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UNCERTAINTY :
representing graded belief.

• AN AGENT IS UNCERTAIN ABOUT A
PROPOSITION IF (S)HE DOES NOT KNOW
ITS TRUTH VALUE
– Examples

• The probability that the trip is more than one hour long is 0.7.
•   It is quite possible it snows to-morrow.
• The agent has no certainty that Jean comes to the meeting

• HOW TO EVALUATE THE PROBABILITY,
THE POSSIBILITY,  THE CERTAINTY, THAT
A PROPOSITION IS TRUE OR FALSE



Knowledge vs. evidence
• There are two kinds of information

– Generic knowledge
– Singular evidence

• Generic knowledge pertains to a population of
items, observables (e.g. laws of physics, statistical
knowledge, common sense knowledge)

• Singular evidence pertains to a single situation
(e.g. unreliable testimony, measurement)

• Belief often pertains to singular events, and is not
necessarily related to statistics.



The belief construction problem

• Beliefs of an agent about a situation  are inferred
from generic knowledge AND observed singular
evidence about the case at hand.

• Example: Commonsense plausible inference
– Generic knowledge = birds fly, penguin are birds,

penguins don’t fly.
– Singular observed fact = Tweety is a bird
– Inferred belief = Tweety flies
– Additional evidence = Tweety is a penguin
– Inferred revised belief = Tweety does not fly



The evidence merging problem
• Beliefs can be directly elicited (e.g. as subjective

probabilities) about singular facts with no
frequentist flavor.

• Uncertain testimonies form a collection of
uncertain singular facts

• Ascertaining singular facts enables to perform
plausible inference from them, and then
construct inferred beliefs

•  Ascertaining singular evidence is the result of
merging uncertain singular pieces of evidence



GRADUAL REPRESENTATIONS OF
UNCERTAINTY

Family of propositions or events E forming a
Boolean Algebra
– S, Ø are events that are certain and ever impossible

respectively.
• A confidence measure g: a function from E in

[0,1] such that
– g(Ø) = 0       ;        g(S) = 1
– if A implies (= included in) B  then g(A) ≤ g(B)

(monotony: g is a Choquet capacity)
• g(A) quantifies the confidence of an agent in

proposition A.



BASIC PROPERTIES OF CONFIDENCE
MEASURES

• g(A∪B) ≥ max(g(A), g(B));
• g(A∩B) ≤ min(g(A), g(B))
• It includes:

– probability measures:  P(A∪B) = P(A) + P(B) − P(A∩B)
– possibility measures Π(A∪B) = max(Π(A), Π(B))
– necessity measures N(A∩B) = min(N(A),N(B))

• The two latter functions do not require a
numerical setting



UNCERTAINTY THEORIES
• Probability theory: statistical, subjective
• Set-based representations: Reasoning about incomplete

information in terms of possibility and certainty
– Propositional logic: Believing = proving from a belief base.
– Interval analysis : Propagation  of incomplete information.

• Possibility Theory ordinal or numerical:
– Tells plausible states from less plausible ones
– use  fuzzy sets of  mutually exclusive values

• Disjunctive random sets (Dempster, or Shafer-Smets):
probability on set-representations

• Imprecise Probabilities: the  most general setting, with
probability intervals.



Probability Representations (on finite sets)
• A finite set S with n elements: A probability measure is

characterized by a set of  non negative weights p1, …, pn,
such that  ∑i=1,n pi = 1.
– pi = probability of state si

• Possible meanings of a degree of probability:
–  Counting favourable cases for si over the number of

possible cases assuming uniform distribution (coins,
dice, cards,…)

– Frequencies from statistical information: pi = limit
frequency of occurrence of si  (Objective probabilities)

–  Money involved in a betting scheme (Subjective
probabilities)



The roles of probability

Probability theory is generally used for
representing two types of phenomena:

1. Randomness: capturing variability through
repeated observations.

2. Partial knowledge: because of information is
often lacking, knowledge about issues of interest
is generally not perfect.

These two situations are not mutually exclusive.



Example
• Variability: daily quantity of rain in Toulouse

– May change every day
– It is objective: can be estimated through statistical data

• Incomplete information: Birth date of Brazilian
President
– It is not a variable: it is a constant!
– Information is subjective: Most may have a rough idea

(an interval), a few know precisely, some have no idea.
– Statistics on birth dates of other presidents do not help

much.
– Bayesian approach: subjective probability



SUBJECTIVE PROBABILITIES
(Bruno de Finetti, 1935)

• pi = belief degree of an agent on the occurrence of si
• measured as the price of a lottery ticket with reward 1 €  if

state  is  si in a betting game
• Rules of the game:

– gambler proposes a price  pi
–  banker  and gambler exchange roles if price pi is  too

low
• Why a belief state is a single distribution:

– Assume player buys all lottery tickets i = 1, m.
– If state sj is  observed, the gambler gain is 1  – ∑j pj
–  and  ∑j pj– 1 for the banker
– if ∑pj > 1 gambler always loses money ;
– if  ∑pj < 1 banker exchanges roles with gambler



Remarks on using a single probability
distribution

• Computationally simple : P(A) = ∑s ∈ A p(s)
• Conventions: P(A) = 0 iff A impossible;

P(A) = 1 iff A is  certain;
 Usually P(A) = 1/2 for ignorance

•  Meaning :
– Objective probability is generic knowledge (statistics

from a population)
– Subjective probability is singular (degrees of belief)

• A Bayesian network: a set of conditional probability
assessments that represent a unique distribution.



Constructing beliefs

• Subjective probability of the occurrence of a particular
event may derive from its statistical probability: the
Hacking principle:
– Generic knowledge = probability distribution P
– BetP(A) = FreqP(A): equating belief and frequency

• Beliefs can be directly elicited as subjective probabilities
of singular events with no frequentist flavor
– frequencies may not be available nor known
– non repeatable events.

• But a single subjective probability distribution cannot
distinguish between uncertainty due to variability and
uncertainty due to lack of knowledge



LIMITATIONS OF BAYESIAN PROBABILITY
FOR THE REPRESENTATION OF BELIEF

• A single probability cannot represent ignorance:
except on a 2-element set, the function g(A) = 1/2
∀A ≠ S, Ø, is NOT a probability measure.

• Subjective specification of a Bayes net imposes
unnatural conditions on conditional probabilities
to be assessed: complete and consistent
conditional probability assessments are requested



Why the unique distribution assumption?
• The exchangeable betting framework enforces the

elementary probability assessments to sum to 1.
– It enforces uniform probability when there is no reason to believe

one outcome is more likely than another
– ignorance and knowledge of randomness justify uniform betting

rates.
• Laplace principle of insufficient reason : What is

EQUIPOSSIBLE must be  EQUIPROBABLE
– It enforces the identity between IGNORANCE and

RANDOMNESS due to a symmetry assumption
– Also justified by the principle of maximal entropy

• BASIC REMARK: Betting rates are induced by belief
states, but are not in one-to-one correspondence with
them.



Single distributions do not distinguish
between incompleteness and variability

• VARIABILITY: Precisely observed random
observations

• INCOMPLETENESS:  Missing information
• Example: probability of facets of a die

– A fair die tested many times: Values are known to be
equiprobable

– A new die never tested: No argument in favour of an
hypothesis nor its contrary, but frequencies are
unknown.

• BOTH CASES LEAD TO TOTAL INDETERMINACY
ABOUT THE NEXT THROW BUT THEY DIFFER AS
TO THE QUANTITY OF INFORMATION



THE PARADOX OF IGNORANCE
• Case 1:               life outside earth/ no life 

– ignorant's response 1/2        1/2

• Case 2:        Animal life / vegetal only/  no life
– ignorant's  response    1/3 1/3      1/3

• They are inconsistent answers:
– case 1 from case 2 :  P(life) = 2/3 > P(no life)
– case 2 from case 1: P(Animal life) = 1/4 < P(no life)

• ignorance produces information !!!!!
• Uniform probabilities on distinct representations of the

state space are inconsistent.
• Conclusion : a probability distribution cannot model

incompleteness



Instability of prior probabilities

In the case of a real-valued quantity x:
• A uniform prior on [a, b] expressing ignorance

about x induces a non-uniform prior for f(x) on
[f(a), f(b)] if f is monotonic non-affine

Probabilistic representation of  ignorance  is not
scale-independent.

•  The paradox does not apply to frequentist
distributions



Ellsberg Paradox
• Savage claims that rational decision-makers choose

according to expected utility with respect to a subjective
probability.

