Factorize Factorization
Beniamino Accattoli, Claudia Faggian, Giulio Guerrieri

To cite this version:
Beniamino Accattoli, Claudia Faggian, Giulio Guerrieri. Factorize Factorization. CSL 2021 - 29th EACSL Annual Conference on Computer Science Logic, Jan 2021, Ljubljana, Slovenia. 10.4230/LIPIcs.CSL.2021.22 . hal-03044338

HAL Id: hal-03044338
https://hal.science/hal-03044338
Submitted on 7 Dec 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License
Factorize Factorization
Beniamino Accattoli
Inria & LIX, École Polytechnique, UMR 7161, Palaiseau, France
Claudia Faggian
Université de Paris, IRIF, CNRS, F-75013 Paris, France
Giulio Guerrieri
University of Bath, Department of Computer Science, Bath, UK

Abstract
We present a new technique for proving factorization theorems for compound rewriting systems in a modular way, which is inspired by the Hindley-Rosen technique for confluence. Specifically, our technique is well adapted to deal with extensions of the call-by-name and call-by-value \(\lambda \)-calculi.

The technique is first developed abstractly. We isolate a sufficient condition (called linear swap) for lifting factorization from components to the compound system, and which is compatible with \(\beta \)-reduction. We then closely analyze some common factorization schemas for the \(\lambda \)-calculus.

Concretely, we apply our technique to diverse extensions of the \(\lambda \)-calculus, among which de’ Liguoro and Piperno’s non-deterministic \(\lambda \)-calculus and—for call-by-value—Carraro and Guerrieri’s shuffling calculus. For both calculi the literature contains factorization theorems. In both cases, we give a new proof which is neat, simpler than the original, and strikingly shorter.

1 Introduction
The \(\lambda \)-calculus underlies functional programming languages and, more generally, the paradigm of higher-order computation. Through the years, more and more advanced features have enriched this paradigm, including control, non-determinism, states, probabilistic or quantum features. The well established way to proceed is to extend the \(\lambda \)-calculus with new operators. Every time, good operational properties, such as confluence, normalization, or termination, need to be proved. It is evident that the more complex and advanced is the calculus under study, the more the ability to modularize the analyses of its properties is crucial.

Techniques for modular proofs are available for termination and confluence, with a rich literature which examines under which conditions these properties lift from modules to the compound system—some representative papers are [54, 53, 55, 49, 38, 39, 40, 10, 20, 18, 17, 5, 12], see Gramlich [22] for a survey. Termination and confluence concern the existence and the uniqueness of normal forms, which are the results of a computation. When the focus is on how to compute the result, that is, on identifying reduction strategies with good properties, then only few abstract techniques are currently available (we mention [21, 36, 37], [52](Ch.8), and [2])—this paper proposes a new one.

Factorization. The most basic property about how to compute is factorization, whose paradigmatic example is the head factorization theorem of the \(\lambda \)-calculus (theorem 11.4.6 in
Barendregt’s book [11]): every β-reduction sequence $t \rightarrow^*_\beta u$ can be re-organized/factorized so as to first reducing head redexes and then everything else—in symbols $t \rightarrow^*_b \rightarrow^*_\beta u$.

The study of factorization in λ-calculus goes back to Rosser [48]. Here, we adopt Melliès terminology [37]; please be aware that factorization results are sometimes referred to as semi-standardization (Mitschke in [41]), or postponement ([52]), and often simply called standardization—standardization is however a more sophisticated property (sketched below) of which factorization is a basic instance.

According to Melliès [37], the meaning of factorization is that the essential part of a computation can always be separated from its junk. Let’s abstract the role of head reduction, by assuming that computations consist of steps \rightarrow which are in some sense essential, and steps \rightarrow_i which are not. Factorization says that every rewrite sequence $t \rightarrow^* s$ can be factorized as $t \rightarrow^* e \rightarrow^*_i s$, i.e., as a sequence of essential steps followed by inessential ones.

Well known examples of essential reductions are head and leftmost-outermost reduction for the λ-calculus (see Barendregt [11]), or left and weak reduction for the call-by-value λ-calculus (see Plotkin [44] and Paolini and Ronchi Della Rocca [47]).

Very much as confluence, factorization is a non-trivial property of λ-calculi; proofs require techniques such as finite developments [15, 52], labeling [35, 29], or parallel reduction [51].

Uses of Factorization. Factorization is commonly used as a building block in proving more sophisticated properties of the how-to-compute kind. It is often the main ingredient in proofs of normalization theorems [11, 51, 27, 3], stating that a reduction strategy reaches a normal form whenever one exists. Leftmost-outermost normalization is a well known example.

Another property, standardization, generalizes factorization: reduction sequences can be organized with respect to an order on redexes, not just with respect to the distinction essential/inessential. It is an early result that factorization can be used to prove standardization: iterated head factorizations provides what is probably the simplest way to prove Curry and Feys’ left-to-right standardization theorem, via Mitschke’s argument [41].

Additionally, the independence of some computational tasks, such as garbage collection, is often modeled as a factorization theorem.

Contributions of this Paper. In this paper we propose a technique for proving in a modular way factorization theorems for compound higher-order systems, such as those obtained by extending the λ-calculus with advanced features. The approach can be seen as an analogous for factorization of the classical technique for confluence based on Hindley-Rosen lemma, which we discuss in the next paragraphs. Mimicking the use of Hindley-Rosen lemma is natural, yet to our knowledge such an approach has never been used before, at least not in the λ-calculus literature. Perhaps this is because a direct transposition of Hindley-Rosen technique does not work with β reduction, as we discuss below and in Sect. 3.

After developing a sharper technique, we apply it to various known extensions of the λ-calculus which do not fit into easily manageable categories of rewriting systems. In all our case studies, our novel proofs are neat, concise, and simpler than the originals.

Confluence via Hindley-Rosen. Let’s consider confluence. The simplest modular technique to establish it is based on Hindley-Rosen lemma, which states that the union of two confluent reductions \rightarrow_1 and \rightarrow_2 is confluent if \rightarrow_1 and \rightarrow_2 satisfy a commutation property. This is the technique used in Barendregt’s book for proving confluence of $\rightarrow_{\beta\eta}$ (Thm. 3.3.9 in [11]), where it is also stressed that the proof is simpler than Curry and Feys’ original one.
While the result is basic, Hindley-Rosen technique provides a powerful tool to prove confluence of compound systems. In the literature of \(\lambda\)-calculus, we mention for instance its use in the linear-algebraic \(\lambda\)-calculus [7], the probabilistic \(\lambda\)-calculus [19], the \(\Delta\mu\)-calculus [50], the shuffling calculus [14], the \(\lambda\)-calculus extended with lists [46] or pattern-matching [13], or with a let construct [6]. It is worth to spell-out the gain. Confluence is often a non-trivial property to establish—when higher-order is involved, the proof of confluence requires sophisticated techniques. The difficulty compounds when extending the \(\lambda\)-calculus with new constructs. Still, the problem is often originated by \(\beta\) reduction itself, which encapsulates the higher-order features of the computation. By using Hindley-Rosen lemma, confluence of \(\beta\) is used as a black box: one relies on that—without having to prove it again—to show that the extended calculus is confluent.

Hindley-Rosen and Sufficient Conditions. There is a subtle distinction between Hindley-Rosen lemma, and what we refer to as Hindley-Rosen technique. Hindley-Rosen lemma reduces confluence of a compound system to commutation of the components—the modules. To establish commutation, however, is a non-trivial task, because it is a global property, that is, it quantifies over all sequences of steps. The success of the lemma in the \(\lambda\)-calculus literature stems from the existence of easy to check conditions which suffice to prove commutation. All the examples which we have mentioned above indeed satisfy Hindley’s strong commutation property [26] (Lemma 3.3.6 in [11]), where at most one reduction—but not both—may require multiple steps to close a diagram; commutation follows by a finitary tiling argument. Strong commutation turns Hindley-Rosen lemma into an effective, concrete proof technique.

Modular Factorization, Abstractly. Here, we present a modular approach to factorization inspired by the Hindley-Rosen technique. A formulation of Hindley-Rosen lemma for factorization is immediate, and is indeed folklore. But exactly as for confluence, this reduces factorization of a compound system to a property that is difficult to establish, without a real gain. The crucial point is finding suitable conditions that can be used in practice. The issue here is that the natural adaptation of strong commutation to factorization is—in general—not verified by extensions of the \(\lambda\)-calculi, as it does not interact well with \(\beta\) (see Ex. 3.2 in Sect. 3). We identify an alternative condition—called linear swap—which is satisfied by a large variety of interesting examples, turning the approach into an effective, concrete technique. Testing the linear swap condition is easy and combinatorial in nature, as it is a local property, in the sense that only single steps (rather than sequences of steps) need to be manipulated. This holds true even when the modules are not confluent, or non-terminating. The other key point in our approach is that we assume the modules to be factorizing, therefore we can use their factorization—that may require non-trivial proof techniques such as parallel reductions or finite developments—as a black box.

Modular Factorization, Concretely. We then focus on our target, how to establish factorization results for extensions of the \(\lambda\)-calculus. Concretely, we start from \(\beta\) reduction, or its call-by-value counterpart \(\beta_v\), and allow the calculus to be enriched with extra rules. Here we discover a further striking gain: for common factorization schemas such as head or weak factorization, verifying the required linear swap conditions reduces to checking a single case, together with the fact that the new rule behaves well with respect to substitution. The test for modular factorization which we obtain is a ready-to-use and easy recipe that can be applied in a variety of cases.

We illustrate our technique by providing several examples, chosen to stress the independence of the technique from other rewriting properties. In particular, we give a new and
arguably *simpler* proof of two results from the literature. The first is head factorization for the non-deterministic λ-calculus by de' Liguoro and Piperno [16], that extends the λ-calculus with a choice operator \oplus. It is a *non confluent* calculus, and it is representative of the class of λ-calculi extended with a commutative effect, such as *probabilistic* choice; indeed, most features and all issues are already present there, see [32] for a thorough discussion.

The second is a new, simplified proof of factorization for the shuffling calculus—a refinement of the call-by-value λ-calculus due to Carraro and Guerrieri [14], whose left factorization is proved by Guerrieri, Paolini, and Ronchi della Rocca in [23]. In this case the λ-calculus is extended with extra rules but they are not associated to a new operator. The resulting calculus is subtle, as it has critical pairs.

