lattice in Rd - oriented percolation

Embedding of a two-dimensional lattice in Rd. Set L = {(i, j) ∈ N × Z : i + j odd |j| < i} and
L = L ∪ {(0, 0)}. We see L as an oriented graph by putting and edge from (0, 0) to (1, 0) and, for every
(i, j) ∈ L, one edge from (i, j) to (i+ 1, j + 1) and one from (i, j) to (i+ 1, j − 1). We consider on L the
lexicographical order. Thus, the first vertices of L are (0, 0), (1, 0), (2,−1), (2, 1), (3,−2), . . .

When d ≥ 1 and K ∈ K(d) are given, one fixes a linear map L : Rd → R2 given by Theorem 2.1 for
XK . With each (i, j) ∈ L we associate the sets A(i, j) ⊂ R2 and AL(i, j) ⊂ Rd defined by

A(i, j) = (i, j) + 4−1D and AL(i, j) = L−1(A(i, j))

where D the Euclidean unit ball of R2 (not to be confused with B = B(d), which is the Eulidean ball of
Rd of volume 1). The sets AL(i, j) are pairwise disjoint. Moreover 0 belongs to AL(0, 0).

Using to this embedding, we will compare the cluster of the origin to a supercritical percolation
process on L.
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Oriented percolation on L. Let θ(u) be the probability that there exists an infinite open path
originating from (1, 0) in a Bernoulli site percolation on the graph L with parameter u. We will need3:

lim
u→1

θ(u) = 1. (15)

We refer to [4] for background on oriented percolation.

3.4.3 An estimate about BRW

The aim of this section is to prove Lemma 3.5 and its consequence Lemma 3.4. Recall the notations
from Section 2.8. Recall in particular that S(λ) is defined as the survival probability of a Galton-Watson
process with progeny Poisson(λ).

Lemma 3.4. Let λ > 1 and ε > 0. There exists m, d0, k,M ≥ 1 such that, for all d ≥ d0 and all
centered random variable X in Rd with log-concave density, the following properties hold where L is any
map given by Theorem 2.1 for X.

• For all z ∈ AL(0, 0),

P
[
τ
λ,d,X;{z}
k (AL(1, 0)) ≥ m and τλ,d,X;{z}

≤k (Rd) ≤M
]
≥ S(λ)− ε.

• For all (i, j) ∈ L and all subset S ⊂ AL(i, j) of cardinality m,

P
[
τλ,d,X;S
k (AL(i+ 1, j + 1)) ≥ m and τλ,d,X;S

k (AL(i+ 1, j − 1)) ≥ m and τλ,d,X;S
≤k (Rd) ≤M

]
≥ 1− ε.

Lemma 3.4 is a consequence of the following result (the proof is given below). In Section 3 we will
prove and use another consequence of Lemma 3.5. Recall that N denotes a standard Gaussian random
vector in R2.

Lemma 3.5. Let λ > 1 and ε > 0. There exists m, k,M ≥ 1 such that the following properties hold.

• For all z ∈ A(0, 0),

P
[
τ
λ,2,N ;{z}
k (A(1, 0)) ≥ m and τλ,2,N ;{z}

≤k (R2) ≤M
]
≥ S(λ)− ε.

• For all (i, j) ∈ L and all subset S ⊂ A(i, j) of cardinality m,

P
[
τλ,2,N ;S
k (A(i+ 1, j + 1)) ≥ m and τλ,2,N ;S

k (A(i+ 1, j − 1)) ≥ m and and τλ,2,N ;S
≤k (R2) ≤M

]
≥ 1− ε.

Let us start by the following lemmas.

Lemma 3.6. The map S is continuous on [0,+∞).

Proof. For any λ > 1, 1− S(λ) is the only real u ∈ (0, 1) such that u = exp(λ(u− 1)) which we write

ln(u)
u− 1 = λ.

But u 7→ ln(u)/(u − 1) defines a decreasing homeomorphism f from (0, 1) to (1,+∞)4. As moreover S
vanishes on [0, 1], the result follows.

Lemma 3.7. Let λ > 1 and α, β, ε > 0. Let m ≥ 1. There exists k ≥ 1 such that, for all x ∈ αD,

P
[
τλ,2,Nk (x+ βD) ≥ m

]
≥ S(λ)− ε.

3By the first inequality of (1) of Section 10 of [4] with N = 0, one has (thanks to a contour argument): 1 − θ(u) ≤∑
m≥4 3m(1− u)m/4.
4This is for example a consequence of the following facts: f(0+) = +∞; f(1−) = 1; for all v ∈ (0, 1), f(1 − v) =

1 + v/2 + v2/3 + v3/4 + . . .
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Proof. Let us first define a few constants. Let λ1 ∈]1, λ[ be such that

S(λ1) ≥ S(λ)− ε.

Such a λ1 exists by continuity of S, see Lemma 3.6. Let Λ1 > 0 be such that

λ1 := λP[‖N‖2 ≤ Λ1].

Let C > 0 be such that, for all n ≥ 1 and all z ∈ (α+ Λ1n)D,

P
[
N ∈ 1

n
z + β

n
D

]
≥ C

n2 . (16)

Let us show the existence of η > 0 and n0 ≥ 1 such that,

∀n ≥ n0,P
[
τλ,2,Nn (nΛ1D) ≥ ηλn1

]
≥ S(λ)− 3ε. (17)

Denote by τλ,2,N ,Λ1 the BRW obtained from τλ,2,N by pruning one particle and its progeny as soon as
it makes a step whose Euclidean norm is larger than Λ1. The new BRW has then the same distribution
as τλ1,2,N1 where N1 has the distribution of N condition to ‖N‖2 ≤ Λ1. We have (see for example [1]
page 9)

τλ1,2,N1
n (R2)

λn1
→W a.s.

where W is a random variable which is positive on the event {τλ1,2,N1 survives} whose probability is
S(λ1). We can then chose η > 0 such that P[W ≥ 2η] ≥ S(λ1) − ε. We can now fix n0 ≥ 1 such that,
for all n ≥ n0,

P
[
τλ1,2,N1
n (R2) ≥ ηλn1

]
≥ S(λ1)− 2ε ≥ S(λ)− 3ε

and then
P
[
τλ1,2,N1
n (nΛ1D) ≥ ηλn1

]
≥ S(λ)− 3ε.

One deduces (17).
Now, let us show

∀n ≥ 1,∀x ∈ αD,∀y ∈ nΛ1D,P
[
τ
λ,2,N ;{y}
n2 (x+ βD) ≥ 1

]
≥ S(λ)C

n2 . (18)

Let n ≥ 1, x ∈ αD and y ∈ nΛ1D. We have

P
[
τ
λ,2,N ;{y}
n2 (x+ βD) ≥ 1

]
≥ S(λ)P

y +
n2∑
i=1
Ni ∈ x+ βD


where the Ni are independent copies of N . To prove this, it is sufficient to consider, on the event
{τλ,2,N ;{y} survives}, the position of a given particle of generation n2. As

∑n2

i=1Ni has the same distri-
bution as nN , we deduce

P
[
τ
λ,2,N ;{y}
n2 (x+ βD) ≥ 1

]
≥ S(λ)P

[
N ∈ 1

n
(x− y) + β

n
D

]
.

Thanks to (16) we deduce (18).
We now combine (17) and (18) and get, for all x ∈ αD and all n ≥ n0,

P
[
τλ,2,Nn+n2 (x+ βD) ≥ m

]
≥ (S(λ)− 3ε)P

[
binomial

(
bηλn1 c,

S(λ)C
n2

)
≥ m

]
.

This can be proven by first conditioning with respect to the n first generations of the BRW, working on
the event {τλ,2,Nn (nΛ1D) ≥ ηλn1} (whose probability is controlled by (17)) and using (18) with bηλn1 c
independent BRW originating from different positions of τλ,2,Nn in nΛ1D. But for n large enough we
have

bηλn1 c
S(λ)C
n2 −m ≥ 1

2ηλ
n
1
S(λ)C
n2
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and then, by Chebyshev’s inequality,

P
[
binomial

(
bηλn1 c,

S(λ)C
n2

)
≤ m

]
≤ ηλn1

(
1
2ηλ

n
1
S(λ)C
n2

)−2
→ 0 as n→∞.

As a consequence, there exists n ≥ n0 such that, for all x ∈ αD,

P
[
τλ,2,Nn+n2 (x+ βD) ≥ m

]
≥ S(λ)− 4ε.

We fix such a n. The lemma is proven with k = n+ n2.

Proof of Lemma 3.5. Fix m such that (
1− S(λ) + ε

)m ≤ ε.
This is possible if ε > 0 is small enough, which we can assume. We apply Lemma 3.7 with α = 3 and
β = 1/4. We get k such that, for all x ∈ 3D,

P
[
τλ,2,Nk (x+ 4−1D) ≥ m

]
≥ S(λ)− ε.

By natural couplings between the involved BRW we get, for all z ∈ R2;

τ
λ,2,N ;{z}
k (A(1, 0)) = τ

λ,2,N ;{z}
k ((1, 0) + 4−1D)

= τλ,2,Nk ((1, 0)− z + 4−1D).

But if z ∈ A(0, 0), then (1, 0)− z ∈ 3D. Therefore, for all z ∈ A(0, 0),

P
[
τ
λ,2,N ;{z}
k (A(1, 0)) ≥ m

]
≥ S(λ)− ε. (19)

Let (i, j) ∈ L. Let S ⊂ A(i, j) such that #S = m. Using the independence between the BRW originating
from the different points of S, an argument similar to the above one and the definition of m, we get

P
[
τλ,2,N ;S
k (A(i+ 1, j + 1)) ≥ m

]
≥ 1−

(
1− S(λ) + ε

)m ≥ 1− ε.

With the same argument, we get

P
[
τλ,2,N ;S
k (A(i+ 1, j − 1)) ≥ m

]
≥ 1−

(
1− S(λ) + ε

)m ≥ 1− ε.

Therefore

P
[
τλ,2,N ;S
k (A(i+ 1, j + 1)) ≥ m and τλ,2,N ;S

k (A(i+ 1, j − 1)) ≥ m
]
≥ 1− 2ε. (20)

Let M be large enough to ensure P
[
τλ,2,N≤k (R2) ≥M/m

]
≤ ε/m. By a natural coupling, we get, for all

S ⊂ R2 of cardinality at most m,

P
[
τλ,2,N ,S≤k (R2) ≥M

]
≤ mε/m = ε. (21)

The lemma follows from (19), (20) and (21).

Proof of Lemma 3.4. Let m, k,M be given by Lemma 3.5. Let d0 be such that εCLT (d) ≤ ε/M for all
d ≥ d0 where εCLT appears in Thereom 2.1. Let d ≥ d0, X be a centered random variable in Rd with
log-concave density and L be any map given by Theorem 2.1. Let S be a finite subset of R2. With an
appropriate coupling,

P
[{
τλ,2,N ;S
≤k (R2) ≤M

}
\
{
τ
λ,2,L(X);S
≤k = τλ,2,N ;S

≤k

}]
≤MP[L(X) 6= N ] ≤MεCLT (d) ≤ ε.
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Therefore, for any z ∈ AL(0, 0),

P
[
τ
λ,d,X;{z}
k (AL(1, 0)) ≥ m and τλ,d,X;{z}

≤k (Rd) ≤M
]

= P
[
τ
λ,2,L(X);{L(z)}
k (A(1, 0)) ≥ m and τλ,2,L(X);{L(z)}

≤k (R2) ≤M
]

≥ P
[
τ
λ,2,N ;{L(z)}
k (A(1, 0)) ≥ m and τλ,2,N ;{L(z)}

≤k (R2) ≤M and
{
τ
λ,2,L(X);{L(z)}
≤k = τ

λ,2,N ;{L(z)}
≤k

}]
≥ P

[
τ
λ,2,N ;{L(z)}
k (A(1, 0)) ≥ m and τλ,2,N ;{L(z)}

≤k (R2) ≤M
]
− ε

≥ S(λ)− 2ε.

This gives the first item. The second item is proven in exactly the same way.

3.4.4 Plan and intuition

Setup. Let λ > 0, ε > 0, d ≥ 1 and K ∈ K(d). Recall the definition of Ĉ0 = Ĉ0(λ, δ1/2, d,K) in
Section 3.1 and the notation S(λ) for the a Poisson(λ) offspring Galton-Watson process. The aim is to
prove that the inequality

P[#Ĉ0 =∞] ≥ S(λ)− ε

holds for any d large enough, uniformly in K ∈ K(d). Recall that Ĉ0 can be built as the set of positions
of a pruned version of the BRW τλ,d,XK where XK denotes a random variable with uniform distribution
on XK . Recall in particular the notion of interference defined in (12). See Section 2.8 for notations on
BRW and Section 3.2.1 for the construction of Ĉ0 from τλ,d,XK . The basic idea is that, up to an event
whose probability vanishes when d tends to ∞, Ĉ0 is infinite when τλ,d,XK is infinite.

The underlying Galton-Watson tree. The underlying Galton-Watson tree τ of the BRW τλ,d,XK

does not depend on d nor on K. It only depends on λ. This is a Galton-Watson process with Poisson(λ)
offspring starting from one particle.

Control of the interference up to a given generation. Consider the case where the root ∅ has a
child x which itself has a child y. In the construction of Ĉ0 we have to reject y because of interference
with the root ∅ if V (y) ∈ V (∅) +K5 that is if

[V (x)− V (∅)] + [V (y)− V (x)] ∈ K. (22)

Recall that XK and X ′K are independent random variables with uniform distribution on K. Condition
to the tree τ , the probability of (22) is P[XK + X ′K ∈ K]. By the rearrangement inequality (Theorem
2.3) this probability is at most P[XB +X ′B ∈ B] where, as usual, B is the Euclidean ball of unit volume.
It is moreover easy to check that P[XB +X ′B ∈ B] tends to 0 when d tends to infinity (see Lemma 2.5).
Therefore P[XK +X ′K ∈ K] tends to 0 uniformly in K as d tends to infinity. With these ideas it is quite
easy to show that for any given generation k ≥ 1,

P[no particle of τλ,d,XK≤k is rejected because of interference]→ 1 as d→∞ uniformly in K.

