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miR-34/449 control apical actin network formation
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Andrea Pasini3, Laurent Kodjabachian3, Pascal Barbry1,2 & Brice Marcet1,2

Vertebrate multiciliated cells (MCCs) contribute to fluid propulsion in several biological

processes. We previously showed that microRNAs of the miR-34/449 family trigger MCC

differentiation by repressing cell cycle genes and the Notch pathway. Here, using human and

Xenopus MCCs, we show that beyond this initial step, miR-34/449 later promote the

assembly of an apical actin network, required for proper basal bodies anchoring. Identification

of miR-34/449 targets related to small GTPase pathways led us to characterize R-Ras as a

key regulator of this process. Protection of RRAS messenger RNA against miR-34/449

binding impairs actin cap formation and multiciliogenesis, despite a still active RhoA. We

propose that miR-34/449 also promote relocalization of the actin binding protein Filamin-A,

a known RRAS interactor, near basal bodies in MCCs. Our study illustrates the intricate role

played by miR-34/449 in coordinating several steps of a complex differentiation programme

by regulating distinct signalling pathways.
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M
ulticiliated cells (MCCs), characterized by the presence
of multiple motile cilia at their apical surface, have been
described in many vertebrates1,2. Coordinated ciliary

beating allows efficient fluid movement and is required for
physiological processes such as elimination of mucus from the
respiratory tract, circulation of the cerebrospinal fluid or
migration of the embryo in the fallopian tubes1. The
physiological importance of MCCs is highlighted by the ever
growing number of human disorders associated with defects of
the motile cilia1,3–5. Multiciliogenesis, which occurs during
normal development and during regeneration of damaged
tissues, can be studied in experimental setups, such as primary
cultures of human airway epithelium6 and Xenopus embryonic
epidermis7. Several characteristic steps are observed as follows:
(i) exit from the cell cycle of MCC precursors, (ii) massive
postmitotic multiplication of centrioles (centriologenesis),
(iii) reorganization of the apical actin cytoskeleton into a dense
cortical meshwork of actin, (iv) migration of the newly
synthesized centrioles towards the apical pole of the cell, where
they anchor to the actin meshwork and mature into ciliary
organizing centres known as basal bodies, and (v) elongation of
one cilium from each basal body8–15. Several key regulators
of multiciliogenesis have been identified, such as Notch
and bone morphogenetic protein (BMP) pathways16,17, the
transcription factors FOXJ1, MYB and RFXs (regulatory factor
X)18–24, and the geminin-related nuclear protein Multicilin25.
During multiciliogenesis, the reorganization of the apical actin
cytoskeleton is controlled by several factors including FOXJ1,
Multicilin, the ERK7 mitogen-activated protein kinase and small
GTPases such as RhoA14,19,20,25–28. Following FOXJ1- and
RhoA-pathway-dependent phosphorylation, proteins of the
ezrin-radixin-moesin (ERM) family, which link actin to
the cell membrane, can interact with cortical actin29,30. The
subcellular localization of ezrin and its interacting protein EBP50
at the apical membrane of airway MCCs also appears to be
mediated by a FOXJ1-dependent mechanism14,19,31,32. Focal
adhesion proteins are also required for the interaction between
basal bodies and apical actin network during multiciliogenesis33.
The action of small GTPases on actin cytoskeletal dynamics is
regulated by a complex network of interactions with additional
GTPases, such as the Ras family member R-Ras34–39, and other
regulatory factors including guanine nucleotide exchange factors,
GTPase-activating proteins (GAPs), GDP-dissociation inhibitors
(GDIs)40,41 and microRNAs (miRNAs)42. Recent work has also
highlighted the importance of interactions between the Rho
GTPase signalling and the planar cell polarity pathway in
controlling the assembly of apical actin filaments, as well as the
docking and planar polarization of the basal bodies in MCCs43,44.

miRNAs or miRs are a class of small single-stranded and non-
coding regulatory RNAs that control many biological processes
by limiting the stability and the translation of their target
mRNAs45,46. Abnormal miRNA activity has been associated with
a wide variety of human pathologies including airway diseases47.
We have previously demonstrated that the miR-34/449 family is
important for the initiation of human and Xenopus MCC
differentiation. Members of this family share high sequence
homology and miR-449a/b/c, which are located on the same
genomic locus as Multicilin, were identified as the most strongly
induced miRNA species in human and Xenopus during MCC
differentiation. We showed in these two species that miR-34/449
promote cell cycle exit and entry into differentiation by repressing
several components of the cell cycle control machinery and of the
Notch signalling pathway9. Their inactivation was sufficient to
block centriole amplification and multiple motile cilia formation9.
Two recent studies confirmed our findings by showing that miR-
34/449-deficient mice exhibited impaired multiciliogenesis48,49.

Song et al.48 also showed that the centriolar protein Cp110 is an
additional important miR-34/449 target that must be repressed to
allow the maturation of basal bodies. Thus, beyond their initial
effect on cell cycle exit and entry into differentiation, miR-34/449
probably regulate later steps of the complex multiciliogenesis
process. As the development of functional motile cilia appears
exquisitely sensitive to the reorganization of the actin
cytoskeleton, we reasoned that miR-34/449 may also regulate
one or more molecules associated with actin dynamics or small
GTPase pathways. Here we show that miR-34/449 indeed
contribute to the establishment of the apical actin cytoskeleton,
via a mechanism involving the direct repression of the small
GTPase R-Ras. This further establishes miR-34/449 as a central
control system of multiciliogenesis acting at several distinct levels
of this complex physiological process.

Results and Discussion
The apical actin network of human and Xenopus MCCs. Apical
actin cytoskeleton formation was examined at several time points
during differentiation of primary cultures of human airway
epithelial cells (HAECs) grown at an air–liquid interface (ALI)
and in Xenopus embryonic epidermis9. Formation of the apical
meshwork of filamentous actin (F-actin) was monitored directly
by staining with fluorescent phalloidin and indirectly by staining
for ezrin or phospho-ERM. In human and Xenopus, the
acetylated tubulin-positive MCCs displayed a strong enrichment
of apical F-actin (human: Supplementary Fig. 1a–d; Xenopus:
Supplementary Fig. 1f). Basal bodies, which are positive for
g-tubulin labelling, are embedded within an apical F-actin and
ezrin meshwork (Supplementary Fig. 1b). Reorganization of actin
filaments involves cofilin, a ubiquitous G-actin-binding factor50.
As unphosphorylated cofilin depolymerizes actin filaments,
cofilin phosphorylation appears essential for cytoskeletal
reorganization50. Phosphorylation of cofilin-1 also contributes
to actin network stabilization and formation of focal adhesions51.
Focal adhesion proteins indeed participate to ciliary adhesion
complexes in MCCs and allow interactions between basal bodies
and the apical actin network33. In HAECs, the levels of
phosphorylated cofilin-1 and ezrin increased during MCC
differentiation (Supplementary Fig. 1e). We noticed a parallel
increase in the expression of the ERM-binding protein EBP50
(Supplementary Fig. 1e), an adapter protein required for the
maintenance of active ERM proteins at the apical membrane of
polarized epithelia14,32. Interestingly, we also observed a punctate
labelling of phosphorylated cofilin-1, which was localized
sub-apically close to basal bodies in MCCs, but was absent
from non-ciliated cells (Supplementary Fig. 1c,d).