In both cases, the new proof is neat, conceptually clear, and strikingly short. The reason why our proofs are only a few lines long, whereas the originals require several pages, is exactly that there is no need to "prove again" factorization of β or β_v. We just show that β (resp. β_v) interacts well with the new rules.

Further Applications: Probabilistic λ-calculi. The investigation in this paper was triggered by concrete needs, namely the study of strategies for probabilistic λ-calculi [19, 34]. The probabilistic structure adds complexity, and indeed makes the study of factorization painful—exposing the need for tools to make such an analysis more manageable. Our technique smoothly applies, providing new concise proofs that are significantly simpler than the originals—indeed surprisingly simple. These results are however only overviewed in this paper: we sketch the application to the call-by-value probabilistic calculus by Faggian and Ronchi della Rocca [19], leaving the technical details in Appendix B. The reason is that, while the application of our technique is simple, the *syntax* of probabilistic λ-calculi is not—because reduction is defined on (monadic) structures representing probability distributions over terms. Aiming at making the paper accessible within the space limits, we prefer to focus on examples in a syntax which is familiar to a wide audience. Indeed, once the technique is understood, its application to other settings is immediate, and in large part automatic.

A Final Remark. Like Hindley-Rosen for confluence, our technique is sufficient but not necessary to factorization. Still, its features and wide range of application make it a remarkable tool to tame the complexity which is often associated to the analysis of advanced compound calculi. By emphasizing the benefits of a modular approach to factorization, we hope to prompt the development of even more techniques.

Related work. To our knowledge, the only result in the literature about modular techniques for factorization is Accattoli's technique for calculi with explicit substitutions [2], which relies on termination hypotheses. Our *linear swap* condition (page 8) is technically the same as his *diagonal-swap* condition. One of the insights at the inception of this work is exactly that termination in [2] is used only to establish factorization of each single module, but not when combining them. Here we *assume* modules to be factorizing, therefore avoiding termination requirements, and obtaining a more widely applicable technique.

Van Oostrom’s decreasing diagrams technique [57] is a powerful and *inherently modular* tool to establish confluence and commutation. Surprisingly, it has not yet been used for factorization, but steps in this direction have been presented recently [56].

A divide-and-conquer approach is well-studied for termination. The key point is finding conditions which guarantee that the union of terminating relations is terminating. Several have been studied [10, 20]; the weakest such condition, namely $\rightarrow_2 \cdot \rightarrow_1 \subseteq \rightarrow_1 \cup \rightarrow_2 \cdot (\rightarrow_1 \cup \rightarrow_2)^*$, is introduced by Doornbos and van Karger [18], and then studied by Dershowitz [17], under
the name of lazy commutation, and by van Oostrom and Zantema [59]. Interestingly, lazy commutation is similar to the linear swap condition.

Finally, a somehow orthogonal approach to study extensions of a rewriting system, which is isolating syntactical classes of term rewriting systems that always satisfy a property. While confluence is the most studied property (e.g., [52], Ch 10.4), factorization and standardization are also investigated, in particular for left-to-right standardization ([52], Ch. 8.5.7).

2 Preliminaries

In this section we start by recalling some standard definitions and notations in rewriting theory (see e.g. [52] or [9]); we provide an overview of commutation, confluence, and factorization. Both confluence and factorization are forms of commutation.

Basics. An abstract rewriting system (ARS) (see [52], Ch.1) is a pair $A = (A, \rightarrow)$ consisting of a set A and a binary relation \rightarrow on A whose pairs are written $t \rightarrow s$ and called steps. We denote \rightarrow^{*} (resp. \rightarrow^{\ast}) the transitive-reflexive (resp. reflexive) closure of \rightarrow; we denote \leftarrow the reverse relation of \rightarrow, i.e. $u \leftarrow t$ if $t \rightarrow u$. If $\rightarrow_{1}, \rightarrow_{2}$ are binary relations on A then $\rightarrow_{1} \cdot \rightarrow_{2}$ denotes their composition, i.e. $t \rightarrow_{1} \cdot \rightarrow_{2} s$ iff there exists $u \in A$ such that $t \rightarrow_{1} u \rightarrow_{2} s$. We write $(A, \{\rightarrow_{1}, \rightarrow_{2}\})$ to denote the ARS (A, \rightarrow) where $\rightarrow = \rightarrow_{1} \cup \rightarrow_{2}$. We freely use the fact that the transitive-reflexive closure of a relation is a closure operator, i.e. satisfies

$$\rightarrow \subseteq \rightarrow^{*}, \quad (\rightarrow^{*})^{*} = \rightarrow^{*}, \quad \rightarrow_{1} \subseteq \rightarrow_{2} \quad \text{implies} \quad \rightarrow_{1}^{*} \subseteq \rightarrow_{2}^{*}.$$ (Closure)

The following property is an immediate consequence:

$$(\rightarrow_{1} \cup \rightarrow_{2})^{*} = (\rightarrow_{1}^{*} \cup \rightarrow_{2}^{*})^{*}. \quad \text{(TR)}$$

Local vs Global Properties. An important distinction in rewriting theory is between local and global properties. A property of term t is local if it is quantified over only one-step reductions from t; it is global if it is quantified over all rewrite sequences from t. Local properties are easier to test, because the analysis (usually) involves a finite number of cases.

Confluence. A relation \rightarrow on A is confluent if it commutes with itself. A classic tool to modularize the proof of confluence is Hindley-Rosen lemma. Confluence of two relations \rightarrow_{1} and \rightarrow_{2} does not imply confluence of $\rightarrow_{1} \cup \rightarrow_{2}$, however it does if they commute.

Lemma (Hindley-Rosen). Let \rightarrow_{1} and \rightarrow_{2} be relations on the set A. If \rightarrow_{1} and \rightarrow_{2} are confluent and commute with each other, then $\rightarrow_{1} \cup \rightarrow_{2}$ is confluent.

Easy-to-Check Conditions for Hindley Rosen. Commutation is a global condition, which is difficult to test. What turns Hindley-Rosen lemma into an effective, usable technique, is the availability of local, easy-to-check sufficient conditions. One of the simplest but most useful such conditions is Hindley’s strong commutation [26]:

$$\leftarrow_{1} \cdot \rightarrow_{2} \subseteq \rightarrow_{2}^{*} \cdot \leftarrow_{1}^{*} \quad \text{(Strong Commutation)}$$

Lemma 2.1 (Local test for commutation [26]). Strong commutation implies commutation.

All the extensions of λ-calculus we cited at page 2 (namely [11, 7, 19, 50, 14, 46, 13, 6]) prove confluence by using Hindley-Rosen lemma via strong commutation (possibly in its weaker diamond-like form $\leftarrow_{1} \cdot \rightarrow_{2} \subseteq \rightarrow_{2}^{\ast} \cdot \leftarrow_{1}^{\ast}$).
Factorization. We now recall definitions and basic facts on the rewriting property at the center of this paper, factorization. Let $\mathcal{A} = (A, \rightarrow, \leftarrow)$ be an ARS.

1. The relation $\rightarrow = \rightarrow_e \cup \leftarrow_i$ satisfies e-factorization, written $\text{Fact}(\rightarrow_e, \rightarrow_i)$, if

$$\text{Fact}(\rightarrow_e, \rightarrow_i) : (\rightarrow_e \cup \leftarrow_i)^* \subseteq \rightarrow_e^* \cdot \rightarrow_i^*.$$

2. The relation \rightarrow postpones after \rightarrow_e, written $\text{PP}(\rightarrow_e, \rightarrow)$, if

$$\text{PP}(\rightarrow_e, \rightarrow) : \rightarrow_i^* \cdot \rightarrow_e^* \subseteq \rightarrow_e^* \cdot \rightarrow_i^*.$$

Postponement can be formulated in terms of commutation, and vice versa, since clearly (\rightarrow_i postpones after \rightarrow_e) if and only if (\leftarrow_i commutes with \rightarrow_e). Note that reversing \rightarrow_i introduce an asymmetry between the two relations. It is an easy result that e-factorization is equivalent to postponement, which is a more convenient way to express it. The following equivalences—which we shall use freely—are all well known.

- **Lemma 2.2.** For any two relations $\rightarrow_e, \rightarrow_i$ the following statements are equivalent:
 1. Semi-local postponement: $\rightarrow_i^* \cdot \rightarrow e \subseteq \rightarrow_e^* \cdot \rightarrow_i^*$ (and its dual $\rightarrow_i \cdot \rightarrow_e^* \subseteq \rightarrow_e^* \cdot \rightarrow_i^*$).
 2. Postponement: $\text{PP}(\rightarrow_e, \rightarrow_i)$.
 3. Factorization: $\text{Fact}(\rightarrow_e, \rightarrow_i)$.

Another property that we shall use freely is the following, which is immediate by the definition of postponement and property TR (page 5).

- **Property 2.3.** Given a relation \rightarrow_i such that $\rightarrow_i^* = \rightarrow_e^*$, $\text{PP}(\rightarrow_e, \rightarrow_i)$ if and only if $\text{PP}(\rightarrow_e, \rightarrow_i)$.

A well-known use of the above is to instantiate \rightarrow_i with a notion of parallel reduction ([51]).

Easy-to-Check Sufficient Condition for Postponement

Hindley first noted that a local property implies postponement, hence factorization [26]. It is immediate to recognize that the property below is exactly the postponement analog of strong commutation in Lemma 2.1; indeed it is the same expression, with $\rightarrow_i := 0$ and $\rightarrow_e := 2$.

We say that \rightarrow_i strongly postpones after \rightarrow_e, if

$$\text{SP}(\rightarrow_e, \rightarrow_i) : \rightarrow_i \cdot \rightarrow_e \subseteq \rightarrow_e^* \cdot \rightarrow_i^*.$$

- **Lemma 2.4** (Local test for postponement [26]). Strong postponement implies postponement:

$$\text{SP}(\rightarrow_e, \rightarrow_i) \text{ implies } \text{PP}(\rightarrow_e, \rightarrow_i), \text{ and so } \text{Fact}(\rightarrow_e, \rightarrow_i).$$

Strong postponement is at the heart of several factorization proofs. However (similarly to the diamond property for confluence) it can rarely be used directly, because most interesting relations—e.g. β reduction in λ calculus—do not satisfy it. Still, its range of application hugely widens by using Lemma 2.3.

It is instructive to examine strong postponement with respect to β reduction; this allows us also to recall why it is difficult to establish head factorization for the λ-calculus.

- **Example 2.5 (\lambda-calculus and strong postponement).** In view of head factorization, the β reduction is decomposed in head reduction \rightarrow_h^β and its dual \rightarrow_h^β, that is $\rightarrow_\beta = \rightarrow_h^\beta \cup \rightarrow_h^\beta$.

