
HAL Id: hal-03044338
https://hal.science/hal-03044338

Submitted on 7 Dec 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Factorize Factorization
Beniamino Accattoli, Claudia Faggian, Giulio Guerrieri

To cite this version:
Beniamino Accattoli, Claudia Faggian, Giulio Guerrieri. Factorize Factorization. CSL 2021
- 29th EACSL Annual Conference on Computer Science Logic, Jan 2021, Ljubljana, Slovenia.
�10.4230/LIPIcs.CSL.2021.22�. �hal-03044338�

https://hal.science/hal-03044338
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Factorize Factorization
Beniamino Accattoli
Inria & LIX, École Polytechnique, UMR 7161, Palaiseau, France

Claudia Faggian
Université de Paris, IRIF, CNRS, F-75013 Paris, France

Giulio Guerrieri
University of Bath, Department of Computer Science, Bath, UK

Abstract
We present a new technique for proving factorization theorems for compound rewriting systems in
a modular way, which is inspired by the Hindley-Rosen technique for confluence. Specifically, our
technique is well adapted to deal with extensions of the call-by-name and call-by-value λ-calculi.

The technique is first developed abstractly. We isolate a sufficient condition (called linear swap)
for lifting factorization from components to the compound system, and which is compatible with
β-reduction. We then closely analyze some common factorization schemas for the λ-calculus.

Concretely, we apply our technique to diverse extensions of the λ-calculus, among which de’
Liguoro and Piperno’s non-deterministic λ-calculus and—for call-by-value—Carraro and Guerrieri’s
shuffling calculus. For both calculi the literature contains factorization theorems. In both cases, we
give a new proof which is neat, simpler than the original, and strikingly shorter.

2012 ACM Subject Classification Theory of computation → Rewrite systems; Theory of computa-
tion → Logic

Keywords and phrases Lambda Calculus, Rewriting, Reduction Strategies, Factorization

Digital Object Identifier 10.4230/LIPIcs.CSL.2021.22

Funding This work is partially supported by ANR JCJC grant “COCA HOLA” (ANR-16-CE40-
004-01), ANR PRC project PPS (ANR-19-CE48-0014), and EPSRC Project EP/R029121/1 Typed
lambda-calculi with sharing and unsharing.

1 Introduction

The λ-calculus underlies functional programming languages and, more generally, the paradigm
of higher-order computation. Through the years, more and more advanced features have
enriched this paradigm, including control, non-determinism, states, probabilistic or quantum
features. The well established way to proceed is to extend the λ-calculus with new operators.
Every time, good operational properties, such as confluence, normalization, or termination,
need to be proved. It is evident that the more complex and advanced is the calculus under
study, the more the ability to modularize the analyses of its properties is crucial.

Techniques for modular proofs are available for termination and confluence, with a rich
literature which examines under which conditions these properties lift from modules to the
compound system—some representative papers are [54, 53, 55, 49, 38, 39, 40, 30, 10, 20, 18,
17, 5, 12], see Gramlich [22] for a survey. Termination and confluence concern the existence
and the uniqueness of normal forms, which are the results of a computation. When the
focus is on how to compute the result, that is, on identifying reduction strategies with good
properties, then only few abstract techniques are currently available (we mention [21, 36, 37],
[52](Ch.8), and [2])—this paper proposes a new one.

Factorization. The most basic property about how to compute is factorization, whose
paradigmatic example is the head factorization theorem of the λ-calculus (theorem 11.4.6 in

© Beniamino Accattoli, Claudia Faggian, Giulio Guerrieri;
licensed under Creative Commons License CC-BY

29th EACSL Annual Conference on Computer Science Logic (CSL 2021).
Editors: Christel Baier and Jean Goubault-Larrecq; Article No. 22; pp. 22:1–22:25

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.CSL.2021.22
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

22:2 Factorize Factorization

Barendregt’s book [11]): every β-reduction sequence t −→∗β u can be re-organized/factorized
so as to first reducing head redexes and then everything else—in symbols t→

h
∗→
¬h
∗ u.

The study of factorization in λ-calculus goes back to Rosser [48]. Here, we adopt Melliès
terminology [37]; please be aware that factorization results are sometimes referred to as
semi-standardization (Mitschke in [41]), or postponement ([52]), and often simply called
standardization—standardization is however a more sophisticated property (sketched below)
of which factorization is a basic instance.

According to Melliès [37], the meaning of factorization is that the essential part of a
computation can always be separated from its junk. Let’s abstract the role of head reduction,
by assuming that computations consists of steps →e which are in some sense essential, and
steps →i which are not. Factorization says that every rewrite sequence t →∗ s can be
factorized as t→e ∗ u→i

∗ s, i.e., as a sequence of essential steps followed by inessential ones.
Well known examples of essential reductions are head and leftmost-outermost reduction

for the λ-calculus (see Barendregt [11]), or left and weak reduction for the call-by-value
λ-calculus (see Plotkin [44] and Paolini and Ronchi Della Rocca [47]).

Very much as confluence, factorization is a non-trivial property of λ-calculi; proofs require
techniques such as finite developments [15, 52], labeling [35, 29], or parallel reduction [51].

Uses of Factorization. Factorization is commonly used as a building block in proving more
sophisticated properties of the how-to-compute kind. It is often the main ingredient in proofs
of normalization theorems [11, 51, 27, 3], stating that a reduction strategy reaches a normal
form whenever one exists. Leftmost-outermost normalization is a well known example.

Another property, standardization, generalizes factorization: reduction sequences can be
organized with respect to an order on redexes, not just with respect to the distinction essen-
tial/inessential. It is an early result that factorization can be used to prove standardization:
iterated head factorizations provides what is probably the simplest way to prove Curry and
Feys’ left-to-right standardization theorem, via Mitschke’s argument [41].

Additionally, the independence of some computational tasks, such as garbage collection,
is often modeled as a factorization theorem.

Contributions of this Paper. In this paper we propose a technique for proving in a modular
way factorization theorems for compound higher-order systems, such as those obtained by
extending the λ-calculus with advanced features. The approach can be seen as an analogous
for factorization of the classical technique for confluence based on Hindley-Rosen lemma,
which we discuss in the next paragraphs. Mimicking the use of Hindley-Rosen lemma is
natural, yet to our knowledge such an approach has never been used before, at least not in
the λ-calculus literature. Perhaps this is because a direct transposition of Hindley-Rosen
technique does not work with β reduction, as we discuss below and in Sect. 3.

After developing a sharper technique, we apply it to various known extensions of the
λ-calculus which do not fit into easily manageable categories of rewriting systems. In all our
case studies, our novel proofs are neat, concise, and simpler than the originals.

Confluence via Hindley-Rosen. Let’s consider confluence. The simplest modular technique
to establish it is based on Hindley-Rosen lemma, which states that the union of two confluent
reductions →1 and →2 is confluent if →1 and →2 satisfy a commutation property. This is
the technique used in Barendregt’s book for proving confluence of →βη (Thm. 3.3.9 in [11]),
where it is also stressed that the proof is simpler than Curry and Feys’ original one.

Accattoli, Faggian, Guerrieri 22:3

While the result is basic, Hindley-Rosen technique provides a powerful tool to prove
confluence of compound systems. In the literature of λ-calculus, we mention for instance its
use in the linear-algebraic λ-calculus [7], the probabilistic λ-calculus [19], the Λµ-calculus
[50], the shuffling calculus [14], the λ-calculus extended with lists [46] or pattern-matching
[13], or with a let construct [6]. It is worth to spell-out the gain. Confluence is often a
non-trivial property to establish—when higher-order is involved, the proof of confluence
requires sophisticated techniques. The difficulty compounds when extending the λ-calculus
with new constructs. Still, the problem is often originated by β reduction itself, which
encapsulates the higher-order features of the computation. By using Hindley-Rosen lemma,
confluence of β is used as a black box : one relies on that—without having to prove it again—to
show that the extended calculus is confluent.

Hindley-Rosen and Sufficient Conditions. There is a subtle distinction between Hindley-
Rosen lemma, and what we refer to as Hindley-Rosen technique. Hindley-Rosen lemma
reduces confluence of a compound system to commutation of the components—the modules.
To establish commutation, however, is a non-trivial task, because it is a global property, that is,
it quantifies over all sequences of steps. The success of the lemma in the λ-calculus literature
stems from the existence of easy to check conditions which suffice to prove commutation. All
the examples which we have mentioned above indeed satisfy Hindley’s strong commutation
property [26] (Lemma 3.3.6 in [11]), where at most one reduction—but not both—may
require multiple steps to close a diagram; commutation follows by a finitary tiling argument.
Strong commutation turns Hindley-Rosen lemma into an effective, concrete proof technique.

Modular Factorization, Abstractly. Here, we present a modular approach to factorization
inspired by the Hindley-Rosen technique. A formulation of Hindley-Rosen lemma for fac-
torization is immediate, and is indeed folklore. But exactly as for confluence, this reduces
factorization of a compound system to a property that is difficult to establish, without
a real gain. The crucial point is finding suitable conditions that can be used in practice.
The issue here is that the natural adaptation of strong commutation to factorization is—in
general—not verified by extensions of the λ-calculi, as it does not interact well with β (see
Ex. 3.2 in Sect. 3). We identify an alternative condition—called linear swap—which is
satisfied by a large variety of interesting examples, turning the approach into an effective,
concrete technique. Testing the linear swap condition is easy and combinatorial in nature,
as it is a local property, in the sense that only single steps (rather than sequences of steps)
need to be manipulated. This holds true even when the modules are not confluent, or
non-terminating. The other key point in our approach is that we assume the modules to
be factorizing, therefore we can use their factorization—that may require non-trivial proof
techniques such as parallel reductions or finite developments—as a black box.

Modular Factorization, Concretely. We then focus on our target, how to establish factor-
ization results for extensions of the λ-calculus. Concretely, we start from β reduction, or its
call-by-value counterpart βv, and allow the calculus to be enriched with extra rules. Here
we discover a further striking gain: for common factorization schemas such as head or weak
factorization, verifying the required linear swap conditions reduces to checking a single case,
together with the fact that the new rule behaves well with respect to substitution. The test
for modular factorization which we obtain is a ready-to-use and easy recipe that can be
applied in a variety of cases.

We illustrate our technique by providing several examples, chosen to stress the indepen-
dence of the technique from other rewriting properties. In particular, we give a new and

CSL 2021

22:4 Factorize Factorization

arguably simpler proof of two results from the literature. The first is head factorization for
the non-deterministic λ-calculus by de’ Liguoro and Piperno [16], that extends the λ-calculus
with a choice operator ⊕. It is a non confluent calculus, and it is representative of the class
of λ-calculi extended with a commutative effect, such as probabilistic choice; indeed, most
features and all issues are already present there, see [32] for a thorough discussion.

The second is a new, simplified proof of factorization for the shuffling calculus—a
refinement of the call-by-value λ-calculus due to Carraro and Guerrieri [14], whose left
factorization is proved by Guerrieri, Paolini, and Ronchi della Rocca in [23]. In this case the
λ-calculus is extended with extra rules but they are not associated to a new operator. The
resulting calculus is subtle, as it has critical pairs.

In both cases, the new proof is neat, conceptually clear, and strikingly short. The reason
why our proofs are only a few lines long, whereas the originals require several pages, is exactly
that there is no need to "prove again" factorization of β or βv. We just show that β (resp.
βv) interacts well with the new rules.