• Counterexample:An Urn containing
– 1/3 red balls (pR = 1/3)
– 2/3 black or white balls (pW + pB = 2/3)

• For the ignorant subjectivist: pR = pW = pB = 1/3.
• Expected utility of act a: ua(R)pR +ua(W)pW + ua(B)pB

• But this is contrary to overwhelming empirical evidence
about how people make decisions



Ellsberg Paradox

1. Choose between two bets
B1: Win 1$ if red (1/3) and 0$ otherwise (2/3)
B2: Win 1$ if white (≤ 2/3) and 0$ otherwise

Most people prefer B1 to B2

2.  Choose between two other bets (just add 1$ on Black)
B3: Win 1$ if red or black (≥ 1/3)  and 0$ if white
B4: Win 1 $ if black or white (2/3) and 0$ if red (1/3)

Most people prefer B4 to B3



Ellsberg Paradox
• Let 0 < u(0) < u(1) be the utilities of gain.
• If decision is made according to a subjective probability

assessment for red black and white: (1/3, pB, pW):
– B1 > B2:
       EU(B1) = u(1)/3 + 2u(0)/3 > EU(B2) = u(0)/3 +u(1)pw+u(0)pB
– B4 > B3:
       EU(B4) = u(0)/3 + 2u(1)/3 > EU(G) = u(1) (1/3 + pN) +u(0)pW 
⇒ (summing, as pB+pN= 2/3) 2(u(0) + u(1))/3 > 2(u(0) + u(1))/3:

CONTRADICTION!
• Such an agent cannot reason with a unique probability

distribution: Violation of the sure thing principle.



When information is missing, decision-makers do not
always choose according to a single subjective probability

• Plausible Explanation of Ellsberg paradox: In the face of
ignorance, the decision maker is pessimistic.

• In the first choice, agent supposes pw = 0: no white ball
EU(B1) = u(1)/3 + 2u(0)/3 > EU(B2) = u(0)

• In the second choice, agent supposes pB = 0: no black ball
EU(B4) = u(0)/3 + 2u(1)/3 > EU(B3) = 2u(0)/3 + u(1)/3

• The agent does not use the same  probability in both
cases (because of pessimism): the subjective probability
depends on the proposed game.



Summary on expressiveness limitations of
subjective probability distributions

• The Bayesian dogma that any state of knowledge can be
represented by a single probability is due to the
exchangeable betting framework

– Cannot distinguish randomness from a lack of knowledge.

• Representations by single probability distributions are
language- (or scale-) sensitive

• When information is missing, decision-makers do not
always choose according to a single subjective
probability.



What do probabilists do when no
prior information is used?

• Hypothesis testing based on likelihood functions
• Parametric estimation of probabilistic models

from empirical data using maximum likelihood
principle

• Extraction of confidence intervals
But
 Many of these techniques are not part of

Kolmogorov Probability theory.
Confidence intervals use ad hoc thresholds.



Set-Valued Representations of
Partial Knowledge

• An ill-known quantity x is represented as a
disjunctive set, i.e. a subset E of mutually exclusive
values, one of which is the real one.

• Pieces of information of the form x ∈ E
– Intervals E = [a, b]: good for representing incomplete

numerical information to be propagated by interval
analysis methods

– Classical Logic: good for representing incomplete
symbolic (Boolean) information to be inferred from.

    E = Models of a set of propositions stated as true.
but poorly expressive



Boolean belief measures from
partial knowledge

If all we know is that x ∈ E then
- Event A is possible (plausible) if A ∩ E ≠ Ø

(logical consistency)
Π(A) = 1, and 0 otherwise

- Event A is certain (necessary) if E ⊆ A
(logical deduction)

N(A) = 1, and 0 otherwise
This is a simple modal logic (KD45) corresponding to

BOOLEAN POSSIBILITY THEORY:
Π(A ∪ B) = max(Π(A), Π(B)); N(A ∩ B) = min(N(A), N(B)).



Motivation for going beyond pure
probability and set representations

• The main tools for representing uncertainty are
–  Probability distributions : good for expressing variability, but

information demanding
– Sets: good for representing incomplete information, but often crude

representation of uncertainty
• Find representations that

– Distinguish  between uncertainty due to variability from uncertainty
due to lack of knowledge or missing information

– Reflect partial knowledge faithfully
– Are more expressive that pure set representations
– Allows for addressing the same problems as probability.
– Can formally justify non-probabilistic statistical notions



Blending intervals and
probability

• Representations that may account for both
variability and incomplete knowledge must
combine probability and sets.
– Sets of probabilities: imprecise probability theory
– Random(ised) sets: Dempster-Shafer theory
– Fuzzy sets: numerical possibility theory

• Each event has a degree of belief (certainty) and a
degree of plausibility, instead of a single degree of
probability



Possibility theory is an uncertainty theory
devoted to the handling of
incomplete information.

• similar to probability theory because it is based on set-
functions.

• differs by the use of a pair of dual set functions
(possibility and necessity measures) instead of only one.

• it is not additive and makes sense on ordinal structures.

The name "Theory of Possibility" was coined by Zadeh in 1978,
who interprets fuzzy sets as possibility distributions.
Zadeh’s aim was to represent linguistic information, accounting
for its  incompleteness and its gradual (non-Boolean) nature.



Improving expressivity of incomplete
information representations

• What about the birth date of the president?
• partial ignorance with ordinal preferences:

May have reasons to believe that 1933 > 1932 ≡
1934 > 1931 ≡ 1935 > 1930 > 1936 > 1929

• Linguistic information described by fuzzy sets:
“ he is old ” : membership function  µOLD induces
a possibility distribution on possible birth dates.

• The result of merging imprecise subjective
information summarizing opinions of one or
several sources



Possibility Theory (Shackle, 1961, Zadeh, 1978)

• A piece of incomplete information "x ∈ E" admits of
degrees of possibility in a plausibility scale L: E is a
(normalized) disjunctive fuzzy set.

• L:  totally ordered set of plausibility levels ([0,1], finite
chain, integers,...)

• The degree of membership µE(s) is interpreted as the
degree of  plausibility that x = s and denoted  πx(s)

• A possibility distribution πx attached to x is a mapping
from S to L : such that ∃s, πx(s) = 1 (normalization)

•  Conventions:
πx(s) = 0 iff x = s is impossible, totally surprising
πx(s) = 1 iff x = s is normal, fully plausible, unsurprising

(but no certainty)



1

0

π

FUZZY INTERVAL

A possibility distribution is the representation of a state 
of incomplete knowledge: 
a description of how a agent thinks the state of affairs is.



POSSIBILITY AND NECESSITY
OF AN EVENT

How confident are we that x ∈ A ⊂ S ? (an event A occurs)
given a possibility distribution on S

• Π(A) = maxs∈A π(s):
         to what extent A is consistent with π

(= some x ∈ A  is possible)
 The degree of possibility that x ∈ A
• N(A) = 1 – Π(Ac) = min s∉A 1 – π(s):

to what extent no element outside A is possible
 = to what extent π implies A

 The degree of certainty (necessity) that x ∈ A



Basic properties

Π(A ∪ B) = max(Π(A), Π(B));
N(A ∩ B) = min(N(A), N(B)).

Mind that most of the time :          
Π(A ∩ B) < min(Π(A), Π(B));
 N(A ∪ B) > max(N(A), N(B)

Example: Total ignorance on A and B = Ac 

Corollary N(A) > 0 ⇒ Π(A) = 1



Comparing information states

• π' more specific than π in the wide sense
if and only if π' ≤ π

In other words: any possible value in information state  π' is
at least as possible in information state π

that is, π' is more informative  than π

• COMPLETE KNOWLEDGE: The most specific ones
• π(s0) = 1 ;           π(s) = 0 otherwise

• IGNORANCE: π(s) = 1, ∀ s ∈ S



A pioneer of possibility theory
• In the 1950’s, G.L.S. Shackle called "degree of potential

surprize" of an event its degree of impossibility = 1 − Π(Α).

• Potential surprize is valued on a disbelief scale, namely a
positive interval of the form [0, y*], where y* denotes the
absolute rejection of the event to which it is assigned, and 0
means that nothing opposes to the occurrence of A.

• The degree of surprize of an event is the degree of surprize of
its least surprizing realization.

• He introduces a notion of conditional possibility



Qualitative vs. quantitative possibility theories

• Qualitative:
– comparative: A complete pre-ordering ≥π  on U

A well-ordered partition of U: E1 > E2 > … > En
– absolute: πx(s) ∈ L = finite chain, complete lattice...

• Quantitative: πx(s) ∈ [0, 1], integers...
One must indicate where the numbers come from.

All theories agree on the fundamental maxitivity axiom
Π(A ∪ B) = max(Π(A), Π(B))

Theories diverge on their interpretation and the conditioning
operation



A GENERAL SETTING FOR REPRESENTING
GRADED PLAUSIBILITY AND CERTAINTY

• 2 adjoint set-functions Pl and Cr generalizing
Boolean possibility Π and necessity N.