To prove head factorization is non trivial precisely because $\text{SP}(\rightarrow_h^\beta, \rightarrow_h^\beta)$ does not hold.

Consider the following example: $(\lambda x.xxx)(Iz) \rightarrow_h^\beta (\lambda x.xxx)z \rightarrow_h^\beta zzz$. The sequence \rightarrow_h^β can only postpone to a reduction sequence of shape \rightarrow_h^β.
Example 3.2

Consider the extension of the language of λ-terms with a construct ⊕ which models non-deterministic choice. The term ⊕pq non-deterministically reduces to either p or q, i.e., ⊕pq → ⊕p or ⊕pq → ⊕q. The calculus \(\langle \Lambda, \{→_β, →_β\} \rangle \) has two reduction rules, →_β and →_β. For both, we define head and non-head steps as usual.

Consider the following sequence: \((\lambda x.xxx)(\oplus pq) →_β^h (\lambda x.xxx)p →_β^h ppq \). This sequence \(→_β^h \cdot →_β^h \) can only postpone to a reduction sequence of shape \(→_β^h \cdot →_β^h \cdot →_β^h \cdot →_β^h\):

\[
(\lambda x.xxx)(\oplus pq) →_β^h (\oplus pq)(\oplus pq)(\oplus pq) →_β^h p(\oplus pq)(\oplus pq) →_β^h pp(\oplus pq) →_β^h ppq.
\]

Since the \(β \)-step duplicates the redex \(\oplus pq \), the condition \(SP(\gamma_β, \delta_β) : \gamma_β \cdot →_β^h \subseteq →_β^h \cdot →_β^h \cdot →_β^h \) does not hold. The phenomenon is similar to Ex. 2.5, but now moving to parallel reduction is
not a solution: the problem here is not just compressing steps, but the fact that by swapping \(h \beta \) and \(h \beta' \), a third relation \(h \beta'' \) appears.

Note that the problem above is specific to factorization, and does not appear with confluence.

A Robust Condition for Modular Factorization. Inspired by Accattoli’s study of factorization for \(\lambda \)-calculi with explicit substitutions \([2]\), we consider an alternative sufficient condition for modular factorization, which holds in many examples, as the next sections shall show.

We say that \(\gamma_0 \) **linearly swaps** with \(\gamma_1 \) if

\[
\text{1Swap}(\gamma_0, \gamma_1) : \quad \gamma_0 \cdot \gamma_1 \subseteq \gamma_1 \cdot \gamma_0^* \quad \text{(Linear Swap)}
\]

Note that, on the right-hand side, the relation is \(\gamma_0^* \), not \(\gamma_0 \). This small change will make a big difference, and overcome the issue we have seen in Ex. 3.2 (note that there \(\gamma_0^* \gamma_0^* \gamma_1^* \subseteq \gamma_1^* \gamma_0^* \gamma_1^* \) holds). Perhaps surprisingly, this easy-to-check condition, which is local and linear in \(\gamma_1 \), suffices, and holds in a large variety of cases. Moreover, it holds directly (even with \(\beta \)) that is, without the mediating role of parallel reductions (as it is the instead the case of Takahashi’s technique, see Ex. 2.5).

We finally obtain a modular factorization technique, via the following easy property.

<table>
<thead>
<tr>
<th>Lemma 3.3.</th>
<th>(\rightarrow_a \cdot \rightarrow_b \subseteq \rightarrow_b \cdot \rightarrow_b^*) implies (\rightarrow_a^* \cdot \rightarrow_b \subseteq \rightarrow_b \cdot \rightarrow_b^*).</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Theorem 3.4 (Modular factorization).</th>
<th>Let (\rightarrow_a = (\rightarrow_a \cup \gamma_0)) and (\rightarrow_\gamma = (\rightarrow_\gamma \cup \gamma_\gamma)) be (e)-factorizing relations. The union (\rightarrow_a \cup \rightarrow_\gamma) satisfies (e)-factorization (\text{Fact}(\neg \rightarrow_a, \neg \rightarrow_\gamma)), for (\rightarrow_\gamma := \rightarrow_\gamma \cup \gamma_\gamma), and (\rightarrow_\gamma := \rightarrow_\gamma \cup \gamma_\gamma), if the following linear swaps hold:</th>
</tr>
</thead>
</table>

\[
\text{1Swap}(\gamma_0, \gamma_1) : \quad \gamma_0 \cdot \gamma_1 \subseteq \gamma_1 \cdot \gamma_0^* \quad \text{and} \quad \text{1Swap}(\gamma_1, \gamma_0) : \quad \gamma_1 \cdot \gamma_0 \subseteq \gamma_0 \cdot \gamma_1^* \]

Proof. We prove that the assumptions imply \(\text{SP}(\neg \rightarrow_a, \neg \rightarrow_\gamma^* \cup \neg \gamma_\gamma^*) \) hence \(\text{PP}(\neg \rightarrow_a, \neg \gamma_0^* \cup \neg \gamma_\gamma^*) \) (by Lemma 2.4). Therefore \(\text{PP}(\neg \rightarrow_\gamma, \neg \gamma_\gamma) \) by Lemma 2.3 (because \(\neg \gamma_0 \cup \neg \gamma_\gamma \)) holds. By property **TR**, and so \(\text{Fact}(\neg \rightarrow_\gamma, \neg \gamma_\gamma) \) holds.

To verify \(\text{SP}(\neg \gamma_0 \cup \neg \gamma_\gamma, \neg \gamma_0 \cup \neg \gamma_\gamma) \), we observe that the following holds:

\[
\gamma_0^* \cdot \gamma_1 \cdot \gamma_{j_2} \subseteq (\gamma_0 \cup \gamma_{j_1})^* \cdot \gamma_\gamma \quad \text{for all} \quad k, j \in \{ \alpha, \gamma \}
\]

- **Case** \(j = k \). This is immediate by \(e \)-factorization of \(\rightarrow_a \) and \(\rightarrow_\gamma \), and by Lemma 2.2.1.
- **Case** \(j \neq k \). \(\text{1Swap}(\gamma_0, \gamma_1) \) implies \((\gamma_0^* \cdot \gamma_1) \cdot \gamma_{j_2} \subseteq (\gamma_1 \cup \gamma_{j_1})^* \cdot \gamma_\gamma \), by Lemma 3.3. Since \(\rightarrow_a \)

\(e \)-factorizes, we obtain \((\gamma_0^* \cdot \gamma_1) \cdot \gamma_{j_2} \subseteq (\gamma_1 \cup \gamma_{j_1})^* \cdot \gamma_\gamma \). Similarly for \(\text{1Swap}(\gamma_1, \gamma_0) \). \(\quad \blacksquare \)

Note that in the proof of Theorem 3.4, the assumption that \(\rightarrow_a \) and \(\rightarrow_\gamma \) factorize is crucial. Using that, together with Lemma 3.3, we obtain \(\text{SP}(\neg \rightarrow_\gamma, \neg \gamma_0^*) \), that is, \(\gamma_0^* \) postpones after both \(e \)-steps, (and similarly for \(\gamma_\gamma^* \)). Note also that \(\text{1Swap}(\neg \gamma_0, \neg \gamma_{j_1}) \)—taken alone—does not imply \(\text{PP}(\neg \gamma_0, \neg \gamma_{j_1}) \). For instance, let’s consider again Ex. 2.5. It is clear that \(\text{1Swap}(\neg \gamma_0 \cup \neg \gamma_\gamma, \neg \gamma_\gamma) \) holds and yet it does not imply \(\text{Fact}(\neg \gamma_0 \cup \neg \gamma_\gamma, \neg \gamma_\gamma) \). Stronger tools, such as parallel reduction or finite development are needed here—there is no magic.

The next sections apply the modularization result to various \(\lambda \)-calculus extensions.
Linear Postponement. We collect here two easy properties which shall simplify the proof of factorization in several of the case studies (use Lemma 3.3).

- **Lemma 3.5** (Linear postponement).
 1. \((\rightarrow \rightarrow \right
A reduction step \rightarrow_γ is defined as the contextual closure of a root relation \rightarrow_γ on Λ, which is called a rule. Explicitly, if $r \rightarrow_\gamma r'$, then $t \rightarrow_\gamma s$ holds if $t = C(r)$ and $s = C(r')$, for some context C. The term r is called a γ-redex. Given two rules $\rightarrow_\alpha, \rightarrow_\gamma$ on Λ, the relation $\rightarrow_{\alpha\gamma}$ is $\rightarrow_\alpha \cup \rightarrow_\gamma$, which can equivalently be defined as the contextual closure of $\rightarrow_\alpha \cup \rightarrow_\gamma$.

The (CbN) α-calculus is $(\Lambda, \rightarrow_\beta)$, the set of terms together with β-reduction \rightarrow_β, defined as the contextual closure of the β-rule: $(\lambda x.p)q \rightarrow_\beta p[x:=q]$ where $p[x:=q]$ denotes capture-avoiding substitution. We silently work modulo α-equivalence.

Properties of the Contextual Closure. Here we recall basic properties about contextual closures and substitution, preparing the ground for the simplifications studied next.

A relation \leftrightarrow on terms is **substitutive** if

$$r \leftrightarrow r' \text{ implies } r\{x:=q\} \leftrightarrow r'\{x:=q\}.$$

(substitutive)

An obvious induction on the shape of terms shows the following (see Barendregt [11], p. 54).

Property 4.1 (Substitutive). Let \rightarrow_γ be the contextual closure of \rightarrow_γ.

1. If \rightarrow_γ is substitutive then \rightarrow_γ is substitutive: $p \rightarrow_\gamma p'$ implies $p[x:=q] \rightarrow_\gamma p'[x:=q]$.
2. If $q \rightarrow_\gamma q'$ then $t\{x:=q\} \rightarrow_\gamma^* t\{x:=q'\}$.

We recall a basic but key property of contextual closures. If a step \rightarrow_γ is obtained by closure under non-empty context of a rule \rightarrow_γ, then it preserves the shape of the term:

Property 4.2 (Shape preservation). Assume $t = C(r) \rightarrow C(r') = t'$ and that context C is non-empty. The term t' is an application (resp. an abstraction) if and only if t is.

Notice that since the closure under empty context of \rightarrow_γ is always an essential step (whatever head, left, or weak), Property 4.2 implies that non-essential steps always preserve the shape of terms—we spell this out in Property A.1 and A.2 in the Appendix. Please notice that we shall often write \rightarrow_γ to indicate the step \rightarrow_γ which is obtained by closure under empty contextual closure.