Control of the position of the particles. For various reasons, we need to control the position of
the particles. Fix a linear map L : Rd → R2 given by Theorem 2.1 for XK . Recall that N denotes a
standard Gaussian random vector N on R2. The map L (which depends on XK and thus on d) fulfills
the following property. The total variation distance between L(XK) and N tends to 0 when d tends to
∞, uniformly in K. Thanks to this property, we can control the value of the image by L of the position
of the particles, uniformly in K when d tends to ∞. This will be sufficient for our purpose.

5Actually V (∅) = 0 but the argument is clearer if we keep writing V (∅).
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Comparison with a super-critical oriented two-dimension percolation process. The difficulty
is to get a control over all generations of τλ,d,XK . Recall the definition of the sets AL(i, j), (i, j) ∈ L
in Section 3.4.2. Combining the previous ideas, we can prove the following results which are the basic
steps of a renormalization scheme. Here m (number of seeds) and k (number of generations) are to be
suitably chosen. See Lemma 3.4. The following results hold for d large enough, uniformly in K.

• With a probability close to S(λ), no particle of τλ,d,XK≤k is rejected by interference (and thus all
of them belong to the cluster Ĉ0 in our construction) and m particles of τλ,d,XKk are located in
AL(1, 0). If this is the case, we say that stage (0, 0) is a success.

• With a probability close to 1, for any (i, j) ∈ L, if we start with a set of m particles whose
set of position is S(i, j) ⊂ AL(i, j), then no particle of τλ,d,XK ;S(i,j)

≤k (a BRW with initial set of
particles located at S(i, j)) is rejected by interference (when considering only interference within
τ
λ,d,XK ;S(i,j)
≤k ),m particles of τλ,d,XK ;S(i,j)

k belongs to AL(i+1, j+1) andm particles of τλ,d,XK ;S(i,j)
k

belongs to AL(i+ 1, j − 1). If this is the case, we say that stage (i, j) is a success (this is not well
defined for the moment as it depends on S(i, j)).

If stage (0, 0) is a success (which occurs with probability close to S(λ)), then we can use the position
of m particles of τλ,d,XKk located in AL(1, 0) (recall that all of them belongs to Ĉ0 as none of them was
rejected by interference) as a set of seeds S(1, 0) for stage (1, 0). If stage (1, 0) is a success (which occurs
with probability close to 1) we can use the position of m particles of τλ,d,XK ;S(1,0)

k located in AL(2,±1)
as a set of seeds S(2,±1) for stage (2,±1) and so on. With the exception of stage (0, 0), we thus have a
natural coupling with a super-critical oriented percolation process on L.

If stage (0, 0) is a success, if the oriented percolation process percolates and if there were no interfer-
ence between BRW of different stages, then Ĉ0 would be infinite and the proof would be over. It remains
to deal with interference between the BRW of different stages.

Control of the interference between BRW of different stages. This is actually the main difficulty
of the proof. Let us mention that in the actual proof we will handle interference between particles of a
given BRW and particles of different BRW in a unified way, based on the following ideas. We perform
over-pruning (see Section 3.2.3) to build a subset of Ĉ0. Concretely this means that, when exploring the
BRW, if a particle does not fulfill one of the required properties, we reject the particle and its progeny.
This depends on the order in which we explore the BRW, but this is not an issue for our purpose.

1. We fix a largeM and do not explore more thanM particles at each stage. IfM is large enough, this
does not modify significantly the probability of success at each stage. Thus there is no drawbacks.
However, this gives a bound on the number of particles at each stage that can generate interference
at a later stage.

2. We reject a particle and its progeny if it makes a step whose image by L is too large. More precisely,
for a large Λ, if y is a child of x, we reject y and its progeny if ‖L(V (y)− V (x))‖2 ≥ Λ. As above,
if Λ is large enough, there is no drawbacks. However, there are two advantages:

(a) This reduces the interference region. Recall that D denotes the unit disk of R2. The interfer-
ence of x is x+K ∩ L−1(ΛD) instead of x+K6.

(b) This allow to localize the particles at each stage and then to identify the particles that can
interfere at a later stage. As the seeds are in (i, j) + D and as we explore k generations, all
the particles considered at stage (i, j) belongs to (i, j) + (1 + Λk)D.

3. We reject a particle x and its progeny if we previously examined without rejecting a particle x′
such that the following condition does not hold:

‖L(V (x)− V (x′))‖2 ≥ 2Λ or V (x)− V (x′) ∈ G(d,K, η). (23)
6Equivalently, we could have worked from the beginning with the BRW

τλP[‖L(XK)‖2≤Λ],d,XΛ
K

where XΛ
K is distributed as XK condition to ‖L(XK)‖2 ≤ Λ.
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Here η > 0 is a suitable parameter and G(d,K, η) is defined in Section 3.4.1. By the localization
properties, if x is examined at stage (i, j) and if x′ has been examined at stage (i′, j′), then
‖L(V (x) − V (x′))‖2 ≥ 2Λ holds as soon as (i, j) and (i′, j′) are far enough from each other.
Moreover the number of particles examined at each stage is bounded. Therefore, for a given x, we
just have to check the property V (x) − V (x′) ∈ G(d,K, η) for a bounded number of particles x′.
By Lemma 3.3, condition to everything but V (x)−V (←x) 7 (recall that ←x denotes the parent of x),
this holds with high probability for all d large enough, uniformly in K.

Thanks to (23), the probability of interference is small. Let us explain this point. Let x, y, x′ be
three distinct particles where y is a child of x. We have examined and not rejected x and x′. We are
examining y and we already now that ‖L(V (x) − V (y)‖2 ≤ Λ holds. We wonder whether y has to be
rejected because of interference with x′. As the interference region of x′ is V (x′) + K ∩ L−1(ΛD), we
wonder whether V (y) belongs to V (x′) +K ∩ L−1(ΛD). We condition by everything but V (y)− V (x),
which is a random variable uniformly distributed on K.

• If ‖L(V (x)− V (x′))‖2 ≥ 2∆, then y can not be rejected because of interference with x′. Indeed y
belongs to V (x) +K ∩ L−1(ΛD) and therefore y can not belong to V (x′) +K ∩ L−1(ΛD).

• Otherwise, by (23), we have V (x)−V (x′) ∈ G(d,K, η). The probability (because of our conditioning
this is a probability on V (y)− V (x)) that V (y)− V (x′) = (V (x)− V (x′)) + (V (y)− V (x)) belong
to K is at most η (by definition of G(d,K, η)). Thus the probability that y is rejected because of
interference with x′ is at most η.

Because of our control on localization and number of particles at each stage, this is sufficient.

A two-step approach to handle interference. Let us emphasize that, in addition to the control
of the number of particles and the length of the projections of the steps, the main ingredient is thus the
following two-step approach:

1. First we ensure that all relevant relative positions are good (this is the content of (23)).

2. Then we use this control to control the interference (the set G(d,K, η) is designed for this task).

Comparison with the proof by Penrose in the Euclidean case. The plan of the proof is the
same. Thanks to results of analysis and high dimension geometry (see Section 2) most parts of the proof
of Penrose can actually be adapted to the non Euclidean case. One of the main difference is due to the
lack of isotropy in our setting. In particular, the equivalent of the set of good gaps G(d,K, η) in the
Euclidean setting is simply Rd \ 3

4B. In our setting we had to provide an alternative description of this
set of good gaps. Fortunately, an abstract definition was sufficient thanks to rearrangement inequalities
(see Theorem 2.3).

3.4.5 Construction of a subset of Ĉ0 related to an oriented percolation on L

Parameters. Fix λ > 1 and ε > 0. Fix m, d1, k,M ≥ 1 as provided by Lemma 3.4 for the parameters
λ and ε. Fix Λ ≥ 1 such that P[‖N‖2 ≥ Λ] ≤ ε/M . Let d2 be such that, for all d ≥ d2, εCLT (d) ≤ ε/M
where εCLT appears in Theorem 2.1. Fix η > 0 such that

400k2Λ2M2η ≤ ε. (24)

Let d3 be such that, for all d ≥ d3,

400k2Λ2M2η−1εG(d) ≤ ε/3. (25)

Set d0 = max(d1, d2, d3).
7In the proof, we will indeed consider conditional probabilities. We therefore have to be careful with these aspects.
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Setting and aim. Let d ≥ d0 and K ∈ K(d). Fix L : Rd → R2 given by Theorem 2.1 for XK . By
definition of Λ and as d ≥ d0 ≥ d2, we get (under an appropriate coupling)

P[‖L(XK)‖2 ≥ Λ] ≤ P[L(XK) 6= N ] + P[‖N‖2 ≥ Λ] ≤ 2ε/M. (26)

We aim at proving
P[#Ĉ0 =∞] ≥ (S(λ)− 5ε)θ(1− 5ε)

where θ is defined in Section 3.4.2. Theorem 3.2 will follow easily. Thanks to the choice of parameters,
the following properties hold.

• For all z ∈ AL(0, 0),

P
[
τ
λ,d,XK ;{z}
k (AL(1, 0)) ≥ m and τλ,d,XK ;{z}

≤k (Rd) ≤M
]
≥ S(λ)− ε. (27)

• For all (i, j) ∈ L and all S ⊂ AL(i, j) with cardinality m,

P
[
τλ,d,XK ;S
k (AL(i+ 1, j + 1)) ≥ m and τλ,d,XK ;S

k (AL(i+ 1, j − 1)) ≥ m and τλ,d,XK ;S
≤k (Rd) ≤M

]
≥ 1− ε. (28)

• (24), (25), (26).

Randomness and σ-fields. Recall that XK stands for a random variable with uniform distribution
on K. Let (

τ i,j,n)(i,j,n)∈L×{1,...,m}

be a family of independent copies of τλ,d,XK . Let (αi,j)(i,j)∈L be a family of i.i.d. Bernoulli random
variables with parameter 1− ε. For all (i, j) ∈ L we denote by Fi,j (resp. F−i,j) the σ-field generated by
the τ i′,j′,n and the αi′,j′ for (i′, j′, n) ∈ L×{1, . . . ,m} such that (i′, j′) is smaller (resp. strictly smaller)
than (i, j) for the lexicographic order.

We will not formalize it but we will merge appropriately pruned versions of the BRW τ i,j,n to get a
unique BRW starting from one particle located at 0. This latter BRW is the BRW explored in order to
build a subset of Ĉ0.

Further notations and remarks. At the beginning, the site (0, 0) is active and each site (i, j) ∈ L
is inactive. Moreover, with (0, 0) is associated the singleton S(0, 0) = {0Rd} ⊂ AL(0, 0). We then
enumerate the sites (i, j) of L by lexicographic order. Some sites (i, j) ∈ L will be activated. With each
active site (i, j) will be associated a subset S(i, j) ⊂ AL(i, j) of cardinality m. This set of m points will
always be, in a coupling with the Boolean model, a subset of Ĉ0. If at the end of the construction there
exists in the graph L an infinite path of active sites, then Ĉ0 is infinite and percolation occurs in the
Boolean model.

To simplify some arguments, we will also associate with each site of L a state: open or closed. It will
be done in such that a way that if π is an infinite open path in L from (0, 0), then π only contains active
sites and therefore percolation occurs in the Boolean model.

We will use the over-pruning algorithm described in Section 3.2.3. We will often use over-pruning
implicitly by rejecting more particles than necessary and by not considering the children of some particles
(which amount to define their interference region as the empty set).

Set
G = G(d,K, η)

where G(d,K, η) is introduced in Section 3.4.1.

21



Site (0, 0). We consider the BRW τ = τ0,0,1.

1. We examine successively the particles of generation at most k of this BRW in any admissible order.
The last requirement means that:

• Children are examined after their parents.
• Children of a given parent are examined in a row: once we start examining one of them, we

then examine all the children of this parent.

We stop as soon as we have examined all the particles or as soon as the particle x under examination
fulfills one of the following conditions:

(a) Overpopulation. The particle is the M -th particle examined.
(b) Bad gap. This occurs in any of the following conditions.

• x is not the root and V (x) 6∈ V (←x) + K ∩ L−1(ΛD). This ensures that the interference
region of ←x is indeed V (←x) + K ∩ L−1(ΛD) (see Section 3.2.3 and the remarks in the
paragraph above).

• There exists a particle y examined strictly before x such that V (x) 6∈ V (y) +G.
(c) Interference. There exists a particle y examined strictly before x which is not the parent ←x

nor a sibling of x and which is such that V (x) ∈ V (y) +K ∩ L−1(ΛD) 8.

One defines the following two sets.

• The set G(0, 0) (G stands for generated) of all the particles examined except the last one if
it caused Overpopulation or Bad Gap or Interference. By some abuse of notation, we will
sometimes see G(0, 0) (and other similar sets) as the set of positions of the particles. We will
call them the particles generated at stage (0, 0). Note that each particle whose children have
been examined is a generated particle (this is due to the fact that we examine the particles
in an admissible order). This is a key remark when considering interference later in the
construction.
– In the coupling with the Boolean model, all the points of G(0, 0) (seen as the set of posi-

tions of the particles) belong to Ĉ0. Indeed, none of them caused a stop by Interference.
– All the gaps between any two distinct particles of G(0, 0) are good:

∀x, y ∈ G(0, 0), x 6= y =⇒ V (y) ∈ V (y) +G.

Indeed, none of them caused a stop by Bad gap.
–

The image by L of G(0, 0) is included in kΛD. (29)

Here we see G(0, 0) as the set of positions of the particles. This is due to the fact that
the position of the root is 0, the fact that the image by L of each step belongs to ΛD and
the fact that we did not explore the BRW beyond generation k.

– G(0, 0) contains at most M points.
• The set Gk(0, 0) ⊂ G(0, 0) of articles of generation k examined except the last one if it caused

Overpopulation or Bad Gap or Interference.
8With the notations of Section 3.2.3, we want to reject any particle which belongs to⋃

y∈B

V (y) +K ∩ L−1(ΛD).