Further Applications: Probabilistic λ-calculi. The investigation in this paper was triggered
by concrete needs, namely the study of strategies for probabilistic λ-calculi [19, 34]. The
probabilistic structure adds complexity, and indeed makes the study of factorization painful—
exposing the need for tools to make such an analysis more manageable. Our technique
smoothly applies, providing new concise proofs that are significantly simpler than the
originals—indeed surprisingly simple. These results are however only overviewed in this
paper: we sketch the application to the call-by-value probabilistic calculus by Faggian and
Ronchi della Rocca [19], leaving the technical details in Appendix B. The reason is that, while
the application of our technique is simple, the syntax of probabilistic λ-calculi is not—because
reduction is defined on (monadic) structures representing probability distributions over terms.
Aiming at making the paper accessible within the space limits, we prefer to focus on examples
in a syntax which is familiar to a wide audience. Indeed, once the technique is understood,
its application to other settings is immediate, and in large part automatic.

A Final Remark. Like Hindley-Rosen for confluence, our technique is sufficient but not
necessary to factorization. Still, its features and wide range of application make it a
remarkable tool to tame the complexity which is often associated to the analysis of advanced
compound calculi. By emphasizing the benefits of a modular approach to factorization, we
hope to prompt the development of even more techniques.

Related work. To our knowledge, the only result in the literature about modular techniques
for factorization is Accattoli’s technique for calculi with explicit substitutions [2], which relies
on termination hypotheses. Our linear swap condition (page 8) is technically the same as his
diagonal-swap condition. One of the insights at the inception of this work is exactly that
termination in [2] is used only to establish factorization of each single module, but not when
combining them. Here we assume modules to be factorizing, therefore avoiding termination
requirements, and obtaining a more widely applicable technique.

Van Oostrom’s decreasing diagrams technique [57] is a powerful and inherently modular
tool to establish confluence and commutation. Surprisingly, it has not yet been used for
factorization, but steps in this direction have been presented recently [56].

A divide-and-conquer approach is well-studied for termination. The key point is finding
conditions which guarantee that the union of terminating relations is terminating. Several have
been studied [10, 20]; the weakest such condition, namely →2 · →1⊆→1 ∪ →2 ·(→1 ∪ →2)∗,
is introduced by Doornbos and von Karger [18], and then studied by Dershowitz [17], under

Accattoli, Faggian, Guerrieri 22:5

the name of lazy commutation, and by van Oostrom and Zantema [59]. Interestingly, lazy
commutation is similar to the linear swap condition.

Finally, a somehow orthogonal approach to study extensions of a rewriting system, which
is isolating syntactical classes of term rewriting systems that always satisfy a property. While
confluence is the most studied property (e.g., [52], Ch 10.4), factorization and standardization
are also investigated, in particular for left-to-right standardization ([52], Ch. 8.5.7).

2 Preliminaries

In this section we start by recalling some standard definitions and notations in rewriting
theory (see e.g. [52] or [9]); we provide an overview of commutation, confluence, and
factorization. Both confluence and factorization are forms of commutation.

Basics. An abstract rewriting system (ARS) (see [52], Ch.1) is a pair A = (A,−→) consisting
of a set A and a binary relation → on A whose pairs are written t −→ s and called steps. We
denote→∗ (resp. →=) the transitive-reflexive (resp. reflexive) closure of→; we denote← the
reverse relation of →, i.e. u← t if t→ u. If →1,→2 are binary relations on A then →1 · →2
denotes their composition, i.e. t→1 · →2 s iff there exists u ∈ A such that t→1 u→2 s. We
write (A, {→1,→2}) to denote the ARS (A,→) where → = →1 ∪ →2. We freely use the
fact that the transitive-reflexive closure of a relation is a closure operator, i.e. satisfies

→⊆→∗, (→∗)∗ = →∗, →1 ⊆ →2 implies →∗1 ⊆ →∗2 . (Closure)

The following property is an immediate consequence:

(→1 ∪ →2)∗ = (→∗1 ∪ →∗2)∗. (TR)

Local vs Global Properties. An important distinction in rewriting theory is between local
and global properties. A property of term t is local if it is quantified over only one-step
reductions from t; it is global if it is quantified over all rewrite sequences from t. Local
properties are easier to test, because the analysis (usually) involves a finite number of cases.

Commutation. Two relations →1 and →2 on A commute if ←1
∗ · →2

∗ ⊆ →2
∗ · ←1

∗.

Confluence. A relation → on A is confluent if it commutes with itself. A classic tool to
modularize the proof of confluence is Hindley-Rosen lemma. Confluence of two relations →1
and →2 does not imply confluence of →1 ∪ →2, however it does if they commute.

I Lemma (Hindley-Rosen). Let →1 and →2 be relations on the set A. If →1 and →2 are
confluent and commute with each other, then →1 ∪ →2 is confluent.

Easy-to-Check Conditions for Hindley Rosen. Commutation is a global condition, which
is difficult to test. What turns Hindley-Rosen lemma into an effective, usable technique, is
the availability of local, easy-to-check sufficient conditions. One of the simplest but most
useful such conditions is Hindley’s strong commutation [26]:

←1 · →2 ⊆ →2
∗ · ←1

= (Strong Commutation)

I Lemma 2.1 (Local test for commutation [26]). Strong commutation implies commutation.

All the extensions of λ-calculus we cited at page 2 (namely [11, 7, 19, 50, 14, 46, 13, 6]) prove
confluence by using Hindley-Rosen lemma via strong commutation (possibly in its weaker
diamond-like form ←1 · →2 ⊆ →2

= · ←1
=).

CSL 2021

22:6 Factorize Factorization

Factorization. We now recall definitions and basic facts on the rewriting property at the
center of this paper, factorization. Let A = (A, {→e ,→i }) be an ARS.

The relation → = →e ∪ →i satisfies e-factorization, written Fact(→e ,→i), if

Fact(→e ,→i) : (→e ∪ →i)∗ ⊆ →e
∗ · →i

∗ (Factorization)

The relation →i postpones after →e , written PP(→e ,→i), if

PP(→e ,→i) : →i
∗ · →e

∗ ⊆ →e
∗ · →i

∗. (Postponement)

Postponement can be formulated in terms of commutation, and viceversa, since clearly
(→i postpones after →e) if and only if (←i commutes with →e). Note that reversing →i
introduce an asymmetry between the two relations. It is an easy result that e-factorization
is equivalent to postponement, which is a more convenient way to express it. The following
equivalences—which we shall use freely—are all well known.

I Lemma 2.2. For any two relations →e ,→i the following statements are equivalent:
1. Semi-local postponement: →i

∗ · →e ⊆ →e ∗ · →i
∗ (and its dual →i · →e

∗ ⊆ →e ∗ · →i
∗).

2. Postponement: PP(→e ,→i).
3. Factorization: Fact(→e ,→i).

Another property that we shall use freely is the following, which is immediate by the
definition of postponement and property TR (page 5).

I Property 2.3. Given a relation ◦→i such that ◦→i
∗ =→i

∗, PP(→e ,→i) if and only if PP(→e , ◦→i).

A well-known use of the above is to instantiate ◦→i with a notion of parallel reduction ([51]).

Easy-to-Check Sufficient Condition for Postponement. Hindley first noted that a local
property implies postponement, hence factorization [26]. It is immediate to recognize that
the property below is exactly the postponement analog of strong commutation in Lemma 2.1;
indeed it is the same expression, with →i :=←1 and →e :=→2.

We say that →i strongly postpones after →e , if

SP(→e ,→i) : →i · →e ⊆ →e
∗ · →i

= (Strong Postponement)

I Lemma 2.4 (Local test for postponement [26]). Strong postponement implies postponement:

SP(→e ,→i) implies PP(→e ,→i), and so Fact(→e ,→i).

Strong postponement is at the heart of several factorization proofs. However (similarly to
the diamond property for confluence) it can rarely be used directly, because most interesting
relations—e.g. β reduction in λ calculus—do not satisfy it. Still, its range of application
hugely widens by using Lemma 2.3.

It is instructive to examine strong postponement with respect to β reduction; this allows
us also to recall why it is difficult to establish head factorization for the λ-calculus.

I Example 2.5 (λ-calculus and strong postponement). In view of head factorization, the β
reduction is decomposed in head reduction →

h β
and its dual →

¬h β
, that is →β = →

h β
∪ →
¬h β

.
To prove head factorization is non trivial precisely because SP(→

h β
,→
¬h β

) does not hold.
Consider the following example: (λx.xxx)(Iz) →

¬h β
(λx.xxx)z →

h β
zzz. The sequence

→
¬h
→
h

can only postpone to a reduction sequence of shape →
h
→
h
→
¬h
→
¬h

Accattoli, Faggian, Guerrieri 22:7

(λx.xxx)(Iz)→
h β

(Iz)(Iz)(Iz)→
h β

z(Iz)(Iz) →
¬h β

zz(Iz) →
¬h β

zzz

A solution is to compress sequences of→
¬h

by introducing an intermediate relation ◦→
¬h

(internal
parallel reduction) such that ◦→

¬h
∗ =→
¬h β

∗ and which does verify strong postponement. This is
indeed the core of Takahashi’s technique [51]. All the work in [51] goes into defining parallel
reductions, and proving SP(→

h β
, ◦→
¬h

). One indeed has ◦→
¬h
· →

h β
⊆ →

h β
· →

h β
∗ · ◦→
¬h
.

3 Modularizing Factorization

All along this section, we assume to have two relations →α,→γ on the same set A, such that

→α = →e α ∪ →i α and →γ = →e γ ∪ →i γ .

We define →i := (→i α ∪ →i γ) and →e := (→e α ∪ →e γ). Clearly →α ∪ →γ = →i ∪ →e . Our goal
is obtaining a technique in the style of Hindley-Rosen’s for confluence, to establish that if
→α,→γ are e-factorizing then their union also is, that is, Fact(→e ,→i) holds.

Issues. In spite of the large and fruitful use in the λ-calculus literature of Hindley-Rosen
technique to simplify the analysis of confluence, we are not aware of any similar technique in
the analysis of factorization. In this section we explain why a transposition of the technique
is not immediate when β reduction is involved.

A direct equivalent of Hindley-Rosen lemma for commutation is folklore. An explicit
proof is in [57]. Formulated in terms of postponement we obtain the following statement.

I Lemma 3.1 (Hindley-Rosen transposed to factorization). Assume →α and →γ are e-
factorizing relations. Their union →α ∪ →γ satisfies Fact(→e ,→i) if

PP(→e γ ,→i α) : →
i α
∗ · →e γ

∗ ⊆ →e γ
∗ · →

i α
∗ and PP(→e α,→i γ) : →

i γ
∗ · →e α

∗ ⊆ →e α
∗ · →

i γ
∗ (#)

Exactly as Hindley-Rosen lemma, the modularization lemma above is of no practical use
by itself, as the pair of conditions (#) one has to test are as global as the original problem.
What we need is to have local conditions (akin to strong commutation) to turn the lemma
into a usable technique. One obvious choice is strong postponement:

SP(→e γ ,→i α) : →
i α
· →e γ ⊆ →e γ

∗ · →
i α

= and SP(→e α,→i γ) : →
i γ
· →e α ⊆ →e α

∗ · →
i γ

= . (##)

Clearly, ## implies # (Lemma 2.4). We may hope to have all the elements for a
postponement analog of Hindley-Rosen technique, but it is not the case. Unfortunately,
conditions ## usually do not hold in extensions of the λ-calculus. Let us illustrate the issue
with an example, the non-deterministic λ-calculus, that we shall develop formally in Sect. 5.

I Example 3.2 (Issues). Consider the extension of the language of λ-terms with a construct
⊕ which models non-deterministic choice. The term ⊕pq non-deterministically reduces to
either p or q, i.e. ⊕pq →⊕ p or ⊕pq →⊕ q. The calculus (Λ, {→β ,→⊕}) has two reduction
rules, →β and →⊕. For both, we define head and non-head steps as usual.