Head Reduction. Head contexts are defined as follows:

$$H ::= \lambda x_1 \ldots \lambda x_k. \{\} t_1 \ldots t_n \quad \text{(head contexts)}$$

where $k \geq 0$ and $n \geq 0$. A non-head context is a context which is not head. A head step $\rightarrow_{h\gamma}$ (resp. non-head step $\rightarrow_{h\gamma}$) is defined as the closure under head contexts (resp. non-head contexts) of rule \rightarrow_γ. Obviously, $\rightarrow_\gamma = \rightarrow_{h\gamma} \cup \rightarrow_{h\gamma}$.

Note that the empty context $\{\}$ is a head context. Therefore $\rightarrow_\gamma \subseteq \rightarrow_{h\gamma}$ holds (a fact which we shall freely use) and Property 4.2 always applies to non-head steps.

4.2 Call-by-Name: Head Factorization, Modularly.

Head factorization is of great importance for the theory of the ChN λ-calculus, which is why head factorization for \rightarrow_β is well studied. If we consider a calculus $(\Lambda, \rightarrow_\beta \cup \rightarrow_\gamma)$, where \rightarrow_γ is a new reduction added to β, our modular technique (Theorem 3.4) states that the compound system $\rightarrow_\beta \cup \rightarrow_\gamma$ satisfies head factorization if \rightarrow_γ does, and both $\text{1Swap}(\rightarrow_{h\beta}, \rightarrow_{h\gamma})$ and $\text{1Swap}(\rightarrow_{h\beta}, \rightarrow_{h\gamma})$ hold. We show that in the head case our technique simplifies even more, reducing to the test in Proposition 4.5.

First, we observe that in this case, any linear swap condition can be tested by considering for the head step only the root relation \rightarrow, that is, only the closure of \rightarrow under empty context, which is a head step by definition. This is expressed in the following lemma, where we include also a variant, that shall be useful later on.
We recall that the proofs of these two lemmas are in Appendix A.1.

Lemma 4.4 (Swap with \(\rightarrow_{\beta}\)). If \(\rightarrow_{\gamma}\) is substitutive then \(\text{Swap}(\rightarrow_{\gamma}, \rightarrow_{\beta})\) holds.

The proofs of these two lemmas are in Appendix A.1.

Summing up, since head factorization for \(\beta\) is known, we obtain the following test to verify that the compound system \(\rightarrow_{\beta} \cup \rightarrow_{\gamma}\) satisfies head factorization \(\text{Fact}(\rightarrow_{\beta} \cup \rightarrow_{\gamma})\).

Proposition 4.5 (A test for modular head factorization). Let \(\rightarrow_{\beta}\) be \(\beta\)-reduction and \(\rightarrow_{\gamma}\) be the contextual closure of a rule \(\rightarrow_{\gamma}\). Their union \(\rightarrow_{\beta} \cup \rightarrow_{\gamma}\) satisfies head factorization if:

1. Head factorization of \(\rightarrow_{\gamma}\): \(\text{Fact}(\rightarrow_{\beta} \cup \rightarrow_{\gamma})\).
2. Root linear swap: \(\rightarrow_{\beta} \cup \rightarrow_{\gamma}\) satisfies head factorization if:
 1. \(\rightarrow_{\gamma}\) is substitutive.
 2. Substitutivity: \(\rightarrow_{\gamma}\) is substitutive.

Note that none of the properties concerns \(\rightarrow_{\beta}\) alone, as we already know that head factorization of \(\rightarrow_{\beta}\) holds. In Sect. 5 we shall use our test (Proposition 4.5) to prove head factorization for the non-deterministic \(\lambda\)-calculus. The full proof is only a few lines long.

We conclude by observing that Lemma 4.3 gives either a proof that the swap conditions hold, or a counter-example. Let us give an example of this latter use.

Example 4.6 (Finding counter-examples). The test of Proposition 4.5 can also be used to provide a counter-example to head factorization when it fails. Let's instantiate \(\rightarrow_{\gamma}\) with \(\rightarrow_{\eta}\), that is, the contextual closure of rule \(\lambda x. t x \rightarrow_{\eta} t\) if \(x \notin \text{fv}(t)\). Now, consider the root linear swap: \(t := \lambda x. (I)(I)x \rightarrow_{\eta} \lambda x. (I)(I)x \rightarrow_{\eta} I =: s\), where \(I := \lambda z. z\). Note that \(t\) has no \(\rightarrow_{\eta}\) step, and so the two steps cannot be swapped. The reduction sequence above is a counter-example to both head and leftmost factorization for \(\beta\eta\). Start with the head (and leftmost) redex \(I\): \(\lambda x. (I)(I)x \rightarrow_{\beta\eta} \lambda x. I(I)x\). From \(\lambda x. I(I)x\), there is no way to reach \(s\). We recall that \(\beta\eta\) still satisfies leftmost normalization—the proof is non-trivial [29, 51, 58, 28].

5 The Non-Deterministic \(\lambda\)-Calculus \(\Lambda\oplus\)

De’ Liguoro and Piperno’s non-deterministic \(\lambda\)-calculus \(\Lambda\oplus\) is defined in [16] by extending the \(\lambda\)-calculus with a new operator \(\oplus\) whose rule models non-deterministic choice. Intuitively, \(t \oplus p\) non-deterministically rewrites to either \(t\) or \(p\). Notably, \(\Lambda\oplus\) is not confluent, hence it is a good example of the fact that confluence and factorization are independent properties.

We briefly recall \(\Lambda\oplus\) and its features, then use our technique to give a novel and neat proof of de’ Liguoro and Piperno’s head factorization result (Cor. 2.10 in [16]).

Syntax. We slightly depart from the presentation in [16], as we consider \(\oplus\) as a constant, and write \(\oplus \cdot p\) rather than \(t \oplus p\), working as usual for the \(\lambda\)-calculus with constants (see e.g.,
As before, \rightarrow_β denotes β-reduction, while the rewrite step \rightarrow_\oplus is the contextual closure of the following non-deterministic rule: $\oplus tp \mapsto t$ and $\oplus \oplus tp \mapsto p$.

Subtleties. The calculus $(\Lambda_\oplus, \rightarrow_\beta \cup \rightarrow_\oplus)$ is non trivial. Of course, \rightarrow_\oplus is not confluent. Moreover, the following examples from [16] show that permuting β and \oplus steps is delicate.

- \rightarrow_\oplus creates β-redexes. For instance, $((\lambda x.x) \oplus y) z \rightarrow t_1 (\lambda x.x) z \rightarrow_\beta z$, hence the \rightarrow_\oplus-step cannot be postponed after \rightarrow_β.
- Choice duplication. Postponing \rightarrow_β after \rightarrow_\oplus is also problematic, because β-steps may multiply choices, introducing new results: flipping a coin and duplicating the result is not equivalent to duplicating the coin and then flipping twice. For instance, let $t = (\lambda x.x) \oplus p q$.

These examples are significant as the same issues impact any calculus with choice effects.

Head Factorization. The head (resp. non-head)2 rewrite steps $\rightarrow_\oplus^\lambda$ and $\rightarrow_\oplus^\ominus$ (resp. $\rightarrow_\ominus^\lambda$ and $\rightarrow_\ominus^\ominus$) are defined as the closure by head (resp. non-head) contexts of rules \rightarrow_β and \rightarrow_\oplus, respectively. We also set $\rightarrow_\ominus^\lambda := \rightarrow_\ominus^\lambda \cup \rightarrow_\ominus^\ominus$ and $\rightarrow_\ominus^\ominus := \rightarrow_\ominus^\ominus \cup \rightarrow_\ominus^\ominus$.

De’ Liguoro and Piperno prove that despite the failure of confluence, Λ_\oplus satisfies head factorization. They prove this result via standardization, following Klop’s technique [29].

- **Theorem 5.1** (Head factorization, Cor. 2.10 in [16]). $\text{Fact}(\rightarrow_\ominus^\lambda, \rightarrow_\ominus^\ominus) \cap h$ holds in the non-deterministic λ-calculus Λ_\oplus.

A New Proof, Modularly. We give a novel, strikingly simple proof of $\text{Fact}(\rightarrow, \rightarrow_\ominus^\ominus)$, simply by proving that \rightarrow_\ominus and \rightarrow_\oplus satisfy the hypotheses of the test for modular head factorization (Proposition 4.5). All the ingredients we need are given by the following easy lemma.

- **Lemma 5.2** (Root linear swaps). 1. $t \rightarrow_\ominus^\ominus p \mapsto_\oplus q$ implies $t \mapsto_\oplus \cdot \rightarrow_\ominus^\ominus q$.
2. $t \rightarrow_\ominus^\ominus p \mapsto_\oplus q$ implies $t \rightarrow_\oplus \cdot \rightarrow_\ominus^\ominus q$.

Proof. 1. Let $p = \oplus p_1 p_2$ and assume $\oplus p_1 p_2 \mapsto_\oplus p_i = q$, with $i \in \{1, 2\}$. Since $t \rightarrow_\ominus^\ominus p$, by Property 4.2 (as spelled-out in Property A.1), t has shape $\oplus t_1 t_2$, with $\oplus t_1 t_2 \rightarrow_\ominus^\ominus \oplus p_1 p_2$.

Therefore, either $t_1 \rightarrow_\ominus^\ominus p_1$ or $t_2 \rightarrow_\ominus^\ominus p_2$, from which $t = \oplus t_1 t_2 \mapsto_\oplus t_1 \rightarrow_\ominus^\ominus p_i = q$.

2. The proof is the same as above, just replace β with \oplus.

- **Theorem 5.3** (Testing head factorization). We have $\text{Fact}(\rightarrow_\ominus^\lambda, \rightarrow_\ominus^\ominus)$ because we have:
1. Head factorization of \rightarrow_\oplus: $\text{Fact}(\rightarrow_\ominus^\lambda, \rightarrow_\ominus^\ominus)$.
2. Root linear swap: $\rightarrow_\ominus^\lambda \cdot \rightarrow_\oplus \subseteq \rightarrow_\ominus^\lambda \cdot \rightarrow_\ominus^\ominus$.
3. Substitutivity: \mapsto_\oplus is substitutive.