Let B′ be the set of particles examined strictly before x and which are neither ←x nor a sibling of x. As B ⊂ B′, we are
performing over-pruning at this step.
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2. If
#
(
Gk(0, 0) ∩AL(1, 0)

)
≥ m (30)

we say that the site (0, 0) open, that the site (1, 0) is active and we define S(1, 0), where S stands
for seeds, as the m first points of

Gk(0, 0) ∩AL(1, 0)
in Neveu ordering (see Section 2.8). In the coupling with the Boolean model, all the points of S(1, 0)
belong to Ĉ0. This holds because S(1, 0) ⊂ Gk(0, 0) ⊂ G(0, 0) and all points of G(0, 0) belongs to
Ĉ0. If (30) does not hold, we say that the site (0, 0) is closed and (1, 0) remains inactive.

Stage (i, j). Recall that we now consider successively each (i, j) ∈ L by lexicographic order. If (i, j) is
inactive, then we decide as follows: it is open if αi,j = 1 ; it is closed otherwise. Therefore, in this case,
it is open independently of everything else with probability 1− ε.

Thereafter, we consider the case where (i, j) is active. The set S(i, j) is well defined. It’s a subset
of cardinal m of AL(i, j). List the point of S(i, j) in an arbitrary order: S(i, j) = {x1, . . . , xm}. We
consider the m BRW τn = xn+ τ i,j,n where xn+ τ i,j,n designates the BRW τ i,j,n in which xn was added
to the position of all the particles. We gather these m BRW into a single BRW originating from S(i, j).
We denote it by τS(i,j).

1. We examine successively the particles of generation between 1 and k of τS(i,j) in any admissible
order (see Stage (0, 0)). In particular, we never examine the roots of this BRW (note that the
positions of the roots are also positions of particles of BRW examined during one of the previous
stages). We stop as soon as we have examined all the particles or as soon as the particle x under
examination fulfills one of the following conditions:

(a) Overpopulation. The particle is the M -th particle examined during this stage (i, j).
(b) Bad gap. One of the following conditions occurs.

• V (x) 6∈ V (←x) + K ∩ L−1(ΛD). This ensure that the interference region of ←x is indeed
V (←x) +K ∩ L−1(ΛD) (see stage (0, 0) for more explanations).

• There exists a particle y examined strictly before x during this stage (i, j) or generated
during one of the previous stages (its position then belongs to G(i′, j′) for some (i′, j′) <
(i, j) for the lexicographic order) such that:

‖L(V (x))− L(V (y))‖2 ≤ 2Λ and V (x) 6∈ V (y) +G.

(c) Interference. There exists a particle y examined strictly before x during this stage (i, j) or
generated during one of the previous stages (its position then belongs to G(i′, j′) for some
(i′, j′) < (i, j) for the lexicographic order) such that: this is not the parent ←x nor a sibling of
x and we have:

V (x) ∈ V (y) +K ∩ L−1(ΛD).

One defines the following two sets.

• The set G(i, j) of all particles examined except the last one it it caused Overpopulation or
Bad Gap or Interference. We will call them the particles generated at stage (i, j). As before,
each particle whose children have been examined is a generated particle.
– In the coupling with the Boolean model, all the points of G(i, j) belong to Ĉ0. Indeed,

none of them caused a stop by Interference.
– All the gap between two distinct points x and y of⋃

(i′,j′)≤(i,j)

G(i′, j′)

satisfies
‖L(V (x))− L(V (y))‖2 > 2Λ or V (x) ∈ V (y) +G. (31)

Indeed, none of them caused a stop by Bad Gap.
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–
The image by L of G(i, j) is included in (i, j) + 2kΛD. (32)

This is due to the fact that the positions of the roots belong to (i, j) + D, the fact that
the image by L of each step belongs to ΛD, the fact that we only explored the first k
generations and the fact that 1 + kΛ ≤ 2kΛ.

– G(i, j) containts at most M points.
• The set Gk(i, j) ⊂ G(i, j) of particles of generation k examined, except the last one if it caused

a stop by Overpopulation or Bad Gap or Interference.

2. If
#
(
Gk(i, j) ∩AL(i+ 1, j + 1)

)
≥ m and #

(
Gk(i, j) ∩AL(i+ 1, j − 1)

)
≥ m (33)

then:

• We say that the site (i, j) is open.
• If the site (i + 1, j + 1) is inactive then we say that it is henceforth active and we define
S(i+1, j+1) as them first point by Neveu ordering (see Section 2.8) of Gk(i, j)∩AL(i+1, j+1).
In the coupling with the Boolean model, all the points of S(i+ 1, j + 1) belong to Ĉ0.

• If the site (i + 1, j − 1) is inactive then we say that it is henceforth active and we define
S(i + 1, j − 1) as the m first point by Neveu ordering of Gk(i, j) ∩ AL(i + 1, j − 1). In the
coupling with the Boolean model, all the points of S(i+ 1, j − 1) belong to Ĉ0.

Otherwise, we say that the site (i, j) is closed.

3.4.6 Bounds on conditional probabilities

The aim of this section is to prove the following lemmas. Parameters have been fixed in Section 3.4.5.

Lemma 3.8. For all (i, j) ∈ L, {(i, j) active} ∈ F(i, j)− and {(i, j) open} ∈ F(i, j).

Lemma 3.9. We have P[(0, 0) open] ≥ S(λ)− 5ε.

Lemma 3.10. For all (i, j) ∈ L, P[(i, j) open |F−(i, j)] ≥ 1− 5ε.

Proof of Lemma 3.8. This is straightforward by construction.

Proof of Lemma 3.9. We have

{(0, 0) closed} \ (Overpopulation ∪ BadGap ∪ Interference) ⊂ Else (34)

where

Overpopulation = {the enumeration stops because of Overpopulation},
BadGap = {the enumeration stops because of Bad gap and not Overpopulation},

Interference = {the enumeration stops because of Interference and not Overpopulation or Bad gap},
Else = {τk(AL(1, 0)) < m}

and where τ is the BRW used in Stage (0, 0). Indeed, if the event on the left-hand side of (34) occurs,
then (30) does not hold and Gk(0, 0) = {V (x), x ∈ τk} hence τk(AL(1, 0)) < m. As a consequence

{(0, 0) closed } ⊂ BadGap ∪ Interference ∪Overpopulation ∪ Else. (35)

Let us give an upper bound for the probability of BadGap. We have BadGap ⊂ BadGap1∪BadGap2
with

BadGap1 =
⋃
x

{V (x) 6∈ V (←x) +K ∩ L−1(ΛD)} and BadGap2 =
⋃
x 6=y
{V (x) 6∈ V (y) +G} \ BadGap1
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where for BadGap1 the union is over all x in the M first particles (otherwise this is the event Overpop-
ulation which occurs) of the tree except the root and where for BadGap2 the union of over the same set
of x and over all y strictly preceding x (for the order used for the examination).

The event BadGap2 is then the union of at most M2 events. Rewriting this events, we get

BadGap2 ⊂
⋃
x 6=y
{V (←x)− V (y) + V (x)− V (←x) 6∈ G}.

But, condition to the underlying Galton-Watson tree, V (x) − V (←x) is independent of (V (←x), V (y))
(actually it is independent of the positions of all previously examined particles) and then of V (←x)−V (y).
Moreover V (x)−V (←x) has the same distribution as XK . Therefore, conditioning by the underlying tree
τ we have, for all x, y as above,

P[V (←x)− V (y) + V (x)− V (←x) 6∈ G|τ ] ≤ sup
z∈Rd

P[z +XK 6∈ G] ≤ η−1εG(d)

where εG(d) is defined in Lemma 3.3. We then get

P[BadGap2] ≤M2η−1εG(d).

Hence P[BadGap2] ≤ ε by (25). (We also use the fact that several of our constants are greater than 1.)
The event BadGap1 is the union of at most M event. Arguing as above and using (26), we get

P[BadGap1] ≤M2ε/M = 2ε. Thus
P[BadGap] ≤ 3ε.

Let us now provide an upper bound for the probability of the event Interference. Note x and y the
two particles which cause the event Interference. In particular:

• x is one of the first M particles (otherwise this is the event Overpopulation which occurs) of the
tree except the root

• y is a particle of τ strictly preceding x (for the order of enumeration).

• V (x) ∈ V (y) +K.

• V (←x) ∈ V (y) + G because otherwise BadGap would occur instead of Interference (recall also
G = −G).

Thus,

Interference ⊂
⋃
x,y

{V (x) ∈ V (y) +K} ∩ {V (←x) ∈ V (y) +G}

⊂
⋃
x,y

{V (←x) + (V (x)− V (←x)) ∈ V (y) +K} ∩ {V (←x) ∈ V (y) +G}

where the union is over all x in the firstM particles of τ except the root and y in the particle of τ strictly
preceding x. The right-hand side is then the union of at most M2 events. By definition of G = G(d, k, η)
and using a reasoning similar to the one used for the event Bad, we then deduce

P[Interference] ≤M2η ≤ ε

by (24). Finally, by (27), we have

P[Overpopulation ∪ Else] ≤ 1− S(λ) + ε.

As a consequence, P[(0, 0) open] ≥ S(λ)− 5ε.

Proof of Lemma 3.10. Let (i, j) ∈ L. The event {(i, j) is active} is F−(i, j) measurable. Therefore, we
have to show

P[(i, j) open |F−(i, j)] ≥ 1− ε on the event {(i, j) is active}
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and
P[(i, j) open |F−(i, j)] ≥ 1− ε on the event {(i, j) is inactive}.

The second property is straightforward. Indeed, when (i, j) is inactive, (i, j) has been defined as open
independently of everything else with probability 1− ε. Let us prove the first property.

We now work on the event {(i, j) is active}.
On the event {(i, j) is active} there is a well defined set S(i, j) with cardinality m whose points are

the starting points of m BRW. This set is measurable with respect to F−(i, j). We also have the BRW
τS(i,j) which has been used in Stage (i, j). We have, as in the proof of Lemma 3.9,

{(i, j) is closed } ∩ {(i, j) is active} ⊂ BadGap ∪ Interference ∪Overpopulation ∪ Else

where the events BadGap, Interference and Overpopulation are defined as in the proof of Lemma 3.9
and where

Else = {τS(i,j)
k (AL(i+ 1, j + 1)) < m or τS(i,j)

k (AL(i+ 1, j − 1)) < m}.

Let us provide an upper bound for the conditional probability of the event BadGap. The proof is
similar to the one in Lemma 3.9. The proof is identical for BadGap1. For BadGap2, the combinatorial
factor is not M2 anymore. There are at most M choices for x. Let us fix some x. There are at most
M choices for y if y has been examined during Stage (i, j). If y ∈ G(i′, j′) for (i′, j′) < (i, j′), then
L(V (y)) ∈ (i′, j′) + 2kΛD (see (29) and (32)). Similarly, L(V (x)) ∈ (i, j) + 2kΛD (otherwise BadGap1
would occured and not BadGap2). As a consequence, the condition ‖L(V (x))− L(V (y))‖2 ≤ 2Λ yields

‖(i, j)− (i′, j′)‖2 ≤ (4k + 2)Λ ≤ 6kΛ.

Therefore there are at most (12kΛ + 1)2 choice for (i′, j′) and therefore at most

(12kΛ + 1)2M +M ≤ 200k2Λ2M

choices for y. Finally, the number of choices for (x, y) is at most 200k2Λ2M2. As a consequence, arguing
as in Lemma 3.9,

P[BadGap|F−(i, j)] ≤ 200k2Λ2M2 sup
z∈Rd

P[z +XK 6∈ G]

≤ 200k2Λ2M2η−1εG(d).

where εG(d) is defined in Lemma 3.3. Therefore,

P[BadGap|F−(i, j)] ≤ P[BadGap1|F−(i, j)] + P[BadGap2|F−(i, j)] ≤ 3ε

by (25).
Let us now give an upper bound for the probability of the event Interference. Note x and y the two

particles which cause the event Interference. In particular,

• x is one of the firstM particles (otherwise the event Overpopulation would occur) of τ not belonging
to generation 0.

• y is a particle examined strictly before x during this stage (i, j) or generated during one of the previ-
ous stage (its position belongs in this case to G(i′, j′) for some (i′, j′) < (i, j) for the lexicographical
order).

• y is not ←x .

• V (x) ∈ V (y) + K ∩ L−1(ΛD). This property yields ‖L(V (x)) − L(V (y))‖2 ≤ Λ. By an argu-
ment already used to give an upper bound for the event BadGap, we get that there are at most
400k2Λ2M2 choices for (x, y). By ‖L(V (x))− L(V (y))‖2 ≤ Λ we also get

‖L(V (←x))− L(V (y))‖2 ≤ 2Λ. (36)

Indeed, as BadGap does not occur, ‖L(V (x))− L(V (←x))‖2 ≤ Λ.
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• V (←x) ∈ V (y) +G. Indeed, we have

V (←x), V (y) ∈
⋃

(i′,j′)≤(i,j)

G(i′, j′). (37)

This is clear for y if y has been generated during some Stage (i′, j′) < (i, j). This is also true if
y has been examined during the current stage. Indeed, y has been examined before x. Therefore
y did not stopped the enumeration of the particles and therefore V (y) ∈ G(i, j). With the same
argument we check that this is also true for V (←x). The required result is then a consequence of
(31), (36), (37) and of ←x 6= y.

We then have
Interference ⊂

⋃
x,y

{V (x) ∈ V (y) +K} ∩ {V (←x) ∈ V (y) +G} (38)

where, in addition to the properties describe by the two events, x and y are as above. In particular, as
already mentioned, there are at most 400k2Λ2M2 choices for (x, y). By definition of good gaps we then
get, with the same arguments as before (we only use the randomness on V (x)− V (←x)),

P[Interference|F−(i, j)] ≤ 400k2Λ2M2η ≤ ε

by (24).
Finally, by (28), we get

P[Overpopulation ∪ Else|F−(i, j)] ≤ ε.

As a consequence, (we are still working on the F−i,j measurable event {(i, j) is active}),

P[(i, j) open|F−(i, j)] ≥ 1− 5ε.