Consider the following sequence: (λx.xxx)(⊕pq) →
¬h ⊕

(λx.xxx)p→
h β

ppp. This sequence
→
¬h ⊕

· →
h β

can only postpone to a reduction sequence of shape →
h β
· →

h ⊕
· →
¬h ⊕

· →
¬h ⊕

:

(λx.xxx)(⊕pq)→
h β

(⊕pq)(⊕pq)(⊕pq)→
h ⊕

p(⊕pq)(⊕pq) →
¬h ⊕

pp(⊕pq) →
¬h ⊕

ppp.

Since the β-step duplicates the redex ⊕pq, the condition SP(→
h β
,→
¬h ⊕

) :→
¬h ⊕
→
h β
⊆ →

h β
∗ →
¬h ⊕

=

does not hold. The phenomenon is similar to Ex. 2.5, but now moving to parallel reduction is

CSL 2021

22:8 Factorize Factorization

not a solution: the problem here is not just compressing steps, but the fact that by swapping
→
¬h ⊕

and →
h β

, a third relation →
h ⊕

appears.

Note that the problem above is specific to factorization, and does not appear with confluence.

A Robust Condition for Modular Factorization. Inspired by Accattoli’s study of factoriza-
tion for λ-calculi with explicit substitutions [2], we consider an alternative sufficient condition
for modular factorization, which holds in many examples, as the next sections shall show.

We say that →i α linearly swaps with →e γ if

lSwap(→i α,→e γ) : →i α · →e γ ⊆ →e γ · →
∗
α (Linear Swap)

Note that, on the right-hand side, the relation is →∗α, not →i α. This small change will
make a big difference, and overcome the issue we have seen in Ex. 3.2 (note that there
→i β→h ⊕ ⊆ →h β→

∗
⊕ holds). Perhaps surprisingly, this easy-to-check condition, which is local

and linear in →e γ , suffices, and holds in a large variety of cases. Moreover, it holds directly
(even with β) that is, without the mediating role of parallel reductions (as it is the instead
the case of Takahashi’s technique, see Ex. 2.5).

We finally obtain a modular factorization technique, via the following easy property.

I Lemma 3.3. →a · →b ⊆ →b · →∗c implies →∗a · →b ⊆ →b · →∗c .

I Theorem 3.4 (Modular factorization). Let →α = (→e α ∪ →i α) and →γ = (→e γ ∪ →i γ)
be e-factorizing relations. The union →α ∪ →γ satisfies e-factorization Fact(→e ,→i), for
→e := →e α ∪ →e γ , and →i := →i α ∪ →i γ , if the following linear swaps hold:

lSwap(→i α,→e γ) : →i α · →e γ ⊆ →e γ · →
∗
α and lSwap(→i γ ,→e α) : →i γ · →e α ⊆ →e α · →

∗
γ

Proof. We prove that the assumptions imply SP(→e ,→i α
∗ ∪ →i γ

∗), hence PP(→e ,→i α
∗ ∪ →i γ

∗)
(by Lemma 2.4). Therefore PP(→e ,→i) by Lemma 2.3 (because (→i α ∪ →i γ)∗ = (→i α

∗ ∪ →i γ
∗)∗

by property TR), and so Fact(→e ,→i) holds.
To verify SP(→e α ∪ →e γ ,→i α

∗ ∪ →i γ
∗), we observe that the following holds:

→i k
∗ · →e j ⊆ (→e j ∪ →e k)∗· →i k

∗ for all k, j ∈ {α, γ}

Case j = k. This is immediate by e-factorization of →α and →γ , and by Lemma 2.2.1.
Case j 6= k. lSwap(→i α,→e γ) implies (→i α)∗· →e γ ⊆ →e γ · →∗α, by Lemma 3.3. Since →α

e-factorizes, we obtain (→i α)∗· →e γ ⊆ →e γ · →e α∗ · →i α
∗. Similarly for lSwap(→i γ ,→e α). J

Note that in the proof of Theorem 3.4, the assumption that→α and→γ factorize is crucial.
Using that, together with Lemma 3.3, we obtain SP(→e ,→i α

∗), that is, →i α
∗ postpones after

both e-steps, (and similarly for →i γ
∗). Note also that lSwap(→i ,→e)—taken alone—does not

imply PP(→e ,→i). For instance, let’s consider again Ex. 2.5. It is clear that lSwap(→
¬h β

,→
h β

)
holds and yet it does not imply Fact(→

h β
,→
¬h β

). Stronger tools, such as parallel reduction or
finite development are needed here—there is no magic.

The next sections apply the modularization result to various λ-calculus extensions.

Accattoli, Faggian, Guerrieri 22:9

Linear Postponement. We collect here two easy properties which shall simplify the proof
of factorization in several of the case studies (use Lemma 3.3).

I Lemma 3.5 (Linear postponement).
1. (→i · →e ⊆ →e · →i

∗) ⇒ SP(→e ,→i
∗) ⇒ Fact(→e ,→i).

2. (→i · →e ⊆ →e · →
=) ⇒ SP(→e ,→i) ⇒ Fact(→e ,→i).

Factorization vs. Confluence. Factorization and confluence are independent properties. In
Sect. 5 we apply our modular factorization technique to a non-confluent calculus. Conversely,
βη, which is confluent, does not verify head nor leftmost factorization, even though both β
and η—separately—do.

4 Extensions of the Call-by-Name λ-Calculus: Head Factorization

We shall study factorization theorems for extensions of both of the call-by-name (shortened to
CbN) and of the call-by-value (CbV) λ-calculus. The CbN λ-calculus—also simply known as
λ-calculus—is the set of λ-terms Λ, equipped with the β-reduction, while the CbV λ-calculus
is the set of λ-terms Λ, equipped with the βv-reduction.

In this section, we first revise the language of the λ-calculus; we then consider the case
when the calculus is enriched with new operators, such as a non-deterministic choice or a
fix-point operator—so, together with β, we have other reduction rules. We study in this
setting head factorization, which is by far the most important and common factorization
scheme in λ-calculus. We show that here Theorem 3.4 further simplifies, providing an easy,
ready-to-use test for head factorization of compound systems (Proposition 4.5). Indeed,
verifying the two linear swap conditions of Theorem 3.4 now reduces to a single, simple test.
Such a simplification only relies on β and on the properties of contextual closure; it holds
independently from the specific form of the extra rule.

4.1 The (Applied) λ-Calculus
Since in the next sections we shall extend the λ-calculus with new operators, such as a
non-deterministic choice ⊕ or a fix-point Y , we allow in the syntax a set of constants, meant
to represent such operators. So, for instance, in Sect. 5 we shall see ⊕ as a constant. This way
factorization results with respect to β-reduction can be seen as holding also in the λ-calculus
with extended syntax—this is absolutely harmless.

Note that despite the fact that the classic Barendregt’s book [11] defines the λ-calculus
without constants (the calculus is pure), other classic references such as Hindley and Seldin’s
book [25] or Plotkin [44] do include constants in the language of terms—thus there is nothing
exotic in our approach. Following Hindley and Seldin, when the set of constants is empty,
the calculus is called pure, otherwise applied.

The Language. The following grammars generate λ-terms and contexts.

t, p, q, r ::= x | c | λx.t | tt (terms Λ) C ::= 〈 〉 | tC | Ct | λx.C (contexts)

where x ranges over a countable set of variables, c over a disjoint (finite, infinite or empty) set
of constants. Variables and constants are atoms, terms of shape pq are applications, and λx.p
abstractions. If the constants are c1, ..., cn, the set of terms is sometimes noted as Λc1...cn

.
The plugging C〈t〉 of a term t into a context is the operation replacing the only occurrence

of a hole 〈 〉 in C with t, potentially capturing free variables of C.

CSL 2021

22:10 Factorize Factorization

A reduction step →γ is defined as the contextual closure of a root relation 7→γ on Λ,
which is called a rule. Explicitly, if r 7→γ r

′, then t→γ s holds if t = C〈r〉 and s = C〈r′〉, for
some context C. The term r is called a γ-redex. Given two rules 7→α, 7→γ on Λ, the relation
→αγ is →α ∪ →γ , which can equivalently be defined as the contextual closure of 7→α ∪ 7→γ .

The (CbN) λ-calculus is (Λ,→β), the set of terms together with β-reduction →β ,
defined as the contextual closure of the β-rule: (λx.p)q 7→β p{x:=q} where p{x:=q} denotes
capture-avoiding substitution. We silently work modulo α-equivalence.

Properties of the Contextual Closure. Here we recall basic properties about contextual
closures and substitution, preparing the ground for the simplifications studied next.

A relation # on terms is substitutive if

r # r′ implies r{x:=q}# r′{x:=q}. (substitutive)

An obvious induction on the shape of terms shows the following (see Barendregt [11], p. 54).

I Property 4.1 (Substitutive). Let →γ be the contextual closure of 7→γ .
1. If 7→γ is substitutive then →γ is substitutive: p→γ p

′ implies p{x:=q} →γ p
′{x:=q}.

2. If q →γ q
′ then t{x:=q} →∗γ t{x:=q′}.

We recall a basic but key property of contextual closures. If a step →γ is obtained by closure
under non-empty context of a rule 7→γ , then it preserves the shape of the term:

I Property 4.2 (Shape preservation). Assume t = C〈r〉 → C〈r′〉 = t′ and that context C is
non-empty. The term t′ is an application (resp. an abstraction) if and only if t is.

Notice that since the closure under empty context of 7→γ is always an essential step (whatever
head, left, or weak), Property 4.2 implies that non-essential steps always preserve the shape
of terms—we spell this out in Property A.1 and A.2 in the Appendix. Please notice that we
shall often write 7→γ to indicate the step →γ which is obtained by empty contextual closure.

Head Reduction. Head contexts are defined as follows:

H ::= λx1 . . . λxk.〈 〉t1 . . . tn (head contexts)

where k ≥ 0 and n ≥ 0. A non-head context is a context which is not head. A head step
→
h γ

(resp. non-head step →
¬h γ

) is defined as the closure under head contexts (resp. non-head
contexts) of rule 7→γ . Obviously, →γ = →

h γ
∪ →
¬h γ

.
Note that the empty context 〈 〉 is a head context. Therefore 7→γ ⊆ →h γ holds (a fact

which we shall freely use) and Property 4.2 always applies to non-head steps.

4.2 Call-by-Name: Head Factorization, Modularly.
Head factorization is of great importance for the theory of the CbN λ-calculus, which is why
head factorization for →β is well studied. If we consider a calculus (Λ,→β ∪ →γ), where
→γ is a new reduction added to β, our modular technique (Theorem 3.4) states that the
compound system→β ∪ →γ satisfies head factorization if→γ does, and both lSwap(→

¬h β
,→

h γ
)

and lSwap(→
¬h γ

,→
h β

) hold. We show that in the head case our technique simplifies even more,
reducing to the test in Proposition 4.5.

First, we observe that in this case, any linear swap condition can be tested by considering
for the head step only the root relation 7→, that is, only the closure of 7→ under empty
context, which is a head step by definition. This is expressed in the following lemma, where
we include also a variant, that shall be useful later on.

Accattoli, Faggian, Guerrieri 22:11

I Lemma 4.3 (Lifting root linear swaps). Let 7→α, 7→γ be root relations on Λ.
1. →
¬h α

· 7→γ⊆ →h γ · →
∗
α implies lSwap(→

¬h α
,→

h γ
).