1 Note that there is no loss with respect to the syntax in [16], where \oplus always comes with two arguments, because such a constraint defines a sub-system which is closed under reduction.
2 Non-head steps are called internal (\rightarrow) in [16].
Proof. We prove the hypotheses of Proposition 4.5.
1. \(\rightarrow_{\beta} \) linearly postpones after \(\rightarrow_{h} \oplus \) because lifting the swap in Lemma 5.2.2 via Lemma 4.3.2 (with \(\alpha = \gamma := \oplus \)) gives \(t \rightarrow_{h} p \rightarrow_{\beta} q \subseteq t \rightarrow_{h} \oplus \rightarrow_{\beta} \). Lemma 3.5.2 gives Factorization.
2. This is exactly Lemma 5.2.1.
3. By definition of substitution \((\oplus p_1 p_2)[x:=q] = \oplus(p_1[x:=q])(p_2[x:=q]) \mapsto_{\oplus} p_1[x:=q].\)

\(\Box\)

6 Extensions of the CbV \(\lambda\)-Calculus: Left and Weak Factorization

Plotkin's call-by-value (CbV) \(\lambda\)-calculus\(^4\) is the restriction of the \(\lambda\)-calculus where \(\beta\)-redexes can be fired only when the argument is a value, where values are defined by:

\[v ::= x | a | \lambda x.t \quad (\text{values \(V\)}) \]

The CbV \(\lambda\)-calculus is given by the pair \((\Lambda, \rightarrow_{\beta} v)\), where the reduction step \(\rightarrow_{\beta} v\) is the contextual closure of the following rule \(\mapsto_{\beta} v : (\lambda x.t)v \mapsto_{\beta} t[x:=v] \) where \(v\) is a value.

Left and Weak Reduction. In the literature on the CbV \(\lambda\)-calculus, factorization is considered with respect to various essential reductions. Usually, the essential reduction is weak, \(i.e.\) it does not act under abstractions. There are three main weak schemes: reducing from left to right, as originally done by Plotkin\(^4\), from right to left, as done for instance by Leroy's ZINC abstract machine\(^3\), or in an unspecified non-deterministic order, used for example in\(^3\).

Here we focus on the left(-to-right) and the (unspecified) weak schemes. Left contexts \(L\) and weak contexts \(W\) are respectively defined by

\[
L ::= \langle \rangle | Lt | vL \\
W ::= \langle \rangle | Wt | tW
\]

Given a rule \(\mapsto_{\gamma}\), a left step \(\mapsto_{\gamma} \) (resp., a weak step \(\nabla\mapsto_{\gamma} \)) is its closure by left (resp. weak) context. A non-left step \(\nabla\mapsto_{\gamma} \) (resp. non-weak step \(\nabla\mapsto_{\gamma} \)) is a step obtained as the closure by a context which is not left (resp. not weak).

Left/Weak Factorization, Modularly. For both left and weak reductions, we derive a test for modular factorization along the same lines as the test for head factorization (Proposition 4.5). Note that we already know that \((\Lambda, \rightarrow_{\beta_{e}})\) satisfies left and weak factorization; the former was proved by Plotkin\(^4\), the latter is folklore—a proof can be found in our previous work\(^3\).

\(\blacktriangleleft\) Proposition 6.1 (A test for modular left/weak factorization). Let \(\rightarrow_{\beta_{e}}\) be \(\beta_{e}\)-reduction, \(\rightarrow_{\gamma}\) the contextual closure of a rule \(\mapsto_{\gamma}\), and \(e \in \{l, w\}\). Their union \(\rightarrow_{\beta_{e}} \cup \rightarrow_{\gamma}\) satisfies \(e\)-factorization if:

1. \(e\)-factorization of \(\rightarrow_{\gamma}\): \(\text{Fact}(\nabla\mapsto_{\gamma}, \nabla\mapsto_{\gamma})\).
2. Root linear swap: \(\nabla\mapsto_{\beta_{e}} \cdot \mapsto_{\gamma} \subseteq \nabla\mapsto_{\beta_{e}} \cdot \mapsto_{\beta_{e}}\).
3. Substitutivity: \(\mapsto_{\gamma}\) is substitutive.

The easy proof is in Appendix A.2.

\(\blacktriangleleft\)

7 The Shuffling Calculus

Plotkin’s CbV \(\lambda\)-calculus is usually considered on closed terms. When dealing with open terms, it is well known that a mismatch between the operational and the denotational...
semantics arises, as first pointed out by Paolini and Ronchi della Rocca [43, 42, 47]. The
literature contains several proposals of extensions of \(\beta \), reduction to overcome this issue, see
Accattoli and Guerrieri for discussions [4]. One such refinement is Carraro and Guerrieri’s
shuffling calculus [14], which extends Plotkin’s \(\lambda \)-calculus with extra rules (without adding
new operators). These rules are inspired by linear logic proof nets, and are the CbV analogous
of Regnier’s \(\sigma \) rules [45]. Left factorization for the shuffling calculus is studied by Guerrieri,
Paolini, and Ronchi della Rocca in [23], by adapting Takahashi’s technique [51].

We recall the calculus, then use our technique to give a new proof of factorization, both
left (as in [23]) and weak (new). Remarkably, our proofs are very short, whereas the original
requires several pages (to define parallel reductions and prove their properties).

The Syntax. The shuffling calculus is simply Plotkin’s calculus extended with \(\sigma \)-reduction
\(\rightarrow_\sigma \), that is, the contextual closure of the root relation \(\rightarrow_\sigma = \rightarrow_\beta \cup \rightarrow_\sigma_3 \), where

\[
(\lambda x.t)u \rightarrow_\sigma (\lambda x.ts)u \text{ if } x \notin \text{fv}(s) \quad \text{and} \quad \nu((\lambda x.t)u) \rightarrow_\sigma (\lambda x.vtu)u \text{ if } x \notin \text{fv}(v)
\]

We write \(\rightarrow_\sigma_i \) for the contextual closure of \(\rightarrow_\sigma \), (so \(\rightarrow_\sigma = \rightarrow_\beta \cup \rightarrow_\sigma_3 \)), and \(\rightarrow_\beta \cup \rightarrow_\sigma_3 \).

Subtleties. From a rewriting perspective, the shuffling calculus is an interesting extension
of the \(\lambda \)-calculus because its intricate rules do not fit into easy to manage classes of rewriting
systems. Orthogonal systems have only simple forms of overlaps of redexes. While the
\(\lambda \)-calculus is an orthogonal system, the \(\sigma \)-rules introduce non-trivial overlaps such as the
following ones. Setting \(I := \lambda x.x \) and \(\delta := \lambda x.xx \), the term \(\delta I \delta \) is a \(\sigma_1 \)-redex and contains
the \(\beta_\delta \)-redex \(\delta I \); the term \(\delta (I \delta)(xI) \) is a \(\sigma_1 \)-redex and contains the \(\sigma_3 \)-redex \(\delta (I \delta) \), which
contains in turn the \(\beta_\delta \)-redex \(I \delta \).

Left and Weak Factorization. Despite all these traits, the shuffling calculus has good
properties, such as confluence [14], and left factorization [23]. Moreover, \(\rightarrow_\sigma \) is terminating
[14]. The tests developed in the previous section allow us to easily prove both left and weak
factorization. We check the hypotheses of Proposition 6.1; all the ingredients we need are in
Lemma 7.1 (the easy details are in Appendix A.3). Note that the empty context is both a
left and a weak context, hence \(t \rightarrow_\sigma \) is implies both \(t \rightarrow_\beta \) and \(t \rightarrow_\sigma \).

Lemma 7.1 (Root linear swaps). Let \(e \in \{l, w\} \) and \(i \in \{1, 3\} \). Then:
1. \(\rightarrow_\beta e \cdot \rightarrow_\sigma \subseteq \rightarrow_\sigma \cdot \rightarrow_\beta e \)
2. \(\rightarrow_\sigma \cdot \rightarrow_\sigma \subseteq \rightarrow_\sigma \cdot \rightarrow_\sigma \)

Theorem 7.2 (Testing left (weak) factorization). Let \(e \in \{l, w\} \). \(\text{Fact}(\rightarrow_\beta e, \rightarrow_\sigma e) \) holds, as:
1. Left (resp. weak) factorization of \(\rightarrow_\sigma \): \(\text{Fact}(\rightarrow_\beta e, \rightarrow_\sigma e) \).
2. Root linear swap: \(\rightarrow_\beta e \cdot \rightarrow_\sigma \subseteq \rightarrow_\sigma \cdot \rightarrow_\beta e \).
3. Substitutivity: \(\rightarrow_\sigma_i \) is substitutive, for \(i \in \{1, 3\} \).

Proof. We prove the hypotheses of Proposition 6.1:
1. Left (resp. weak) factorization of \(\rightarrow_\sigma \) holds because \(\rightarrow_\sigma \) linearly postpones after \(\rightarrow_\beta e \):
 indeed, by Lemma 7.1.2 \(\rightarrow_\sigma e \cdot \rightarrow_\sigma \subseteq \rightarrow_\sigma \cdot \rightarrow_\sigma \) and by contextual closure (Lemma A.3
 with \(\alpha = \gamma = \sigma \)) we have that \(\rightarrow_\sigma e \cdot \rightarrow_\sigma \subseteq \rightarrow_\sigma \cdot \rightarrow_\sigma \). We conclude by Lemma 3.5.2.
2. This is Lemma 7.1.1.
3. By definition of substitution. The immediate proof is in Appendix A.3.
Non-Terminating Relations

In this section we provide examples of the fact that our technique does not rest on termination hypotheses. We consider fixpoint operators in both CbN and CbV, which have non-terminating reductions. Obviously, when terms are not restricted by types, the operator is definable, so the example is slight artificial, but we hope clarifying.

There are also cases where the modules are terminating but the compound system is not; the technique, surprisingly, still works. Accattoli gives various examples based on \(\lambda\)-calculi with explicit substitutions in [2]. An insight of this paper—not evident in [2]—is that termination is not needed to lift factorization from the modules to the compound system.