3.4.7 Proof of Theorem 3.2

In Section 3.4.5 we fixed λ > 1 and ε > 0. We then got some integer d0 and several other parameters
satisfying various properties. We then let d ≥ d0 and K ∈ K(d) and built some process in Section 3.4.5.
We studied some properties of this process in Section 3.4.6. We now conclude the proof of Theorem 3.2.

Let (i, j), (i′, j′) ∈ L be such that (i, j)→ (i′, j′), that is there is an arrow from (i, j) to (i′, j′) in the
graph L. If (i, j) is active and open, then (i′, j′) is active and S(i′, j′) is a well defined subset of Ĉ0.

Recall that (0, 0) is active. If there exists an infinite path π in L originating from (0, 0) and containing
only open sites, by the previous discussion, we get that Ĉ0 is infinite. Therefore

P[#Ĉ0 =∞] ≥ P[there exists an infinite open path from (0, 0)].

By Lemmas 3.8, 3.9 and 3.10 we get

P[there exists an infinite open path from (0, 0)] ≥ (S(λ)− 5ε)θ(1− 5ε)

where θ(1 − 5ε) is the probability that there exists an infinite open path originating from (1, 0) in a
Bernoulli site percolation on L with parameter 1− 5ε. Therefore

P[#Ĉ0 =∞] ≥ (S(λ)− 5ε)θ(1− 5ε).

But θ(1 − 5ε) tends to 1 as ε tends to 0 (this is stated as (15)). This proves Theorem 3.2 in the case
λ > 1. When λ ≤ 1, S(λ) = 0 and the required result is straightforward.
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4 Proof of Theorem 1.4
4.1 Framework and the clusters Ĉ0 and Â0

Framework. Let β > 0, ρ > 1, d ≥ 1 and K ∈ K(d). Set

λ = βκc(ρ)d.

Let χ1 and χρ be independent Poisson point processus on Rd with intensity λ dx and λρ−d dx. Set
r(c) = 1/2 for c ∈ χ1 and r(c) = ρ/2 for c ∈ χρ. Write χ = χ1 ∪ χρ. The process {(c, r(c)), c ∈ χ} is a
Poisson point process on Rd × (0,+∞) with intensity measure dx⊗ λνd,ρ( dr).

Write χ0 = χ ∪ {0} and set r(0) = ρ/2.

The cluster Ĉ0. As in the constant radius case, we can define a relevant undirected graph structure
on χ0 as follows. We put an edge between x and y if the associated grains x + r(x)K and y + r(y)K
touch each other, that is if

y ∈ x+
(
r(y) + r(x)

)
K.

As in the constant radius case, Ĉ0 = Ĉ0(β, ρ, d,K) (we simplify the notations for the parameters) is the
connected component of the graph χ0 which contains 0. We are interested in the probability that Ĉ0 is
unbounded (see (2)) and in

βc(ρ, d,K) = inf
{
β > 0 : P

[
Ĉ0 is unbounded

]
> 0
}
.

The cluster Â0. We define a new undirected graph on χ0. In this new graph, we put an edge between
points x and y if r(x) 6= r(y) and if the associated grains touch each other. In other words, we put an
edge between points x and y if9

r(x) 6= r(y) and y ∈ x+ 1 + ρ

2 K.

We denote by Â0 = Â0(β, ρ, d,K) the connected component of 0 in this new graph. Clearly,

Â0 ⊂ Ĉ0.

4.2 Two related BRW
We will not formalize the algorithms of exploration of Ĉ0 and Â0. This can be done as in Section 3.2
to which we refer for more details. We will give directly the relation with two BRW and provide some
intuition. Let β > 0, ρ > 1, d ≥ 1 and K ∈ K(d).

Recall that Â0 is a subset of Ĉ0 and that we are interested in whether Ĉ0 is infinite or not. Therefore,
instead if investigating Ĉ0 or Â0, we can investigate

2
1 + ρ

Ĉ0 or 2
1 + ρ

Â0.

More specifically, the BRW we will study will provide subsets of 2
1+ρ Ĉ

0 or 2
1+ρ Â

0. This is a very tiny
change but it will simplify formulas by removing numerous 1+ρ

2 factors.

4.2.1 A BRW for the upper bound on percolation probability.

The BRW. Consider for example a deterministic 1-grain

x+ 1
2K.

9Note that one of the two radii equals 1/2 and the other equals ρ/2, therefore the sum is always (ρ+ 1)/2.
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The random ρ-grains which touches the previous grain are the set of grains centered at points of(
x+ 1 + ρ

2 K

)
∩ χρ.

Therefore, this is a Poisson random variable with parameter

βκc(ρ)dρ−d
∣∣∣∣1 + ρ

2 K

∣∣∣∣ = β

(
1
√
ρ

)d
as |K| = 1 and by definition of κc(ρ) (see (7)). Similar results hold for the other cases. We can therefore
see that Ĉ0 is set of points of some pruned two-type BRW. We refer to Section 3.2 for details on the
pruning but mention one important difference below. It is a two-type BRW. There are 1-particles and
ρ-particles. It starts with one ρ-particle located at 0. The progeny are independent (between the two
types) and Poisson distributed. The matrix of mean is the matrix M(β, ρ, d) defined in (9). The steps
of the BRW (which we will actually not use) are i.i.d. with uniform distribution on K for type 1 to type
1 progeny, on ρK for type ρ to type ρ progeny, on ρ+1

2 K otherwise.
Let us conclude with the important difference in the pruning process. Recall the vocabulary intro-

duced in (12). Here we are revealing points of two independent Poisson point processes: χ1 and χρ.
Therefore there can only be interference between two 1-particles (when we are revealing χρ) or between
two ρ-particles (when are revealing χ1). In other words, a child y of ρ particle x can only be rejected
because of interference with another ρ-particle x′ and a child y of 1 particle x can only be rejected
because of interference with another 1-particle x′.

The plan. The upper bound for the percolation probability will follow from a simple analysis of the
survival probability of the underlying Galton-Watson process.

4.2.2 A BRW for the lower bound on percolation probability.

The BRW. Recall
2

1 + ρ
Â0 ⊂ 2

1 + ρ
Ĉ0.

We will prove a lower bound on the probability that the set of the left is infinite. This will give a lower
bound on the probability that the set of the right is infinite.

The set 2
1+ρ Â

0 is the set of positions of a pruned BRW. We refer to Section 3.2 for details on the
pruning. Here we only describe the BRW. It is a two-type BRW. There are 1-particles and ρ-particles.
It starts with one ρ-particle located at 0. The progeny are independent (between the two types) and
Poisson distributed. The matrix of mean is

M ′(β, ρ, d) = β

 0
(

1√
ρ

)d(√
ρ
)d 0

 . (39)

The steps of the BRW are i.i.d. with uniform distribution on K. (Recall that we are interested in 2
1+ρ Â

0.)
Such BRW will be denoted by

τβ,ρ,d,XK .

As in Section 4.2.1, there can only be interference between two 1-particles (when we are revealing χρ) or
between two ρ-particles (when are revealing χ1).

4.3 A result on survival probability of Galton-Watson processes
Let β > 0, ρ > 1 and d ≥ 1. Recall the matrices M(β, ρ, d) and M ′(β, ρ, d) defined by (9) and (39).
Let τ(β, ρ, d) be a two-type Galton-Watson process with independent Poisson progeny with mean matrix
M(β, ρ, d) and starting with one ρ-particle. Denote by S(β, ρ, d) its survival probability. Let τ ′(β, ρ, d)
be a two-type Galton-Watson process with independent Poisson progeny with mean matrix M ′(β, ρ, d)
and starting with one ρ-particle. Denote by S′(β, ρ, d) its survival probability. Let τ ′′(β2) be a one
type Galton-Watson process with Poisson(β2) progeny starting with one particle. As usual we denote
by S(β2) its survival probability.

The aim of this section is to prove the following lemma.
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Lemma 4.1. Let β > 0 and ρ > 1. There exists a sequence (εGW (d))d of positive real numbers which
tends to 0 such that,

∀d ≥ 1, S(β2)− εGW (d) ≤ S′(β, ρ, d) ≤ S(β, ρ, d) ≤ S(β2) + εGW (d).

This is a straightforward consequence of the following lemma. We keep the notations given at the
beginning of Section 4.3.

Lemma 4.2. Let β > 0 and ρ > 1.

1. For all n ≥ 1, lim supd→∞ P[τ(β, ρ, d) survives]− P[τ ′(β, ρ, d) survives up to step n] ≤ 0.

2. For all n ≥ 1, lim supd→∞ P[τ ′(β, ρ, d) survives up to step 2n] ≤ P[τ ′′(β2) survives up to step n].

3. limn→∞ P[τ ′′(β2) survives up to step n] = P[τ ′′(β2) survives].

4. For all d ≥ 1, P[τ ′(β, ρ, d) survives ] ≤ P [τ(β, ρ, d) survives].

5. lim infd→∞ P[τ ′(β, ρ, d) survives] ≥ P[τ ′′(β2) survives].

Proof of Lemma 4.1 using Lemma 4.2. Fix β > 0 and ρ > 1. Let ε > 0. By Item 3 we fix n0 such that

P[τ ′′(β2) survives up to step n0] ≤ P[τ ′′(β2) survives] + ε.

Combining Item 1 (with n = 2n0) and Item 2 (with n = n0), we get the existence of d2 such that,

∀d ≥ d2, P[τ(β, ρ, d) survives] ≤ P[τ ′′(β2) survives up to step n0] + ε

and then
∀d ≥ d2, P[τ(β, ρ, d) survives] ≤ P[τ ′′(β2) survives] + 2ε. (40)

By Item 5 of Lemma 4.2, there exists d1 such that,

∀d ≥ d1, P[τ ′′(β2) survives ] ≤ P [τ ′(β, ρ, d) survives] + ε. (41)

The result follows from (41), Item 4 of Lemma 4.2 and (40).

Proof of Item 1 of Lemma 4.2. Let β > 0 and ρ > 1. Hereafter, we assume that d is large enough to
ensure

β

( 2√ρ
1 + ρ

)d
≤ 1

2 . (42)

We couple in a natural way τ(β, ρ, d) and τ ′(β, ρ, d). If τ(β, ρ, d) survives, then there exists an infinite
branch 0 = x0, x1, x2, . . . in τ(β, ρ, d). If moreover τ ′(β, ρ, d) does not survive at least up to step n, then
there exists k ∈ {1, . . . , n} such that xk and xk−1 are two particles of the same type. By (42), there
exists no infinite branch of 1-particles. Therefore there exists ` ≥ n such that x` is a ρ-particle. Let ` be
the smallest such integer. The probability of the event

{τ(β, ρ, d) survives} \ {τ ′(β, ρ, d) survives up to step n}

is thus bounded from above by the expected number of such paths (x0, . . . , x`).
In order to bound this expected number of paths, we will associate a type with each such paths. For

each k ∈ {0, . . . , `} we set tk = 1 if xk is a 1-particle and tk = ρ otherwise. We thus get a sequence
T = (t0, . . . , t`) of types. This sequence belong to the set T of finite sequence (t′0, . . . , t′`′) such that

1. `′ ≥ n.

2. t′0 = t′`′ = ρ. As a consequence, the sets {k ∈ {1, . . . , `′} : tk−1 = 1 and tk = ρ} and {k ∈
{1, . . . , `′} : tk−1 = ρ and tk = 1} have the same cardinality. This is a crucial property which will
cancel a large factor later in the proof.

3. There exists k ∈ {1, . . . , n} such that tk = tk−1.
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4. If `′ > n, then t′n = t′n+1 = · · · = t′`′−1 = 1. This is due to the fact that we stop, after step n, with
the first ρ-particle.

Let us fix T = (t0, . . . , t`) ∈ T . The expected number of paths of the tree τ(β, ρ, d) whose type is T is
β`∆I(T ) where

∆ =
( 2√ρ

1 + ρ

)d
< 1

and
I(T ) = #{k ∈ {1, . . . , `} : tk = tk−1}.

We have used the second property of types which yields some cancellations in antidiagonal coefficients of
M . By the third property and as ` ≥ n we have I(T ) ≥ 1. By the fourth one we have I(T ) ≥ `− 1− n.
Therefore I(T ) ≥ max(1, `− 1− n) and the expected number of paths of τ whose type is T is at most

β`∆max(1,`−1−n).

Summing over types, we get

P[{τ(β, ρ, d) survives} \ {τ ′(β, ρ, d) survives at least up to step n}] ≤
∑
T∈T

β`∆max(1,`−1−n).

The contribution of types of length ` = n is at most 2nβn∆. The contribution of types of length ` = n+1
is at most 2nβn+1∆. The contribution of types of length ` ≥ n + 2 is at most (we use β∆ ≤ 1/2, see
(42)),

2n
∑
`≥n+2

β`∆`−1−n = 2nβn+1 β∆
1− β∆ ≤ 2n+1βn+1β∆.

Therefore

P[{τ(β, ρ, d) survives} \ {τ ′(β, ρ, d) survives at least up to step n}] ≤ 2nβn(1 + β + 2β2)
( 2√ρ

1 + ρ

)d
and then

P[τ(β, ρ, d) survives] ≤ P[τ ′(β, ρ, d) survives at least up to step n] + 2nβn(1 + β + 2β2)
( 2√ρ

1 + ρ

)d
.

This yields the result.

Proof of Item 2 of Lemma 4.2. Let β > 0, ρ > 1 and n0 ≥ 1. Let d ≥ 1. Write

µ = β
√
ρ
d and µ∗ = β

1
√
ρd
. (43)

Let N(µ) be a Poisson(µ) random variable and N1(µ∗), N2(µ∗), ... be Poisson(µ∗) random variables.
Assume that these random variables are independent. Set

X(β, ρ, d) =
N(µ)∑
i=1

Ni(µ∗). (44)

The process (τ ′2n(β, ρ, d))n is a Galton-Watson process with progeny distributed as X(β, ρ, d). When
d converges to ∞, X(β, ρ, d) converges in distribution to a Poisson(β2) random variable N(β2). This
can for example be shown by computing the characteristic functions: for all t ∈ R,

E
[
eitX(β,ρ,d)] = exp

[
−β√ρd

(
1− exp

(
−β√ρ−d

(
1− eit

)))]
→d→∞ exp

[
− β2(1− eit)] = E

[
eitN(β2)].