2. Similarly, →
¬h α

· 7→γ⊆ →h γ · →
=
α implies →

¬h α
· →γ⊆ →h γ · →

=
α .

Second, since we are studying →β ∪ →γ , one of the linear swaps is lSwap(→
¬h γ

,→
h β

). We
show that, whatever is →γ , it linearly swaps with →

h β
as soon as 7→γ is substitutive.

I Lemma 4.4 (Swap with →
h β

). If 7→γ is substitutive then lSwap(→
¬h γ

,→
h β

) holds.

The proofs of these two lemmas are in Appendix A.1.
Summing up, since head factorization for β is known, we obtain the following test to verify

that the compound system→β ∪ →γ satisfies head factorization Fact(→
h β
∪ →

h γ
,→
¬h β
∪ →
¬h γ

).

I Proposition 4.5 (A test for modular head factorization). Let →β be β-reduction and →γ be
the contextual closure of a rule 7→γ . Their union →β ∪ →γ satisfies head factorization if:
1. Head factorization of →γ : Fact(→

h γ
, →
¬h γ

).
2. Root linear swap: →

¬h β
· 7→γ ⊆ →h γ · →

∗
β.

3. Substitutivity: 7→γ is substitutive.

Note that none of the properties concerns →β alone, as we already know that head fac-
torization of →β holds. In Sect. 5 we shall use our test (Proposition 4.5) to prove head
factorization for the non-deterministic λ-calculus. The full proof is only a few lines long.

We conclude by observing that Lemma 4.3 gives either a proof that the swap conditions
hold, or a counter-example. Let us give an example of this latter use.

I Example 4.6 (Finding counter-examples). The test of Proposition 4.5 can also be used to
provide a counter-example to head factorization when it fails. Let’s instantiate →γ with
→η, that is, the contextual closure of rule λx.tx 7→η t if x /∈ fv(t). Now, consider the root
linear swap: t := λx.(II)(Ix) →

¬h β
λx.(II)x 7→η II =: s, where I := λz.z. Note that t has

no →
h η

step, and so the two steps cannot be swapped. The reduction sequence above is a
counter-example to both head and leftmost factorization for βη. Start with the head (and
leftmost) redex II: λx.(II)(Ix)→

h βη
λx.I(Ix). From λx.I(Ix), there is no way to reach s.

We recall that βη still satisfies leftmost normalization—the proof is non-trivial [29, 51, 58, 28].

5 The Non-Deterministic λ-Calculus Λ⊕

De’ Liguoro and Piperno’s non-deterministic λ-calculus Λ⊕ is defined in [16] by extending the
λ-calculus with a new operator ⊕ whose rule models non-deterministic choice. Intuitively,
t⊕ p non-deterministically rewrites to either t or p. Notably, Λ⊕ is not confluent, hence it is
a good example of the fact that confluence and factorization are independent properties.

We briefly recall Λ⊕ and its features, then use our technique to give a novel and neat
proof of de’ Liguoro and Piperno’s head factorization result (Cor. 2.10 in [16]).

Syntax. We slightly depart from the presentation in [16], as we consider ⊕ as a constant,
and write ⊕tp rather than t⊕ p, working as usual for the λ-calculus with constants (see e.g.,

CSL 2021

22:12 Factorize Factorization

[25], or [11], Sec. 15.3)1. Terms and contexts are generated by:

t, p, q, r ::= x | ⊕ | λx.t | tp (terms Λ⊕) C ::= 〈 〉 | tC | Ct | λx.C (contexts)

As before, →β denotes β-reduction, while the rewrite step →⊕ is the contextual closure of
the following non-deterministic rule: ⊕tp 7→⊕ t and ⊕tp 7→⊕ p.

Subtleties. The calculus (Λ⊕,→β ∪ →⊕) is non trivial. Of course, → is not confluent.
Moreover, the following examples from [16] show that permuting β and ⊕ steps is delicate.
→⊕ creates β-redexes. For instance, ((λx.x)⊕ y)z →⊕ (λx.x)z →β z, hence the →⊕-step
cannot be postponed after →β .
Choice duplication. Postponing →β after →⊕ is also problematic, because β-steps may
multiply choices, introducing new results: flipping a coin and duplicating the result
is not equivalent to duplicating the coin and then flipping twice. For instance, let
t = (λx.xx)(⊕pq). Duplicating first one may have t→β (⊕pq)(⊕pq)→⊕ q(⊕pq)→⊕ qp
while flipping first one has t→⊕ (λx.xx)p→β pp or t→⊕ (λx.xx)q →β qq but in both
cases qp cannot be reached.

These examples are significant as the same issues impact any calculus with choice effects.

Head Factorization. The head (resp. non-head)2 rewrite steps →
h β

and →
h ⊕

(resp. →
¬h β

and →
¬h ⊕

) are defined as the closure by head (resp. non-head) contexts of rules 7→β and 7→⊕,
respectively. We also set →

h
:= →

h β
∪ →

h ⊕
and →

¬h
:= →

¬h β
∪ →
¬h ⊕

.
De’ Liguoro and Piperno prove that despite the failure of confluence, Λ⊕ satisfies head

factorization. They prove this result via standardization, following Klop’s technique [29].

I Theorem 5.1 (Head factorization, Cor. 2.10 in [16]). Fact(→
h
, →
¬h

) holds in the non-
deterministic λ-calculus Λ⊕.

A New Proof, Modularly. We give a novel, strikingly simple proof of Fact(→
h
,→
¬h

), simply
by proving that→β and→⊕ satisfy the hypotheses of the test for modular head factorization
(Proposition 4.5). All the ingredients we need are given by the following easy lemma.

I Lemma 5.2 (Root linear swaps). 1. t →
¬h β

p 7→⊕ q implies t 7→⊕ · →=
β q.

2. t →
¬h ⊕

p 7→⊕ q implies t 7→⊕ · →=
⊕ q.

Proof. 1. Let p = ⊕p1p2 and assume ⊕p1p2 7→⊕ pi = q, with i ∈ {1, 2}. Since t →
¬h β

p, by
Property 4.2 (as spelled-out in Property A.1), t has shape ⊕t1t2, with ⊕t1t2 →¬h β

⊕p1p2.
Therefore, either t1 →β p1 or t2 →β p2, from which t = ⊕t1t2 7→⊕ ti →=

β pi = q.
2. The proof is the same as above, just replace β with ⊕. J

I Theorem 5.3 (Testing head factorization). We have Fact(→
h
, →
¬h

) because we have:
1. Head factorization of →⊕: Fact(→

h ⊕
, →
¬h ⊕

).
2. Root linear swap: →

¬h β
· 7→⊕ ⊆ →h ⊕ · →

=
β .

3. Substitutivity: 7→⊕ is substitutive.

1 Note that there is no loss with respect to the syntax in [16], where ⊕ always comes with two arguments,
because such a constraint defines a sub-system which is closed under reduction.

2 Non-head steps are called internal (→
i
) in [16].

Accattoli, Faggian, Guerrieri 22:13

Proof. We prove the hypotheses of Proposition 4.5.
1. →
¬h ⊕

linearly postpones after→
h ⊕

because lifting the swap in Lemma 5.2.2 via Lemma 4.3.2
(with α = γ := ⊕) gives t →

¬h ⊕
p→

h ⊕
q ⊆ t→

h ⊕
· →=
⊕ q. Lemma 3.5.2 gives Factorization.

2. This is exactly Lemma 5.2.1.
3. By definition of substitution (⊕p1p2){x:=q} = ⊕(p1{x:=q})(p2{x:=q}) 7→⊕ pi{x:=q}.

J

6 Extensions of the CbV λ-Calculus: Left and Weak Factorization

Plotkin’s call-by-value (CbV) λ-calculus [44] is the restriction of the λ-calculus where β-
redexes can be fired only when the argument is a value, where values are defined by:

v ::= x | a | λx.t (values V)

The CbV λ-calculus is given by the pair (Λ,→βv
), where the reduction step →βv

is the
contextual closure of the following rule 7→βv : (λx.t)v 7→βv t{x:=v} where v is a value.

Left and Weak Reduction. In the literature on the CbV λ-calculus, factorization is con-
sidered with respect to various essential reductions. Usually, the essential reduction is weak,
i.e. it does not act under abstractions. There are three main weak schemes: reducing from
left to right, as originally done by Plotkin [44], from right to left, as done for instance by
Leroy’s ZINC abstract machine [33], or in an unspecified non-deterministic order, used for
example in [31].

Here we focus on the left(-to-right) and the (unspecified) weak schemes. Left contexts L
and weak contexts W are respectively defined by

L ::= 〈 〉 | Lt | vL W ::= 〈 〉 |Wt | tW

Given a rule 7→γ , a left step →
l γ

(resp., a weak step →w γ) is its closure by left (resp. weak)
context. A non-left step →

¬l γ
(resp. non-weak step →¬w γ) is a step obtained as the closure by

a context which is not left (resp. not weak).

Left/Weak Factorization, Modularly. For both left and weak reductions, we derive a test for
modular factorization along the same lines as the test for head factorization (Proposition 4.5).
Note that we already know that (Λ,→βv

) satisfies left and weak factorization; the former was
proved by Plotkin [44], the latter is folklore—a proof can be found in our previous work [3].

I Proposition 6.1 (A test for modular left/weak factorization). Let →βv
be βv-reduction,

→γ the contextual closure of a rule 7→γ, and e ∈ {l,w}. Their union →βv ∪ →γ satisfies
e-factorization if:
1. e-factorization of →γ : Fact(→e γ ,→¬e γ).
2. Root linear swap: →¬e βv

· 7→γ ⊆ →e γ · →∗βv
.

3. Substitutivity: 7→γ is substitutive.
The easy proof is in Appendix A.2.

7 The Shuffling Calculus

Plotkin’s CbV λ-calculus is usually considered on closed terms. When dealing with open
terms, it is well known that a mismatch between the operational and the denotational

CSL 2021

22:14 Factorize Factorization

semantics arises, as first pointed out by Paolini and Ronchi della Rocca [43, 42, 47]. The
literature contains several proposals of extensions of βv reduction to overcome this issue, see
Accattoli and Guerrieri for discussions [4]. One such refinement is Carraro and Guerrieri’s
shuffling calculus [14], which extends Plotkin’s λ-calculus with extra rules (without adding
new operators). These rules are inspired by linear logic proof nets, and are the CbV analogous
of Regnier’s σ rules [45]. Left factorization for the shuffling calculus is studied by Guerrieri,
Paolini, and Ronchi della Rocca in [23], by adapting Takahashi’s technique [51].

We recall the calculus, then use our technique to give a new proof of factorization, both
left (as in [23]) and weak (new). Remarkably, our proofs are very short, whereas the original
requires several pages (to define parallel reductions and prove their properties).

The Syntax. The shuffling calculus is simply Plotkin’s calculus extended with σ-reduction
→σ , that is, the contextual closure of the root relation 7→σ = 7→σ1 ∪ 7→σ3 , where

(λx.t)us 7→σ1 (λx.ts)u if x /∈ fv(s) v((λx.t)u) 7→σ3 (λx.vt)u if x /∈ fv(v)

We write →σi
for the contextual closure of 7→σi

(so →σ = →σ1 ∪ →σ3), and −→sh=→βv
∪ →σ .

Subtleties. From a rewriting perspective, the shuffling calculus is an interesting extension
of the λ-calculus because its intricate rules do not fit into easy to manage classes of rewriting
systems. Orthogonal systems have only simple forms of overlaps of redexes. While the
λ-calculus is an orthogonal system, the σ-rules introduce non-trivial overlaps such as the
following ones. Setting I := λx.x and δ := λx.xx, the term δIδ is a σ1-redex and contains
the βv-redex δI; the term δ(Iδ)(xI) is a σ1-redex and contains the σ3-redex δ(Iδ), which
contains in turn the βv-redex Iδ.