miR-34/449 control apical actin network assembly in MCCs.
We examined whether the miR-34/449 family can control the
formation of the apical actin network, a prerequisite for basal
body anchoring and cilium elongation. To invalidate miR-449 or
miR-34b/c activity in human, we transfected HAECs with a
cholesterol-conjugated antagomiR directed against miR-449
(Antago-449) or against miR-34 (Antago-34) and assessed MCC
differentiation. Antago-449 as well as antago-34 strongly blocked
miR-449a/b, whereas antago-34 blocked miR-34a/b/c more
efficiently than antago-449 (Supplementary Fig. 2b). Antago-449
and antago-34 blocked to the same extent the formation of MCCs
and no additive effect was observed (Supplementary Fig. 2c). The
huge induction of miR-449 expression at early ciliogenesis (stage
EC) suggests that early effects were mainly mediated through
miR-449, without excluding a later role for miR-34
(Supplementary Fig. 2a). This could also explain the lack of
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compensation of miR-34 in our antago-449 conditions, which do
not alter the expression of miR-34. In HAECs, miR-449 silencing
caused a decrease of 51%±3.5 in the number of acetylated
tubulin-positive cells and of 33%±7 in the number of ezrin-
positive cells (Fig. 1b). In Xenopus epidermis, miR-449a and miR-
34b were both specifically expressed in MCCs, and their levels in
the developing epidermis showed a similar evolution
(Supplementary Fig. 2d, see also ref. 9). Previously, we knocked
down miR-449 in Xenopus MCCs by injecting a cocktail of
morpholino antisense oligonucleotides against miR-449a/b/c
(449-MOs) into the prospective epidermis at the eight-cell
stage9. In Xenopus, miR-34b was detected in MCCs
(Supplementary Fig. 2d–f), and in situ hybridization (ISH)
experiments also revealed that 449-MOs not only blocked the
expression of miR-449 but also blocked the expression of
miR-34b (Supplementary Fig. 2f), suggesting that 449-MOs
collectively inhibit miR-34/449 miRNAs (Supplementary
Fig. 2e,f). MiR-449 knockdown suppressed multiciliogenesis and
apical actin web formation in both HAECs (Fig. 1a,b) and
Xenopus embryonic epidermis (Fig. 2a,b). In embryos injected
with 449-MOs, the number of acetylated tubulin-positive cells
went down to 18%±13 of the control and the number of apical
actin cap-positive cells decreased to 9%± 8 of the control
(Fig. 2a/b). These results establish that the miR-34/449 family
interferes with MCC apical actin meshwork formation in both
models. As miR-34 and miR-449 miRNAs share the same targets,
we only used miR-449 in the rest of this study. The impact of
miR-449 on the actin cytoskeleton was further investigated by
monitoring the formation of focal adhesion and stress fibres,
which are thick and relatively stable actin filaments involved in
cell adhesion and morphogenesis52,53. We found that in
proliferating A549 cells, a human lung cell line devoid of
miR-449 and miR-34b/c, miR-449 overexpression increased actin
stress fibres and focal adhesion formation (Fig. 1c,d, see also
Supplementary Fig. 3d,e). In addition, western blot analysis
revealed increased ERM phosphorylation following miR-449
transfection in proliferating HAECs (Fig. 1e), consistent with
the regulatory role of phospho-ERM during actin cytoskeleton
dynamics50,54. Thus, our data show that the miR-34/449 family
clearly contributes to actin cytoskeleton remodelling in several
independent models. Next, we addressed the precise mode of
action of miR-34/449 in the construction of the apical actin
network in MCCs.

Mutual repression between miR-449 and the Notch pathway.
As the miR-34/449 family represses the Notch pathway during
MCC differentiation9, we assessed the contribution of the Notch
signal to the actin web reorganization. We treated proliferating
HAECs or human lung A549 cells (which both are devoid
of endogenous miR-449) either with miR-449 or with N-[N-(3,5-
Difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester (DAPT),
a g-secretase inhibitor that blocks Notch activation. As expected,
both ectopic expression of miR-449 in proliferating HAECs and
DAPT repressed the expression of the Notch target gene HES1
(Fig. 1g). In proliferating A549 cells, Notch inhibition with DAPT
alone had neither impact on the formation of actin stress fibres
and focal adhesions (Fig. 1c,d) nor on ERM phosphorylation in
proliferating HAECs (Fig. 1e). This suggests that miR-449 cause a
rise of levels of phosphorylated ERM independently of Notch
repression.

We observed that preventing the binding of miR-34/449 on
Notch1 (PO-Notch1 in HAECs, Fig. 1a,b) or on the Notch ligand
Dll1 (PO-Dll1 in Xenopus, Fig. 2c–f) with protector oligo-
nucleotides coordinately blocked multiciliogenesis and apical
actin network formation. This is consistent with the need for an
early repression of the Notch pathway by miR-34/449, to allow

MCC differentiation. Of note, in Xenopus, the percentage of
cells exhibiting defective apical actin meshwork was higher in
miR-34/449 morphants (Fig. 2b) than in PO-Dll1 morphants
(Fig. 2d), suggesting that miR-34/449 may affect additional
targets. We also noticed a reduction of miR-449 levels when
preventing miR-34/449 binding on Notch1 in differentiating
HAECs (Fig. 1f) and on Dll1 in frog epidermis (Fig. 2f).
Conversely, miR-449 expression was increased after treatment of
differentiated HAECs with DAPT (Fig. 1f). Altogether, these data
reveal the existence of a double-negative feedback loop between
miR-449 and the Notch pathway. We hypothesize that once this
loop is locked in a state of high miR-449 expression, interactions
of miR-449 with additional targets expressed at subsequent steps
of multiciliogenesis remain possible (see Fig. 8d). According to a
recent work, CP110 would represent one such target. Its
repression by miR-34/449 appears to affect centriole maturation,
but not apical actin network assembly48. We thus looked for other
possible targets of miR-34/449 that would be directly related to
actin dynamics.

miR-34/449 targets components of the small GTPase pathways.
Several small GTPase proteins such as RhoA or Rac1 act as
key regulators of multiciliogenesis14,27,55,56. We assessed the
functional impact of miR-449 on the activity of RhoA and
Rac1,2,3 by transfecting proliferating HAECs with miR-449 and
differentiated HAECs with antago-449. In proliferating primary
HAECs, miR-449 overexpression caused a 50% increase in the
level of active RhoA-GTP, similar to the effect of the Rho
activator calpeptin (Fig. 3a), while it decreased by 35±14%
Rac1,2,3 activity (Supplementary Fig. 3a), as previously observed
in another cellular context with miR-34a (ref. 57). In contrast,
Notch pathway inhibition by DAPT had no impact on RhoA
activity in proliferating HAECs (Fig. 3a), indicating that
exogenous miR-449 modulated the RhoA pathway in a Notch-
independent manner in this assay. MiR-449 silencing caused a
modest but significant reduction of RhoA activity in
differentiating HAECs (Fig. 3a). Conversely, DAPT caused a
significant increase in RhoA activity in differentiating HAECs
(Fig. 3a), consistent with the concomitant upregulation of
miR-449 expression (Fig. 1f)9. RhoA activation was also
examined in Xenopus MCCs by injecting embryos with an
RNA encoding the Rhotekin rGBD-GFP, a sensor of activated
RhoA56. The rGBD-GFP signal was detected in MCCs from
control embryos but not in embryos injected with Notch-ICD, in
which MCC differentiation was abolished (Fig. 3b). In control
embryos and in miR-34/449 morphants, almost all rGBD-GFP-
positive cells expressed the early MCC differentiation marker
a-tubulin (Fig. 3c). By contrast, in miR-34/449 morphants only
13% of rGBD-GFP-positive cells displayed acetylated tubulin
ciliary staining, compared with 96% in the control situation
(Fig. 3b,c). Thus, following the experimental inhibition of
miR-34/449 in Xenopus, RhoA activation can still be detected
in MCCs unable to grow cilia. However, we cannot rule out
discrete changes in the sub-cellular localization of activated RhoA
in miR-34/449-deficient embryos.

Collectively, these results suggest that, although the modulation
of RhoA activity by miR-34/449 may play a role in the control of
apical actin polymerization, other miR-34/449 targets contribute
to the profound disruption of the actin cap observed after
miR-34/449 inactivation.