• Conventions:
– Pl(A) = 0  "impossible" ;
– Cr(A) =  1   "certain"
– Pl(A) =1 ; Cr(A) = 0   "ignorance" (no information)
– Cr(A) ≤ Pl(A)  "certain implies plausible"
– Pl(A) = 1 − Cr(Ac) duality certain/plausible



Imprecise probability
• A state of information is modelled by a credal set:

a family P of probability distributions over a set X
containing the true (objective) probability
function.

• To each event A is attached a probability interval
[P*(A), P*(A)] such that
– Cr(A) = P*(A) = inf{P(A), P∈ P}
– Pl(A) = P*(A) = sup{P(A), P∈ P} = 1 – P*(Ac)

• P is generally strictly contained in  the (convex)
credal set {P: P(A) ≥ P*(A)}.



Subjectivist view (Peter Walley)

• Plow(A) is the highest acceptable price for buying a
bet on event A winning 1 euro if A occurs

• Phigh(A) = 1 – Plow(Ac) is the least acceptable price
for selling this bet.

• Coherence condition
P*(A) = inf{P(A), P ≥ Plow} = Plow(A)

• In this view, there is no « real » probability lower-
bounded by P*(A), which directly represents belief.



BASIC PROPERTIES

• Coherent lower probabilities are important
examples of certainty functions. The most general
numerical approach to uncertainty.

• They satisfy super-additivity: if A∩B = Ø then
                    Cr(A) + Cr(B) ≤ Cr(A∪B)

• One may require the 2-monotony property:
        Cr(A) + Cr(B) ≤ Cr(A∪B) + Cr(A∩B)

– ensures non-empty credal set:
{P: P(A) ≥ Cr(A)} ≠ Ø .

Cr is then called a convex capacity.



REPRESENTING INFORMATION BY
PROBABILITY FAMILIES

Often probabilistic information is incomplete:
– Expert opinion (fractiles, intervals with confidence levels)
– Subjective estimates of support, mode, etc. of a distribution
– Parametric model with incomplete information on parameters (partial

subjective information on mean and variance)
– Parametric model with confidence intervals on parameters due to a small

number of observations

• In the case of generic (frequentist) information using a
family of probabilistic models, rather than selecting a
single one, enables to account for incompleteness and
variability.

• In the case of subjective belief: distinction between not
believing a proposition (P*(A)  and P*(Ac) low) and
believing its negation (P*(Ac) high).



Random sets and evidence theory

•  A family  F of « focal » (disjunctive) non-empty
subsets of S representing
–  incomplete observations (imprecise statistics).
– Unreliable testimonies
– Indirect information (induced from a probability space)

•  A positive weighting m of focal sets (random set) :
            ∑    m(E) = 1 ; m(Ø) = 0 (mass function)
     E ∈ F

• It is a randomized incomplete information consisting of a
probability distribution on the power set of S



Disjunctive random sets

• m(E) = probability that the most precise
description of the available  information is
of the form "x ∈ E”
= probability(only knowing "x ∈ E" and nothing

else)
– It is the portion of probability mass hanging

over elements of E without being allocated.
• DO NOT MIX UP  m(E) and P(E)



Examples

• The mass m(E) may be
– The frequency of an incomplete observation.
– The reliability of a testimony (Shafer)
– What we know about a random variable x with

range S, based on a sample space (Ω, A, P) and
a multimapping  Γ from Ω to S  (Dempster):

m(Γ(ω)) = P({ω}) ∀ ω in Ω  (finite case.)



Example of uncertain evidence : Unreliable
testimony (SHAFER-SMETS VIEW)

• « John tells me the president is between 60 and 70 years old,
but there is some chance (subjective probability p) he does
not know and makes  it up».
– E =[60, 70];  Prob(Knowing “x∈ E =[60, 70]”) = 1 − p.
– With probability p, John invents the info, so we know nothing (Note

that this is different from  a lie).

•  We get a simple support belief function :
m(E) = 1 – p and m(S) = p

• Equivalent to a possibility distribution
–   π(s) = 1 if x ∈ E       and  π(s) = p otherwise.



Belief and plausibility functions

• degree of certainty (belief) :
– Bel(A) =          ∑           m(Ei)

Ei ⊆ A, Ei ≠ Ø
– total mass of information implying  the occurrence of A
– (probability of provability)

• degree of plausibility :
– Pl(A) = ∑         m(Ei) = 1 − Bel(Ac)  ≥ Bel(A)

      Ei ∩ A ≠ Ø
– total mass of information consistent with  A
– (probability of consistency)



Example : Bel(A) = m(E1) + m(E2)
Pl(A) = m(E1) + m(E2) + m(E3) + m(E4)

  = 1 – m(E5) = 1 – Bel(Ac)

E2

E3 E5

E1

E4

A

Ac



PARTICULAR CASES
• INCOMPLETE INFORMATION:
                                                   m(E) = 1, m(A) = 0‚ A ≠ E
• TOTAL IGNORANCE : m(S) = 1:

–  For all  A≠ S, Ø, Bel(A) = 0, Pl(A) = 1
• PROBABILITY:  if ∀i, Ei = singleton {si} (hence disjoint

focal sets )
– Then, for all A, Bel(A) =  Pl(A) = P(A)
– Hence precise + scattered information

• POSSIBILITY THEORY : the opposite case
E1 ⊆ E2 ⊆ E3… ⊆ En : imprecise and coherent information
– iff  Pl(A ∪ B) = max(Pl(A), Pl(B)), possibility measure
– iff  Bel(A ∩ B) = min(Bel(A), Bel(B)), necessity measure



Theory of evidence vs. imprecise
probabilities

• The set Pbel = {P ≥ Bel} is coherent: Bel is a
special case of lower probability

• Bel is ∞-monotone (super-additive at any order)
• The solution m to the set of equations ∀ A ⊆ X

g(A) =  ∑  m(Ei)
     Ei ⊆ A, Ei ≠ Ø

is unique (Moebius transform)
– It is positive iff g is a belief function



Example of generic belief function:
imprecise observations in an opinion poll

• Question : who is your preferred candidate
                   in C = {a, b, c, d, e, f} ???

– To a population Ω = {1, …, i, …, n} of n persons.
– Imprecise responses r = « x(i) ∈ Ei » are allowed
– No opinion (r =C) ; « left wing » r = {a, b, c} ;
– « right wing » r = {d, e, f} ;
–  a moderate candidate : r = {c, d}

• Definition of mass function:
– m(E) = card({i, Ei = E})/n
– = Proportion of imprecise responses « x(i) ∈ E »



• The probability that a candidate in subset A
⊆ C  is elected is imprecise :

                    Bel(A) ≤ P(A) ≤ Pl(A)
• There is a fuzzy set F of potential winners:

µF(x) = ∑ x ∈ E m(E) = Pl({x})
•  µF(x) is an upper bound of the probability

that x is elected. It  gathers  responses of
those who did not give up voting  for x

• Bel({x}) gathers  responses of those who
claim they will vote for x and no one else.



Dempster vs. Shafer-Smets
• A disjunctive random set can represent

– Uncertain singular evidence (unreliable testimonies):
m(E) = subjective probability pertaining to the truth of
testimony E.

• Degrees of belief directly modelled by Bel
(Shafer, 1976 book; Smets)
– Imprecise statistical evidence: m(E) = frequency of

imprecise observations of the form E and Bel(E) is a
lower probability

• A multiple-valued mapping from a probability space to a space
of interest representing an ill-known random variable.

(Dempster intuition)



Quantitative possibility theory in the
setting of uncertainty theories

Possibility distributions are
• Either membership functions of fuzzy sets (Zadeh)

– Natural language descriptions pertaining to numerical universes
(fuzzy numbers)

– Results of fuzzy clustering
    Semantics: metrics, proximity to prototypes
• Or simple models of imprecise probability

– Random experiments with consonant imprecise outcomes
– Special convex probability sets

Semantics: frequentist,  or  subjectivist (gambles)...



HISTORY and TERMINOLOGY of
Possibility theories

• Numerical
– Numerical impossibility measures : Shackle’s degrees of surprise

(1950) (1−Π)
– More recently Zadeh’s (1978) coined the word “possibility measure”:

linguistic information as fuzzy (disjunctive) sets
– Spohn’s (ordinal conditional) kappa functions (integer exponents of

infinitesimal probabilities)
– Shafer’s consonant belief functions
– Special cases of probability bounds (Dubois and Prade, 1992)



 POSSIBILITY AS EXTREME PROBABILITY
•  SPOHN’s ORDINAL CONDITIONAL (KAPPA) FUNCTIONS: 
κ(A) = disbelief in A
– The higher κ(A), the less likely.