CbN Fixpoint, Head Factorization. We first consider the calculus \(\beta Y := (\Lambda, \rightarrow \cup \rightarrow_Y)\) which is defined by Hindley [24]\. The reduction \(\rightarrow_Y\) is the contextual closure of the root relation \(Yp \rightarrow_Y p(Yp)\). Points 1-3 below are all easily established—details in Appendix A.4.

\[\begin{align*}
1. & \text{Head factorization of } \rightarrow_Y: \text{Fact}(\rightarrow_h Y, \rightarrow_{\neg h} Y). \\
2. & \text{Root linear swap: } \rightarrow_{\neg h} Y \cdot \rightarrow_Y \subseteq \rightarrow_{h Y} \cdot \rightarrow_{\bar{h} Y}. \\
3. & \text{Substitutivity: } \rightarrow_Y \text{ is substitutive.}
\end{align*}\]

CbV Fixpoint, Weak Factorization. We now consider weak factorization and a CbV counterpart of the previous example. We follow Abramsky and McCusker [1], who study a call-by-value PCF with a fixpoint operator \(Z\). Similarly, we extend the CbV \(\lambda\)-calculus with their reduction \(\rightarrow_Z\), which is the contextual closure of rule \(Zv \rightarrow_Z \lambda x. v(Zv)x\) where \(v\) is a value. The calculus \(\beta_v Z\) is therefore \((\Lambda, \rightarrow_{\beta_v} \cup \rightarrow_Z)\). Points 1-3 below are all immediate—details in Appendix A.4.

\[\begin{align*}
1. & \text{Weak factorization of } \rightarrow_Z: \text{Fact}(\rightarrow_w Z, \rightarrow_{\neg w} Z). \\
2. & \text{Root linear swap: } \rightarrow_{\neg w} Z \cdot \rightarrow_Z \subseteq \rightarrow_{h Z} \cdot \rightarrow_{\bar{h} Z}. \\
3. & \text{Substitutivity: } \rightarrow_Z \text{ is substitutive.}
\end{align*}\]

Further Applications: Probabilistic Calculi

In this paper, we present our technique using examples which are within the familiar language of \(\lambda\)-calculus. However the core of the technique—Theorem 3.4—is independent from a specific syntax. It can be used in calculi whose objects are richer than \(\lambda\)-terms. The probabilistic \(\lambda\)-calculus is a prime example.

A recent line of research [19, 34] is developing probabilistic calculi where evaluation is not limited to a deterministic strategy. Faggian and Ronchi della Rocca [19] define two calculi—\(\Lambda_{\text{cbv}}^\oplus\) and \(\Lambda_{\text{cbn}}^\oplus\)—which model respectively CbV and CbN probabilistic higher-order computation, while being conservative extensions of the CbV and CbN \(\lambda\)-calculus. For both calculi confluence and factorization (called standardization in [19]) hold. There is however a deep asymmetry between the two results. Confluence is neatly proved via Hindley-Rosen

\[\text{Footnote 3} \quad \text{Head factorization of } \beta Y \text{ is easily obtained by a high-level argument, as consequence of left-normality, see Terese [52], Ch. 8.5. The point that we want to stress here is that the validity of linear swaps is not limited to terminating reduction, and } \beta Y \text{ provides a simple, familiar example.}\]
technique, by relying on the fact the β (resp. β_v) reduction is confluent. The proof of factorization is instead laborious: the authors define a notion of parallel reduction for the new calculus, and then adapt Takahashi’s technique \cite{51}. Leventi’s work \cite{34} on call-by-name probabilistic λ-calculus suffers a similar problem; he proves factorization by relying on the finite developments method, but the proof is equally laborious.

Our technique allows for a neat, concise proof of factorization, which reduces to only testing a single linear swap, with no need of parallel reductions or finite developments. To prove factorization turns out to be in fact easier than proving confluence. The technical details—that is, the definition of the calculus and the proof—are in Appendix B.

10 Conclusions and Discussions

Summary. A well-established approach to model higher-order computation with advanced features, is starting from the call-by-name or call-by-value λ-calculus, and enrich it with new constructs. We propose a sharp technique to establish factorization of a compound system from factorization of its components. As we point out, the natural transposition of Hindley-Rosen technique for confluence does not work here, because the obtained conditions are—in general—not validated by extensions of the λ-calculus. The turning point is the identification of an alternative sufficient condition, called linear swap. Moreover, on common factorization schemes such as head or weak factorization, our technique reduces to a straightforward test. Concretely, we apply our technique to various examples, stressing its independence from common simplifying hypotheses such as confluence, orthogonality, and termination.

Black Box and Elementary Commutations. A key feature of our technique is to take factorization of the core relations—the modules—as black boxes. The focus is then on the analysis of the interaction between the modules. The benefit is both practical and conceptual: we disentangle the components—and the issues—under study. This is especially appealing when dealing with extensions of the λ-calculus, built on top of β or β_v reduction, because often most of the difficulties come from the higher-order component, that is, β or β_v itself—whose factorization is non-trivial to prove but known to hold—rather than from the added features.

Good illustrations of these points are our proofs of factorization. We stress that:

- the proof of factorization of the compound system is independent from the specific technique (finite developments, parallel reduction, etc.) used to prove factorization of the modules.
- to verify good interaction between the modules, it often suffices to check elementary, local commutations—the linear swaps.

These features provide a neat proof-technique supporting the development and the analysis of complex compound systems.

Conclusions. When one wants to model new computational features, the calculus is often not given, but it has to be designed, in such a way that it satisfies confluence and factorization. The process of developing the calculus and the process of proving its good properties, go hand in hand. If the latter is difficult and prone to errors, the former also is. The black-box approach makes our technique efficient and accessible also to working scientists who are not specialists in rewriting. And even for the λ-calculus expert who masters tools such as finite developments, labeling or parallel reduction, it still appears desirable to limit the amount of difficulties. The more advanced and complex are the computational systems we study, the more crucial it is to have reasoning tools as simple to use as possible.
References

22:18 Factorize Factorization

Factorization

APPENDIX

Appendix A collects omitted details of proofs. In Appendix B we illustrate a more advanced example of application of our technique, namely to the probabilistic λ-calculus.

A Appendix: Omitted Proofs

A.1 Head Factorization (Sect. 4)

Consequences of Property 4.2. Note that the empty context $\langle \rangle$ is a head context. Hence for non-head steps if $\xi \rightarrow_{\beta} \eta$, necessarily $\xi \neq \langle \rangle$, and Property 4.2 always applies. The following key property holds.

- **Property A.1 (Shape Preservation).** By Property 4.2, $\gamma \rightarrow_{\alpha}$ preserves the shapes of terms:
 \[\text{1. Atoms: there is no } t \text{ such that } t \rightarrow_{\beta} a, \text{ for any variable or constant } a. \]
 \[\text{2. } t \rightarrow_{\gamma} \lambda x.u_1 \text{ implies } t = \lambda x.t_1 \text{ and } t_1 \rightarrow_{\gamma} u_1. \]
 \[\text{3. } t \rightarrow_{\gamma} u_1 u_2 \text{ implies } t = t_1 t_2, \text{ with } t_1 \rightarrow_{\gamma} u_1 \text{ (and } t_2 = u_2), \text{ or } t_2 \rightarrow_{\gamma} u_2 \text{ (and } t_1 = u_1). \]
 \[\text{4. Redex: if } t \rightarrow_{\gamma} u, \text{ and } u \text{ is a } \beta\text{-redex, then } t \text{ is a } \beta\text{-redex.} \]
 Similarly, if $t \rightarrow_{\gamma} \eta$ and u has shape $Kt_1...t_k$ (K a constant), t has the same shape.

Point 4. follows from points 1. to 3. Note that, in particular, if u is a \oplus-redex, so is t.

Head Factorization, Modularly.

- **Lemma (4.3, Lifting root linear swaps).** Let $\rightarrow_{\alpha} \subseteq \rightarrow_{\gamma}$ be root relations on Λ.
 \[\text{1. } \gamma \rightarrow_{\alpha} \subseteq \rightarrow_{\gamma} \text{ implies } 1\text{Swap}(\gamma \rightarrow_{\alpha}, \gamma \rightarrow_{\alpha}). \]
 \[\text{2. Similarly, } \gamma \rightarrow_{\alpha} \subseteq \rightarrow_{\gamma} \text{ implies } \gamma \rightarrow_{\alpha} \rightarrow_{\alpha}. \]

Proof. (1). We prove that $\rightarrow_{\alpha} \subseteq \rightarrow_{\gamma}$ implies $t \rightarrow_{\alpha} u \rightarrow_{\gamma} s \subseteq t \rightarrow_{\gamma} s$, by induction on the head context $H = \lambda_1 x_1 ... \lambda_n x_n \langle \rangle t_1 ... t_n$ of the reduction $u \rightarrow_{\gamma} s$.

A. u is the γ-redex (i.e. $H = \langle \rangle$, $k = 0$, $n = 0$). The claim holds by assumption.

B. $u = \lambda x.u_1$ (i.e., $k > 0$). Immediate by shape preservation (Property A.1.2) and the i.h.

C. $u = u_1 u_2$ (i.e., $k = 0$, $n > 0$). Then $u_1 \rightarrow_{\gamma} u_1'$ and $u_1 u_2 \rightarrow_{\gamma} s$. By shape preservation (Property A.1.3), there are two cases.

 Case (i): $t := t_1 u_2$. By i.h., $t_1 \rightarrow_{\gamma} t_1'$ and $t_1' \rightarrow_{\gamma} u_1'$. Hence, $t_1 u_2 \rightarrow_{\gamma} t_1' u_2 \rightarrow_{\alpha} u_1 u_2 = s$.

 Case (ii): $t := u_1 t_2$. Immediate, because $t = u_1 u_2 \rightarrow_{\gamma} u_1 t_2 \rightarrow_{\alpha} u_1 u_2$.

(2). The proof is similar. The only minimal difference is case (ii) in point (C).

- **Lemma (4.4, Swap with $\rightarrow_{\beta} \gamma$).** If \rightarrow_{γ} is substitutive then $1\text{Swap}(\gamma \rightarrow_{\alpha}, \gamma \rightarrow_{\beta})$ holds.

Proof. First, note that by Property 4.1, we have that \rightarrow_{γ} is substitutive. We prove $(t \rightarrow_{\beta} \gamma \rightarrow_{\gamma} s)$ by using Lemma 4.3.

Let $u = (\lambda x.u_1) u_2 \rightarrow_{\beta} u_1 \{ x := u_2 \}$. By Property A.1, either (i) $t = (\lambda x.p) u_2$ and $p \rightarrow_{\beta} \gamma u_1$ or (ii) $t = (\lambda x.u_1) p$ and $q \rightarrow_{\gamma} u_2$. Case (i): $(\lambda x.p) u_2 \rightarrow_{\beta} p[x := u_2]$. By Property 4.1 (point 1) $p[x := u_2] \rightarrow_{\gamma} u_1 \{ x := u_2 \}$. Case (ii): $(\lambda x.u_1) q \rightarrow_{\gamma} u_1 \{ x := q \}$. By using Property 4.1 (point 2), $u_1 \{ x := q \} \rightarrow_{\gamma} u_1 \{ x := u_2 \}$.