In a bid to identify such additional factors, we applied several
miRNA target prediction tools58 to identify putative miR-34/449
targets among the small GTPase pathways. Specifically, we looked
for relevant miR-34/449 mRNA targets that were repressed
during MCC differentiation and after overexpression of
miR-34/449 in proliferating HAECs (Gene Expression Omnibus
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Figure 1 | MiR-449 affects actin network remodelling and multiciliogenesis in HAECs. (a–c) Effect of a treatment by control antagomiR (CTR-Neg),

anti-miR-449a/b (Antago-449) and miR-449::Notch1 protector (PO-Notch1) on differentiating HAECs. (a) Staining for F-actin (a1,5,9), ezrin (a2,6,10) and

acetylated tubulin (a3,7,11), at LC stage. (b) The histogram indicates the average percentage of MCCs (in magenta) and apical ezrin-positive (in green) cell

number relative to control (means±s.d. from nine and three donors for MCC and ezrin quantifications, respectively. ***Po0.001, **Po0.01; Student’s

t-test). (c) Immunostaining of focal adhesions protein Paxillin (in green), F-actin (in red) and nuclei (in blue) in A549 epithelial cells transfected for 72 h

with control miRNA (miR-Neg), miR-449a or miR-Neg plus 10mM DAPT. (d) Ratio of focal adhesion number per cell, normalized to control (n¼ 5 fields in

three independent experiments; ***Po0.001; Student’s t-test). (e) Effect of miR-449 overexpression and DAPT (10 mM) on ERM phosphorylation in

proliferating HAECs. Phosphorylated protein levels were normalized with non-phosphorylated ERM and with an antibody against HSP60 as a loading

control. Normalized fold changes are indicated on the corresponding bands. Experiments were representative of three donors. (f) Effect of PO-Notch1 and

DAPT (10mM) in differentiating HAECs at LC stage on miR-449 expression, normalized with RNU44. (g) Real-time RT–PCR of HES1 transcripts in control,

DAPT (10 mM, 48 h)-treated or miR-449-overexpressing proliferating HAECs. Transcript levels of HES1 were normalized against UBC transcript as an

internal control. (f,g) Data represent the mean and s.d. of three independent experiments (***Po0.001, **Po0.01; Student’s t-test).
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(GEO) data set GSE22147). This survey led us to identify
several candidates related to small GTPase signalling and actin
cytoskeleton remodelling: (1) ARHGAP1, a member of the
Rho-GAP family59; (2) ARHGDIB, also called Rho-GDI2
(ref. 40); (3) DAAM1, the diaphanous-related formin
Dishevelled-associated activator of morphogenesis60; (4) NDRG1,
N-myc downstreamregulated gene 1, an iron-regulated metastasis
suppressor61; (5) R-Ras, a member of the superfamily of small
GTPases, related to Ras38.

By looking more precisely at the three major families of
regulators of small GTPases expressed during HAECs differentia-
tion or after miR-34/449 transfection, we detected 23 distinct
ARHGAPs, including ARHGAP1; we also detected 22 distinct
ARHGEF transcripts but none of them were predicted as direct
miR-34/449 targets; regarding the three known mammalian
ARHGDI transcripts40, only ARHGDIB was further analysed, as
ARHGDIA expression levels did not change during HAECs
differentiation or after miR-34/449 transfection and ARHGDIG
was not detected (Supplementary Fig. 3b, see also GEO GSE22147).

The transcripts ARHGAP1, ARHGDIB, DAAM1, NDRG1 and
RRAS are all modulated during HAEC differentiation (Fig. 4a, see
also GEO GSE22147). Figure 4a shows that the transcript level of

ARHGAP1, DAAM1 and NDRG1 decreased at late ciliogenesis
(LC). The expression of ARHGDIB transcript slightly decreased at
the onset of differentiation (that is, polarization step, Po) but rose
again during the phase of multiciliogenesis (Fig. 4a). The RRAS
transcript level decreased throughout the whole time course of
MCC differentiation (Fig. 4a). In proliferating HAECs, miR-449
overexpression strongly reduced the transcript levels of
ARHGDIB, ARHGAP1 and RRAS, whereas the expression of
DAAM1 and NDRG1 transcripts was slightly decreased (Fig. 4b).
These putative targets were further investigated using a dual
luciferase reporter assay in HEK293 cells. MiR-449a and
miR-449b reduced the relative luciferase activity of chimeric
constructs containing the wild-type 30-untranslated regions
(30-UTRs) of ARHGAP1, ARHGDIB, NDRG1 and RRAS, but
not of DAAM1 30-UTR (Fig. 4c). Next, we focused on the three
most significantly regulated miR-34/449 targets ARHGAP1,
ARHGDIB and RRAS. MiR-449-mediated silencing of either
ARHGAP1, ARHGDIB or RRAS was respectively abolished when
miR-34/449-predicted binding sites were mutated (Fig. 4c).
Among the four miR-449-binding sites in the 30-UTR of RRAS,
the strongest effect was observed for the most 30-site, which also
corresponds to the unique conserved site between human and
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Xenopus (Fig. 4c and Supplementary Fig. 4a). The protein levels
of ARHGAP1, ARHGDIB and R-Ras proteins were also
dramatically decreased after transfection of proliferating HAECs
with miR-449 (Fig. 4d). These results establish ARHGAP1,
ARHGDIB and RRAS transcripts as bona fide targets of
miR-34/449. Consistent with this conclusion, both ARHGDIB
and R-Ras proteins were excluded from acetylated tubulin-
positive MCCs, while being enriched in non-ciliated CD151-
positive basal HAECs9,62 (Fig. 5a,b). This is consistent with a
recent gene expression profiling study performed in mouse
trachea, which reported a higher level of expression of RRAS
transcripts in non-ciliated cells than in ciliated cells63

(GSE42500). We could not address this possibility for
ARHGAP1 as none of the antibodies that we tested worked in
immunofluorescence. In differentiating HAECs, both R-Ras and
ARHGAP1 protein level strongly and continuously decreased
from Po to LC, concomitantly with the increase in miR-449
expression (Fig. 5c,d). Conversely, ARHGDIB protein level
increased during human HAEC differentiation (Fig. 5d). As
ARHGDIB protein was mainly excluded from human MCCs
(Fig. 5a,b), the global protein increase observed during HAEC
differentiation in western blotting is probably explained by
its stronger expression in non-ciliated HAECs. In Xenopus
epidermis, rras expression measured by quantitative reverse
transcriptase–PCR (qRT–PCR) became detectable at neurula
stage 16, then dramatically increased until stage 20, before
multiciliogenesis and subsequently dropped (Fig. 5f,g).
Interestingly, rras transcript levels were anti-correlated with
miR-449a levels during the course of MCC differentiation
(Fig. 5g). When analysed by ISH, rras transcripts were
primarily detected in inner-layer cells that were negative for the
MCC marker a-tubulin, at stages 16 and 19 (Fig. 5e). In contrast,

arhgap1 expression was very faint at similar stages and did not
show any specific pattern of distribution (Fig. 5e). No arhgdib
signal was detected in the Xenopus epidermis at any
developmental stage (Supplementary Fig. 3i).

The silencing of ARHGDIB, ARHGAP1 and RRAS using
specific small interfering RNAs (siRNAs) in proliferating HAECs
strongly reduced the level of expression of the corresponding
proteins (Supplementary Fig. 3c). In proliferating human A549
cells, the silencing of RRAS or ARHGAP1 but not ARHGDIB
increased actin stress fibres and focal adhesion formation
(Supplementary Fig. 3d,e), and mimicked the effects observed
after miR-449 overexpression (Fig. 1c,d and Supplementary
Fig. 3d,e). These effects were abolished when cells were treated
with an inhibitor of Rock (Y27632), an important RhoA
effector55 (Supplementary Fig. 3e). In proliferating HAECs, we
also found that RhoA activity increased after silencing of RRAS
but not of ARHGAP1 or ARHGDIB. This effect remained
however smaller than the one induced by miR-449 expression
(Supplementary Fig. 3f). Rac1,2,3 activity was slightly reduced by
miR-449 expression, whereas it was not affected by a silencing of
RRAS (Supplementary Fig. 3a). These observations point to the
participation of miR-34/449 and R-Ras to actin network
reorganization and their capacity to alter the RhoA activity.
They are in agreement with a previous work showing that RRAS
deficiency is associated with cortical actin reorganization in adult
haematopoietic progenitor cells38. Our data suggest that the
induction of RhoA activity by miR-449 may at least in part
involve the silencing of RRAS, notwithstanding possible
contributions by additional regulators. The lack of effect on
RhoA activity after ARHGAP1 and ARHGDIB silencing is
probably in line with the existence of redundant or
compensatory mechanisms controlling RhoA activity in the
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context of multiciliogenesis. As the pattern of expression of both
arhgap1 and arhgdib in Xenopus epidermis was not consistent
with an association to MCC precursors, arhgap1 and arhgdib
were not further analysed in Xenopus.