Thus, there exists a sequence of random variables X̃(d), each of which as the same distribution of
X(β, ρ, d), and a random variable Ñ(β2) with Poisson(β2) distribution such that X̃(d) converges almost
surely to Ñ . Let us use such coupling for all variables defining our Galton-Watson processes. We thus
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get a new version of (τ ′2n(β, ρ, d))n – which we denote by (τ̃ ′2n(β, ρ, d))n – and a new version of τ ′′(β2)
– which we denote by τ̃ ′′(β2) – such that (τ̃ ′2n(β, ρ, d))n≤n0 converges almost surely to (τ̃ ′′(β2)n)n≤n0

when d tends to ∞. Therefore

P[τ ′(β, ρ, d) survives up to step 2n]
= P[(τ ′2n(β, ρ, d))n survives up to step n]
= P[(τ̃ ′2n(β, ρ, d))n survives up to step n] as they have the same distribution
→ P[τ̃ ′′(β2) survives up to step n] as d→∞ by the discussion above
= P[τ ′′(β2) survives up to step n] as they have the same distribution.

This yields the result.

Proof of Item 3 of Lemma 4.2. This is straightforward as the sequence of events is non-increasing.

Proof of Item 4 of Lemma 4.2. This is straightforward by a natural coupling.

Proof of Item 5 of Lemma 4.2. Let β > 0, ρ > 1 and d ≥ 1. We will use some remarks and notations
from the proof of Item 2, in particular (43) and (44). The process (τ ′(β, ρ, d)2n)n is a Galton-Watson
process with progeny distributed as X(β, ρ, d). But

X(β, ρ, d) ≥
N(µ)∑
i=1

1Ni(µ∗)≥1

which is Poisson(µ(1− exp(−µ∗))) distributed. Therefore

P[τ ′(β, ρ, d) survives] = P[(τ ′(β, ρ, d)2n)n survives]
= P[a Galton-Watson process with progeny distribued as X(β, ρ, d) survives]
≥ P[a Galton-Watson process with Poisson(µ(1− exp(−µ∗))) progeny survives]
= S(µ(1− exp(−µ∗))
→ S(β2) as d→∞

as µ(1− exp(−µ∗)→ β2 and as S is continuous by Lemma 3.6.

4.4 Proof of the upper bound on percolation probability
We use the framework of Section 4.1 and the first BRW defined in Section 4.2. The aim of this section
is to prove the following result. This is the easy part in the control of percolation probability and
percolation threshold.

Proposition 4.3. • Let β > 0. For any ρ > 1, any d ≥ 1 and any K ∈ K(d),

P
[
#Ĉ0(β, ρ, d,K) =∞

]
≤ S(β, ρ, d). (45)

• For any ρ > 1, any d ≥ 1 and any K ∈ K(d),

βc(ρ, d,K) ≥ 1

1 +
(

2√ρ
1+ρ

)d . (46)

• Let β > 0 and ρ > 1. There exists a sequence (ε(d))d of positive real numbers which tends to 0
such that,

∀d ≥ 1,∀K ∈ K(d),P
[
#Ĉ0(β, ρ, d,K) =∞

]
≤ S(β2) + ε(d).

• Let ρ > 1. There exists a sequence (ε′(d))d of positive real numbers which tends to 0 such that,

∀d ≥ 1,∀K ∈ K(d), βc(ρ, d,K) ≥ 1− ε′(d).
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Proof. Let β > 0, ρ > 0, d ≥ 1 and K ∈ K(d). Let τ be the associated BRW introduced in Section 4.2.1.
In particular, the mean matrix of the associated two-type Galton-Watson process is M(β, ρ, d) which is
defined in (9). By the discussion of Section 4.2.1,

P
[
#Ĉ0(β, ρ, d,K) =∞

]
≤ P[#τ =∞] = S(β, ρ, d).

This gives (45). The largest eigenvalue of M(β, ρ, d) is

r = β

[
1 +

( 2√ρ
1 + ρ

)d]
.

Therefore S(β, ρ, d) equals 0 when r ≤ 1 (see [1] page 186). Combined with the upper bound on the
percolation probability, this yields (46).

Lemma 4.1 and (45) yield Item 3. Item 4 is a straightforward consequence of (46).

4.5 Proof of the lower bound on percolation probability
This is the hard part in the control of percolation probability and percolation threshold. Our aim is to
prove the following theorem.

Theorem 4.4. • Let β > 0 and 1 < ρ < 2. There exists a sequence (ε(d))d of positive real numbers
which tends to 0 such that,

∀d ≥ 1,∀K ∈ K(d), P
[
#Ĉ0(β, ρ, d,K) =∞

]
≥ S(β2)− ε(d).

• Let 1 < ρ < 2. There exists a sequence (ε′(d))d of positive real numbers which tends to 0 such that,

∀d ≥ 1,∀K ∈ K(d), βc(ρ, d,K) ≤ 1 + ε′(d).

Proof of Theorem 1.4 using Theorem 4.4. Recall Section 4.1 for notations. In particular, for all β >
0, ρ > 1, d ≥ 1 and K ∈ K(d), by (2) and by our choice of notations (which we simplified in Section 4):

P[#Ĉ0(β, ρ, d,K) =∞] = P[C0(βκc(ρ)d, νd,ρ, d,K) is unbounded].

Item 1 of Theorem 4.4, Item 1 of Proposition 4.3 and Lemma 4.1 yield Item 1 of Theorem 1.4. Item 2
of Theorem 4.4 and Item 4 of Proposition 4.3 yield Item 2 of Theorem 1.4.

4.5.1 Good gaps

Let d ≥ 1 and K ∈ K(d). As usual, denote by XK , X
′
K , X

′′
K i.i.d.r.v. uniformly distributed on K. Let L

any map provided by Theorem 2.1 for XK and define L̂ by L̂ = 2−1/2L. Let T be any map adapted to
XK (see (10)).

For all η > 0 smaller than
√

2 set

G(d,K, η) = {z ∈ Rd : P[z +XK 6∈ K] ≥ 1− η},
H ′(d,K, η) = {z : ‖T (z)‖2d−1/2 < 3/2},
G′(d,K, η) = {z ∈ Rd : P[z +XK +X ′K 6∈ H ′(d,K, η)] ≥ 1− η},
H(d,K, η) = {z ∈ Rd : P[z +XK ∈ K] ≤ (

√
2− η)−d}.

The family of set G was already introduced in Section 3.4.1 with a similar purpose. The only property
of 3/2 we are interested in is that

√
2 < 3/2 <

√
3. When the parameters are clear from the context, we

will write G,G′ and so on.
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Lemma 4.5. Let η ∈ (0,
√

2). There exists a sequence (ε′G(d, η))d that tends to 0 such that for all d ≥ 1,
all K ∈ K(d), all a ∈ Rd:

P[a+XK ∈ G(d,K, η)] ≥ 1− ε′G(d, η),
P[XK +X ′K ∈ H ′(d,K, η)] ≥ 1− ε′G(d, η),

P[a+XK ∈ G′(d,K, η)] ≥ 1− ε′G(d, η),
P[XK +X ′K ∈ H(d,K, η)] ≥ 1− ε′G(d, η).

Proof. We have to prove that four probabilities tends to 1, uniformly in K ∈ K(d) and a ∈ Rd, as d
tends to ∞. This is the content of Lemma 3.3 for P[a+XK ∈ G(d,K, η)]. By Theorem 2.2, we have the
following convergence in probability when d tends to ∞.

‖T (XK +X ′K)‖2√
d

→
√

2 and ‖T (XK +X ′K +X ′′K)‖2√
d

→
√

3.

The convergence are uniform in K ∈ K(d). The first convergences gives immediately the required result
for P[XK + X ′K ∈ H ′(d,K, η)] as

√
2 < 3/2. With some further work, the second convergence will give

the required result for P[a+XK ∈ G′(d,K, η)].
Indeed, for all d ≥ 1, a ∈ Rd and K ∈ K(d),

P[a+XK 6∈ G′] = P[P[a+XK +X ′K +X ′′K ∈ H ′|XK ] ≥ η]
≤ η−1P[a+XK +X ′K +X ′′K ∈ H ′] by Markov inequality

= η−1
∫
Rd
1H′(a+ s)1K ∗ 1K ∗ 1K(s) ds

= η−11H′ ∗ 1K ∗ 1K ∗ 1K(a) by symmetry of K.

But H ′ and K are convex and symmetric. Therefore 1′H and 1K are log-concave and symmetric. Hence,
1H′ ∗ 1K ∗ 1K ∗ 1K is log-concave (see Section 2.2) and symmetric. As a consequence,

1H′ ∗ 1K ∗ 1K ∗ 1K(a) ≤ 1H′ ∗ 1K ∗ 1K ∗ 1K(0).

Therefore,

P[a+XK 6∈ G′] ≤ η−11H′ ∗ 1K ∗ 1K ∗ 1K(0)
= η−1P[XK +X ′K +X ′′K ∈ H ′] by the same arguments
= η−1P[‖T (XK +X ′K +X ′′K)‖2d−1/2 < 3/2] by definition of H ′.

With the above mentioned consequence of Theorem 2.2, we then get the required result about P[a+XK ∈
G′(d,K, η)].

Let us now consider P[XK +X ′K ∈ H(d,K, η)]. For all z ∈ Rd we have, using symmetry of K,

P[z +XK ∈ K] =
∫
Rd
1K(z + x)1K(x) dx = 1K ∗ 1K(z).

Therefore,

|Rd \H| = |{z ∈ Rd : 1K ∗ 1K(z) ≥ (
√

2− η)−d}| ≤ (
√

2− η)d
∫
Rd
1K ∗ 1K = (

√
2− η)d.

But then, by Theorem 2.3 (rearrangement inequality),

P[XK +X ′K 6∈ H] =
∫
Rd
1Rd\H(s)1K ∗ 1K(s) ds

≤
∫
Rd
1(
√

2−η)B(s)1B ∗ 1B(s) ds

= P[‖XB +X ′B‖2 ≤ (
√

2− η)]

which tends to 0 by Lemma 2.5.
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4.5.2 Embedding of a two-dimensional lattice in Rd

Let d ≥ 1 andK ∈ K(d). Let L be any map given by Theorem 2.1 forXK . Define L̂ by L̂(x) = 2−1/2L(x).
Let N and N ′ be two independent standard Gaussian random vector in R2. Under an appropriate
coupling,

P[L(XK) 6= N ] ≤ εCLT (d)
where εCLT is the sequence which appears in the statement of Theorem 2.1. Therefore

P[L̂(XK) 6= 2−1/2N ] ≤ εCLT (d). (47)

Under an appropriate coupling,

P[L(XK +X ′K) 6= N +N ′] ≤ 2εCLT (d).

As 2−1/2(N +N ′) has the same distribution as N we then have, under a new coupling,

P[L̂(XK +X ′K) 6= N ] ≤ 2εCLT (d). (48)

Recall the definition of L and A(·, ·) in Section 3.4.2. For any (i, j) ∈ L, we set

A
L̂

(i, j) = L̂−1(A(i, j)).

The sets A
L̂

(i, j) are pairwise disjoint. Moreover 0 belongs to A
L̂

(0, 0).
As in the proof of Theorem 1.3, we will use this embedding of L to compare the cluster of the origin

to a supercritical percolation process on L.

4.5.3 An estimate about BRW

The aim of this section is to prove the following result. This is a consequence of Lemma 3.5. Recall the
notations about BRW in Section 2.8. In particular, note that the underlying Galton-Watson process of
τβ,ρ,d,XK ;S is a two-type Galton-Watson with matrix mean M ′(β, ρ, d) and not M(β, ρ, d).

Lemma 4.6. Let β, ρ > 1 and ε > 0. There exists m, d0, k,M ≥ 1 with k even such that, for all d ≥ d0
and all K ∈ K(d), the following properties hold where L is any map given by Theorem 2.1 for XK and
where L̂ = 2−1/2L,

• For all z ∈ A
L̂

(0, 0),

P
[
τ
β,ρ,d,XK ;{z}
k (A

L̂
(1, 0)) ≥ m and Smallρ

(
τ
β,ρ,d,XK ;{z}
≤k ,M

)]
≥ S(β2)− ε.

• For all (i, j) ∈ L and all subset S ⊂ A
L̂

(i, j) of cardinality m,

P
[
τβ,ρ,d,XK ;S
k (A

L̂
(i+ 1, j + 1)) ≥ m and τβ,ρ,d,XK ;S

k (A
L̂

(i+ 1, j − 1)) ≥ m

and Smallρ
(
τβ,ρ,d,XK ;S
≤k ,M

) ]
≥ 1− ε.

Proof. Let β, ρ > 1 and ε > 0. We can and will assume that ε small enough to ensure S(β2)− ε > 0. By
Lemma 3.6, we can choose η > 0 such that

S(β2 − η) ≥ S(β2)− ε.

Applying Lemma 3.5 with λ = β2 − η and ε we get constants that we denote by m2, k2,M2. For all
d ≥ 1 write

µ = β
√
ρ
d and µ∗ = β

1
√
ρd
.

Let d1 be such that, for all d ≥ d1,

µ(1− exp(−µ∗)) ≥ β2 − η.
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Let d2 be such that, for all d ≥ d2, εCLT (d) ≤ ε/M2 where (εCLT (d))d is the sequence given by Theorem
2.1. Let M3 be such that, for all d ≥ 1, all K ∈ K(d) and all S ⊂ Rd of cardinality at most m2,

P[Smallρ
(
τβ,ρ,d,XK ;S
≤2k2

,M3

)
] ≥ 1− ε. (49)

Let us check that this is possible. Denote by Nρ the number of ρ-particles of τβ,ρ,d,XK ;S
≤2k2

. Denote by N1

the number of 1-particles of τβ,ρ,d,XK ;S
≤2k2

. Then, for any M3,

P[Nρ ≥M3] ≤ E[Nρ]
M3

≤ m2

∑k2
i=0(µµ∗)i
M3

= m2

∑k2
i=0 β

2i

M3

and

P[N1 ≥M3
√
ρ
d] ≤ E[N1]

M3
√
ρd
≤ m2µ

∑k2−1
i=0 (µ∗µ)i

M3
√
ρd

= m2β
√
ρ
d

∑k2−1
i=0 β2i

M3
√
ρd

= m2β

∑k2−1
i=0 β2i

M3
.