CSL 2021
A.2 Call-by-Value λ-Calculus (Sect. 6)

Consequences of Property 4.2. The empty context $\langle \rangle$ is both a left and a weak context. Hence Property 4.2 always applies to non-left and non-weak steps. Consequently:

- **Property A.2 (Shape Preservation).** Fixed $e \in \{l, w\}$, \rightarrow_{γ}^e preserves the shape of terms:
 1. Atoms: there is no t such that $t \rightarrow_{\gamma}^e a$, for any variable or constant a;
 2. Abstraction: $t \rightarrow_{\gamma}^e \lambda x. u_1$ implies $t = \lambda x. t_1$ and $t_1 \rightarrow_{\gamma} u_1$;
 3. Application: $t \rightarrow_{\gamma}^e u_1 u_2$ implies $t = t_1 t_2$, with either (i) $t_1 \rightarrow_{\gamma}^e u_1$ and $t_2 = u_2$, or (ii) $t_2 \rightarrow_{\gamma} u_2$ and $t_1 = u_1$. Moreover, in case (ii): if $vt_2 \rightarrow_{\gamma} v u_2$ (v a value), then $t_2 \rightarrow_{\gamma} u_2$; if $t_1 t_2 \rightarrow_{\gamma}^e u_1 u_2$, then $t_2 \rightarrow_{\gamma} u_2$ (always).
 4. Redex: if $t \rightarrow_{\gamma}^e u$, and u is a β-redex, then t also is (as a consequence of points 1. to 3.)

Left and Weak Factorization, Modularly. To prove Proposition 6.1 we proceed similarly to Sect. 4.2.

- **Lemma A.3 (Root linear swaps).** Let $\rightarrow_\alpha, \rightarrow_\gamma$ be root relations on Λ.
 1. If $t \rightarrow_\gamma^e u \rightarrow_\gamma s \subseteq t \rightarrow^e_\gamma \cdot \rightarrow^*_\alpha s$ then $1\text{Swap}(\rightarrow^e_\gamma, \rightarrow^*_\alpha)$.
 2. If $t \rightarrow_\gamma^e u \rightarrow_\gamma s \subseteq t \rightarrow^e_\gamma \cdot \rightarrow^*_\alpha s$ then $1\text{Swap}(\rightarrow^e_\gamma, \rightarrow^*_\alpha)$.

Similarly $\rightarrow_\gamma \cdot \rightarrow_\alpha \subseteq \rightarrow^e_\gamma \cdot \rightarrow^*_\alpha$ implies $\rightarrow^e_\gamma \cdot \rightarrow^*_\alpha$, with $e \in \{l, w\}$.

Proof. (i.) We prove that $t \rightarrow^e_\gamma u \rightarrow^*_\alpha s \subseteq t \rightarrow^e_\gamma \cdot \rightarrow^*_\alpha s$, by induction on the context L of u.

1. $L = \langle \rangle$, i.e. $u \rightarrow_\gamma s$. The claim holds by hypothesis.
2. $L = L u_2$, i.e. $u = u_1 u_2 \rightarrow^e_\gamma s_1 u_2 = s$ with $u_1 \rightarrow^*_\gamma s_1$. By Property A.2.3 $t = t_1 t_2$ and
 a. either $t_1 \rightarrow^e_\gamma u_1$ (and $t_2 = u_2$); then, by i.h., $t_1 \rightarrow^e_\gamma \cdot \rightarrow^*_\alpha s_1$, so $t = t_1 u_2 \rightarrow^e_\gamma \cdot \rightarrow^*_\alpha s_1 u_2$;
 b. or $t_2 \rightarrow^e_\gamma u_2$ (and $t_1 = u_1$), so $t = u_1 t_2 \rightarrow^e_\gamma s_1 t_2 \rightarrow^*_\alpha s_1 u_2$.
3. $L = v L$, i.e. $u = v u_2 \rightarrow^e_\gamma v s_2 = s$ with $u_2 \rightarrow^*_\gamma s_2$. Then $t = t_1 t_2$ and by Property A.2.3
 a. either $t_1 \rightarrow^e_\gamma v$ (and $t_2 = u_2$). Since v is a value, by Property A.2.1-2, t_1 is also a value
 and so $t = t_1 u_2 \rightarrow^e_\gamma t_1 s_2 \rightarrow^*_\alpha v s_2$;
 b. or $t_2 \rightarrow^e_\gamma u_2$ ($t_1 = v$). By i.h., $t_2 \rightarrow^e_\gamma \cdot \rightarrow^*_\alpha s_2$, so $v t_2 \rightarrow^e_\gamma \cdot \rightarrow^*_\alpha v s_2$.

(ii.) The proof of (ii.) is similar, but simpler. Case $W = \langle \rangle$ is the same. Case $W u_2$ is exactly like $L u_2$, and case $u_1 W$ is symmetric to case (2).

The proof of the last claim is similar. ▲

- **Lemma A.4 (Swap with \rightarrow^e_β).** If \rightarrow_γ is substitutive then $1\text{Swap}(\rightarrow^e_\gamma, \rightarrow^e_\beta)$, for $e \in \{l, w\}$.

Proof. We prove $1\text{Swap}(\rightarrow^e_\gamma, \rightarrow^e_\beta)$, the other swap is similar. By Lemma A.3, it is enough to prove that $t \rightarrow^e_\gamma u \rightarrow^e_\beta$, s implies $t \rightarrow^e_\beta s$. We use Property 4.1 (substitutivity). Let $u = (\lambda x. u_1) v \rightarrow^e_\beta u_1 \{x := v\} = s$. By Property A.2 (3. and 4.) we have:

1. either $t = (\lambda x. t_1) v$ and $t_1 \rightarrow_\gamma u_1$; thus, $t = (\lambda x. t_1) v \rightarrow^e_\beta t_1 \{x := v\} \rightarrow_\gamma u_1 \{x := v\} = s$,
 where the \rightarrow_γ step takes place by Property 4.1.1 since \rightarrow_γ is substitutive.
2. or $t = (\lambda x. u_1) w$ where $w \rightarrow_\gamma v$ and w is a value; hence, $t = (\lambda x. u_1) w \rightarrow^e_\beta u_1 \{x := w\} \rightarrow^e_\gamma u_1 \{x := v\}$, where the \rightarrow_γ steps take place by Property 4.1.2. ▲
A.3 The Shuffling Calculus (Sect. 7)

- **Property A.5** (Values are closed under substitution). If \(v \) and \(w \) are values, so is \(v\{x:=w\} \).

- **Lemma** (Lemma 7.1, Root linear swaps). Let \(\gamma \in \{\beta_v, \sigma\} \).
 1. If \(t \xrightarrow{\sigma} u \Rightarrow_\sigma s \) then \(t \Rightarrow_\sigma \cdot \xrightarrow{\gamma} s \), for \(i \in \{1,3\} \).
 2. If \(t \xrightarrow{\sigma} u \Rightarrow_\sigma s \) then \(t \Rightarrow_\sigma \cdot \xrightarrow{\gamma} s \), for \(i \in \{1,3\} \).

The properties above hold for \(\Rightarrow_\gamma \), contextual closure of any rule \(\Rightarrow_\gamma \).

Proof. We prove (1). Property A.2 (iterated) gives that if \(t \xrightarrow{\gamma} u \) and \(u \) is a \(\sigma_1 \)-redex (resp. a \(\sigma_3 \)-redex), so is \(t \). We examine the two cases for \(u \Rightarrow_\sigma s \).

\(\sigma_1 \): By hypothesis, \(u = (\lambda x.q)r \Rightarrow_\sigma (\lambda x.q)r p = s \) with \(x \notin fv(r) \). Since \(t \xrightarrow{\gamma} u \), by Property A.2, we have \(t = (\lambda x.q)p r' \) and moreover:
- either \(q' \xrightarrow{\gamma} q \) and \(r' = r \) and \(p' = p \),
- or \(r' \xrightarrow{\gamma} r \) and \(q' = q \) and \(p' = p \),
- or \(p' \xrightarrow{\gamma} p \) and \(q' = q \) and \(r' = r \).

In any case, \(t = (\lambda x.q)p r' \xrightarrow{\gamma_1} (\lambda x.q)r p' \xrightarrow{\gamma} (\lambda x.q)r p = s \), since \(x \notin fv(r) \subseteq fv(r') \).

\(\sigma_3 \): By hypothesis, \(u = v((\lambda x.r)\gamma p) \Rightarrow_\sigma (\lambda x.v\gamma p) = s \) with \(x \notin fv(v) \). Since \(t \xrightarrow{\gamma} u \), by Property A.2, we have \(t = v'((\lambda x.r')p') \), and moreover:
- either \(v' \xrightarrow{\gamma} v \) and \(r' = r \) and \(p' = p \),
- or \(r' \xrightarrow{\gamma} r \) and \(v' = v \) and \(p' = p \),
- or \(p' \xrightarrow{\gamma} p \) and \(v' = v \) and \(r' = r \).

In any case, \(t = v'((\lambda x.r')p') \xrightarrow{\gamma_1} (\lambda x.v\gamma r')p' \xrightarrow{\gamma} (\lambda x.v\gamma r)p = s \), as \(x \notin fv(v) \subseteq fv(v') \).

Like before, the proof of (2) is similar, and simpler.

- **Lemma A.6** (Substitutivity of \(\Rightarrow_\sigma \)). If \(t \Rightarrow_\sigma, t' \) then \(t[x:=v] \Rightarrow_\sigma, t'[x:=v] \), for \(i \in \{1,3\} \).

Proof. \(\sigma_1 \): \(t = (\lambda y.r)s u \Rightarrow_\sigma (\lambda x.v)u = t' \) with \(y \notin fv(u) \) and we can suppose without loss of generality that \(y \notin fv(u) \cup \{x\} \). Therefore, \(t[x:=v] = (\lambda y.r[x:=v])s \{x:=v\} u \{x:=v\} \Rightarrow_\sigma (\lambda x.r[x:=v])s \{x:=v\} u \{x:=v\} = t'[x:=v] \), since \(y \notin (fv(u) \cup \{x\}) \). \(\sigma_3 \): \(t = w((\lambda y.u)s) \Rightarrow_\sigma (\lambda y.w)u = t' \) with \(y \notin fv(w) \) and we can suppose without loss of generality that \(y \notin fv(w) \cup \{x\} \). Therefore, \(t[x:=v] = w((\lambda y.u[x:=v])s \{x:=v\}) u \{x:=v\} = t'[x:=v] \), as \(w \{x:=v\} \) is a value (Property A.5) and \(y \notin (fv(w) \cup \{x\}) \).
1. Weak factorization of $\rightarrow_z: \text{Fact}(\overrightarrow{\mathbb{Z}}, \overrightarrow{\mathbb{Z}})$.
2. Root linear swap: $\overrightarrow{\beta} \cdot \overrightarrow{\rightarrow_z} \subseteq \overrightarrow{\mathbb{Z}} \cdot \overrightarrow{\overrightarrow{\beta}}$.
3. Substitutivity: \rightarrow_Z is substitutive.