• Basic properties :
–  κ(A ∪ B) = min(κ(A),κ(B)) ∈ N   (integers)
–   κ(S) = 0
–   κ(A | B) = κ(A ∩ B) – κ(A) (conditioning rule)

• Probabilistic interpretation : there is some  infinitesimal
ε such that  κ(A) = n ⇔ P(A) ≈ εn

• P(A ∪ B) ≈ εκ(A) + εκ(B)  ≈ εmin(κ (A), κ (B))



 POSSIBILITY AS EXTREME PROBABILITY
• Possibilistic interpretation of kappa functions:
• Transformation method: Πκ(A) = 2–κ(A)

– Function Πκ is a rational-valued possibility measure on [0, 1] with
Πκ(A) > 0, ∀ A ≠ Ø, hence κ(Αc) = − Log2(1− N(A))

– Then,  Πκ(A) represents an order of magnitude whereby Πκ(A) >
Πκ(B) indicates that B has plausibility negligible in front of A

• It yields the product conditioning rule for possibility
Πκ(A | B) =      Πκ(A ∩ B)/Πκ(B)

(special case of Dempster rule for belief functions)

• κ(Αc) ≥ n (integer) encodes N(A) ≥ α = 1- 2–κ(Ac);



LANDSCAPE OF UNCERTAINTY
THEORIES

BAYESIAN/STATISTICAL PROBABILITY
Randomized points

  (extreme probabilities)
UPPER-LOWER PROBABILITIES

Disjunctive sets of probabilities       
                           KAPPA FUNCTIONS

DEMPSTER UPPER-LOWER PROBABILITIES                 (SPOHN)
SHAFER-SMETS BELIEF FUNCTIONS
Random disjunctive sets                         PLAUSIBILITY RANKING

Quantitative Possibility theory Classical logic
Fuzzy (nested disjunctive) sets Disjunctive sets



Possibility distributions  as
likelihood functions

• Likelihood functions λ(x) = P(A| x) behave like
possibility distributions when there is no prior on x,
and λ(x) is used as the likelihood of x.

• It holds that λ(B) = P(A| B) ≤ maxx ∈ B P(A| x)
• If P(A| B) = λ(B) then λ should be set-monotonic:

{x} ⊆ B implies λ(x) ≤ λ(B)
 It implies that by default (in the absence of other

information):
λ(B) = maxx ∈ B λ(x)



Maximum likelihood principle =
possibility theory

• The classical coin example: θ is the unknown
probability of “heads”

• Within n experiments: k heads, n-k tails
• P(k heads, n-k tails | θ) = θk·(1- θ)n-k is
   the degree of possibility π(θ) that the probability of

“head” is θ.
 In the absence of other information the best choice

is the one that maximizes π(θ),  θ ∈ [0, 1]
It yields θ = k/n.

(already Shafer, 1976).



Random set view

• Let mi = αi – αi+1       then m1 +… + mn = 1,
with focal sets = cuts

          A basic probability assignment (SHAFER)
• π(s) = ∑i: s∈Fi mi (one point-coverage function) = Pl({s}).
• Only in the consonant case can m be recalculated from π
• Bel(A) = ∑Fi⊆A  mi = N(A); Pl(A) = Π(A)

1

F

α3

possibility levels
1 > α2 > α3 >… > αn

α2
α4



POSSIBILITY AS UPPER PROBABILITY

• Given a numerical possibility distribution π, define
    P(π) = {P |  P(A) ≤ Π(A) for all A}

• Then, generally it holds that
           Π(A) = sup {P(A) | P ∈ P(π)};
           N(A) = inf {P(A) | P ∈ P(π)}

• So π is a coherent representation of a family of probability
measures



From confidence sets to possibility
distributions

• Let E1, E2, …En be a nested family of sets
• A set of confidence levels a1, a2, …an in [0, 1]
• Consider the set of probabilities  

P = {P, P(Ei) ≥ ai, for i = 1, …n}
• Then P is EXACTLY representable by means of a

possibility measure with distribution
π(x) = mini = 1, …n max (µEi(x), 1− ai)



a1

a2

1

0

E1

E2

E3

π

POSSIBILITY  DISTRIBUTION INDUCED 
BY EXPERT  CONFIDENCE INTERVALS

α2

α3

m2= α2 − α3



Possibilistic covering approximations

• Given a (family of) probability distribution(s) (ill-
known) probabilistic model), find a possibility measure
dominating all probability measures in the family.
– Given an indexed set of nested intervals Mα = [aα, bα]  around x*,
– Given a probability measure P, construct  a possibility distribution
π such that

 π(aα) = π(bα) = 1 – P(Mα) (= β)

• π is a fuzzy prediction interval of P around x*: intervals
[aα, bα] are β - cuts of π that contain the unknown value
with confidence level 1− β.

• Then Π ≥ P.
• It is also a set of “probabilistic inequalities” for P.



Possibility distributions generalize
cumulative distributions

• Particular case: if M = increasing membership function
π(x) = F(x) =P((-∞, x]):

A Cumulative distribution function F of a probability function
P can be viewed as a possibility distribution dominating P

Π(A) = sup{F(x), x ∈ A} ≥ P(A)
(because it corresponds to probabilities of a nested family of
intervals of the form (-∞, x]).

• More generally, choosing any order relation ≤R

FR(x) = P({y ≤R x}) also induces a possibility distribution
dominating P



Possibilistic view of probabilistic
inequalities

Probabilistic inequalities can be used for knowledge
representation

• Chebyshev inequality defines a possibility distribution
that dominates any density with given mean and variance:

– P(V ∈ [xmean – kσ, xmean + kσ]) ≥ 1 – 1/k2 defines a family of nested sets with
lower probability bounds

– It is equivalent to writing π(xmean – kσ) = π(xmean + kσ) = 1/k2

• A triangular fuzzy number (TFN) defines a possibility
distribution that dominates any unimodal density with the
same mode and bounded support [xmode − a, xmode + a] as
the TFN.

 π(x) =  1− |xmode −x|/ a on [xmode − a, xmode + a]:
 P(V ∈ [x, 2xmode −x]) ≥  |xmode −x|/ a



Chebychev Camp-Meidel



• Prediction intervals
     Replacing a statistical probability distribution by an
interval A with a confidence level c = P(A).

– It defines a possibility distribution
π(x) = 1 if x ∈ A,

                     = 1 – c if x ∉ A
- it is clear that Π ≥ P

• Confidence intervals: estimation of a model  parameter θ in
terms of available data:

     Find a data-dependent interval A that contains θ  with high
confidence: P(θ ∈ A) = 0.95

Elementary forms of possibilistic
representations exist for a long time



Possibilistic representation of probabilistic
information

• Why ?
– Simpler representation framework for uncertainty than general

imprecise probability models à la Walley
– More informative than pairs of cumulative distribution  functions

when they are far from each other
– Generalizing some statistical methods or probabilistic inequalities
– A cautious alternative interpretation of betting odds that differs

from subjective probabilities
– fusion of heterogeneous data; possibility distributions are a less

restricted framework than single probability measures.



Probability -> possibility transformations :
BASIC PRINCIPLES FOR OBJECTIVE PROBABILITY

• Possibility probability consistency:  P ≤ Π
• Informativity:

optimize information content
(Maximization of specificity)

Additional criterionAdditional criterion:
• Ordinal faithfulness:

– Preserving the ordering of  elementary events 



From OBJECTIVE probability to possibility:

• Rationale: given a probability p, try and preserve
as much information as possible with π

• Select a most specific element from the set
PIPI(P) = {Π: Π ≥ P} of possibility measures
dominating P

Additionally (not compulsory)
• One may  also require π (x) > π (x') iff p(x) >p(x')
• may be weakened into:                                        

p(x) > p(x') implies π (x) > π (x')



•In the finite case, if p1 > … >pn, the most informative
possibility distribution consistent with p is defined by

πp
i = ∑j=i,n pj  : πp

n  = pn; πp
n-1  = pn + pn-1; ….. πp

n  = 1.
(the sum of probabilities of states with lower or equal
probability)

This kind of order-faithful discrete cumulative  distribution function is
also known as a Lorentz curve.

•If there are equiprobable elements, order-faithfulness implies
unicity of the possibility transform: equipossibility of the
corresponding elements is enforced.
• Uniform probability leads to uniform possibility.