We can thus fix M3 as stated above.
Finally set d0 = max(d1, d2).
We now prove that the conclusion of the lemma holds with m2, d0, 2k2,M3. Let d ≥ d0,K ∈ K(d).

Let L by any map associated with XK by Theorem 2.1 and set L̂ = 2−1/2L. Let S be a finite subset of
Rd.

Consider the BRW
(
τβ,ρ,d,XK ;S

2n

)
n
where we sample at even steps. Let us prove the following stochas-

tic domination between two BRW10:(
τβ,ρ,d,XK ;S

2n

)
n
≥
(
τ
β2−η,XK+X′K ;S
n

)
n
. (50)

Prune τβ,ρ,d,XK ;S in the following way. If a 1-particle has strictly more that one children, keep the first
one in Neveu ordering (see Section 2.8) and remove all the other ones and their progeny. Denote by τ−
the new BRW. We have the following stochastic domination:(

τβ,ρ,d,XK ;S
n

)
n
≥
(
τ−n
)
n
.

and then (
τβ,ρ,d,XK ;S

2n

)
n
≥
(
τ−2n
)
n
. (51)

Consider the BRW on the right. The steps are independent copies ofXK+X ′K . The progeny is distributed
as the sum of a Poisson(µ) number of independent Bernoulli(1−exp(−µ∗)) random variables. Therefore,
the progeny is Poisson(µ(1−exp(−µ∗)) distributed. As d ≥ d0 ≥ d1, the progeny stochastically dominates
a Poisson(β2 − η) random variable. As a consequence (τ−2n)n stochastically dominates the BRW on the
right of (50). With (51), this yields (50).

As d ≥ d0 ≥ d2 we have, under an appropriate coupling,

P[L̂(XK +X ′K) 6= N ] ≤ 2ε/M2. (52)

Assume that S ⊂ Rd is as set of cardinality at most m2. Let (i′, j′) ∈ L. We have

P
[
τ
β2−η,N ;L̂(S)
k2

(A(i′, j′)) ≥ m2 and there are at most M2 particles in τβ
2−η,N ;L̂(S)
≤k2

]
≤ P

[
τ
β2−η,L̂(XK+X′K);L̂(S)
k2

(A(i′, j′)) ≥ m2

]
+M2

2ε
M2

by (52)

= P
[
τ
β2−η,XK+X′K ;S
k2

(A
L̂

(i′, j′)) ≥ m2

]
+ 2ε

≤ P
[
τβ,ρ,d,XK ;S

2k2
(A

L̂
(i′, j′)) ≥ m2

]
+ 2ε by (50). (53)

10Note that we sample at even times on the left and at all times on the right.
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Therefore,

P
[
τβ,ρ,d,XK ;S

2k2
(A

L̂
(i′, j′)) ≥ m2 and Smallρ

(
τβ,ρ,d,XK ;S
≤2k2

,M3

)]
≥ P

[
τβ,ρ,d,XK ;S

2k2
(A

L̂
(i′, j′)) ≥ m2

]
− ε by (49)

≥ P
[
τ
β2−η,N ;L̂(S)
k2

(A(i′, j′)) ≥ m2 and there are at most M2 particles in τβ
2−η,N ;L̂(S)
≤k2

]
− 3ε by (53).

We can now conclude using the definition of m2, k2,M2 (which come from Lemma 3.5 with λ = β2−η
and ε). If S = {z} ⊂ A

L̂
(0, 0) we get, with (i′, j′) = (1, 0) and the inequality obtained above,

P
[
τ
β,ρ,d,XK ;{z}
2k2

(A
L̂

(1, 0)) ≥ m2 and Smallρ
(
τ
β,ρ,d,XK ;{z}
≤2k2

,M3

) ]
≥ P

[
τ
β2−η,N ;{L̂(z)}
k2

(A(1, 0)) ≥ m2 and there are at most M2 particles in τβ
2−η,N ;{L̂(z)}
≤k2

]
− 3ε

≥ S(β2 − η)− 4ε by the choice of m2, k2,M2

≥ S(β2)− 5ε by the choice of η.

Let (i, j) ∈ L. If S is a subset of cardinality m2 of A
L̂

(i, j) we get similarly, with (i′, j′) = (i+ 1, j ± 1),

P
[
τβ,ρ,d,XK ;S

2k2
(A

L̂
(i+ 1, j ± 1)) ≥ m2 and Smallρ

(
τβ,ρ,d,XK ;S
≤2k2

,M3

) ]
≥ 1− 4ε.

Therefore,

P
[
τβ,ρ,d,XK ;S

2k2
(A

L̂
(i+ 1, j + 1)) ≥ m2 and τβ,ρ,d,XK ;S

2k2
(A

L̂
(i+ 1, j − 1)) ≥ m2

and Smallρ
(
τβ,ρ,d,XK ;S
≤2k2

,M3

) ]
≥ 1− 8ε.

Items 1 and 2 hold with the choice of parameters m2, d0, 2k2,M3.

4.5.4 Plan and intuition.

The aim of this section is to present in an informal way the plan of the proof. This a refinement of the
plan given in Section 3.4.4 in the constant radius case. We assume that the reader is familiar with the
content of Section 3.4.4.

Setup. Let β > 0, 1 < ρ < 2, ε > 0, d ≥ 1 and K ∈ K(d). As usual, we denote by XK and
X ′K two independent random variables with uniform distribution on K. Recall the definition of Ĉ0 =
Ĉ0(β, ρ, d,K) and Â0 = Â0(β, ρ, d,K) in Section 4.1. Recall that S(β2) denotes the survival probability
of a Poisson(β2) offspring Galton-Watson process. The aim is to prove that the inequality

P[#Ĉ0(β, ρ, d,K) =∞] ≥ S(β2)− ε

holds for any d large enough, uniformly in K ∈ K(d). We actually prove that for any d large enough,
uniformly in K ∈ K(d),

P[#Â0(β, ρ, d,K) =∞] ≥ S(β2)− ε.

This is a stronger result as Â0 is a subset of Ĉ0. The advantage is that the structure of Â0 is easier.
The idea of focusing on Â0 instead of Ĉ0 was already used in [6]. However, it was used in a cruder way.
Recall that the main result in [6] is a logarithmic equivalent of the critical parameter in the Euclidean
case, stated here as Theorem 1.2.

The set Â0 can be built from the BRW τβ,ρ,d,XK . See Section 2.8 for notations on BRW and Section
4.2.2 for the construction of Â0 from τβ,ρ,d,XK . Note in particular that, in τβ,ρ,d,XK , children of ρ-
particles are 1-particles and children of 1−particles are ρ-particles. The basic intuition is that, up to an
event whose probability vanishes when d tends to ∞, Â0 is infinite when τβ,ρ,d,XK is infinite.
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The underlying Galton-Watson tree. The underlying Galton-Watson tree of the BRW τβ,ρ,d,XK

does not depend on K but it depends on d. The number of children of a ρ particles tends to ∞ when d
tends to ∞. Indeed, this is a Poisson random variable with parameter β√ρd. Thus, the Galton-Watson
process underlying τβ,ρ,d,XK degenerates when d tends to ∞. This is a major difference with respect to
the constant radius case and this is why the non constant case is much more involved. It is also for this
reason that Theorem 1.4 does not hold for ρ > 2 (the explosion of the number of children of ρ-particles
increases when ρ increase ; see [7] where a logarithmic equivalent for the critical probability is given in
the Euclidean case for every ρ : the behavior is not given by the sole underlying Galton-Watson process
when ρ > 2). There is however a nice feature. When d tends to ∞,(

τβ,ρ,d,XK2n

)
n
≈
(
τ
β2,d,XK+X′K
n

)
n
. (54)

Note that the first BRW is sampled at even times. The second BRW is similar to the BRW studied in
Section 3. We simply replaced λ by β2 and XK by XK +X ′K . We can therefore use many results from
Section 3. The underlying Galton-Watson process of the second BRW only depends on β2. This is a key
property. More precisely this is a Poisson(β2) offspring Galton-Watson process.

The plan is to prove that, asymptotically when d tends to ∞, if the second BRW survives, which
occurs with probability S(β2), then Â0 is infinite.

Control of the interference between BRW. The basic plan is the same as in the constant radius
case. In particular, we use a two-step approach (see Section 3.4.4: make sure that the relevant gaps
are good and then using this fact to control interference). However, the number of 1-particles of the
BRW explodes when d tends to ∞ and many of them (and their progeny) have to be rejected because
of interference. But most of them have no progeny at all and the number of ρ particles is well behaved
when d tends to ∞. The idea is thus to focus as much as possible on ρ-particles.

We perform over-pruning (see Section 3.2.3) in order to control rejection by interference. This means
that we reject particles and their progeny if they break one the following rules. The constants M and Λ
are large and the constant η is small. The map L̂ is associated with XK . See Section 4.5.2.

1. If y is a children of x, then ‖L̂(V (y)− V (x))‖2 ≤ Λ. (Recall that this means that we reject y and
its progeny if ‖L̂(V (y)− V (x))‖2 > Λ. Similar remarks apply below.)

2. There are no more than M ρ−particles at each stage and each ρ-particle has no more than M√ρd
children (which are 1-particles).

3. If x and x′ and two distinct ρ-particle, then

‖L̂(V (x′)− V (x))‖2 ≥ 4Λ or V (x′)− V (x) ∈ G(d,K, η) ∩G′(d,K, η).

Good gaps are defined in Section 4.5.1.

4. If z is a ρ-particle and if x is his grandparent, then

V (z)− V (x) ∈ H(d,K, η) ∩H ′(d,K, η).

Note that if y is the parent of z, the above property implies that the interference region of y is
included in

V (x) +H ′(d,K, η).

Note that Properties 3 and 4 depends only on ρ-particles which are not too numerous. This is why
Lemma 4.5 enables us to prove that the extra-pruning required to get these properties is harmless.
However these properties freely give some further properties on 1-particles (see for example the comment
after the statement of Property 4).

Thanks to the above properties, the probability of interference will be small. Let us explain the
general ideas. Recall that there can be interference only between a 1-particle and a ρ-particle and that
we want to avoid rejection of ρ-particles (and thus of 1-particles with at least one child).

• Rejection of a 1-particle y. Denote by x its parent. This is a ρ-particle. Let x′ be another ρ-particle.
Let us consider rejection of y because of interference with x′.

38



– If ‖L̂(V (x′)−V (x))‖2 ≥ 2Λ, then x+K∩ L̂−1(ΛD) and x′+K∩ L̂−1(ΛD) are disjoint. But y
belongs to x+K∩ L̂−1(ΛD) and the interference region of x′ is included in x′+K∩ L̂−1(ΛD).
Therefore y can not be rejected because of interference with x′.

– Otherwise V (x)−V (x′) ∈ G(d,K, η). Write V (y)−V (x′) = (V (y)−V (x))+(V (x)−V (x′)). By
definition of G(d,K, η), we see that the probability, condition by everything but V (y)−V (x),
that y is rejected because of interference with x′ is at most η.

• Rejection of a ρ-particle z. Let y be its parent (it is a 1-particle) and x its grandparent (it is a
ρ-particle). Let x′ be a ρ-particle different from z but which can be x. We are wondering if z can
be rejected because of interference with a child y′ of x′. The number of 1-children of a ρ-individual
diverges as d tends to ∞. Therefore we want, as much as possible, to avoid considering each child
y′ of x′ individually. In other words we want, as much as possible, to consider only ρ-particles.

– If ‖L̂(V (x′)−V (x))‖2 ≥ 4Λ, then for any child y′ of x′, ‖L̂(V (y′)−V (z))‖2 ≥ Λ and therefore
z can not be rejected because of y′.

– Otherwise and if x and x′ are distinct, then V (x)−V (x′) ∈ G′(d,K, η). Write V (z)−V (x′) =
(V (z) − V (y)) + (V (y) − V (x)) + (V (x) − V (x′)). Recall that the interference region of the
1-particle y′ is included in V (x′) + H ′(d,K, η). Therefore, by definition of G′(d,K, η), the
probability, condition to everything but (V (z)− V (y)) and (V (y)− V (x)), that there exists a
child y′ of x′ such that z is rejected because of interference with y′ is at most η.

– Otherwise, x = x′. This is the crucial case where the assumption ρ < 2 is needed. We have
V (z) − V (x) ∈ H(d,K, η) and thus V (x) − V (z) ∈ H(d,K, η). Therefore, by definition of
H(d,K, η), the probability, condition to everything but V (y′)−V (x′), that a given child y′ of
x (with y′ 6= y) is responsible of the rejection of z is at most (

√
2 − η)−d. But x as no more

than M
√
ρd children. Therefore the probability that there exists a child y′ of x′ = x such

that z is rejected because of interference with y′ is at most M√ρd(
√

2− η)−d which is smaller
than η for d large enough, provided that ρ <

√
2− η.