Left and Weak Factorization. Despite all these traits, the shuffling calculus has good
properties, such as confluence [14], and left factorization [23]. Moreover, →σ is terminating
[14]. The tests developed in the previous section allow us to easily prove both left and weak
factorization. We check the hypotheses of Proposition 6.1; all the ingredients we need are in
Lemma 7.1 (the easy details are in Appendix A.3). Note that the empty context is both a
left and a weak context, hence t 7→σi

u implies both t→
l σi

u and t→w σi
u.

I Lemma 7.1 (Root linear swaps). Let e ∈ {l,w} and i ∈ {1, 3}. Then:
1. →¬e βv

· 7→σi
⊆ 7→σi

· →βv
.

2. →¬e σ · 7→σi
⊆ 7→σi

· →σ.

I Theorem 7.2 (Testing left (weak) factorization). Let e ∈ {l,w}. Fact(→e sh,→¬e sh) holds, as:
1. Left (resp. weak) factorization of →σ : Fact(→e σ,→¬e σ).
2. Root linear swap: →¬e βv

· 7→σ ⊆ →e σ · →βv
.

3. Substitutivity: 7→σi is substitutive, for i ∈ {1, 3}.

Proof. We prove the hypotheses of Proposition 6.1:
1. Left (resp. weak) factorization of →σ holds because →¬e σ linearly postpones after →e σ :

indeed, by Lemma 7.1.2 →¬e σ · 7→σ ⊆ →e σ · →σ and by contextual closure (Lemma A.3
with α = γ = σ) we have that →¬e σ · →e σ⊆→e σ · →=

σ . We conclude by Lemma 3.5.2.
2. This is Lemma 7.1.1.
3. By definition of substitution. The immediate proof is in Appendix A.3. J

Accattoli, Faggian, Guerrieri 22:15

8 Non-Terminating Relations

In this section we provide examples of the fact that our technique does not rest on ter-
mination hypotheses. We consider fixpoint operators in both CbN and CbV, which have
non-terminating reductions. Obviously, when terms are not restricted by types, the operator
is definable, so the example is slight artificial, but we hope clarifying.

There are also cases where the modules are terminating but the compound system is not;
the technique, surprisingly, still works. Accattoli gives various examples based on λ-calculi
with explicit substitutions in [2]. An insight of this paper—not evident in [2]—is that
termination is not needed to lift factorization from the modules to the compound system.

CbN Fixpoint, Head Factorization. We first consider the calculus βY := (Λ,→β ∪ →Y)
which is defined by Hindley [24]3. The reduction →Y is the contextual closure of the root
relation Y p 7→Y p(Y p). Points 1-3 below are all easily established—details in Appendix A.4.

I Proposition 8.1 (Testing head factorization for βY). →β ∪ →Y satisfies head factorization:
1. Head factorization of →Y : Fact(→

h Y, →¬h Y).
2. Root linear swap: →

¬h β
· 7→Y ⊆ →h Y · →

∗
β.

3. Substitutivity: 7→Y is substitutive.

CbV Fixpoint, Weak Factorization. We now consider weak factorization and a CbV
counterpart of the previous example. We follow Abramsky and McCusker [1], who study
a call-by-value PCF with a fixpoint operator Z. Similarly, we extend the CbV λ-calculus
with their reduction →Z , which is the contextual closure of rule Zv 7→Z λx.v(Zv)x where
v is a value. The calculus βvZ is therefore (Λ,→βv ∪ →Z). Points 1-3 below are all
immediate—details in Appendix A.4.

I Proposition 8.2 (Testing weak factorization for βvZ). →β ∪ →Z satisfies weak factorization:
1. Weak factorization of →Z : Fact(→w Z, →¬w Z).
2. Root linear swap: →¬w βv · 7→Z ⊆ →w Z · →∗βv

.
3. Substitutivity: 7→Z is substitutive.

9 Further Applications: Probabilistic Calculi

In this paper, we present our technique using examples which are within the familiar language
of λ-calculus. However the core of the technique—Theorem 3.4—is independent from a
specific syntax. It can be used in calculi whose objects are richer than λ-terms. The
probabilistic λ-calculus is a prime example.

A recent line of research [19, 34] is developing probabilistic calculi where evaluation is
not limited to a deterministic strategy. Faggian and Ronchi della Rocca [19] define two
calculi—Λcbv

⊕ and Λcbn
⊕ —which model respectively CbV and CbN probabilistic higher-order

computation, while being conservative extensions of the CbV and CbN λ-calculus. For both
calculi confluence and factorization (called standardization in [19]) hold. There is however a
deep asymmetry between the two results. Confluence is neatly proved via Hindley-Rosen

3 Head factorization of βY is easily obtained by a high-level argument, as consequence of left-normality,
see Terese [52], Ch. 8.5. The point that we want to stress here is that the validity of linear swaps is not
limited to terminating reduction, and βY provides a simple, familiar example.

CSL 2021

22:16 Factorize Factorization

technique, by relying on the fact the β (resp. βv) reduction is confluent. The proof of
factorization is instead laborious: the authors define a notion of parallel reduction for the
new calculus, and then adapt Takahashi’s technique [51]. Leventis work [34] on call-by-name
probabilistic λ-calculus suffers a similar problem; he proves factorization by relying on the
finite developments method, but the proof is equally laborious.

Our technique allows for a neat, concise proof of factorization, which reduces to only
testing a single linear swap, with no need of parallel reductions or finite developments. To
prove factorization turns out to be in fact easier than proving confluence. The technical
details—that is, the definition of the calculus and the proof—are in Appendix B.

10 Conclusions and Discussions

Summary. A well-established approach to model higher-order computation with advanced
features, is starting from the call-by-name or call-by-value λ-calculus, and enrich it with new
constructs. We propose a sharp technique to establish factorization of a compound system
from factorization of its components. As we point out, the natural transposition of Hindley-
Rosen technique for confluence does not work here, because the obtained conditions are—in
general—not validated by extensions of the λ-calculus. The turning point is the identification
of an alternative sufficient condition, called linear swap. Moreover, on common factorization
schemes such as head or weak factorization, our technique reduces to a straightforward test.
Concretely, we apply our technique to various examples, stressing its independence from
common simplifying hypotheses such as confluence, orthogonality, and termination.

Black Box and Elementary Commutations. A key feature of our technique is to take
factorization of the core relations—the modules—as black boxes. The focus is then on
the analysis of the interaction between the modules. The benefit is both practical and
conceptual: we disentangle the components—and the issues—under study. This is especially
appealing when dealing with extensions of the λ-calculus, built on top of β or βv reduction,
because often most of the difficulties come from the higher-order component, that is, β or βv
itself—whose factorization is non-trivial to prove but known to hold—rather than from the
added features.

Good illustrations of these points are our proofs of factorization. We stress that:
the proof of factorization of the compound system is independent from the specific
technique (finite developments, parallel reduction, etc.) used to prove factorization of the
modules.
to verify good interaction between the modules, it often suffices to check elementary, local
commutations—the linear swaps.

These features provide a neat proof-technique supporting the development and the analysis
of complex compound systems.

Conclusions. When one wants to model new computational features, the calculus is often
not given, but it has to be designed, in such a way that it satisfies confluence and factorization.
The process of developing the calculus and the process of proving its good properties, go
hand in hand. If the latter is difficult and prone to errors, the former also is. The black-box
approach makes our technique efficient and accessible also to working scientists who are not
specialists in rewriting. And even for the λ-calculus expert who masters tools such as finite
developments, labeling or parallel reduction, it still appears desirable to limit the amount of
difficulties. The more advanced and complex are the computational systems we study, the
more crucial it is to have reasoning tools as simple to use as possible.

Accattoli, Faggian, Guerrieri 22:17

References
1 Samson Abramsky and Guy McCusker. Call-by-value games. In Computer Science Logic,

11th International Workshop, CSL ’97, Annual Conference of the EACSL, Aarhus, Denmark,
August 23-29, 1997, Selected Papers, pages 1–17, 1997. doi:10.1007/BFb0028004.

2 Beniamino Accattoli. An abstract factorization theorem for explicit substitutions. In 23rd
International Conference on Rewriting Techniques and Applications, RTA 2012, volume 15 of
LIPIcs, pages 6–21, 2012. URL: https://doi.org/10.4230/LIPIcs.RTA.2012.6.

3 Beniamino Accattoli, Claudia Faggian, and Giulio Guerrieri. Factorization and normalization,
essentially. In Anthony Widjaja Lin, editor, Programming Languages and Systems - 17th
Asian Symposium, APLAS 2019, Nusa Dua, Bali, Indonesia, December 1-4, 2019, Proceedings,
volume 11893 of Lecture Notes in Computer Science, pages 159–180. Springer, 2019. doi:
10.1007/978-3-030-34175-6_9.

4 Beniamino Accattoli and Giulio Guerrieri. Open call-by-value. In Atsushi Igarashi, editor,
Programming Languages and Systems - 14th Asian Symposium, APLAS 2016, Hanoi, Vietnam,
November 21-23, 2016, Proceedings, volume 10017 of Lecture Notes in Computer Science,
pages 206–226, 2016. doi:10.1007/978-3-319-47958-3_12.

5 Yohji Akama. On mints’ reduction for ccc-calculus. In Typed Lambda Calculi and Applications,
International Conference on Typed Lambda Calculi and Applications, TLCA ’93, Utrecht, The
Netherlands, March 16-18, 1993, Proceedings, pages 1–12, 1993. doi:10.1007/BFb0037094.

6 Zena M. Ariola, Matthias Felleisen, John Maraist, Martin Odersky, and Philip Wadler. The
call-by-need lambda calculus. In Ron K. Cytron and Peter Lee, editors, Conference Record
of POPL’95: 22nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, San Francisco, California, USA, January 23-25, 1995, pages 233–246. ACM Press,
1995. doi:10.1145/199448.199507.

7 Pablo Arrighi and Gilles Dowek. Lineal: A linear-algebraic lambda-calculus. Log. Methods
Comput. Sci., 13(1), 2017. doi:10.23638/LMCS-13(1:8)2017.

8 Martin Avanzini, Ugo Dal Lago, and Akihisa Yamada. On probabilistic term rewriting. In
Functional and Logic Programming - 14th International Symposium, FLOPS 2018, Nagoya,
Japan, May 9-11, 2018, Proceedings, pages 132–148, 2018. doi:10.1007/978-3-319-90686-7\
_9.

9 Franz Baader and Tobias Nipkow. Term rewriting and all that. Cambridge University Press,
1998.

10 Leo Bachmair and Nachum Dershowitz. Commutation, transformation, and termination. In
8th International Conference on Automated Deduction, Oxford, England, July 27 - August 1,
1986, Proceedings, pages 5–20, 1986. doi:10.1007/3-540-16780-3_76.

11 Hendrik Pieter Barendregt. The Lambda Calculus – Its Syntax and Semantics, volume 103 of
Studies in logic and the foundations of mathematics. North-Holland, 1984.

12 Frédéric Blanqui. Size-based termination of higher-order rewriting. J. Funct. Program., 28:e11,
2018. doi:10.1017/S0956796818000072.

13 Antonio Bucciarelli, Delia Kesner, and Simona Ronchi Della Rocca. Observability = typability
+ inhabitation. CoRR, 2018. URL: http://arxiv.org/abs/1812.06009.