We designed target protection assays in which cholesterol-
conjugated modified oligonucleotides were transfected in
differentiating HAECs to compete with the binding of
miR-34/449 on the site identified within the human 30-UTR of
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ARHGDIB mRNA (PO-ARHGDIB). No effect was observed
either on apical actin web or multiciliogenesis after protection
with PO-ARHGDIB or after ARHGDIB silencing with siRNAs in
differentiating HAECs (Supplementary Fig. 3g,h). Incidentally,
the existence of five miR-34/449-binding sites in the 30-UTR
of ARHGAP1 made elusive the assessment of a target protection
of ARHGAP1 against a miR-34/449 action in primary
HAEC cultures. Intriguingly, silencing ARHGAP1 in human at
an early step of HAEC differentiation strongly affected apical
actin meshwork formation and blocked multiciliogenesis
(Supplementary Fig. 3g,h), suggesting that ARHGAP1 does play
a role in multiciliogenesis, in which its level of expression has to
be finely controlled during maturation of MCCs.

These data posit the absence of R-Ras in miR-34/449-
expressing MCCs as a conserved feature across tetrapods. We
therefore focused on the functional impact of miR-449-mediated
repression of RRAS on apical actin reorganization in MCCs.

miR-34/449 control apical actin assembly by repressing R-Ras.
We used target protection assays (cholesterol-conjugated mod-
ified oligonucleotides in HAECs or morpholino oligonucleotides
in frog epidermis) to compete with the binding of miR-34/449 on
sites identified within the human and Xenopus 30-UTRs of RRAS
mRNA. In human cells, the RRAS protector oligonucleotide
(PO-RRAS) strategy effectively blocked the action of ectopic
miR-449, as evidenced on RRAS 30-UTR in luciferase assays
(Supplementary Fig. 4b). In addition, miR-34/449 knockdown or
protection of RRAS mRNA from miR-34/449 in frog epidermis
led to an increase in rras transcript levels (Supplementary Fig. 4c).
We checked that in both species the expression of RRAS2, an
RRAS-related gene, did not interfere with R-Ras signalling.
RRAS2 expression remained at a very low level during MCC
differentiation and in response to miR-449 overexpression, and
was not altered by miR-34/449 knockdown or PO-RRAS protec-
tion (HAECs, see GEO GSE22147; Xenopus, Supplementary
Fig. 4c). In both models, the PO-RRAS strategy was also able
to increase endogenous R-Ras protein level (Supplementary
Fig. 4d,e). Collectively, these assays unambiguously establish that
RRAS transcripts were specifically targeted by miR-34/449 in
human and Xenopus MCCs.

In human (Fig. 6a,b) and in Xenopus (Fig. 7a,d), protection of
the RRAS transcript from miR-34/449 binding led to a strong
reduction in apical actin meshwork and motile cilia formation.
Silencing RRAS in human at an early step of HAEC differentia-
tion also strongly affected apical actin meshwork formation and
blocked multiciliogenesis (Fig. 6b,c). These results strongly
suggest that R-Ras plays a key role in maturation of MCCs,
in which its level of expression has to be tightly fine-tuned, to
allow apical actin cap formation and multiciliogenesis. In frog
epidermis, both apical and sub-apical phalloidin staining were
altered in PO-rras-injected embryos (Fig. 7a,b). In contrast,
F-actin staining remained detectable at cellular junctions in both
models. Importantly, actin cap formation and multiciliogenesis
were rescued in Xenopus epidermis when a morpholino designed
to block R-Ras translation (MO-ATG-rras) was co-injected with
PO-rras (Fig. 7a,d). At the dose used for this assay, injection of
MO-ATG-rras alone had no significant effect on either apical
actin meshwork formation or multiciliogenesis (Fig. 7a–d),
suggesting that rras expression may be already repressed by the
presence of endogenous miR-34/449 in those MO-ATG-rras
maturing MCCs.

Our data unambiguously indicate that the repression of RRAS
at a late step of MCC differentiation by miR-34/449 is required
for apical actin network assembly and multiciliogenesis in human
(Fig. 6) as well as in frog (Fig. 7). Considering that R-Ras activity
can be increased by Notch pathway activation, as previously
observed in another cellular model39, and considering the early
repression of Notch signalling by miR-34/449 during vertebrate
multiciliogenesis9, miR-34/449 is therefore able to control R-Ras
function at two distinct levels: (1) directly, via the inhibition of
RRAS expression, and (2) indirectly, via the inhibition of R-Ras
activity through the repression of the Notch pathway.

As observed for miR-449 morphants with rhotekin staining in
Xenopus epidermis (Fig. 3b), PO-rras-injected MCCs displayed
reduced actin cap and motile cilia staining, but maintained RhoA
activation at the apical surface (Fig. 7c,e). This suggests that RRAS
may interact with downstream effectors of RhoA during actin cap
formation. In particular, previous works described an interaction
between R-Ras and Filamin A (FLNA), a non-muscle F-actin
cross-linking protein involved in epithelial cell shape, actin
cytoskeleton remodelling and primary cilia formation36,37,64–66.
FLNA can interact with the RhoA and Shroom3 signalling
pathways67–69, and has also been involved in ciliogenesis and
basal body positioning through its interaction with Meckelin64.
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We detected in control fully differentiated HAECs (Fig. 8a) FLNA
in MCCs near apically docked basal bodies. By contrast, it was
more homogeneously distributed in non-ciliated cells. The same
apical enrichment of FLNA was observed in Xenopus MCCs
(Fig. 8c). We finally noticed a miR-449-dependent subcellular
redistribution of FLNA, after quantifying R-Ras and FLNA
protein levels in different cellular fractions of proliferating
HAECs that overexpress or not miR-449. In the absence of

miR-449, R-Ras and FLNA were enriched in the membrane
fraction (Fig. 8b). Following miR-449 overexpression, R-Ras
disappeared from the membrane fraction, while FLNA was
redistributed from the membrane to the cytoskeletal fraction
(Fig. 8b). In a tentative model (Fig. 8d), we propose that the
silencing of R-Ras by miR-34/449 in MCCs affects the interaction
between R-Ras and FLNA, and favours a redistribution of FLNA
in a cytoskeletal components involved into the anchoring of basal
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(in red) and motile cilia (in magenta) in Xenopus epidermis at stage 25. CTR-Neg, n¼ 10 embryos per 413 injected cells; PO-rras, n¼8 embryos per 350

injected cells; MO-ATG-rras, n¼8 embryos per 290 injected cells; MO-PO-rrasþMO-ATG-rras n¼ 9 embryos per 395 injected cells (***P¼0.009 and

Po0.0001, and **P¼0.0016; Mann–Whitney test). Data are mean±s.e.m. (e) The histogram indicates the percentage of rGBD-GFP-positive cells stained

for a-tubulin (a-tub. in black) or acetylated tubulin (Ac. Tub. in magenta) in PO-rras morphants (PO-rras, n¼ 150) in comparison with the negative control

(CTR-Neg, n¼ 110). (**Po0.005; ns, no significant; one-way-analysis of variance with Dunnett’s test). Data are mean±s.e.m.
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bodies. This mechanism would contribute to apical actin
reorganization and basal body docking in MCCs.

In conclusion, our data further document how the miR-34/449
family can participate to multiciliogenesis through the repression
of several important targets. MiR-34/449 may initially down-
regulate the expression of several cell cycle-regulated genes
and members of the Notch pathway to promote entry into

differentiation. Interestingly, miR-449 appears to be negatively
regulated by Notch activity, supporting the existence of a double-
negative feedback loop. At later time points of differentiation, this
regulatory loop drives the accumulation of miR-449 at sufficient
levels to downregulate additional targets implicated in more
downstream events, such as CP110, involved in basal body
maturation48, and R-Ras, shown here to be important for actin
network assembly. From a wider point of view, this study
illustrates well how a single miRNA family can contribute to
complex cellular processes through its action on multiple targets
belonging to different signalling pathways.