4.5.5 Construction of a subset of 2
1+ρ Â

0 related to an oriented percolation on L

Choice of parameters. Fix β > 1, 2 > ρ > 1 and ε > 0. Fix m, d1, k,M ≥ 1 with k even as provided
by Lemma 4.6 for the parameters β, ρ and ε. Let Λ ≥ 1 be such that P[‖N‖2 > 21/2Λ] ≤ ε/(2M). Fix
η ∈ (0,

√
2) such that

400k2Λ2M2η ≤ ε (55)

and √
ρ

√
2− η

< 1. (56)

Recall the definition of ε′G(d, η) in Lemma 4.5. Let d2 be such that, for all d ≥ d2,

400k2Λ2M2ε′G(d, η) ≤ ε (57)

and
M2√ρd(

√
2− η)−d ≤ ε. (58)

Let d3 be such that, for all d ≥ d3, for all K ∈ K(d), for any L associated with XK by Theorem 2.1,
P[L(XK) 6= N ] ≤ ε/(2M). Then, with L̂ = 2−1/2L,

P[‖L̂(XK)‖2 > Λ] ≤ P[L(XK) 6= N ] + P[‖N‖2 > 21/2Λ]
≤ ε/M. (59)

Let d0 = max(d1, d2, d3).
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Setting and aim. Let d ≥ d0, K ∈ K(d). As usual, we denote by XK and X ′K independent random
variable with uniform distribution on K. Let L be any map associated with XK by Theorem 2.1 for
XK . Define L̂ by L̂(x) = 2−1/2L(x) as above. We aim at proving

P[#Â0 =∞] ≥ (S(β2)− 8ε)θ(1− ε)

where θ is defined in Section 3.4.2. From this result and Proposition 4.3, Theorem 4.4 will follow easily.
Thanks to the choice of parameters, the following properties hold (in particular the first ones are due

to the choice of m, d1, k,M ≥ 1 using Lemma 4.6):

• For all z ∈ ÂL(0, 0),

P
[
τ
β,ρ,d,XK ;{z}
k (ÂL(1, 0)) ≥ m and Smallρ

(
τ
β,ρ,d,XK ;{z}
≤k ,M

)]
≥ S(β2)− ε. (60)

• For all (i, j) ∈ L and all subset S ⊂ ÂL(i, j) of cardinality m,

P
[
τβ,ρ,d,XK ;S
k (ÂL(i+ 1, j + 1)) ≥ m and τβ,ρ,d,XK ;S

k (ÂL(i+ 1, j − 1)) ≥ m

and Smallρ
(
τβ,ρ,d,XK ;S
≤k ,M

) ]
≥ 1− ε. (61)

• (55), (57), (58) and (59).

Randomness and σ-fields. Let (
τ i,j,n)(i,j,n)∈L×{1,...,m}

be a family of independent copies of τβ,ρ,d,XK . Let (αi,j)(i,j)∈L be a family of i.i.d. Bernoulli random
variables with parameter 1− ε. For all (i, j) ∈ L we denote by Fi,j (resp. F−i,j) the σ-field generated by
the τ i′,j′,n and the αi′,j′ for (i′, j′, n) ∈ L×{1, . . . ,m} such that (i′, j′) is smaller (resp. strictly smaller)
than (i, j) for the lexicographic order. Initially, the site (0, 0) is active and all other sites are inactive.

Site (0, 0). This stage is slightly different and slightly less involved than the next stages. The difference
is similar to the difference in the corresponding construction given in Section 3. Here, in order to avoid
lengthy repetitions, we only give the construction for sites (i, j) ∈ L and quickly explain by footnotes
the modifications needed for the site (0, 0). We hope that this is clear but, if this is not the case, we
refer the reader to Section 3.

Stage (i, j) for (i, j) ∈ L. Recall that we now consider successively each (i, j) ∈ L by lexicographic
order. If (i, j) is inactive we decide, independently of everything else, that it is open with probability 1−ε
and closed otherwise. More precisely, we decide that (i, j) is open when αi,j = 1 and closed otherwise.

Thereafter, we consider the case where (i, j) is active. The set S(i, j) is well defined. It’s a subset
of cardinal m of A

L̂
(i, j). List the points of S(i, j) in an arbitrary order: S(i, j) = {x1, . . . , xm}. We

consider the m BRW τn = xn + τ i,j,n where xn + τ i,j,n designates the BRW τ i,j,n in which xn has been
added to the position of all the particles. We gather these m BRW into a single BRW originating from
S(i, j). We denote it by τS(i,j) 11.

1. We examine successively the particles of generation between 1 12 and k of τS(i,j) in any admissible
order. The last requirement means that:

• Children are examined after their parents.
• Children of a given parent are examined in a row: once we start examining the children of

one parent, we then examine all the children of this parent.
11In Stage (0, 0), (0, 0) is always active and we simply consider the BRW τ0,0,1 originating from {0}.
12In Stage (0, 0) we also examine the particle of generation 0.
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Some of the particles will be rejected. We will reject more particles than necessary, thus performing
some over-pruning as explained in Section 4.2. Some particles can be rejected before examination
(if we have examined and rejected one of its ancestor). If we have examined a particle and not
rejected it, we say that the particle has been "generated". If we are examining a particle x and talk
about a particle y generated before x, it means that one of the following two properties occur:

• y has been examined at stage (i, j) strictly before x and y has not been rejected.
• y has been examined at a previous stage (i′, j′) (thus (i′, j′) < (i, j) in lexicographical order)

and y has not been rejected 13.

We never examine the roots of this BRW (note that the positions of the roots are also positions
of particles of BRW examined during one of the previous stages 14). We stop as soon as we have
examined all the particles or as soon as the particle examined causes a stop by "Overpopulation"
(equivalently, if "Overpopulation" occurs, we reject all the remaining particles). When examining
a particle x, several things can occur:

(a) Overpopulation. This occurs if x is the M -th ρ-particle examined during this stage (i, j) or
if x is the M√ρd-th children examined of a given ρ-particle. If "Overpopulation" occurs, we
reject x and all the particles of τS(i,j) which have not been examined yet. This stops the
examination.

(b) Bad gap. This occurs if one of the following three conditions occurs:
• x is a ρ-particle and there exists a ρ-particle x′ generated before x such that:

‖L̂(V (x′)− V (x))‖2 < 4Λ and V (x)− V (x′) 6∈ G(d,K, η) ∩G′(d,K, η).

• x is a ρ-particle and the grand parent x′ of x15 is such that

V (x)− V (x′) 6∈ H(d,K, η) ∩H ′(d,K, η).

• The following condition holds16:

‖L̂(V (x)− V (←x))‖2 > Λ.

In this case we do not stop the examination. However, we reject x and all its progeny 17 and
we do not consider rejection of x by interference (see below).
This over-pruning will help us controlling the interference. Let us note a few consequences
right now, as this is necessary to explain the paragraph "interference" below.

• If x′ and y′ are two generated particles such that x′ is the parent of y′, then ‖L̂(V (y′)−
V (x))‖2 ≤ Λ.

• The interference region (see (13)) of a generated particle y′ is included in

V (y′) +K ∩ L̂−1(ΛD)

where D is the unit disk of R2. If moreover y′ is a 1-particle with parent x′, then the
interference region of y′ is included in

V (x′) +H ′(d,K, η). (62)

(c) Interference. It occurs if there exists a particle y′ generated before x, such that y′ is not the
parent ←x of x and such that one of the following conditions occurs (see the remark on the
interference region in the paragraph "Bad Gap"):

13This property never occurs if (i, j) = 0.
14In Stage (0, 0) we examine the root, even if there is nothing to examine. This is just a convention which ensures that

the root is generated.
15In Stage (0, 0) the condition is empty for the root 0.
16In Stage (0, 0) the condition is empty for the root 0.
17In Section 3 we stopped the examination as soon as we saw a "Bad Gap". Here we can not avoid some particles to be

rejected because of "Bad-Gap". However, as we will see, we can avoid (with high probability) rejection of ρ-particle because
of "Bad Gap" (note that we do note care about rejection of 1-particles without children). It will be sufficient.
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• x is a 1-particle, y′ is a ρ-particle and

V (x) ∈ V (y′) +K ∩ L̂−1(ΛD).

• x is a ρ-particle, y′ is a 1-particle and

V (x) ∈ V (y′) +K ∩ L̂−1(ΛD) and V (x) ∈ V (
←
y′) +H ′(d,K, η).

In this case we do not stop the examination. However, we reject the particle x and all its
progeny 18.

One defines the following sets.

• The set G(i, j) of positions of all particles examined and not rejected. We call them the
particles generated at stage (i, j). By an abuse of notation, we see G(i, j) as inheriting the
genealogical structure of the BRW.
– In the coupling with the Boolean model, all the points of G(i, j) belong to 2

1+ρA
0. Indeed,

none of them was rejected (see also the definition and properties of the seeds S(·, ·)
below19).

–
The image by L̂ of G(i, j) is included in (i, j) + 2kΛD. (63)

This is due to the fact that the images by L̂ of the positions of the roots belong to (i, j)+D
(see definition of S(·, ·) below20), the fact that the image by L̂ of each step leading to a
non rejected particle belongs to ΛD, the fact that we only explored the first k generations
and the fact that 1 + kΛ ≤ 2kΛ.

• The subset Gρ(i, j) ⊂ G(i, j) of positions of ρ-particles generated and the subset G1(i, j) ⊂
G(i, j) of positions of 1-particles generated.
– All the gap between two distinct points x and x′ of⋃

(i′,j′)≤(i,j)

Gρ(i, j)

satisfies

‖L̂(V (x))− L̂(V (x′))‖2 ≥ 4Λ or V (x) ∈ V (x′) +G(d,K, η) ∩G′(d,K, η). (64)

– If moreover x′ is the grand-parent of x, then

V (x)− V (x′) ∈ H(d,K, η) ∩H ′(d,K, η). (65)

– Gρ(i, j) contains at most M points.
– Any point in Gρ(i, j) has at most M√ρd children in G1(i, j).

Indeed, none of them was rejected because of "Bad Gap" or "Overpopulation".
• The set Gk(i, j) ⊂ Gρ(i, j) of positions of generated particles of generation k. Note that since
k is even and since we started with ρ-particles, the particles of Gk(i, j) are ρ-particles.

2. If
#
(
Gk(i, j) ∩A

L̂
(i+ 1, j + 1)

)
≥ m and #

(
Gk(i, j) ∩A

L̂
(i+ 1, j − 1)

)
≥ m (66)

then21 :
18This is again a difference with respect to Section 3. The reason is the same as for "Bad Gap".
19In stage (0, 0), the set of seeds is {0} which belong to 2

1+ρA
0.

20In stage (0, 0), the root is located at 0.
21In Stage (0, 0), the condition is

#
(
Gk(0, 0) ∩A

L̂
(1, 0)

)
≥ m. (67)

.
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• We say that the site (i, j) is open.
• If the site (i + 1, j + 1) is inactive then we say that it is henceforth active and we define
S(i + 1, j + 1) as the m first particles of Gk(i, j) ∩ A

L̂
(i + 1, j + 1) in an arbitrary order. In

the coupling with the Boolean model, all the points of S(i+ 1, j + 1) belong to 2
1+ρ Â

0 22.
• If the site (i + 1, j − 1) is inactive then we say that it is henceforth active and we define
S(i + 1, j − 1) as the m first particles of Gk(i, j) ∩ A

L̂
(i + 1, j − 1) in an arbitrary order. In

the coupling with the Boolean model, all the points of S(i+ 1, j − 1) belong to 2
1+ρ Â

0 23.

Otherwise, we say that the site (i, j) is closed.

4.5.6 Bounds on conditional probabilities

The aim of this section is to prove the following lemmas. Parameters have been fixed in Section 4.5.5.

Lemma 4.7. For all (i, j) ∈ L, {(i, j) active} ∈ F(i, j)− and {(i, j) open} ∈ F(i, j).

Lemma 4.8. We have P[(0, 0) open] ≥ S(β2)− 8ε.

Lemma 4.9. For all (i, j) ∈ L, P[(i, j) open |F−(i, j)] ≥ 1− 8ε.

Proof of Lemma 4.7. This is straightforward by construction.

The proof of Lemma 4.8 is less involved than the proof of Lemma 4.9. The difference is similar to
the difference in the proofs of Lemmas 3.9 and 3.10. There are moreover similarities in the proofs of the
four lemmas. Therefore, in order to avoid lengthy repetitions, we only give a somewhat sketchy proof of
Lemma 4.9 and quickly explain in footnotes the modifications needed for the proof of Lemma 4.8. For
more details, we refer the reader to the proofs of Lemmas 3.9 (which is the more detailed) and Lemma
3.10.

Proof of Lemma 4.9. Let (i, j) ∈ L. The event {(i, j) is active} is F−(i, j) measurable. Therefore, we
have to show

P[(i, j) open |F−(i, j)] ≥ 1− ε on the event {(i, j) is active}

and
P[(i, j) open |F−(i, j)] ≥ 1− ε on the event {(i, j) is inactive}

The second property is straightforward. Indeed, when (i, j) is inactive, (i, j) has been defined as open
independently of everything else with probability 1− ε. Let us prove the first property.

Below, we implicitly work on the event {(i, j) is active} and probabilities are always conditional to
F−(i, j). Therefore, there is a well defined set S(i, j) with cardinality m whose points are the starting
points of m BRW. This set is measurable with respect to F−(i, j). We also have the BRW τS(i,j) which
has been used in Stage (i, j) 24. Moreover

{(i, j) is closed } ⊂ BadGapρ ∪ Interferenceρ ∪ Smallρ
(
τS(i,j),M

)c
∪ Else

where

BadGapρ = {a ρ-particle has been rejected directly or indirectly because of Bad Gap} ∩ Smallρ
(
τS(i,j),M

)
,

Interferenceρ = {a ρ-particle has been rejected directly or indirectly because of Interference} ∩ Smallρ
(
τS(i,j),M

)
22In Stage (0, 0), we say that the site (1, 0) is active and we define S(1, 0) as the m first particles of Gk(0, 0) ∩ A

L̂
(1, 0)

in an arbitrary order. In the coupling with the Boolean model, all the points of S(1, 0) belong to 2
1+ρ Â

0.
23In Stage (0, 0) this item does not exist.
24In the proof of Lemma 4.8, there is no need to discuss about conditional probabilities. Moreover, the BRW is simply

τ0,0,1.
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and where25

Else = {τS(i,j)
k (A

L̂
(i+ 1, j + 1)) < m or τS(i,j)

k (A
L̂

(i+ 1, j − 1)) < m}.

By "a ρ-particle x has been rejected directly or indirectly" we means that x has been rejected or that one
if its ancestors has been rejected. The inclusion is due to the fact that, if (i, j) is open but BadGapρ ∪
Interferenceρ ∪ Smallρ

(
τS(i,j),M

)c does not occur, then Gk(i, j) is the set of positions of the particles of
τ
S(i,j)
k (which are ρ particles).
Let us provide an upper bound for the probability of the event BadGapρ. Denote by x the first

particle (in the order of enumeration) that causes BadGapρ. This is either a ρ-particle rejected because
of Bad Gap or a 1-particle with at least one child in τ

S(i,j)
k (in other word, a parent in τ

S(i,j)
k of a

ρ particle) rejected because of Bad Gap. On Smallρ
(
τS(i,j),M

)
there are at most M ρ-particles and

therefore at most M 1-particles with at least one child. This gives us a bound on the number of particles
that can be the cause of BadGapρ.