Proof. We prove the hypotheses of Proposition 4.5:
1. It is easy to verify that $\overrightarrow{\mathbb{Z}} \cdot \overrightarrow{\rightarrow_z} \subseteq \overrightarrow{\mathbb{Z}} \cdot \overrightarrow{\overrightarrow{\beta}}$. Then apply Lemma 3.5.1.
2. Assume $t \overrightarrow{\beta} Zv \rightarrow_Z \lambda x.v(Zv)x$. By Property 4.2 (as spelled-out in Property A.2), if $t \overrightarrow{\beta} Zv$ then $t = Zw$ and $w \rightarrow_{\beta} v$. So, $t = Zw \overrightarrow{\mathbb{Z}} \lambda x.w(Zv)x \rightarrow_{\beta} \lambda x.v(Zv)x$.
3. Simply $(Zv)\{x:=q\} = Z(v\{x:=q\}) \rightarrow_Z \lambda y.v\{x:=q\}(Z(v\{x:=q\}))y = (\lambda y.(Zv)y)\{x:=q\}$.

B Appendix: Factorizing Factorization in Probabilistic λ-calculus

Faggian and Ronchi della Rocca [19] define two calculi—Λ_{cbv} and $\Lambda_{\text{cbv}}^\text{syn}$—which model respectively CbV and CbN probabilistic higher-order computation, and are conservative extensions of the CbN and CbV λ-calculi. Here we focus on CbV, which is the most relevant paradigm for calculi with effects, but the same approach applies to CbN.

We first recall the syntax of $\Lambda_{\text{cbv}}^\text{syn}$ (we refer to [19] for background and details), and then give a new proof of weak factorization, using our technique and obtaining a neat, compact proof of factorization, which only requires a few lines.

Terms. $\Lambda_{\text{cbv}}^\text{syn}$ is a rewrite system where the objects to be rewritten are not terms, but monadic structures on terms, namely multi-distributions [8]. Intuitively, a multi-distribution represents a probability distribution on the possible reductions from a term. Terms and contexts are the same as for the non-deterministic λ-calculus, but here we write the \oplus infix, to facilitate reference to [19]. Terms and values are generated by the grammars

$$M : = x | \lambda x.M | MM | M \oplus M$$ \hspace{1cm} (Terms Λ_{cbv})

$$V : = x | \lambda x.M$$ \hspace{1cm} (Values V)

where x ranges over a countable set of variables. Contexts and weak contexts are given by:

$$C : = () | CM | MC | \lambda x.C | C \oplus M | M \oplus C$$ \hspace{1cm} (Contexts)

$$W : = () | WM | MW$$ \hspace{1cm} (Weak Contexts)

where $()$ denotes the hole of the context.

The intended behaviour of $M \oplus N$ is to reduce to either M or N, with equal probability $\frac{1}{2}$. This is formalized by means of multi-distributions.

Multi-distributions. A multi-distribution $m = [p_iM_i | i \in I]$ is a multiset of pairs of the form p_iM_i, with $p \in [0,1]$, $M_i \in \Lambda_{\text{cbv}}$, and $\sum p_i \leq 1$. We denote by $\mathcal{M}(\Lambda_{\text{cbv}})$ the set of all multi-distributions. The sum of multi-distributions is denoted by \oplus. The product $q \cdot m$ of a scalar q and a multi-distribution m is defined pointwise $q[p_iM_i]_{i \in I} := [qp_iM_i]_{i \in I}$.

The calculus $(\mathcal{M}(\Lambda_{\text{cbv}}), \Rightarrow)$. The calculus $\Lambda_{\text{cbv}}^\text{syn}$ is the rewrite system $(\mathcal{M}(\Lambda_{\text{cbv}}), \Rightarrow)$ where $\mathcal{M}(\Lambda_{\text{cbv}})$ is the set of multi-distributions on Λ_{cbv} and the relation $\Rightarrow \subseteq \mathcal{M}(\Lambda_{\text{cbv}}) \times \mathcal{M}(\Lambda_{\text{cbv}})$ is defined in Fig. 1 and Fig. 2. First, we define one-step reductions from terms to multi-distributions—so for example, $M \oplus N \Rightarrow [\frac{1}{2}M, \frac{1}{2}N]$. Then, we lift the definition of reduction to a binary relation on $\mathcal{M}(\Lambda_{\text{cbv}})$, in the natural way—for instance $[\frac{1}{2}(\lambda x.x)z, \frac{1}{2}(M \oplus N)] \Rightarrow [\frac{1}{2}z, \frac{1}{4}M, \frac{1}{4}N]$. Precisely:
The other two conditions of Theorem 3.4 hold vacuously, because (no reduction in the body of a function nor in the scope of an operator \oplus). Instead, the β_ν rule is closed under general contexts. Its restriction to closure under weak context is denoted \rightarrow_β.

1. The reductions \rightarrow_β, $\rightarrow_\oplus \subseteq \Lambda_\oplus \times M(\Lambda_\oplus)$ are defined in Fig. 1. Observe that the \oplus rule—probabilistic choice—is closed only under weak contexts (no reduction in the body of a function nor in the scope of an operator \oplus). Instead, the β_ν rule is closed under general contexts. Its restriction to closure under weak context is denoted \rightarrow_β. The relation \rightarrow is the union $\rightarrow_\beta \cup \rightarrow_\oplus$, while weak 4 reduction \rightarrow_ν is the union of the weak reductions $\rightarrow_\beta \cup \rightarrow_\oplus$. A \rightarrow-step which is not weak is noted \rightarrow_β.

2. The lifting of a relation $\rightarrow_\oplus \subseteq \Lambda_\oplus \times M(\Lambda_\oplus)$ to a reduction on multi-distribution is defined in Fig. 2. In particular, $\rightarrow, \rightarrow_\beta, \rightarrow_\oplus, \rightarrow_\nu$ lift to $\Rightarrow, \Rightarrow_\beta, \Rightarrow_\oplus, \Rightarrow_\nu$. The restriction of \rightarrow_\oplus to weak contexts is necessary to have confluence, see [19] for a discussion. The fact that reduction \rightarrow_β is unrestricted guarantees that the new calculus is a

Factorization, Modularity. Faggian and Ronchi della Rocca prove—by defining suitable notions of parallel reduction and internal parallel reduction with respect to $\Rightarrow_\beta, \Rightarrow_\oplus$—that Λ_\oplus^{CBV} satisfies $\text{Fact}(\rightarrow_\nu, \Rightarrow_\nu)$, that is $\mathbb{m} \Rightarrow_\nu^* \mathbb{n}$ implies $\mathbb{m} \Rightarrow_\nu^* \cdot \Rightarrow_\nu^* \mathbb{n}$.

This result—there called *finitary surface standardization*—is central in [19] because it is the base of the asymptotic constructions which are the core of that paper.

We now give a novel, strikingly short proof of the same result, by using Theorem 3.4. It turns out that we only need to verify the following swap, which is immediate to check.

Lemma B.1. $M \Rightarrow_\beta \beta_\nu \cdot \Rightarrow_\oplus \mathbb{m}$ implies $M \Rightarrow_\oplus \Rightarrow_\beta \mathbb{n}$.

Theorem B.2 (Factorization of \Rightarrow). Let $\Rightarrow_\nu := (\Rightarrow_\beta \cup \Rightarrow_\oplus)$ and $\Rightarrow_\nu := (\Rightarrow_\beta)$. Then $(M(\Lambda_\oplus), \{ \Rightarrow_\beta, \Rightarrow_\oplus \})$ satisfies w-factorization $\text{Fact}(\rightarrow_\nu, \Rightarrow_\nu)$.

Proof. We verify that the conditions of Theorem 3.4 hold. Note that \Rightarrow_\oplus has no internal steps, therefore, it suffices to verify only two conditions:

1. weak factorization of \Rightarrow_β: $\text{Fact}(\Rightarrow_\nu, \Rightarrow_\nu)$.

2. $\Rightarrow_\nu \beta_\nu \cdot \Rightarrow_\oplus \mathbb{m} \cdot \Rightarrow_\oplus \subseteq \mathbb{m} \Rightarrow_\nu \Rightarrow_\beta \mathbb{n}$.

The other two conditions of Theorem 3.4 hold vacuously, because $\Rightarrow_\oplus = \emptyset$ (and $\Rightarrow_\beta = \Rightarrow_\oplus$).

1. $\text{Fact}(\Rightarrow_\nu, \Rightarrow_\nu)$ follows from weak factorization of the CBV λ-calculus $\text{Fact}(\Rightarrow_\beta, \Rightarrow_\beta)$ (see Sect. 6) because clearly $[[1I]] \Rightarrow_\beta_\nu [1N]$ if and only if $M \Rightarrow_\beta_\nu N$, $[[1M]] \Rightarrow_\beta_\nu [1N]$ if and only if $M \Rightarrow_\beta_\nu N$.

2. Lemma B.1 implies $\mathbb{m} \Rightarrow_\nu \beta_\nu \cdot \Rightarrow_\oplus \mathbb{n} \subseteq \mathbb{m} \Rightarrow_\nu \Rightarrow_\beta \mathbb{n}$, by the definition of lifting.

4 In [19], a *weak* reduction (resp. weak context) is called *surface*, and hence noted \Rightarrow_ν.

Figure 1 Reduction Steps

<table>
<thead>
<tr>
<th>$[M] \Rightarrow [M]$</th>
<th>$M \Rightarrow m$</th>
<th>$\langle [M_i] \Rightarrow m_i \rangle_{i \in I}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$[M] \Rightarrow [M]$</td>
<td>$M \Rightarrow m$</td>
<td>${ [M_i] \Rightarrow m_i }_{i \in I}$</td>
</tr>
</tbody>
</table>

Figure 2 Lifting \Rightarrow to \Rightarrow_ν.