Methods
Subjects/tissue samples. Inferior turbinates or nasal polyps were from patients
who underwent surgical intervention for nasal obstruction or septoplasty (kindly
provided by Professor Castillo, Pasteur Hospital, Nice, France, or by Epithelix Sàrl,
Geneva, Switzerland). The use of human tissues was authorized by the bioethical
law 94–654 of the French Public Health Code after written consent from the
patients.

Isolation and culture of HAECs. Primary HAECs were dissociated and seeded on
porous polyester membranes (5� 104 cells per membrane), in cell culture inserts
(Transwell-clear, 0.33 cm2, 0.4 mm pores; Corning, Acton, MA) coated with
human placenta collagen (0.2mgml� 1; Sigma-Aldrich). HAECs were cultured in
liquid–liquid conditions in the proliferation medium until confluency (5 days).
Then, the culture medium was removed from the upper compartment and the
airway epithelium was allowed to differentiate by using the differentiation medium
consisting of 1:1 DMEM (Invitrogen, Gibco) and bronchial epithelial basal medium
(Lonza) with the Clonetics complements for human Epidermal Growth Factor
(hEGF) (0.5 ngml� 1), epinephrine (5 gml� 1), bovine pituitary extract (BPE)

d
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(0.13mgml� 1), hydrocortisone (0.5 gml� 1), insulin (5 gml� 1), triio-dothyronine
(6.5 gml� 1) and transferrin (0.5 gml� 1), supplemented with 200UIml� 1

penicillin, 200 gml� 1 streptomycin and 0.1 nM retinoic acid (Sigma-Aldrich) in
the basal compartment9. We analysed HAEC differentiation at four time points
where Pr, Po, EC and LC represent the proliferating step at day 0, the polarization
step at day 7, the early multiciliogenesis step at day 14 and the late multiciliogenesis
step at day 21, respectively. Day number corresponds to the number of days after
setting up the cells at an ALI.

Xenopus injections. Eggs obtained from NASCO females were fertilized in vitro,
dejellied in 2% cystein hydrochloride (pH 8.0) and cultured in modified Barth’s
saline, and injected as described9. cRNAs were generated with the Ambion
mMessage mMachine kit (Life Technologies). pCS105/mGFP-CAAX (a gift from
C. Chang, University of Alabama at Birmingham, USA) was linearized with
AseI and cRNA was synthesized with Sp6 polymerase9. mRNAs (rhotekin,
rGBD-GFP56, NICD and mRFP) were generated with the Ambion mMessage
mMachine kit (Life Technologies). All injections were done at least twice using
0.25 ng of each mRNA.

Immunocytochemistry. Human. Primary cultures of HAECs at EC and LC stages
were used for detection of MCCs. Cells were fixed (4% paraformaldehyde, 15min,
4 �C), rinsed (PBS–glycine 0.1M, 10min) and permeabilized (0.1% Triton X-100,
5min). Only for g-tubulin immunostaining to visualize centrioles and basal bodies,
cells were fixed with methanol (10min, � 20 �C). Proliferating A549 airway
epithelial cells grown on glass coverslip were used for detection of focal adhesion
using anti-paxillin antibodies. Fixed cells were blocked for 1 h in 3% BSA and
incubated for 1 h at room temperature or overnight at 4 �C with the appropriate
primary antibodies (see Supplementary Table 1). Then, cells were incubated for 1 h
with the appropriate secondary antibodies (Alexa Fluor, 1:500, Invitrogen), nuclei
were stained with 4,6-diamidino-2-phenylindole (300 nM, Invitrogen) and, when
indicated, F-actin was stained with Alexa Fluor 594 Phalloidin (1U per staining).
Stained cells were mounted with ProLong Gold antifade reagent (Invitrogen,
Life Technologies)9.

Xenopus. For F-actin staining, embryos were fixed in 4% formaldehyde/PBT 1 h
at 4 �C and stained with phalloidin-Alexa Fluor 555 (Invitrogen, 1:40) for 4 h at
room temperature. For immunostaining, embryos were fixed in MEMFA (0.5M
MOPS, pH 7.4, 100mM EGTA, 1mM MgSO4, 3.7% formaldehyde). Whole-mount
embryos or sections were blocked in 15% goat serum. The following primary
antibodies were used: mouse anti-acetylated-tubulin (Sigma, 1:500), rabbit
anti-RFP (Rockland, 1:500) and chicken anti-green fluorescent protein (GFP)
(Aves, 1:500). After washing in PBT, sections or whole-mount embryos were
incubated with the appropriate secondary antibody: anti-chicken Alexa Fluor 488
(1:500, Invitrogen), anti-mouse Alexa Fluor 555 (1:500, Invitrogen) or anti-mouse
Alexa Fluor 647 (all from Invitrogen, 1:500). Epidermis fragments were peeled
from embryos at stages 20 or 25 and mounted on a glass coverslip with
fluoromount (Diagnostic BioSystem).

Western blot experiments. Primary HAECs cells were harvested by scraping in
Ripa lysis Buffer (Thermo Scientific Pierce) and cleared by centrifugation. Protein
concentration was determined using the BCA assay (Thermo Fisher Scientific) and
equivalent amounts of protein were resolved on SDS– polyacrylamide gels using
Novex NuPAGE SDS–PAGE Gel System following the manufacturer’s instructions.
Proteins were transferred to polyvinylidene difluoride membranes and analysed by
immunoblotting with appropriate primary antibodies and horseradish peroxidase
(HRP)-conjugated secondary antibodies (Dako) according to the manufacturer’s
instructions. Immunoreactive bands were detected using immobilon ECL kit
(Merck Millipore) on a LAS-3000 imager (Fujifilm). For subcellular protein
fractionation, proliferating HAECs were trypsinized and centrifuged. Cell pellets
were washed with ice-cold PBS and then treated with different buffers according to
the manufacturer’s instructions (Subcellular Protein Fractionation Kit for Cultured
Cells, Thermo Scientific).

MO-rras-injected, PO-rras-injected or control neurula stage (st.19) Xenopus
laevis embryos were lysed in Halt Protease Inhibitor Single Use Cocktail (Thermo
Scientific), the lysate was cleared by centrifugation, protein concentration was
determined by NanoDrop reading and identical amounts of protein for each
condition were resolved on 12% SDS–polyacrylamide gel using the Hoefer Gel
Caster system. Proteins were transferred to polyvinylidene difluoride membrane
and analysed by immunoblotting with anti-rabbit R-Ras (1:300, Antibody Verify)
or anti-mouse-a-tubulin (1:2,000, Sigma-Aldrich) primary antibody and
HRP-conjugated secondary antibodies (1:2,000, Jackson). Immunoreactive bands
were detected using Pierce ECL2 kit (Thermo Scientific) on Amersham Hyperfilm
(GE Healthcare).

Uncropped scans of the most important blots were shown in Supplementary
Fig. 5.

Small GTPases activity assay. The activation of RhoA and Rac1, 2 and 3 were
quantified using the glutathione S-transferase (GST) pulldown with recombinant
proteins GST-Rhotekin-RBD and GST-PAK-PBD (Merck Milipore) that
stoichiometrically interacts with GTP-bound Rho/Rac, as well as using the

ELISA/G-LISA kits according to the manufacturer’s instructions (Cytoskeleton,
Denver, USA). The Rho activator, calpeptin, was provided by Cytoskeleton
and the Rock inhibitor (Y-27632) was provided by Abcam PLC (Biotech Life
sciences, UK).

HAECs were seeded on type-I collagen-coated surface and were transfected
with miRNA mimics and siRNA. After 72 h, cells were lysed in cell lysis buffer
containing proteinase inhibitor cocktail (Cytoskeleton), lysate were cleared by
centrifugation and immediately quantified using Precision Red Advanced Protein
Assay Reagent (Cytoskeleton). Approximately 400mg of total proteins were
incubated with the GST fusion protein at 4 �C for 30min. Supernatants were then
incubated with Pierce Glutathione Magnetic Beads for 30min at 4 �C and washed
three times with wash buffer (25mM Tris pH 7.5, 30mM MgCl2, 40mM NaCl)
using a magnetic rack. Input and pull-down samples were resuspended in loading
buffer and blotted using Novex NuPAGE SDS–PAGE Gel System following the
manufacturer’s instructions.