Optimal possibilistic representations in
the finite case



ENTROPY  AND TRANSFORMATIONS
• Comparing probability distributions via their possibility

transforms: distribution p is more peaked than q if and

only if  πp< πq.
- Peakedness reflects lack of uncertainty of the probability distribution
- Inclusion of prediction sets of p into those of q
-     Comparing the specificity of the possibility transforms

THEOREM: if p is less peaked  than q, its Shannon entropy
H(p) is higher than H(q)

This is a consequence of mathematical results on inequalities (Hardy,
Polya, Littlewood)



Cumulative distribution around the
mode

• Choose the mode as x* and  R the total preorder induced
by the density :
               x >R y iff p(x) > p(y)

• Then {x ≤R a} ={x, p(x) ≤ p(a)}
• Then FR(a) = P({y ≤R a} ) is of the form

      1 − P({x, p(x) ≥ β}) for threshold β = p(a)



• the interval IL of fixed
length L with maximal
probability is of the form

 {x, p(x) ≥ β} =  [aL, aL+ L]
• The most narrow prediction

interval of probability α is
of the form {x, p(x) ≥ β}

• So the most natural
possibilistic counterpart of
p is  when

      π*(aL) = π*(aL+ L) =
      1 – P(IL= {x, p(x) ≥ β}).

aL a + LL

L

p

Optimal order-faithful
fuzzy  prediction intervals

β



From probability to possibility: symmetric case

• The optimal symmetric transform of the uniform
probability distribution is the triangular fuzzy number

• The symmetric triangular fuzzy number (STFN) dominates
any probability with unimodal symmetric density p with
the same mode.

• Moreover, its α-cut contains the (1− α)-confidence
interval of any such p.

   This is because for any such p, π* is convex on each side
    A much tighter inequality than Chebychev for bounded

support symmetric unimodal densities.



Optimal order-faithful 
fuzzy prediction interval



SUBJECTIVE POSSIBILITY
DISTRIBUTIONS

• Starting point : exploit the fair betting approach to
subjective probability

(enforce “min selling price = max buying price”)
• A critique: The agent is forced to be additive by the rules

of exchangeable bets.
– For instance, the agent provides a uniform probability distribution

on a finite set whether (s)he knows nothing about the concerned
phenomenon, or if (s)he knows the concerned phenomenon is
purely random.

• Idea : It is assumed that a subjective probability supplied
by an agent is only a trace of the agent's belief.



Betting based on a belief function
• According to Smets

– An agent has state of knowledge described by a mass
function m.

– The agent ranks decision using expected utility
• Generalized Laplace principle:

– Select an epistemic state E with probability m(E)
– Select an element at random in E

• The « pignistic » probability used by the agent is
p(s) = ∑{m(E)/|E|, s ∈ E}

• It is the Shapley value of the belief function Bel,
and the center of gravity of its credal set.



SUBJECTIVE POSSIBILITY
DISTRIBUTIONS

• Assumption 1: Beliefs can be modelled by belief
functions
– (masses m(A) summing to 1 assigned to subsets A).

• Assumption 2: The agent uses a probability function P
induced by his or her beliefs, using the pignistic
transformation (Smets, 1990).

• Method : reconstruct the underlying belief function from
the probability provided by the agent by choosing among
the isopignistic ones (the ones yielding pignistic
probability P).



SUBJECTIVE POSSIBILITY
DISTRIBUTIONS

– There are clearly several belief functions with a
prescribed Shapley value.

• Consider the least informative of those, in the sense of a
non-specificity index (expected cardinality of the random
set)

I(m) = ∑ Α ⊆ Ω   m(A)⋅card(A).

• RESULT :  The least informative belief function whose
Shapley value is p is unique and consonant.



SUBJECTIVE POSSIBILITY
DISTRIBUTIONS

• The least specific belief function in the sense of
maximizing I(m) is characterized by

                πi = Σj=1,n min(pj, pi).

• It is a  probability-possibility transformation, previously
suggested in 1983: This is the unique possibility
distribution whose pignistic (Laplacean) probability is p.

• It gives results that are less specific than the optimal fuzzy
prediction interval approach to objective probability.



Practical representation issues

• Lower probabilities are difficult to represent
(2|S| values): The corresponding family is a
polyhedron with potentially |S|! vertices.

• Finite random sets are simpler but potentially 2|S|

values
• Possibility measures are simple (|S| values) but

sometimes not expressive enough.
• There is a need for simple and more expressive

representations of imprecise probabilities.



Main practical representations of
imprecise probabilities on the reals

• Fuzzy intervals
• Probability intervals
• Probability boxes
• Generalized p-boxes
• Clouds
 Some are special random sets some not.



1

0

π

α
πα

FUZZY INTERVAL

• Fuzzy intervals are possibility distributions that
generalize intervals: they are nested random intervals
• They can account for probability families induced by
confidence intervals, probabilistic inequalities
• They encompass probability families with fixed
support and mode.



Probability intervals
• Definition: To each element si in S, assign a probability

interval [li, ui], i = 1, …n.
• P = {P, li≤ P({si})≤ ui , i = 1, …n}
• A probability interval model L is coherent in the sense of

Walley if and only if
– ∑j ≠ i lj + ui ≤ 1 and  1 ≤ ∑j ≠ i uj + li

• Induced upper and lower probabilities are 2-monotone
capacities (De Campos and Moral)



Probability boxes

• A set  P = {P: F* ≥ P((-∞, x]) ≥ F*} induced by two
cumulative distribution functions is called a
probability box (p-box),

• also a generalized interval (Ferson).

F*

F*

0

1

α Eα



P-boxes
• A p-box is a special random interval with focal sets Eα

• A fuzzy interval π induces a p-box:
F*(x) = Π((-∞, x]) and F*(x) = Ν((-∞, x])

• Representing families of probabilities by fuzzy intervals is
more precise than with the corresponding pairs of PDFs:
P(π) is a proper subset of P = {P: F* ≥ F ≥ F*}

– Not all P in {P: F* ≥ F ≥ F*} are such that Π ≥ P



P-boxes vs. fuzzy intervals

0 1 2 3
0

1

0.5
   F*    F* π 

A  triangular fuzzy number with support [1, 3] and mode 2. 
Let P be defined by P({1.5})=P({2.5})=0.5. 
Then  F* < F < F*        But  P ∉ PP(π) since 
P({1.5, 2.5}) = 1 > Π({1.5, 2.5}) = 0.5



Generalized cumulative
distributions

• Cumulative distribution based on an ordering on the
space: FR(x) = P(X ≤R x)

• Given a random variable with measure P on the real line
and an order relation R whose meaning is “close to a
characteristic value x*: x <R y iff  |x − x*|< |y − x*|

• Then the generalized « both-sided » cumulative
distribution FR(a) = P({y ≤R a} is a possibility
distribution dominating P, with mode x* and cuts of the
form [a, b]  with |a − x*| = |b − x*|.

• FR(a) = FR(b)  = P((-∞, a]∪[b ,+ ∞))
       = π(a) = π(b)



Generalized p-boxes
• A generalized probability box is a pair (F* ≥ F*) of

functions with max F*= 1, min F* = 0, inducing
the same complete preorder relation ≤R:

• its credal set is P = {P: F* ≥ FR ≥ F*}
• On the reals consider y  ≤R x iff f(|y - x*|) ≥ g(|x - x*|)

– (rescaled asymmetric distance to some value x*)
– F*(x1) ≥ P((-∞, x1]∪[x2 ,+ ∞)) ≥ F*(x2)

• It comes down to considering nested confidence intervals
E1, E2, …En each with two bounds αi and βi inducing the
credal set  P = {αi ≤ P(Ei) ≤ βi for i = 1, …, n}

• with Ei = of the form [ai, bi] = {y: y  ≥R ai} = {y: y  ≥R bi}.



1 − αi  = FR
*(ai) = FR

*(bi);
1 − βi = FR *(ai) = FR*(bi).

1

0

F*

1 −αi F*

Generalized p-box
Ei

ai bi

 1 − βi



Generalized p-boxes
• It comes down to two possibility distributions
          π (from αi ≤ P(Ei)) and πc (from P(Ei) ≥ 1 − βi)
• Distributions π and πc are such that π ≥ 1 − πc = δ and
π is comonotonic with δ (they induce the same order
on the referential).

•   Credal set: P = P (π) ∩ P (πc)
• Theorem: a generalized p-box is a belief function

(random set) with focal sets
    {x: π(x) ≥ θ} \ {x: δ(x) > θ}



From generalized p-boxes to
clouds



CLOUDS

• Neumaier (2004) proposed a generalized interval
as a pair of distributions (π ≥ δ) on the reals
representing the family of probabilities Pcloud  s.t.:
P({x: δ(x) > α}) ≤ 1 −  α ≤ P({x: π(x) ≥ α}) ∀α >0

• Distributions π and 1− δ are possibility distributions
such that Pcloud = P (π) ∩ P (1−δ)

• It does not generally correspond to a belief
function, not even a convex (2-monotone) capacity



SPECIAL CLOUDS
• Clouds are modelled by interval-valued fuzzy sets
• Comonotonic clouds = generalized p-boxes
• Fuzzy clouds: δ = 0; they are possibility distributions

• Thin clouds: π = δ:
– Finite case: empty
– Continuous case: there is an infinity of probability

distributions in  P (π) ∩ P (1−π) for bell-shaped π
– Increasing π: only one probability measure p

(π = cumulative distribution of p)



Main issues to be addressed about
uncertainty theories

• Constructing an imprecise probability model
• Eliciting upper/ lower probabilities
• Uncertainty propagation
• Plausible reasoning: Inferring beliefs from generic

information on the basis of observations
• Updating imprecise probability models
• Fusion of uncertain information
• Extracting useful information from imprecise data

or from outputs of uncertainty models



Elicitation of imprecise
probabilities

• An expert is expected to provide imprecise consistent
estimates rather than precise random ones

• Information requested from experts aims at singling out  a
unique distribution, but it actually constrains a probability
family.