14 Alberto Carraro and Giulio Guerrieri. A semantical and operational account of call-by-value
solvability. In Foundations of Software Science and Computation Structures, 17th International
Conference, FoSSaCS 2014, volume 8412 of Lecture Notes in Computer Science, pages 103–118,
2014. URL: http://dx.doi.org/10.1007/978-3-642-54830-7_7.

15 H.B. Curry and R. Feys. Combinatory Logic. Number v. 1 in Combinatory Logic. North-Holland
Publishing Company, 1958.

16 Ugo de’ Liguoro and Adolfo Piperno. Non deterministic extensions of untyped lambda-calculus.
Inf. Comput., 122(2):149–177, 1995. URL: https://doi.org/10.1006/inco.1995.1145.

17 Nachum Dershowitz. On lazy commutation. In Languages: From Formal to Natural, Essays
Dedicated to Nissim Francez on the Occasion of His 65th Birthday, pages 59–82, 2009. doi:
10.1007/978-3-642-01748-3_5.

CSL 2021

https://doi.org/10.1007/BFb0028004
https://doi.org/10.4230/LIPIcs.RTA.2012.6
https://doi.org/10.1007/978-3-030-34175-6_9
https://doi.org/10.1007/978-3-030-34175-6_9
https://doi.org/10.1007/978-3-319-47958-3_12
https://doi.org/10.1007/BFb0037094
https://doi.org/10.1145/199448.199507
https://doi.org/10.23638/LMCS-13(1:8)2017
https://doi.org/10.1007/978-3-319-90686-7_9
https://doi.org/10.1007/978-3-319-90686-7_9
https://doi.org/10.1007/3-540-16780-3_76
https://doi.org/10.1017/S0956796818000072
http://arxiv.org/abs/1812.06009
http://dx.doi.org/10.1007/978-3-642-54830-7_7
https://doi.org/10.1006/inco.1995.1145
https://doi.org/10.1007/978-3-642-01748-3_5
https://doi.org/10.1007/978-3-642-01748-3_5

22:18 Factorize Factorization

18 Henk Doornbos and Burghard von Karger. On the union of well-founded relations. Logic
Journal of the IGPL, 6(2):195–201, 1998. doi:10.1093/jigpal/6.2.195.

19 Claudia Faggian and Simona Ronchi Della Rocca. Lambda calculus and probabilistic computa-
tion. In 34th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2019, Van-
couver, BC, Canada, June 24-27, 2019, pages 1–13, 2019. doi:10.1109/LICS.2019.8785699.

20 Alfons Geser. Relative Termination. PhD thesis, University of Passau, Germany, 1990. URL:
http://vts.uni-ulm.de/docs/2012/8146/vts_8146_11884.pdf.

21 Georges Gonthier, Jean-Jacques Lévy, and Paul-André Melliès. An abstract standardisation
theorem. In Proceedings of the Seventh Annual Symposium on Logic in Computer Science
(LICS ’92), Santa Cruz, California, USA, June 22-25, 1992, pages 72–81, 1992. doi:10.1109/
LICS.1992.185521.

22 Bernhard Gramlich. Modularity in term rewriting revisited. Theor. Comput. Sci., 464:3–19,
2012. doi:10.1016/j.tcs.2012.09.008.

23 Giulio Guerrieri, Luca Paolini, and Simona Ronchi Della Rocca. Standardization and con-
servativity of a refined call-by-value lambda-calculus. Logical Methods in Computer Science,
13(4), 2017. URL: https://doi.org/10.23638/LMCS-13(4:29)2017.

24 J. Roger Hindley. Reductions of residuals are finite. Transactions of the American Mathematical
Society, 240:345–361, 1978.

25 J. Roger Hindley and Jonathan P. Seldin. Lambda-Calculus and Combinators: An Introduction.
Cambridge University Press, New York, NY, USA, 2 edition, 2008.

26 J.R. Hindley. The Church-Rosser Property and a Result in Combinatory Logic. PhD thesis,
University of Newcastle-upon-Tyne, 1964.

27 Nao Hirokawa, Aart Middeldorp, and Georg Moser. Leftmost outermost revisited. In 26th
International Conference on Rewriting Techniques and Applications, RTA 2015, volume 36 of
LIPIcs, pages 209–222, 2015. URL: https://doi.org/10.4230/LIPIcs.RTA.2015.209.

28 Katsumasa Ishii. A proof of the leftmost reduction theorem for λβη-calculus. Theor. Comput.
Sci., 747:26–32, 2018. URL: https://doi.org/10.1016/j.tcs.2018.06.003.

29 Jan Willem Klop. Combinatory Reduction Systems. Phd thesis, Mathematisch Centrum,
Amsterdam, 1980.

30 Masahito Kurihara and Ikuo Kaji. Modular term rewriting systems and the termination. Inf.
Process. Lett., 34(1):1–4, 1990. doi:10.1016/0020-0190(90)90221-I.

31 Ugo Dal Lago and Simone Martini. The weak lambda calculus as a reasonable machine. Theor.
Comput. Sci., 398(1-3):32–50, 2008.

32 Ugo Dal Lago and Margherita Zorzi. Probabilistic operational semantics for the lambda
calculus. RAIRO Theor. Informatics Appl., 46(3):413–450, 2012. doi:10.1051/ita/2012012.

33 Xavier Leroy. The ZINC experiment: an economical implementation of the ML language.
Technical report 117, INRIA, 1990. URL: http://gallium.inria.fr/~xleroy/publi/ZINC.
pdf.

34 Thomas Leventis. A deterministic rewrite system for the probabilistic λ-calculus. Math. Struct.
Comput. Sci., 29(10):1479–1512, 2019. doi:10.1017/S0960129519000045.

35 Jean-Jacques Lévy. Réductions corrcectes et optimales dans le lambda calcul. PhD thesis,
University of Paris 7, 1978.

36 Paul-André Melliès. Typed lambda-calculi with explicit substitutions may not terminate. In
Mariangiola Dezani-Ciancaglini and Gordon D. Plotkin, editors, Typed Lambda Calculi and
Applications, Second International Conference on Typed Lambda Calculi and Applications,
TLCA ’95, Edinburgh, UK, April 10-12, 1995, Proceedings, volume 902 of Lecture Notes in
Computer Science, pages 328–334. Springer, 1995. doi:10.1007/BFb0014062.

37 Paul-André Melliès. A factorisation theorem in rewriting theory. In Category Theory and
Computer Science, 7th International Conference, CTCS ’97, volume 1290 of Lecture Notes in
Computer Science, pages 49–68, 1997. URL: https://doi.org/10.1007/BFb0026981.

38 Aart Middeldorp. Modular aspects of properties of term rewriting systems related to normal
forms. In Rewriting Techniques and Applications, 3rd International Conference, RTA-89,

https://doi.org/10.1093/jigpal/6.2.195
https://doi.org/10.1109/LICS.2019.8785699
http://vts.uni-ulm.de/docs/2012/8146/vts_8146_11884.pdf
https://doi.org/10.1109/LICS.1992.185521
https://doi.org/10.1109/LICS.1992.185521
https://doi.org/10.1016/j.tcs.2012.09.008
https://doi.org/10.23638/LMCS-13(4:29)2017
https://doi.org/10.4230/LIPIcs.RTA.2015.209
https://doi.org/10.1016/j.tcs.2018.06.003
https://doi.org/10.1016/0020-0190(90)90221-I
https://doi.org/10.1051/ita/2012012
http://gallium.inria.fr/~xleroy/publi/ZINC.pdf
http://gallium.inria.fr/~xleroy/publi/ZINC.pdf
https://doi.org/10.1017/S0960129519000045
https://doi.org/10.1007/BFb0014062
https://doi.org/10.1007/BFb0026981

Accattoli, Faggian, Guerrieri 22:19

Chapel Hill, North Carolina, USA, April 3-5, 1989, Proceedings, pages 263–277, 1989. doi:
10.1007/3-540-51081-8_113.

39 Aart Middeldorp. A sufficient condition for the termination of the direct sum of term
rewriting systems. In Proceedings of the Fourth Annual Symposium on Logic in Computer
Science (LICS ’89), Pacific Grove, California, USA, June 5-8, 1989, pages 396–401, 1989.
doi:10.1109/LICS.1989.39194.

40 Aart Middeldorp. Confluence of the disjoint union of conditional term rewriting systems.
In Conditional and Typed Rewriting Systems, 2nd International CTRS Workshop, Montreal,
Canada, June 11-14, 1990, Proceedings, pages 295–306, 1990. doi:10.1007/3-540-54317-1\
_99.

41 Gerd Mitschke. The standardization theorem for λ-calculus. Mathematical Logic Quarterly,
25(1-2):29–31, 1979. URL: https://doi.org/10.1002/malq.19790250104.

42 Luca Paolini. Call-by-value separability and computability. In Antonio Restivo, Simona
Ronchi Della Rocca, and Luca Roversi, editors, Theoretical Computer Science, 7th Italian
Conference, ICTCS 2001, Torino, Italy, October 4-6, 2001, Proceedings, volume 2202 of Lecture
Notes in Computer Science, pages 74–89. Springer, 2001. doi:10.1007/3-540-45446-2_5.

43 Luca Paolini and Simona Ronchi Della Rocca. Call-by-value solvability. RAIRO Theor.
Informatics Appl., 33(6):507–534, 1999. doi:10.1051/ita:1999130.

44 Gordon D. Plotkin. Call-by-name, call-by-value and the lambda-calculus. Theor. Comput.
Sci., 1(2):125–159, 1975. doi:10.1016/0304-3975(75)90017-1.

45 Laurent Regnier. Une équivalence sur les lambda-termes. Theor. Comput. Sci., 126(2):281–292,
1994. doi:10.1016/0304-3975(94)90012-4.

46 György E. Révész. A list-oriented extension of the lambda-calculus satisfying the church-rosser
theorem. Theor. Comput. Sci., 93(1):75–89, 1992. doi:10.1016/0304-3975(92)90212-X.

47 Simona Ronchi Della Rocca and Luca Paolini. The Parametric Lambda Calculus - A Metamodel
for Computation. Texts in Theoretical Computer Science. An EATCS Series. Springer, 2004.
URL: https://doi.org/10.1007/978-3-662-10394-4.

48 J. B. Rosser. A mathematical logic without variables. Duke Math. J., 1(3):328–355, 09 1935.
doi:10.1215/S0012-7094-35-00123-5.

49 Michaël Rusinowitch. On termination of the direct sum of term-rewriting systems. Inf. Process.
Lett., 26(2):65–70, 1987. doi:10.1016/0020-0190(87)90039-1.

50 Alexis Saurin. On the relations between the syntactic theories of lambda-mu-calculi. In
Computer Science Logic, 22nd International Workshop, CSL 2008, 17th Annual Conference
of the EACSL, Bertinoro, Italy, September 16-19, 2008. Proceedings, pages 154–168, 2008.
doi:10.1007/978-3-540-87531-4_13.

51 Masako Takahashi. Parallel reductions in lambda-calculus. Inf. Comput., 118(1):120–127,
1995. doi:10.1006/inco.1995.1057.

52 Terese. Term Rewriting Systems, volume 55 of Cambridge Tracts in Theoretical Computer
Science. Cambridge University Press, 2003.

53 Yoshihito Toyama. Counterexamples to termination for the direct sum of term rewriting
systems. Inf. Process. Lett., 25(3):141–143, 1987. doi:10.1016/0020-0190(87)90122-0.

54 Yoshihito Toyama. On the church-rosser property for the direct sum of term rewriting systems.
J. ACM, 34(1):128–143, 1987. doi:10.1145/7531.7534.