In Xenopus MCCs, RhoA activation was revealed through the injection of RNA
encoding the RhoA sensor rotekin rGBD-GFP (see above).

Total RNA extraction. Human. Automated total RNA extraction was performed
using QIAcube and miRNeasy kit from Qiagen, according to the manufacturer’s
instructions. Total RNAs were quantified using NanoDrop 1000 Spectro-
photometer (Thermo Scientific) and integrity of samples (RNA Integrity Number
(RIN)48) was evaluated using RNA nano-chips on the Agilent 2100 Bioanalyzer
Instrument (Agilent Technologies).

Xenopus. Total RNAs were isolated from animal caps dissected at stages 10–11
and cultured in modified Barth’s saline (880mM NaCl, 10mM KCl, 8.2mM
MgSO4, 24mM NaHCO3, 100mM Hepes pH 7.4, 4.1mM CaCl2, 3.3mM
Ca(NO3)2). Twenty explants for each sample (stages 14 or 25) were collected for
RNA extraction. Total RNAs were isolated using the RNAeasy mini kit (Qiagen),
according to the manufacturer’s instructions, and quantified using a NanoDrop
Spectrophotometer. Complementary DNAs were synthesized using iScript Reverse
Transcription Supermix (BioRad).

Quantitative RT–PCR. Human. qRT–PCR was performed using TaqMan Gene
Expression Assay and TaqMan MicroRNA Assay (Life Technologies) on a
Lightcycler 480 (Roche) according to the manufacturer’s instructions. Expression
levels of mature miRNAs and mRNA were calculated using the 2-DCT method,
using respectively RNU44 and UBC as endogenous controls.

Xenopus. Primers were designed using Primer-BLAST Software. PCR reactions
were carried out using SYBRGreen on a CFX Biorad qPCR cycler. All experiments
were repeated at least twice on separate injections and the qRT–PCR was
performed in triplicate. The relative expression of RRAS was normalized to the
expression of the housekeeping gene ornithine decarboxylase. The qRT–PCR
RRAS primers are as follows: forward: 50-gtaaccaaagaggaagcgctca-30; reverse:
50-ggatgacacaagggcaactttt-30 .

MiR-449 silencing and target protection experiments. Human. 30-Cholesterol
linked 20-O-methyl miR-449a/b or miR-34b/c antisense oligonucleotide
(antagomiR, antago-449: 50-csuscsuucaacacugccacaususu-Chol-30 , antago-34:
50-gscsasaucagcuaacuacacugcscsu-Chol-30), Notch1 protector oligonucleotide
50-asasasaaggcaguguuucugugsusa-Chol-30 and RRAS protector oligonucleotide
(PO-RRAS: 50-csgsusuggcagugacauuuauususu-Chol-30) were purchased from
Eurogentec (Seraing, Belgique). Phosphorothioate bonds are indicated by subscript
‘s’. The miR-449 antagomiR targets Homo sapiens miR-449a (full match) and
miR-449b with one mismatch. The RRAS protector is a complementary antisense
oligonucleotide targeting the conserved miR-449 binding site of the human
RRAS 30-UTR. The antagomiR or protector negative control was the Clear-miR
(50-csasuscgucgaucguagcgscsa-Chol-30) from Eurogentec. AntagomiR or antisense
protector (100 mM) were pre-incubated with FCS for 30min at room temperature.
Next, the antagomiR/FCS or protector/FCS mixture in differentiation medium
(20 mM) were added to the apical side of primary HAECs. After 2 h at 37 �C, the
apical medium was removed to restore the air–liquid interface. Transfection was
repeated every 5 days with freshly prepared antagomiR or antisense protector, until
control cells reached full differentiation (typically after 21 days)9.

Xenopus. Morpholino antisense oligonucleotides were as follows: MOs against
miR-449 (GeneTools, LLC): miR-449a MO, 50-accagctaacattacactgcct-30 ; miR-449b
MO, 50-gccagctaaaactacactgcct-30 ; miR-449c MO, 50-acagccagctagcaagtgcactgcc-30;
control MO (MO-Neg), 50-tgcacgtttcaatacagaccgt-30. Ten nanograms of mixture of
each miR-449 MO (449-MOs) was injected in one animal-ventral blastomere at the
eight-cell stage. Protector MO directed against miR-449-binding sites in rras
30-UTR (PO-rras): 50-gttggcaatgtaggtgcaattcgtt-30. PO-rras (5.7 or 7.5 ng) was
injected in one animal-ventral blastomere at the eight-cell stage. MO blocking the
translation of rras (MO-rras) has the following sequence: 50-gctccttggaactcatagtcgc
tgc-30. Fifteen or 25 ng of rras translation MO was injected in one animal-ventral
blastomere at the eight-cell stage. The protector MOs directed against miR-449-
binding sites in Dll1 30-UTR have the following sequences: P1 MO: 50-cggcagtgca
acagtttatgtctgg-30 ; P2 MO: 50-aggcagtgactgtctgtagtttagc-30 .
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Ectopic expression of miRNAs/siRNAs. Cells were grown to 30% confluency in
proliferation medium on plastic, glass covserslip or on Transwell filters. Cells were
then transfected with synthetic negative control miRNA (miR-Neg, Ambion) or
synthetic miR-449a/b miRNAs (Ambion) (10 nM final concentration). Total RNAs
or proteins were extracted, or immunostaining was performed, from 24 to 72 h
later. For siRNA experiments in differentiating HAECs or A549 cell line, cells
were transfected with a siRNA against the human RRAS (si-RRAS), ARHGDIB
(si-ARHGDIB) or ARHGAP1 (si-ARHGAP1) transcripts, or with a negative
control siRNA (si-Neg) (Stealth RNAi siRNAs, Life Technologies) (20 nM final
concentration) using Lipofectamine RNAi Max Reagent (Invitrogen) in OPTIMEM
(Invitrogen) according to the manufacturer’s instructions. On the next day,
an additional transfection was performed using the same procedure, before HAEC
differentiation was induced in ALI, on the third day. Finally, HAECs were
harvested for western blot analyses or processed for immunofluorescence
experiments after 3 days for proliferating cells on glass coverslip or 7, 14 and
21 days for primary cultures in ALI.

Plasmid constructs and luciferase measurements. Sequence from the wild-type
or mutants 30-UTR of RRAS, ARHGDIB, ARHGAP1, NDRG1 and DAAM1 were
synthesized (gBlocks Gene Fragments, Integrated DNA Technologies) and cloned
into psiCheck2 vector (Promega). For mutated 30-UTRs, three bases of each seed
region were changed by complementary bases. PsiCheck2 constructions were
co-transfected with synthetic miRNA mimics (Ambion, Applied Biosystems) with
or without antagomiRs or antisense protectors into HEK293T cells, and luciferase
activity was measured using the dual reporter luciferase assay kit (Promega),
according to the manufacturer’s protocol.