• There is a need to reconsider existing elicitation methods
in the scope  of imprecise probabilities.

• Practical representations (fuzzy intervals, p-boxes, clouds,
etc.) can be useful to that end.



Imprecise statistical probability models

• When data is imprecise (tainted with interval-valued error),
random sets are more faithful than unique probability
measures

• When data is scarce it is hard to single out a probability
distribution
– imprecise Dirichlet model: the width of probability intervals varies

with the number of observed data.
– Using confidence intervals to induce imprecise parametric models



Remarks on propagation

• Given a mathematical model y = f(x), and a credal
set describing x, how to practically construct the
credal set for y?
– Random sets can be propagated using Monte-Carlo

methods + interval analysis
– Possibility distributions are stable under propagation

using specific assumptions on the dependence between
input variables

– P-boxes are not stable under exact (random set)
propagation

– Clouds are propagated using approximate methods



Exploitation of results
• Simple p-boxes can address questions about

threshold violations (x ≥ a ??), not  questions of
the form  a ≤ x ≤ b ??

• The latter questions are better addressed by
possibility distributions and  generalized p-boxes

• However contrary to the single probability case, a
p-box extracted from a credal set is only part of
the information.

• There is a need for extracting useful information
indices (mean interval, potential variance, index of
specificity, generalized entropy…)



SINGULAR vs. GENERIC INFORMATION

• PIECES OF EVIDENCE refer to a particular situation
(measurement data, testimonies) and are singular.
– E.g. results of medical tests on a patient
– testimonies
– Observations about the current state of facts

• BACKGROUND KNOWLEDGE refers to a class of
situations and summarizes a set of trends
– Laws of physics,
– commonsense knowledge (birds fly)
– Professional knowledge (of medical doctor),
– Statistical knowledge



• Generic knowledge may be tainted with exceptions,
incompleteness, variability
– It is not absolutely true knowledge in the mathematical sense:

tainted with exceptions,
– It all comes down to considering some propositions are generally

more often the case than other ones.
– Generic knowledge induces  a normality or plausibility  relation on

the states of the world.
– numerical (frequentist) or ordinal  (plausibility ranking)
– In the numerical case a credal set can account for incomplete

generic knowledge
• Observed evidence is often made of propositions known as

true about the current world.
– It is often incomplete and can be encoded as disjunctive sets, or wff

in propositional logic.
– It delimits a reference class of situations for the case under study.
– It can be uncertain unreliable, (subjective probability, Shafer)
– It can be irrelevant, wrong,



GENERIC KNOWLEDGE, EVIDENCE,
BELIEFS

• An agent  usually possesses three kinds of  information
on the world

1. Generic information (background knowledge) :  it pertains to a
range of situations the agent is aware of.
• Examples : statistics on a well-defined population commonsense

knowledge (often ill-defined population)
2. Singular information on the current situation (evidence)

• Known facts (results of observations, tests, sensor measurement,
testimonies)

3. Beliefs about the current situation
– Derived from known facts and generic information



PLAUSIBLE REASONING 
• Inferring beliefs (plausible conclusions) on the current

situation from observed evidence, using generic knowledge
– Example : medical diagnosis 
Medical knowledge + test results ⇒ believed disease of the patient.

• This mode of inference makes sense regardless of the
representation, but set-based representations are
insufficient:

• in a purely propositional setting, one cannot tell generic
knowledge from singular evidence 

• in the first order logic setting there is no exception.
– Need more expressive settings for representing background

knowledge, like probability or credal sets
• The basic tool for exception-tolerant inference is

conditioning.



Belief construction
• Beliefs of an agent about a situation  are derived from

generic knowledge and evidence about the case.
• Probabilistic beliefs: Hacking principle again

– Uncertain singular fact = a set C = what is known about
the context of the current situation.

– Generic knowledge = probability distribution P
reflecting the trends in a population (of experiments)
relevant to the current situation

– A question about the current situation: is an uncertain
proposition A true in the current situation

– BelC(A) = P(A|C): equating belief and frequency
• Assumption: the current situation is typical of

situations where C is true



Conditional Probability
• Two concepts leading to 2 definitions:

1. derived  (Kolmogorov): P(A | C)   =
          requires P(C) ≠ 0
2. primitive (de Finetti): P(A|C) is directly

assigned a value and P is derived such that
P(A∩C) = P(A|C)·P(C).
• Makes sense even is P(C)= 0

Meaning : P(A | C) is the probability of  A
if C represents all that is hypothetically known on
the situation

P(A ∩ C)
     P(C)



THE MEANING OF CONDITIONAL
PROBABILITY

• P(A|C) : probability of a conditional event « A in epistemic
context C » (when C is all that is known about the
situation).

• It is NOT the  probability of A, if C is  true.
• Counter-example :

– Uniform Probability on {1, 2, 3, 4, 5}
– P(Even |{1, 2, 3}) = P(Even |{3, 4, 5}) = 1/3
– Under a classical logic interpretation :

• From « if result ∈  {1, 2, 3} then P(Even) = 1/3 »
• And« if result ∈  {3, 4, 5} then P(Even) = 1/3 »
• Then (classical inference) : P(Even) = 1/3  unconditionally!!!!!

– But of course: P(Even) = 2/5.
• So, conditional events A|C should be studied as single entities (De

Finetti).



The nature of conditional probability

• In the frequentist settting a conditional probability P(A|C) is a relative
frequency.

• It can be used  to  represent the weight of rules of the form « generally,
if C then A » understood as « Most C’s are A’s » with exceptions

In logic a rule « if C then A » is represented by material implication Cc∪A
that rules out exceptions

• But the probability of a material conditional is not a conditional
probability!

• What is the entity A|C whose probability is a conditional probability???
                         A conditional event!!!!



Material implication:
the raven paradox

• Testing the rule « all ravens are black »
viewed as ∀x, ¬Raven(x) ∨ Black(x)

• Confirming the rule by finding situations
where the rule is true.
– Seeing a black raven confirms the rule
– Seeing a white swan also confirms the rule.
– But only the former is an example of the rule.



3-Valued Semantics of conditionals
• A rule « if C then A » shares the world into 3 parts

– Examples: interpretations where A∩C is true
– Counterexamples: interpretations where Ac∩C is true
– Irrelevant cases: interpretations where C is false

Rules « all ravens are black » and « all non-black birds are not
ravens » have the same exceptions (white ravens), but
different examples (black ravens and white swans resp.)

• Truth-table of « A|C » viewed as a connective
– Truth(A|C) = T if truth(A)= truth(C) = T  (
– Truth(A|C) = F if truth(A)=T and  truth(C) = F
– Truth(A|C) = I if truth(C)= F
Where I is a 3d truth value expressing « irrelevance »:
I = T: A∪Cc ;  I = F: A∩C .



A conditional event is
a pair of nested sets

• The solutions of A∩C = X∩C form the set
{X: A∩C⊆ X ⊆ A∪Cc}

• It defines the symbolic Bayes-like equation:
A∩C = (A|C)∩C.

• The models of a conditional A|C can be
represented by the pair (A∩C, A∪Cc), an interval
in the Boolean algebra of subsets of S

• The set A∪Cc representing material implication
contains the « non-exceptions » to the rule (the
complement of A∩Cc).



Semantics for three-valued logic of
conditional events.

• Semantic entailment: A|C |= B|D iff
    A∩C⊆ B∩D  and Cc∪A ⊆  Dc∪B
B|D has more examples and less counterexamples

than A|C.
In particular A|C |= A|B∩C is false.

• Quasi-conjunction (Ernest Adams):
A|C ∩ B|D = (Cc∪A)∩ (Dc∪B)| C∪D



Probability of conditionals
P(A|C) is totally determined by

– P(A∩C) (proportion of examples)
–  P(Ac∩C) = 1 − P(A∪Cc) (proportion of

counter-examples)

• P(A|C) is increasing with P(A∩C)  and
decreasing with P(Ac∩C)

• If A|C |= B|D then P(A|C ) ≤ P(B|D).