55 Yoshihito Toyama, Jan Willem Klop, and Hendrik Pieter Barendregt. Termination for the
direct sum of left-linear term rewriting systems -preliminary draft-. In Rewriting Techniques
and Applications, 3rd International Conference, RTA-89, Chapel Hill, North Carolina, USA,
April 3-5, 1989, Proceedings, pages 477–491, 1989. doi:10.1007/3-540-51081-8_127.

56 Vincent Van Oostrom. Some symmetries of commutation diamonds. Talk at the International
Workshop on Confluence, 30 June 2020.

57 Vincent van Oostrom. Confluence by decreasing diagrams. In Andrei Voronkov, editor,
Rewriting Techniques and Applications, 19th International Conference, RTA 2008, Hagenberg,

CSL 2021

https://doi.org/10.1007/3-540-51081-8_113
https://doi.org/10.1007/3-540-51081-8_113
https://doi.org/10.1109/LICS.1989.39194
https://doi.org/10.1007/3-540-54317-1_99
https://doi.org/10.1007/3-540-54317-1_99
https://doi.org/10.1002/malq.19790250104
https://doi.org/10.1007/3-540-45446-2_5
https://doi.org/10.1051/ita:1999130
https://doi.org/10.1016/0304-3975(75)90017-1
https://doi.org/10.1016/0304-3975(94)90012-4
https://doi.org/10.1016/0304-3975(92)90212-X
https://doi.org/10.1007/978-3-662-10394-4
https://doi.org/10.1215/S0012-7094-35-00123-5
https://doi.org/10.1016/0020-0190(87)90039-1
https://doi.org/10.1007/978-3-540-87531-4_13
https://doi.org/10.1006/inco.1995.1057
https://doi.org/10.1016/0020-0190(87)90122-0
https://doi.org/10.1145/7531.7534
https://doi.org/10.1007/3-540-51081-8_127

22:20 Factorize Factorization

Austria, July 15-17, 2008, Proceedings, volume 5117 of Lecture Notes in Computer Science,
pages 306–320. Springer, 2008. doi:10.1007/978-3-540-70590-1_21.

58 Vincent van Oostrom and Yoshihito Toyama. Normalisation by random descent. In Delia
Kesner and Brigitte Pientka, editors, 1st International Conference on Formal Structures for
Computation and Deduction, FSCD 2016, June 22-26, 2016, Porto, Portugal, volume 52 of
LIPIcs, pages 32:1–32:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016. doi:
10.4230/LIPIcs.FSCD.2016.32.

59 Vincent van Oostrom and Hans Zantema. Triangulation in rewriting. In 23rd International
Conference on Rewriting Techniques and Applications (RTA’12) , RTA 2012, May 28 - June
2, 2012, Nagoya, Japan, pages 240–255, 2012. doi:10.4230/LIPIcs.RTA.2012.240.

https://doi.org/10.1007/978-3-540-70590-1_21
https://doi.org/10.4230/LIPIcs.FSCD.2016.32
https://doi.org/10.4230/LIPIcs.FSCD.2016.32
https://doi.org/10.4230/LIPIcs.RTA.2012.240

Accattoli, Faggian, Guerrieri 22:21

APPENDIX

Appendix A collects omitted details of proofs. In Appendix B we illustrate a more advanced
example of application of our technique, namely to the probabilistic λ-calculus.

A Appendix: Omitted Proofs

A.1 Head Factorization (Sect. 4)
Consequences of Property 4.2. Note that the empty context 〈〉 is a head context. Hence
for non-head steps if C〈r〉 →

¬h
C〈r′〉 necessarily C 6= 〈〉, and Property 4.2 always applies. The

following key property holds.

I Property A.1 (Shape Preservation). By Property 4.2, →
¬h γ

preserves the shapes of terms:
1. Atoms: there is no t such that t →

¬h γ
a, for any variable or constant a.

2. t →
¬h γ

λx.u1 implies t = λx.t1 and t1 →¬h γ
u1.

3. t →
¬h γ

u1u2 implies t = t1t2, with t1 →¬h γ
u1 (and t2 = u2), or t2 →γ u2 (and t1 = u1).

4. Redex: if t →
¬h γ

u, and u is a β-redex, then t is a β-redex.
Similarly, if t →

¬h γ
u and u has shape Kt1...tk (K a constant), t has the same shape.

Point 4. follows from points 1. to 3. Note that, in particular, if u is a ⊕-redex, so is t.

Head Factorization, Modularly.

I Lemma (4.3, Lifting root linear swaps). Let 7→α, 7→γ be root relations on Λ.
1. →
¬h α

· 7→γ⊆ →h γ · →
∗
α implies lSwap(→

¬h α
,→

h γ
).

2. Similarly, →
¬h α

· 7→γ⊆ →h γ · →
=
α implies →

¬h α
· →γ⊆ →h γ · →

=
α .

Proof. (1). We prove that →
¬h α

· 7→γ⊆ →h γ · →
∗
α implies t →

¬h α
u →

h γ
s ⊆ t →

h γ
· →∗α s , by

induction on the head context H = λx1 . . . λxk.〈 〉t1 . . . tn of the reduction u→
h γ

s.
A. u is the γ-redex (i.e. H = 〈〉, k = 0, n = 0). The claim holds by assumption.
B. u = λx.u1 (i.e., k > 0). Immediate by shape preservation (Property A.1.2) and the i.h..
C. u = u1u2 (i.e., k = 0, n > 0). Then u1 →h γ u′1 and u1u2 →h γ u′1u2 = s. By shape

preservation (Property A.1.3), there are two cases.
Case (i): t := t1u2. By i.h., t1 →h γ t

′
1 and t′1 →∗α u′1. Hence, t1u2 →h γ t

′
1u2 →∗α u′1u2 = s.

Case (ii): t := u1t2. Immediate, because t = u1t2 →h γ u
′
1t2 →α u

′
1u2.

(2). The proof is similar. The only minimal difference is case (ii) in point (C). J

I Lemma (4.4, Swap with →
h β

). If 7→γ is substitutive then lSwap(→
¬h γ

,→
h β

) holds.

Proof. First, note that by Property 4.1, we have that →γ is substitutive. We prove (t →
¬h γ

u→
h β

s implies t→
h β
· →∗γ s) by using Lemma 4.3.

Let u = (λx.u1)u2 7→β u1{x:=u2}. By Property A.1, either (i) t = (λx.p)u2 and p →
¬h γ

u1

or (ii) t = (λx.u1)q and q →γ u2. Case (i): (λx.p)u2 →h β p{x:=u2}. By Property 4.1 (point
1) p{x:=u2} →γ u1{x:=u2}. Case (ii): (λx.u1)q →

h β
u1{x:=q}. By using Property 4.1(point

2), u1{x:=q} →∗γ u1{x:=u2}. J

CSL 2021

22:22 Factorize Factorization

A.2 Call-by-Value λ-Calculus (Sect. 6)
Consequences of Property 4.2. The empty context 〈〉 is both a left and a weak context.
Hence Property 4.2 always applies to non-left and non-weak steps. Consequently:

I Property A.2 (Shape Preservation). Fixed e ∈ {l,w}, →¬e γ preserves the shape of terms:
1. Atoms: there is no t such that t →¬e γ a, for any variable or constant a;
2. Abstraction: t →¬e γ λx.u1 implies t = λx.t1 and t1 →γ u1;
3. Application: t →¬e γ u1u2 implies t = t1t2, with either (i) t1 →¬e γ u1 and t2 = u2, or (ii)

t2 →γ u2 and t1 = u1. Moreover, in case (ii): if vt2 →¬l
vu2 (v a value), then t2 →¬l

u2; if
t1t2 →¬w γ u1u2, then t2 →¬w γ u2 (always).

4. Redex: if t →¬e γ u, and u is a βv-redex, then t also is (as a consequence of points 1. to 3.)

Left and Weak Factorization, Modularly. To prove Proposition 6.1 we proceed similarly
to Sect. 4.2.

I Lemma A.3 (Root linear swaps). Let 7→α, 7→γ be root relations on Λ.
i. If t →

¬l α
u 7→γ s ⊆ t→

l γ
· →∗α s then lSwap(→

¬l α
,→

l γ
).

ii. If t →¬w α u 7→γ s ⊆ t→w γ · →∗α s then lSwap(→¬w α,→l γ).
Similarly →¬e α · 7→γ⊆ →e γ · →=

α implies →¬e α · →γ⊆ →e γ · →=
α , with e ∈ {l,w}

Proof. (i.) We prove that t →
¬l α

u→
l γ
s ⊆ t→

l γ
· →∗α s, by induction on the context L of u.

1. L = 〈〉, i.e. u 7→γ s. The claim holds by hypothesis.
2. L = Lu2, i.e. u = u1u2 →l γ s1u2 = s with u1 →l γ s1. By Property A.2.3 t = t1t2 and

a. either t1 →¬l α
u1 (and t2 = u2); then, by i.h., t1 →l γ · →

∗
α s1, so t = t1u2 →l γ · →

∗
α s1u2;

b. or t2 →α u2 (and t1 = u1), so t = u1t2 →l γ s1t2 →α s1u2.
3. L = vL, i.e. u = vu2 →l γ vs2 = s with u2 →l γ s2. Then t = t1t2 and by Property A.2.3

a. either t1 →¬l α
v (and t2 = u2). Since v is a value, by Property A.2.1-2, t1 is also a value

and so t = t1u2 →l γ t1s2 →α vs2.
b. or t2 →¬l α

u2 (t1 = v). By i.h., t2 →l γ · →
∗
α s2, so vt2 →l γ · →

∗
α vs2;

(ii.) The proof of (ii.) is similar, but simpler. Case W = 〈〉 is the same. Case Wu2 is exactely
like Lu2, and case u1W is symmetric to case (2).

The proof of the last claim is similar. J

I Lemma A.4 (Swap with →e βv). If 7→γ is substitutive then lSwap(→¬e γ ,→e βv), for e ∈ {l,w}.

Proof. We prove lSwap(→
¬l γ

,→
l βv

), the other swap is similar. By Lemma A.3, it is enough
to prove that t →

¬l γ
u 7→βv

s implies t→
l βv
· →∗γ s. We use Property 4.1 (substitutivity). Let

u = (λx.u1)v 7→βv
u1{x:=v} = s. By Property A.2 (3. and 4.) we have:

1. either t = (λx.t1)v and t1 →γ u1; thus, t = (λx.t1)v →
l βv

t1{x:=v} →γ u1{x:=v} = s,
where the →γ step takes place by Property 4.1.1 since →γ is substitutive.

2. or t = (λx.u1)w where w →γ v and w is a value; hence, t = (λx.u1)w →
l βv

u1{x:=w} →∗γ
u1{x:=v}, where the →γ steps take place by Property 4.1.2. J

Accattoli, Faggian, Guerrieri 22:23

A.3 The Shuffling Calculus (Sect. 7)
I Property A.5 (Values are closed under substitution). If v and w are values, so is v{x:=w}.

I Lemma (Lemma 7.1, Root linear swaps). Let γ ∈ {βv, σ}.
1. If t →

¬l γ
u 7→σi

s then t 7→σi
· →γ s, for i ∈ {1, 3}.

2. If t →¬w γ u 7→σi s then t 7→σi · →γ s, for i ∈ {1, 3}.
The properties above hold for →γ contextual closure of any rule 7→γ .