We further distinguish according to the three different types of BadGapρ.
1. Suppose that x satisfies the third condition of rejection by Bad Gap. There are at most 2M

choices for x (which is either a ρ-particle or a parent of a ρ-particle). By (59) one deduces (by first
conditioning by everything but V (x) − V (←x)) that the probability that BadGapρ occurs because
of the third type of Bad Gap is at most

2Mε/M = 2ε.

If what follows we assume that x does not satisfy the third condition of rejection by Bad Gap. In
particular, arguing as in (63),

L̂(V (x)) ∈ (i, j) + 2ΛkD. (68)

2. Consider the first case. There at mostM choices for the ρ-particle x. As ‖L̂(V (x′)−V (x))‖2 ≤ 4Λ,
there are at most 200k2Λ2M choices for x′. Let us prove this fact. Either x′ is one of the at mostM
ρ-particles generated at stage (i, j) or x′ is one of the at most M ρ-particles generated at an earlier
stage (i′, j′). In the latter case, L̂(V (x)) ∈ (i, j)+2kΛD (this is (68)) and L̂(V (x′)) ∈ (i′, j′)+2kΛD
(see (63)). As ‖L̂(V (x′)− V (x))‖2 ≤ 4Λ this implies

‖(i, j)− (i′, j′)‖2 ≤ (4k + 4)Λ ≤ 6kΛ.

(Recall that k is even, so k ≥ 2). Therefore there are at most (12kΛ + 1)2 choices for (i′, j′).
Combining the previous properties, the number of choice for x′ is at most

M +M(12kΛ + 1)2 ≤ 200k2Λ2M

as announced. We used k,Λ ≥ 1 to simplify the upper bound26. Finally, the number of choices for
(x, x′) is at most 200k2Λ2M2.
By Lemma 4.5 one deduces (by first conditioning by everything but V (x)− V (←x)) that the prob-
ability that BadGapρ occurs because of the first type of Bad Gap is at most

400k2Λ2M2ε′G(d, η).

By (57), this is at most ε.

3. Consider the second case. There are at most M choice for the ρ-particle x. Then x′ is the
grandparent of x. By Lemma 4.5 one deduces (by first conditioning by everything but V (x)−V (←x)
and V (←x) − V (x′)) that the probability that BadGapρ occurs because of the second type of Bad
Gap is at most

2Mε′G(d, η).
By (57), as k,Λ,M ≥ 1, this is at most ε.

25In the proof of Lemma 4.8,
Else = {τ0,0,1

k
(A
L̂

(1, 0)) < m}.

26In the proof of Lemma 4.8, there are actually at most M choices for x′. There are therefore also at most 200k2Λ2M
choices for x′. Similar remarks apply several times below.
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Finally,
P[BadGapρ] ≤ 4ε. (69)

Let us now give an upper bound for the probability of the event Interferenceρ. Denote by x the
first particle (in the order of enumeration) that causes Interferenceρ. This is either a ρ-particle rejected
because of Interference or a 1-particle with at least one child in τS(i,j)

k rejected because of Interference.
On Smallρ

(
τS(i,j),M

)
there are at most M ρ-particles and therefore at most M 1-particles with at least

one child. We distinguish the two cases of rejection by interference.

1. In the first case, a 1-particle x is rejected because of a ρ-particle y′ which is not the parent ←x of
x. Note that x has not been rejected because of Bad Gap, otherwise we would not consider x for
rejection by interference.
There are at most M choices for the 1-particle x (as it has as least one child which is a ρ-particle).
The ρ-particle y′ is such that V (x) ∈ V (y′) + K ∩ L̂−1(ΛD). Therefore ‖L̂(V (x) − V (y′))‖2 ≤ Λ.
As above, we conclude that there are at most 200k2Λ2M choices for y′ (this is a crude bound).
Therefore, there are at most 200k2Λ2M2 choices for (x, y′).
We have ‖L̂(V (←x)−V (x))‖2 ≤ Λ (otherwise x would have been rejected for Bad Gap) and therefore
‖L̂(V (←x)− V (y′))‖2 ≤ 2Λ. As a consequence V (←x)− V (y′) ∈ G(d,K, η) (otherwise y′ or ←x , which
are distinct ρ-particles, would have been rejected for Bad Gap). Write V (x) − V (y′) = (V (←x) −
V (y′)) + (V (x)−V (←x)). By definition of G(d,K, η), condition to everything but V (x)−V (←x), the
probability that x is rejected because of interference with y′ is at most η.
Therefore, the probability that Interferenceρ occurs because of the first type of Rejection is at most

200k2Λ2M2η.

By (55), this is at most ε.

2. In the second case, Interferenceρ is caused by the rejection of a ρ-particle z – with parent y and
grand parent x – due to interference with a 1-particle y′ – with parent x′ – where y′ is different
from y. Note that x and x′ are ρ-particles, that y and y′ are 1-particles and that z is a ρ-particle.
As z is rejected because of interference with y′, at some point in the examination process:

• z is being examined and has not been rejected for Bad Gap (otherwise we would not even
consider rejection of z due to interference).

• y′ has been examined before and has not been rejected (otherwise it would not be a generated
particle and we would not consider the interference caused by y′).

This also implies that y, x and x′ have been examined (parents are examined before their children)
and have not been rejected (because when a particle is rejected, its progeny is rejected). As we
examine in an admissible order, x′ can not be a progeny of y (because we already examined the
child y′ of x′ and we are currently examining z) or z. As z is a grandchild of x, z is different from
x. To sum up, among all particles x, y, z, x′, y′ the only possible equality is x = x′.
We further distinguish according whether x = x′ or not.

(a) Case x 6= x′.
As z is a grand-child of x we have ‖L̂(V (z)−V (x))‖2 ≤ 2Λ (otherwise y or z would have been
rejected for Bad Gap). As z interferes with y′ we have ‖L̂(V (z) − V (y′))‖2 ≤ Λ. As y′ is a
child of x′ we have ‖L̂(V (y′)− V (x′))‖2 ≤ Λ (otherwise y′ would have been rejected for Bad
Gap). Therefore

‖L̂(V (z)− V (x′))‖2 ≤ 2Λ (70)

and ‖L̂(V (x′) − V (x))‖2 ≤ 4Λ. As the ρ-particles x and x′ have not been rejected by Bad
Gap,

V (x)− V (x′) ∈ G′(d,K, η). (71)
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This is where we use the assumption x 6= x′. Note that rejection of z because of y′ implies
(see (62))

V (z)− V (x′) ∈ H ′(d,K, η). (72)

We thus see that if Interferenceρ occurs because of this type of case, then there exists a ρ-
particle z with grandparent x and a ρ-particle x′ distinct of x – which is not a progeny of
y or z – such that (70), (71) and (72) occurs. Note that there is no mention of y′ anymore.
As z and x′ are ρ-particles, by (70) and arguments already used above, there are at most
200k2Λ2M2 choices for (z, x′).
Write V (z) − V (x′) = (V (z) − V (y)) + (V (y) − V (x)) + (V (x) − V (x′)). By definition of
G′(d,K, η) and H ′(d,H, η), for each (z, x′), condition by everything but V (z) − V (y) and
V (y)−V (x), on the event {(71) occurs} (which is measurable with respect to the conditioning
σ-field because x′ is not a progeny of y), the probability of (72) is at most η. To sum up, the
probability that Interferenceρ occurs because of this type of case is at most

200k2Λ2M2η.

By (55), this is at most ε.
(b) Case x = x′. There are at most M choices for the ρ-particle z. As the enumeration has not

been stopped by Overpopulation, given z, there are at most M√ρd choices for y′ which is a
children of the grandfather x of z. Thus, there are at most M2√ρd choices for (z, y′). As z
has not been rejected because of Bad Gap,

V (x)− V (z) ∈ H(d,K, η). (73)

As z is rejected by interference with y′, V (z) ∈ V (y′) +K and therefore (using also symmetry
of K)

(V (x)− V (z)) + (V (y′)− V (x)) ∈ K. (74)

But by definition of H(d,H, η), given z and y′, condition to everything but V (y′)− V (x), on
{(73) occurs}, the probability of (74) is at most (

√
2 − η)−d. Therefore the probability that

Interferenceρ occurs because of this type of case is at most

M2√ρd(
√

2− η)−d.

By (58) this is at most ε.

Finally,
P[Interferenceρ] ≤ 3ε. (75)

By (61)27

P
[
Smallρ

(
τS(i,j),M

)c
∪ Else

]
≤ ε.

This concludes the proof.

4.5.7 Proof of Theorem 4.4

Proof of Item 1 of Theorem 4.4. In Section 4.5.5 we fixed β > 1, 2 > ρ > 1 and ε > 0. We
then got some integer d0 (depending only on β, ρ and ε) and several other parameters satisfying various
properties. We then let d ≥ d0 and K ∈ K(d) and built some process in Section 4.5.5. We studied some
properties of this process in Section 4.5.6.

As in Section 3.4.7, we have

P[#Â0 =∞] ≥ P[there exists an infinite open path from (0, 0)].
27In the proof of Lemma 4.8, we apply (60) to get

P
[
Smallρ

(
τS(i,j),M

)c
∪ Else

]
≤ 1− (S(β2)− ε).
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By Lemmas 4.7, 4.8 and 4.9 we get
P[there exists an infinite open path from (0, 0)] ≥ (S(λ)− 8ε)θ(1− 8ε)

where θ(1 − 8ε) is the probability that there exists an infinite open path originating from (1, 0) in a
Bernoulli site percolation on L with parameter 1− 8ε. Therefore

P[#Ĉ0 =∞] ≥ P[#Â0 =∞] ≥ (S(β2)− 8ε)θ(1− 8ε).
But θ(1− 8ε) tends to 1 as ε tends to 0 (see (15)). This proves Item 1 of Theorem 4.4 in the case β > 1.
The case β ≤ 1 is trivial as, in this case, S(β2) = 0.

Proof of Item 2 of Theorem 4.4. Let β > 1, 2 > ρ > 1. Let ε > 0 such that S(β2) − ε > 0. By
Item 1, there exists d0 such that, for all d ≥ d0 and all K ∈ K(d),

P[#Ĉ0 =∞] ≥ S(β2)− ε > 0.
Therefore, for all such ρ, d and K, βc(ρ, d,K) ≤ β.

A Some details on the definition of λc
All the results in this section are very standard and simple, but we have no ready reference for them.
We provide a few technical details related to the definition of λc. We refer to the notations used in (3),
(4) and (5).

Measurability of {the connected component of the graph χ0 that contains 0 is unbounded}.
This is a consequence of the following facts:

• There exists a sequence of random variables (Cn, Rn)n such that, on the full event {ξ is infinite},
ξ = {(Cn, Rn), n ∈ N}.

In other words, χ = {(Cn), n ∈ N} and for all n, r(Cn) = Rn.

• The map defined by (c1, r1, c2, r2) 7→ 1{c1+r1K∩c2+r2K 6=∅} is measurable because

1{c1+r1K∩c2+r2K 6=∅} = 1K

(
1

r1 + r2
(c2 − c1)

)
.

The above equality is a consequence of r2K − r1K = (r2 + r1)K which, in turn, is a consequence
of the fact that K is symmetric and convex.

Equality (4). This is a consequence of
{the connected component of the graph χ0 that contains 0 is unbounded}
= {the connected component of Σ ∪ rK that contains 0 is unbounded}. (76)

Let us prove this equality. Let Ĉ0 be the connected component of the origin in the graph. For all
x, y ∈ χ0, there is an edge between x and y if and only if x+ r(x)K touches y + r(y)K. For all x ∈ χ0,
x+ r(x)K is connected. Using these two facts, we get that⋃

x∈Ĉ0

x+ r(x)K is connected (77)

and that ⋃
x∈Ĉ0

x+ r(x)K and
⋃

x∈χ0\Ĉ0

x+ r(x)K are disjoint. (78)

For all x ∈ χ0, x + r(x)K is compact. The number of grains that touches a given bounded region is
finite. This is a simple consequence of the fact that ν has bounded support, that K is bounded that χ0

is locally finite. Using these two facts, we get that the two sets appearing in (78) are closed subsets of
Rd and therefore of Σ ∪ rK.

Using (77), (78) and the closedness of the sets we get that the set which appears in (77) is the
connected component of Σ ∪ rK that contains the origin. This yields (76) as K is bounded.
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Equality (5). With the same ideas as in the previous paragraph, we can check that "one of the
connected component of Σ is unbounded" if and only if "one of the connected component of the graph χ
is unbounded". Then, with the same ideas as in the first paragraph, we can check that this is measurable.

By ergodicity under spatial translations of the model, the probability of the event "one of the con-
nected component of Σ is unbounded" is 0 or 1. Define

Λ0 = {λ > 0 : P[the connected component of Σ containing 0 is unbouded] > 0},
Λr = {λ > 0 : P[the connected component of Σ ∪ rK containing 0 is unbouded] > 0},
Λ′ = {λ > 0 : P[one of the connected components of Σ is unbouded] > 0},
Λ = {λ > 0 : P[one of the connected components of Σ is unbouded] = 1}.

Let us show that the four sets are equal. As K is connected with non empty interior, one of the connected
component of Σ is unbounded if and only if there exists x ∈ Qd such that the connected component of
Σ containing x is unbounded. Thus Λ ⊂ Λ0. The inclusion Λ0 ⊂ Λr is straightforward. The connected
component of Σ ∪ rK that contains the origin is (77). The connected components of Σ are in similar
correspondence with connected components of the graph χ. As moreover the degree of 0 in the graph
χ0 is finite we get Λr ⊂ Λ′. Finally, Λ′ ⊂ Λ by ergodicity. Thus the four sets are equal. In particular,
Λr = Λ and this proves (5).
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