        P(A∩C)
P(A∩C) + 1 − P(A∪Cc)P(A|C) =



CONDITIONING NON-ADDITIVE
CONFIDENCE MEASURES

• Definition : A conditional confidence measure
g(A | C) is a mapping from conditional events
A | C ∈ S×(S – {∅}) to  [0, 1] such that
– g(A | C) = g(A ∩ C| C) = g(Ac∪C |C)
– gC(· ) = g (.| C) is a confidence measure on C ≠ ∅

• Two approaches:
–  Bayes-like  g(A ∩ C) = g(A | C) ·g(C)
– Explicit Approach g(A | C) = f(g(A ∩ C), g(A∪Cc))

Namely : f(x, y) = x/(1+x-y)



Conditioning a credal set

• Let P be a credal set representing generic information
and C an event

• Two types of processing :
1. Querying : C represents available singular facts:

compute the degree of belief in A in context  C as
Cr(A | C) = Inf{P(A | C), P ∈ P , P(C) > 0} (Walley).

2. Revision : C represents a set  of universal truths;
Add P(C) = 1 to the set of conditionals P.

Now we must compute Cr(A|C) =Inf{P(A) P ∈ P , P(C) = 1}
If P(C) = 1 is incompatible with P , use maximum likelihood:

Cr(A|C) =Inf{P(A|C) P ∈ P , P(C) maximal }



Example :  A               B               C

• P is the set of probabilities such that
– P(B|A) ≥ α Most A are B
– P(C|B) ≥ β Most B are C
– P(A|B) ≥ γ Most B are A

• Querying on context A : Find the most narrow interval for
P(C|A) (Linear programming): we find

P(C|A) ≥ α ⋅ max(0, 1 − (1 − β)/γ)
– Note : if γ = 0 ,  P(C|A) is unknown even if α = 1.

• Revision: Suppose P(A) = 1, then P(C|A) ≥ α⋅β
–   Note: β > max(0, 1 − (1 − β)/γ)

• Revision improves generic knowledge, querying does
not.



CONDITIONING RANDOM SETS AS
IMPRECISE PROBABILISTIC INFORMATION

• A disjunctive random set (F, m) representing
background knowledge is  equivalent to a set of
probabilities  P = {P:  ∀A, P(A) ≥ Bel(A)}  (NOT
conversely).

• Querying this information based on evidence C
comes down to performing a sensitivity analysis
on the conditional probability P(·|C)
– BelC(A) = inf {P(A|C): P ∈ P, P(A) >0}
– PlC(A) = sup {P(A|C): P ∈ P, P(A) >0}



• Theorem: functions BelC(A) and PlC(A) are  belief and
plausibility functions  of the form

BelC(A) = BelC(C∩A)/(BelC(C∩A) + PlC(C∩Ac))
PlC(A) = PlC(C∩A)/(PlC(C∩A) + BelC(C∩Ac))
where BelC(A) = 1 − PlC(Ac)

• This conditioning does not add information:
• If E∩C ≠ Ø and E∩Cc ≠ Ø for all E∈ F,  then mC(C) = 1

(the resulting mass function mC expresses total ignorance
on C)
– Example: If opinion poll yields:
– m({a, b}) = α, m({c, d}) = 1− α,

The proportion of voters for a candidate in C = {b, c} is unknown.
– However if we hear a and d resign (Pl({a, d} = 0) then m({b}) = α,

m({c}) = 1− α (Dempster conditioning, see further on)



A second problem :
MERGING UNCERTAIN EVIDENCE

• Observations about the current world may be
unreliable, uncertain, inconsistent:
– Sensor failures, dubious testimonies
– Propositional logic cannot account for unreliable

evidence
– Probability theory alone cannot account for incomplete

evidence
• A proper account of uncertain evidence needs to

cope with incompleteness and the necessity for
merging unreliable evidence in a flexible way,
before even inferring beliefs



CONDITIONING UNCERTAIN SINGULAR
EVIDENCE

• A mass function m on S, represents uncertain evidence
• A new sure piece of evidence is viewed as a conditioning

event C
1.   Mass transfer : for all E ∈ F, m(E) moves to C ∩ E ⊆ C

– The mass function after the  transfer is mt(B) = Σ E : C ∩ E = B m(E)
– But the mass transferred to the empty set may not be zero!
– mt(∅) =  Bel(Cc) = Σ E : C ∩ E = Ø m(E) is the degree of conflict

with evidence C
2. Normalisation: mt(B) should be divided by Pl(C)
         = 1 − Bel(Cc) =  Σ E : C ∩ E ≠ Ø m(E)
• This is revision of an unreliable testimony by a sure fact



DEMPSTER RULE OF CONDITIONING =
PRIORITIZED MERGING

The conditional plausibility function Pl(.|C) is
                          Pl(A ∩ C)
Pl(A|C) =                             ;  Bel(A|C) = 1−  Pl(Ac|C)
                                Pl(C)

• C surely contains the value of the unknown quantity described by m.
So Pl(Cc) = 0
– The new information is interpreted as asserting the impossibility of Cc:

Since Cc is impossible you can change  x ∈ Ε into x ∈ E∩ C and transfer
the mass of focal set E to E ∩ C.

• The new information improves the precision of  the evidence

• This conditioning is different from
Bayesian (Walley) conditioning



EXAMPLE OF REVISION OF EVIDENCE :
The criminal case

• Evidence 1 : three suspects : Peter Paul Mary
• Evidence 2 : The killer was randomly selected

man vs.woman by coin tossing.
– So, S = { Peter, Paul, Mary}

• TBM modeling: The masses are m({Peter, Paul})
= 1/2 ; m({Mary}) = 1/2
– Bel(Paul) = Bel(Peter) = 0. Pl(Paul) = Pl(Peter) = 1/2
– Bel(Mary) = Pl(Mary) = 1/2

• Bayesian Modeling: A prior probability
– P(Paul) = P(Peter) = 1/4; P(Mary) = 1/2



• Evidence 3 : Peter was seen elsewhere at the time of the
killing.

• TBM: So Pl(Peter) = 0.
– m({Peter, Paul}) = 1/2;       mt({Paul}) = 1/2 
– A uniform  probability on {Paul, Mary} results.

• Bayesian Modeling:
– P(Paul | not Peter) = 1/3; P(Mary | not Peter) = 2/3.
– A very debatable result that depends on where the story

starts. Starting with i males and j females:
• P(Paul | Paul OR Mary) = j/(i + j);
• P(Mary | Paul OR Mary) = i/(i + j)

• Walley conditioning:
– Bel(Paul) = 0;  Pl(Paul) = 1/2
– Bel(Mary) = 1/2; Pl(Mary) = 1



UNCERTAIN INFORMATION MERGING
• Contexts:

–  experts;  sensors;  images;
– belief sets;   databases;    sets of propositions.

•  Neither classical logic nor probability theory explain
how to combine conflicting information.

•  Merging beliefs differs from preference aggregation,
revision.

•  Theories (probability, possibility, random sets, etc...)
supply connectives without explaining how to use them

• The problem is  independent from the chosen
representation.



WORKING ASSUMPTIONS
• Parallel information sources
• Sources are identified, heterogeneous, dependent (humans,

sensors.)
• A range of problems : informing about the value of some

ill-known quantity to the identification of a scenario
• Information can be poor (intervals, linguistic), incomplete,

ordinal
• No prior knowledge must be available
• Reliability of sources possibly unknown, or not quantified
• Sources supposedly refer to the same problem (non-trivial

issue)



BASIC MERGING MODES

source 1: x ∈ A
           x ∈ ? 3 basic possibilities

source 2: x ∈ B

1. Conjunctive merging: x ∈ A ∩ B
– Assumption : sources are totally reliable
– Usual in  logic if no contradiction (A ∩ B ≠ Ø)

2. Disjunctive merging:  x ∈ A ∪ B
– Assumption :  one of the two sources is reliable
– Imprecise but sure response : A ∩ B = Ø is allowed



BASIC MERGING MODES

3. Merging by counting:
        build the random set: m(A) = m(B) = 1/2.
• AMB (x) = Pl(x) = ∑ x ∈ E m(E) = 1 if x ∈ A ∩ B

                 = 1/2 if x ∈ (Ac ∩ B) ∪ (A ∩ Bc)
      = 0 otherwise
– It lies between conjunctive and   disjunctive (but AMB

is a fuzzy set): A ∩ B ⊆ AMB ⊆ A ∪ B
– Assumption  : Pieces of information stem from

identical independent  sources: confirmation effect.
– Usual assumption in statistics with many sources and

precise observations



Extension to n sources : conflict management
with incomplete information

• A set S of n sources i: xi ∈ Ai, i = 1, …, n
– Generally inconsistent so conjunctive merging fails
– Significant dispersion so disjunctive merging is uninformative
– (there is often more than one reliable source among n)

• Method 1 :  Find maximal consistent subsets of sourcesTk:
∩ i∈T Ai ≠ ∅ but ∩ i∈T∪{j} Ai = ∅
– Conjunctive merging of information in Tk

– Disjunctive merging of partial  results obtained
                           X = ∪k(∩ i∈Tk Ai )



• Method 2 : Make an assumption on the number of reliable
sources

• Suppose k reliable sources
• Then  pick k sources at random for conjunctive merging

and  then disjunctively merge obtained results
X = ∪K ⊆ S : card(K) = k ∩ i∈K Ai

– Must choose k  ≤  max {card(K), ∩ i∈K Ai ≠ ∅}

• Method 3 : statistical : m(Ai) = 1/n for all i. 

then Pl(x) = ∑ i = 1, …, n Ai(x)/n.