Proof. We prove (1). Property A.2 (iterated) gives that if t →
¬l γ

u and u is a σ1-redex (resp.
a σ3-redex), so is t. We examine the two cases for u 7→σi

s.
σ1: By hypothesis, u = (λx.q)pr 7→σ1 (λx.qr)p = s with x /∈ fv(r). Since t →

¬l γ
u, by

Property A.2, we have t = (λx.q′)p′r′ and moreover:
either q′ →γ q and r′ = r and p′ = p,
or r′ →γ r and q′ = q and p′ = p,
or p′ →

¬l γ
p and q′ = q and r′ = r.

In any case, t = (λx.q′)p′r′ →
l σ1 (λx.q′r′)p′ →

¬l γ
(λx.qr)p = s, since x /∈ fv(r) ⊆ fv(r′).

σ3: By hypothesis, u = v((λx.r)p) 7→σ3 (λx.vr)p = s with x /∈ fv(v). Since t →
¬l γ

u, by
Property A.2, we have t = v′((λx.r′)p′), and moreover:

either v′ →
¬l γ

v and r′ = r and p′ = p,
or r′ →γ r and v′ = v and p′ = p,
or p′ →

¬l γ
p and v′ = v and r′ = r.

In any case, t = v′((λx.r′)p′)→
l σ1 (λx.v′r′)p′ →

¬l γ
(λx.vr)p = s, as x /∈ fv(v) ⊆ fv(v′).

Like before, the proof of (2) is similar, and simpler. J

I Lemma A.6 (Substitutivity of →σ). If t 7→σi t
′ then t{x:=v} 7→σi t

′{x:=v}, for i ∈ {1, 3}.

Proof. σ1: t = (λy.r)su 7→σ1 (λx.ru)s = t′ with y /∈ fv(u) and we can suppose without loss of
generality that y /∈ fv(v)∪{x}. Therefore, t{x:=v} = (λy.r{x:=v})s{x:=v}u{x:=v} 7→σ1

(λy.r{x:=v}u{x:=v})s{x:=v} = t′{x:=v} since y /∈ (fv(u) r {x}) ∪ fv(v) = fv(u{x:=v}).
σ3: t = w((λy.u)s) 7→σ3 (λy.wu)s = t′ with y /∈ fv(w) and we can suppose without loss

of generality that y /∈ fv(v) ∪ {x}. Therefore, t{x:=v} = w((λy.u{x:=v})s{x:=v}) 7→σ3

(λy.w{x:=v}u{x:=v})s{x:=v} = t′{x:=v} as w{x:=v} is a value (Property A.5) and
y /∈ (fv(w) r {x}) ∪ fv(v) = fv(w{x:=v}). J

A.4 Non-Terminating Relations (Sect. 8)
I Prop (8.1. Testing head factorization for βY). →β ∪ →Y satisfies head factorization:
1. Head factorization of →Y : Fact(→

h Y, →¬h Y).
2. Root linear swap: →

¬h β
· 7→Y ⊆ →h Y · →

∗
β.

3. Substitutivity: 7→Y is substitutive.

Proof. We verify the hypotheses of Proposition 4.5:
1. To verify that the reduction →Y satisfies head factorization is routine.
2. Assume t →

¬h β
Y p 7→Y p(Y p). By Property 4.2 (as spelled-out in Property A.1), if

t →
¬h β

Y p then t = Y q and q →β p. Hence t = Y q →
h Y

q(Y q)→∗β p(Y p).
3. Simply (Y p){x:=q} = Y (p{x:=q}) 7→Y (p{x:=q})(Y (p{x:=q})) = (p(Y p)){x:=q}. J

I Prop (8.2. Testing weak factorization for βvZ). →β ∪ →Z satisfies weak factorization:

CSL 2021

22:24 Factorize Factorization

1. Weak factorization of →Z : Fact(→w Z, →¬w Z).
2. Root linear swap: →¬w βv

· 7→Z ⊆ →w Z · →∗βv
.

3. Substitutivity: 7→Z is substitutive.

Proof. We prove the hypotheses of Proposition 4.5:
1. It is easy to verify that →¬w Z · →w Z ⊆ →w Z · →¬w Z

∗. Then apply Lemma 3.5.1.
2. Assume t →¬w βv Zv 7→Z λx.v(Zv)x. By Property 4.2 (as spelled-out in Property A.2), if

t →¬w βv
Zv then t = Zw and w →βv

v. So, t = Zw →w Z λx.w(Zw)x→∗βv
λx.v(Zv)x.

3. Simply (Zv){x:=q} = Z(v{x:=q}) 7→Z λy.v{x:=q}(Z(v{x:=q})y = (λy.v(Zv)y){x:=q}.
J

B Appendix: Factorizing Factorization in Probabilistic λ-calculus

Faggian and Ronchi della Rocca [19] define two calculi—Λcbn
⊕ and Λcbv

⊕ —which model respec-
tively CbV and CbN probabilistic higher-order computation, and are conservative extensions
of the CbN and CbV λ-calculi. Here we focus on CbV, which is the most relevant paradigm
for calculi with effects, but the same approach applies to CbN.

We first recall the syntax of Λcbv
⊕ (we refer to [19] for background and details), and then

give a new proof of weak factorization, using our technique and obtaining a neat, compact
proof of factorization, which only requires a few lines.

Terms. Λcbv
⊕ is a rewrite system where the objects to be rewritten are not terms, but

monadic structures on terms, namely multi-distributions [8]. Intuitively, a multi-distribution
represents a probability distribution on the possible reductions from a term. Terms and
contexts are the same as for the non-deterministic λ-calculus, but here we write the ⊕ infix,
to facilitate reference to [19]. Terms and values are generated by the grammars

M ::= x | λx.M |MM |M ⊕M (Terms Λ⊕)
V := x | λx.M (Values V)

where x ranges over a countable set of variables. Contexts and weak contexts are given by:

C ::= 〈 〉 | CM |MC | λx.C | C⊕M |M ⊕ C (Contexts)
W ::= 〈 〉 |WM |MW (Weak Contexts)

where 〈 〉 denotes the hole of the context.
The intended behaviour of M ⊕N is to reduce to either M or N , with equal probability

1
2 . This is formalized by means of multi-distributions.

Multi-distributions. A multi-distribution m = [piMi | i ∈ I] is a multiset of pairs of the
form pM , with p ∈]0, 1], M ∈ Λ⊕, and

∑
pi ≤ 1. We denote by M(Λ⊕) the set of all

multi-distributions. The sum of multi-distributions is denoted by +. The product q · m of a
scalar q and a multi-distribution m is defined pointwise q[piMi]i∈I := [(qpi)Mi]i∈I .

The calculus (M(Λ⊕),⇒)(M(Λ⊕),⇒)(M(Λ⊕),⇒). The calculus Λcbv
⊕ is the rewrite system (M(Λ⊕),⇒) where

M(Λ⊕) is the set of multi-distributions on Λ⊕ and the relation ⇒⊆ M(Λ⊕) ×M(Λ⊕) is
defined in Fig. 1 and Fig. 2. First, we define one-step reductions from terms to multi-
distributions—so for example, M ⊕N → [1

2M, 1
2N]. Then, we lift the definition of reduction

to a binary relation onM(Λ⊕), in the natural way—for instance [1
2 (λx.x)z, 1

2 (M ⊕N)]⇒
[1

2z,
1
4M, 1

4N]. Precisely:

Accattoli, Faggian, Guerrieri 22:25

C〈(λx.M)V 〉 →βv
[C〈M{x:=V }〉] W〈M ⊕N〉 →⊕ [1

2 W(M), 1
2 W(N)]

→ :=→βv ∪ →⊕
→w :=→w βv ∪ →⊕

Figure 1 Reduction Steps

[M]⇒r [M]
M →r m

[M]⇒r m

([Mi]⇒r mi)i∈I
[piMi | i ∈ I]⇒r +i∈I pi · mi

Figure 2 Lifting →r to ⇒r

1. The reductions →βv ,→⊕⊆ Λ⊕ ×M(Λ⊕) are defined in Fig. 1. Observe that the ⊕
rule—probabilistic choice—is closed only under weak contexts (no reduction in the body
of a function nor in the scope of an operator ⊕). Instead, the βv rule is closed under
general contexts. Its restriction to closure under weak context is denoted →w β . The
relation → is the union →β ∪ →⊕, while weak4 reduction →w is the union of the weak
reductions →w βv

∪ →⊕. A →-step which is not weak is noted →¬w .
2. The lifting of a relation→r⊆ Λ⊕×M(Λ⊕) to a reduction on multi-distribution is defined

in Fig. 2. In particular, →,→βv
,→⊕,→w , →¬w lift to ⇒,⇒βv

,⇒⊕,⇒w , ⇒¬w .
The restriction of →⊕ to weak contexts is necessary to have confluence, see [19] for a
discussion. The fact that reduction →βv

is unrestricted guarantees that the new calculus is a
conservative extension of CbV λ-calculus.

Factorization, Modularly. Faggian and Ronchi della Rocca prove—by defining suitable
notions of parallel reduction and internal parallel reduction with respect to⇒βv

∪ ⇒⊕—that
Λcbv
⊕ satisfies Fact(⇒w , ⇒¬w), that is m⇒∗ n implies m⇒w ∗ · ⇒¬w

∗ n.
This result—there called finitary surface standardization—is central in [19] because it is

the base of the asymptotic constructions which are the core of that paper.

We now give a novel, strikingly short proof of the same result, by using Theorem 3.4. It
turns out that we only need to verify the following swap, which is immediate to check.

I Lemma B.1. M →¬w βv · →⊕ n implies M →⊕ · ⇒βv n.

I Theorem B.2 (Factorization of ⇒). Let ⇒w := (⇒w βv
∪ ⇒⊕) and ⇒¬w := (⇒¬w βv

). Then
(M(Λ⊕), {⇒βv

,⇒⊕}) satisfies w-factorization Fact(⇒w , ⇒¬w).

Proof. We verify that the conditions of Theorem 3.4 hold. Note that ⊕ has no internal steps,
therefore, it suffices to verify only two conditions:
1. weak factorization of ⇒βv

: Fact(⇒w βv , ⇒¬w βv).
2. ⇒¬w βv linearly swaps with ⇒⊕: ⇒¬w βv · ⇒⊕ ⊆ ⇒⊕ · ⇒∗βv

.
The other two conditions of Theorem 3.4 hold vacuously, because ⇒¬w ⊕ = ∅ (and⇒w ⊕ =⇒⊕).

1. Fact(⇒w βv , ⇒¬w βv) follows from weak factorization of the CbV λ-calculus Fact(→w βv , →¬w βv)
(see Sect. 6) because clearly ([1M]⇒βv

[1N] if and only if M →βv
N), ([1M]⇒w βv

[1N]
if and only if M →w βv N), and similarly ([1M] ⇒¬w βv [1N] if and only if M →¬w βv N).

2. Lemma B.1 implies m ⇒¬w βv
· ⇒⊕ n ⊆ m⇒⊕ · ⇒βv

n, by the definition of lifting. J

4 In [19], a weak reduction (resp. weak context) is called surface, and hence noted →s .

CSL 2021

	Introduction
	Preliminaries
	Modularizing Factorization
	Extensions of the Call-by-Name -Calculus: Head Factorization
	The (Applied) -Calculus
	Call-by-Name: Head Factorization, Modularly.

	The Non-Deterministic -Calculus
	 Extensions of the CbV -Calculus: Left and Weak Factorization
	The Shuffling Calculus
	Non-Terminating Relations
	Further Applications: Probabilistic Calculi
	Conclusions and Discussions
	Appendix: Omitted Proofs
	Head Factorization (Sect. 4)
	Call-by-Value -Calculus (Sect. 6)
	The Shuffling Calculus (Sect. 7)
	Non-Terminating Relations (Sect. 8)

	Appendix: Factorizing Factorization in Probabilistic -calculus