ISH on Xenopus embryos. Whole-mount ISH analysis was done as follows:
embryos were fixed in MEMFA (0.1M MOPS pH 7.4, 2mM MgSO4, 1mM EGTA,
3.7% v/v formaldehyde) overnight at 4 �C, dehydrated in 100% ethanol or
methanol overnight at � 20 �C, then rehydrated in PBT (PBSþ 0.5% Tween20),
bleached for 5–10min in H2O2, and hybridized overnight with the chosen probe.
After hybridization, the embryos were washed at increasing stringency in SSC/10%
CHAPS, rinsed extensively n MABX (Maleic Acid Buffered solution þ 0.5% Triton
X), then incubated overnight at 4 �C under gentle agitation with the appropriate
antibody in MABX, 2% Roche Blocking Reagent, 15% goat serum or FCS. On the
final day, embryos were extensively washed in MABX, then stained with Roche
BM-Purple70. RRAS digoxigenin-labelled sense and antisense riboprobes (4202704
(IRBH 18A04), IRHB XGC, Source BioScience Life Sciences) and fluorescein-
labelled antisense a-tubulin riboprobe17 were generated from linearized plasmids
using RNA-labelling mix (Roche). A locked nucleic acid antisense probe against the
mature form of miR-449a was described previously9. For fluorescent ISH (FISH)
on sections, embryos were fixed in MEMFA for 2 h at room temperature or
overnight at 4 �C, stored in methanol at least 24 h at � 20 �C, rehydrated and
washed in triethanolamine (0.1M)/acetic anhydrid. Embryos were then transferred
in successive sucrose washes from 5% to 30% sucrose in PBSþTween 20
(0.1% v/v).They were then embedded in O.C.T. Compound (VWR Chemicals
Prolabo), flash frozen and 12-mm-thick sections were prepared with a CM3050S
Leica cryostat. Slides were kept at � 80 �C overnight. FISH analysis was then
carried out using Tyramide Signal Amplification—TSA TM Plus Cyanine
3/Fluorescein System (PerkinElmer). Before hybridization, and after Proteinase K
digestion (3min at 2 mgml� 1), endogenous peroxydase activity was blocked in a
bath of H2O2 3% in PBS for 20min. Sections were hybridized with a mixture of
digoxigenin- and fluorescein-labelled probes 40 ng each) overnight at 60 �C.
Following washes (two times with 2% SSC/0.1% CHAPS at 60 �C; two times with
0.2% SSC/0.1% CHAPS at 37 �C), the digoxigenin-labelled probe was revealed first
through incubation with a mouse anti-DIG antibody conjugated to HRP (POD)
(Roche, 1:500), followed by incubation in Cy3 fluorophore amplification reagent
(1/50 in the TSA diluent during 10min). This reaction was then blocked in a bath
of 2% H2O2 for 20min. Next, the fluorescein-labelled probe (rras, arhgdib or
arhgp1) was revealed with a mouse anti-fluorescein POD-conjugated antibody
(Roche, 1:500), followed by incubation in Cy5 fluorophore amplification reagent
(1/50 in the TSA diluent during 10min). This second reaction was blocked in a
bath of 2% H2O2 for 20min. Following double FISH analysis, immunostaining with
anti-GFP antibody was performed and slides were processed for confocal imaging.
Xenopus embryos at stage 34 were fixed in paraformaldehyde 4% overnight and
frozen in 100% methanol at � 20 �C overnight before performing ISH with
digoxigenin-labelled locked nucleic acid (Exiquon) probes against miR34b
(50-DIG-caatcagctaactacactgcctg-DIG-30)9.

Confocal microscopy. Human. Images were acquired using the Olympus Fv10i or
the Leica SP5 confocal imaging systems.

Xenopus. Flat-mounted epidermal explants were examined with a Zeiss LSM
780 confocal microscope.

Three-colour confocal z-series images were acquired using sequential laser
excitation, converted into single plane projection and analysed using ImageJ
software.

In Supplementary Table 1 is provided a list of the antibodies used in our study.
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Supplementary Figure 1. Apical actin meshwork reorganization in vertebrate MCCs. (a) 

Differentiated HAECs at LC stage were stained for ezrin (a1,5), F-actin (a2,6) and motile cilia 

(a3,7). Nuclei were stained with DAPI (a6). Panels a5-8 are orthogonal views (xz slices) of panels 

a1-4. In acetylated tubulin-positive MCCs denoted with white arrowheads and white framework 

(a3,7), F-actin is apically enriched (a2, a6) and colocalizes with ezrin staining (a1,5 and a4, 8). (b) 

γ-tubulin-positive basal bodies (in magenta, b3,4) colocalize with ezrin (b1) and apical F-actin (b2). 

(c) Differentiated HAECs at LC stage were stained for P-cofilin-1 (in green, c1,4), F-actin (in red, 

c2, 4) and γ-tubulin-positive basal bodies (in magenta, c3,4). P-cofilin1 co-localizes with the apical 

actin meshwork near basal bodies in MCCs (white framework in c4). No P-cofilin-1 signal is 

observed near centrioles in non-ciliated cells (white arrowheads, c4). Panels d1-4 are orthogonal 

views (xz slices) of differentiated HAECs at LC stage illustrating that P-cofilin-1 is enriched with 

the apical actin meshwork and near basal bodies in MCCs (white framework, d1-4). (e) Dynamics 

of the phosphorylation state of ezrin or ERM and cofilin1 and of EBP50 expression during HAEC 

differentiation are indicative of actin remodeling (Pr: proliferating HAECs; Po: polarization stage, 

ALI days 5-12; EC: early ciliogenesis, ALI days 14-21; LC: late ciliogenesis, from ALI days 28). 

HSP60 was used as a loading control. (f) In the epidermis of stage 25 Xenopus embryos, F-Actin (in 

red, f1) is apically enriched in acetylated tubulin-positive MCCs (in magenta, f2). 
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Supplementary Figure 2. Role of miR-34 and miR-449 during multiciliogenesis in HAECs and 

Xenopus epidermis. (a) Expression level of miR-449a (1), miR-449b (2), miR-34a (3), miR-34b-5p 

(4) and miR-34c-5p (5) was measured by real-time PCR at the four stages of HAEC differentiation 

(Pr, Po, EC and LC). MiRNA levels are normalized with RNU44 and normalized to miR-449a level 

in Pr stage. Data represent the mean and s.d. of 3 independent experiments. (b,c) Effect of a 

treatment by negative control antagomiR (CTR-Neg), anti-miR-449a/b (Antago-449), anti-miR-34 

(Antago-34) or an equal mixture of Antago34/449 on differentiating HAECs at EC stage. (b) The 

effects of Antago34 and Antago-449 versus CTR-Neg on miR-34/449 expression on differentiating 

HAECs at EC stage were evaluated by real-time PCR. MiRNA levels are normalized with RNU44 

and normalized to miR-449a level at 100% in CTR-Neg condition. Data represent the mean and s.d. 

of 3 independent experiments (***, p<0.001; **, p<0.01; *, p<0.05; ns : not significant; Student’s t-

test). (c) The histogram indicates the average percentage of MCC cell number (magenta) relative to 

control (means ± s.d. from 3 donors, **, p<0.01; *, p<0.05; Student’s t-test). (d) Expression level of 

miR-449a and miR-34b (the two major members of the miR-34/449 family expressed in the 

Xenopus embryonic epidermis (GEO, GSE22147) at different developmental stages of Xenopus 

embryos. MiRNA levels are normalized with U2. Data represent the mean and s.d. of 3 independent 

experiments. (e) In situ hybridization of miR-34b (e1, 3) together with co-staining of MCCs with 

acetylated tubulin antibodies (e 2, 4) indicated that miR-34b is expressed in acetylated-positive 

MCCs in Xenopus embryonic epidermis and nephrostomes at stage 34. Panels e3 and e4 are 

enlarged views of area bounded by a white rectangle in panels e1 and e2, respectively. Panel e5 is a 

merged image of panels e3 and e4. (f) 449-MOs also suppress miR34b expression. 8 cell-stage 

Xenopus embryos were injected in the epidermis precursor blastomeres with 449-MOs and FLDx 

(in orange/brown, f3-4). In situ hybridization revealed that miR34b is suppressed in injected side of 

miR449 morphants embryos in 93% of cases whereas miR-34b is still expressed in negative control 

uninjected side.  



Supplementary Figure 3

Proliferating A549 cellsd e Proliferating  A549 cells

b

0
1
2
3
4
5

Ra
tio

 of
 F.