MERGING IN POSSIBILITY THEORY:
• Fuzzy set-theoretic operations are instrumental.
• General case:
• source 1 →  π1 = µF1         source 2 → π 2 = µF2

1.  Conjunctive merging   F1
 ∩ F2

– Assumption 1 : Nothing is assumed about dependence
of sources

– Then, Idempotence: no accumulation effect :
• π∩  = min(π1 , π2) (minimum rule)
•   In agreement with the logical view of

information as constraints



Normalized conjunctive merging
• Degree of conflict: 1 − max π∩  if π∩ is not normalized

– Renormalizing : Assumption 2: sources are reliable even if
conflict.

• Assumptions 1 and  2 : π∩* = min(π1 , π2)/ max π∩
– But then Associativity is lost

• Assumption 3: Independent sources: π* =  π1·π2
–  product instead of min.
– Renormalizing : π  =  π1·π2/ max π*
– in agreement with  the Bayesian approach.
– Associativity is preserved



•  Possibilistic disjunctive merging
– Assumption 4: one of the sources is reliable

      F1 ∪ F2: π∪ = max(π1,π2)   (max  rule)
– Idempotent: sources can be redundant.
– Adapted for inconsistent sources ( F1

 ∩ F2 = Ø)

• Statistical Merging        vertical average
π+ =(π1+ π2)/2

– Assumption 5: Numerous identical independent
sources

– Generally it gives a random fuzzy set.



MERGING PROBABILITY DISTRIBUTIONS

• The basic connective is the convex  combination :  a
counting scheme
– P1 … Pn probability distributions
– Information sources with weights αi such that ∑ αi = 1

P = ∑ αiPi
• The only possible one with

– P(A) = f(P1(A),…,Pn(A))  ∀A ⊆ S
– f(0, 0…0) = 0 ; f(1, 1…1) = 1
– (invariant via projections)

• Information items  come from a random source ; weights
express repetition of sources:  Information items are
independent from each other



Bayesian Merging
• Idea : there is a unique probability distribution

capturing the behaviour of sources.
• Data:

– xi: observation of the value of quantity x by source i.
– P(x1 and x2 | x)  information about  source behaviour
– P(x) prior information about the value of x

                 P( x1 and  x2 | x). P(x)
• P(x | x1 and  x2) =            _________________________

                     ∑x' P(x1 and  x2 | x') · P(x')

• (requires a lot of data )



« Idiot Bayes »
• Usual assumption:  precise observations x1 and  x2

are conditionally independent with respect to x.
         P(x1 | x) · P(x2 | x ) · P(x)
•  P(x | x1 and  x2) =    _________________________

                                 ∑x' P(x1 | x') · P(x2 | x' ) · P(x')
– Independence assumption often  unrealistic
– Conjunctive product-based combination rule similar to

possibilistic merging, if we let P(xi | x) = πi (x)
• A likelihood function is an example of a possibility

distribution



• What if no prior information?  Bayesians use
Laplace principle: A uniform prior

P(x1 | x). P(x2 | x )
•  P(x | x1 and  x2) =         _____________________

∑x' P(x1 | x'). P(x2 | x' )
• Too strong : merging likelihood functions should

yield a likelihood function.
                 P(x1 | x). P(x2 | x )
• π(x) =     _____________________  possibilistic merging
               supx' P(x1 | x'). P(x2 | x' )



Possibilistic merging  with prior information

• Bayes theorem: 
        π(u1, u2|u) * πx(u) = πx(u |u1, u2) * π(u1, u2).

–  πx(u) a priori information about x (uniform =
ignorance)

–  π(u1, u2|u): results from a merging operation F
–  π(u1, u2) = sup u∈U π(u1, u2|u) · πx(u).

• If operation F is product:
                π(u1 | u). π(u2 | u ) . πx(u).
   π(u) =     ___________________________________  

               supu' π(u1 | u'). π(x2 | u' ) . πx(u)
•  Similar to probabilistic Bayes  but more degrees

of freedom



MERGING BELIEF FUNCTIONS

• Problem :
• source i → (Fi,mi) with  ∑ A ∈ Fi mi(A) = 1

• Demspter rule of combination : an  associative
scheme generalising Dempster conditioning
– Step 1:        m∩(C) =       ∑      m1(A).m2(B)

               A ∩ B = C

                      Independent random set intersection
Step 2:     m*(C) =     m∩(C)/(1 − m∩(Ø))
                                 renormalisation
          m∩(Ø) evaluates conflict ; it is eliminated.



Example : S = {a, b, c, d}

S
0.02

{b, c, d}
0.14

{c}
0.04

S
0.2

{a, b, c}
0.05

{b, c}
0.35

{c}
0.1

  {a, b, c}
0.5

{b}
0.03

{b}
0.21

Ø
0.06

{b}
0.3

S
0.1

{b, c, d}
0.7

{c}
0.2

m2

m1

m
∩
({b})  = 0.21 + 0.03 = 0.24 ;  m

∩
({c})  = 0.1 + 0.04 = 0.15

m
∩
(S)  = 0.02 ; m

∩
(Ø)  = 0.06



Disjunctive merging of belief functions
               m∪(C) =      ∑      m1(A).m2(B) 

          C : A ∪ B = C

– Union of independent random sets.
–  More imprecise than conjunctive merging, ever

normalised.
• Moreover Bel∪(A) = Bel1(A).Bel2(A)

–  Disjunctively combining two probability distributions
yields a random set.

–   Belief functions are closed via product and convex
sum.

– If conflict is too strong, normalized conjunctive
merging provides arbitrary results and should be
avoided: use another scheme like disjunctive merging.



Conjunctive merging with disjunctive
conflict management

1. Conflict is ignorance
– m∩δ(C) =      ∑      m1(A).m2(B) if C ≠ Ø, S

                            A ∩ B = C

– m∩δ(S) = ∑      m1(A).m2(B)  + m1(S).m2(S)
                             A ∩ B = Ø

                                 = m∩(Ø) + m∩(S)
2. Adaptive rule: for C ≠ Ø
m∩δ(C) =      ∑      m1(A).m2(B) + ∑  m1(A).m2(B)

               A ∩ B = C                     A ∪ B = C

                                                                          A ∩ B = Ø

These rules are not associative.



Compromise merging

• Convex combination: generalisation of the
probabilistic merging rule

• mα(A) =   α·m1(A) +(1 − α) m2(A)
–  α = relative reliability of source 1 versus source 2

• Example : discounting an unreliable belief
function with reliability α close to 1:  combine m1
with the void belief function m2 (S) = 1: then
– mα(A) = α·m1(A)  if A ≠ S
– mα(A) = α·m1(S) + (1 − α)



CONCLUSION: Belief construction for an agent
1.  Perception: collecting evidence tainted with

uncertainty
2. Merging: Combining new evidence with current one

so as to lay bare an (incomplete) description of the
current situation considered as true.

3. Plausible inference: Forming beliefs by applying
background knowledge to current evidence

• This scheme can be implemented in various settings
encompassed by imprecise probability, but

• A set-based approach is too poor : need conditional events.
Non-monotonic reasoning a la Lehmann (or qualitative
possibilistic logic) is minimal requirement for step 3.

• Bayesian probability is too rich for step 3: ever complete and
consistent. Walley conditioning with imprecise probability is
purely deductive and may be poorly informative.

• Shafer-Smets or possibility theory is useful for merging
uncertain evidence (step 2)



Conclusion: the role of imprecise
probability methods

• Imprecise probabilities are a natural concept for
conjointly handling variability of phenomena and
incomplete knowledge about them.

• Imprecise probabilities unify quantitative
uncertainty theories to a large extent.
–  Some discrepancies remain, e.g. Dempster rule of

combination of random sets  is not interpreted in the
imprecise probability setting…



Conclusion: the nature of
imprecise models

• Imprecise modeling is unusual.
–  In classical approaches, a probabilistic model is an approximate

but precise representation of variability.
• In contrast, an imprecise model is of higher order, hence is

not objective.
It represents altogether knowledge about reality and

knowledge about knowledge.

• There is a need to reconsider the foundations of systems
analysis in this perspective.