A.
 nu

mb
er

 (n
or

m.
 / C

TR
)

*

CTR-Neg
miR-449a

ns

si-RRAS
si-RRAS

si-ARHGDIB

si-ARHGAP1
miR-449a

+Rock Inh.
*** ***

***

***
miR-Neg

10 µmPa
xil

lin
F-

Ac
tin

1
si-Neg

3

10 µm

miR-449a
2

10 µm

f

0

50
100

150

200

%
 R

ho
A 

ac
tiv

ity
 

(n
or

m.
 / C

TR
) **

miR-Neg
miR-449

si-Neg

si-ARHGDIB

si-ARHGAP1

*

si-RRAS

Proliferating  HAECs

Proliferating  HAECs
Pa

xil
lin

F-
Ac

tin 4
si-RRAS

10 µm

6
si-ARHGAP1

10 µm

5
si-ARHGDIB

10 µm

CTR-Neg

g Diff. HAECs (LC) Diff. HAECs (LC)
h

%
 of

 M
CC

 nu
mb

er
(n

or
m.

 / C
TR

)

CTR-NegAc
tin

Ac
. T

ub
.

20 µm

1

si-ARHGAP1

3

20 µm

si-ARHGDIB

2

20 µm

50

0

100

150

si-ARHGDIB

PO-ARHGDIB
***

si-ARHGAP1

Prolif  HAECsc

si-RNA

1.0 0.2

1.0 0.2

1.0 0.1

ARHGDIB
kDa
23

50

24

60

ARHGAP1

HSP60
si-Neg

si-Neg

si-Neg

si-Neg

R-Ras

si-Arhgdib

si-Arhgap1

si-RRAS

a
%

 R
ac

 ac
tiv

ity
 (n

or
m.

/ C
TR

)

0

50

100

CTR-Neg
miR-449a

**

si-RRAS

ns Proliferating  HAECs

0
20
40
60
80

100

mR
NA

 ex
pr

es
ion

 (n
or

m.
 / C

TR
) CTR-Neg

miR-449a
miR-449b

ARHGDIA ARHGDIG

0.5 mm0.5 mm0.5 mm

i Xenopus embryos
st.17 st.22 st.25

ar
hg

dib



Supplementary Figure 3. Effects of miR-449, ARHGAP1, ARHGDIB or RRAS silencing on 

actin web or RhoA/Rac activity in proliferating lung epithelial cells. (a) Rac activity was 

measured in proliferating HAECs in response to miR-449a or si-RRAS. The histogram indicates Rac 

activation normalized to the control (CTR-Neg) set to 100%. (b) Transcript expression levels of 

ARHGDIA and ARHGDIG were analyzed using real-time RT-PCR following miR-449a/b 

overexpression (48h) in proliferating HAECs and normalized with UBC transcript as an internal 

control. (c) Proliferating HAECs were transfected with small interfering RNA (si-RNA) against 

transcripts of ARHGAP1 (si-ARHGAP1), ARHGDIB (si-ARHGDIB) or RRAS (si-RRAS) versus 

negative control (si-Neg). Protein levels were normalized with HSP60 as an internal control. 

Quantification of protein levels are indicated above each corresponding band and are representative 

of at least three independent experiments. (d-f) Proliferating HAECs or A549 cells were transfected 

for 72h with miR-Neg (d1), miR-449a (d2), si-Neg (d3), si-RRAS (d4), si-ARHGDIB (d5) or si-

ARHGAP1 (d6) in absence (d) or presence (e) of a Rock inhibitor (Y27632, 10 µM) to examine 

RhoA implication. Then, cells were stained for F-Actin (red), focal adhesions (anti-paxillin in 

green) and nuclei (DAPI in blue) (d). (e) The focal adhesion number per cell was quantified and 

normalized to control. (f) RhoA activity was then measured in each condition in proliferating 

HAECs. The histogram indicates RhoA activation normalized to the control set to 100%. (g) 

Differentiating HAECs were transfected at seeding time with si-Neg (g1), si-ARHGDIB (g2) or si-

ARHGAP1 (g3) and F-actin (in red) and motile cilia (in magenta) were stained. (h) The histogram 

indicates the number of MCCs normalized in percentage from control (CTR-Neg) in HAECs at LC 

stage. All data are means ± s.d. from at least three independent experiments (***, p<0.001, 

Student’s t-test). (i) In situ hybridization of arhgdib mRNAs on whole-mount Xenopus embryos at 

stages 17, 22 and 25, showing no expression of arhgdib in Xenopus epidermis. Staining was 

detectable only in blood cells. 
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Supplementary Figure 4. (a) MiR-449 binding sites located in the 3’-UTR of Homo sapiens 

(hsa) or Xenopus laevis (xla) RRAS mRNA were identified in silico using “microcible” miRNA 

target prediction tool available on our laboratory website 

(http://www.genomique.info:8080/merge/index). (b) Inhibition of miR-449 with Antago-449 or 

miR-449::RRAS protector oligonucleotides (PO-RRAS) specifically prevent miR-449 binding on 

RRAS 3’-UTR. miR-449a transfection in HEK293 cells strongly reduces relative luciferase activity 

of wild-type 3’-UTR chimeric constructs of RRAS. This effect is strongly blocked by antago-449a/b 

or miR-449::RRAS protector co-transfection, whereas it is not significantly affected by co-

transfection with negative antagomiR or protector controls (CTR-Neg). Values were normalized to 

the internal Renilla Luciferase control. (c) Real-time RT-PCR expression of rras or rras2 in 

Xenopus embryos injected with control MO (CTR-Neg), PO-rras, or 449-MOs. Unlike rras, rras2 

expression was very low and was not affected in either 449-MOs or PO-rras, indicating that only 

rras is a true miR-449 target in Xenopus. Transcripts levels were normalized against Odc transcript 

as an internal control. Error bars denotes standard deviation from three independent experiments. 

(d) Protecting rras mRNA against interaction with miR-449 resulted in increased levels of R-Ras 

protein in Xenopus. R-Ras levels in embryos injected with PO-rras were about 20% higher than in 

control non-injected embryos. By comparison, blocking rras translation by injection of MO-ATG-

rras led to an 80% decrease in the amount of R-Ras. Embryos were injected at 1 cell stage and 

lysed at stage 19. Signal intensity was measured with ImageJ, using -tubulin as an internal control. 

Data are representative of three independent experiments. (e) In differentiating HAECs at stage EC, 

protecting human RRAS mRNA against interaction with miR-449 (PO-RRAS) resulted in increased 

levels of R-Ras protein in comparison to treatment with negative control (CTR-Neg) but not of 

DLL1 protein, indicating the specificity of PO-RRAS and that RRAS is an effective miR-449 target 

in human. Protein levels were normalized with HSP60 as an internal control. Experiments were 

representative of three donors. 
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Supplementary table 1. List of Antibodies used : 

Sp. Target Réf./clone Manufacturer Dilution 

Ms Acetylated-Tubulin 6-11B-1 Sigma-Aldrich 1/1000 (IF) 

Ms γ-Tubulin GTU-88 Sigma-Aldrich 1/1000 (IF) 

Ms CD151 14A2.H1 BD biosciences 1/100 (IF) 

Rb R-Ras C-19 Santa Cruz Biotechnology, Inc. 1/1000 (WB),  
1/400 (IF) 

Rb Ezrin 07-130 Merck Millipore 1/1000 (WB),  
1/100 (IF) 

Rb P-ERM 41A3 Cell Signaling Technology 1/1000 (WB),  
1/100 (IF) 

Gt Actin I-19 Santa Cruz Biotechnology, Inc. 1/5000 (WB) 

Rb ARHGAP-1 H-76 Santa Cruz Biotechnology, Inc 1/500 (IF) 

Rb ARHGDIB/RHOGDI2 Ab15198 ABCAM 1/500 (IF) 

Ms Paxillin 349/Paxillin BD Biosciences 1/10000 (IF) 

gt HSP60  Santa Cruz Biotechnology, Inc. 1/5000 (WB) 

Rb RhoA 67B9 Cell Signaling Technology 1/1000 (WB) 

Rb P-Cofilin 1 (hSer3)-R Santa Cruz Biotechnology, Inc. 1/500 (WB) 

Rb Cofilin 3312 Cell Signaling Technology 1/1000 (WB) 

Rb Filamin A HPA002925 Sigma-Aldrich 1/400 (IF), 
1/1000 (WB) 

Gt DLL1 Ab85346 ABCAM 1/500 (WB) 

HRP conjugate anti-Ms/Rb/Gt Dako Lot Dependent 
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