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Uncertainty Theories: a Unified View
(Invited Paper)

Didier Dubois

Abstract—The variability of physical phenomena and partial
ignorance about them motivated the development of probability
theory in the two last centuries. However, the mathematical
framework of probability theory, together with the Bayesian
credo claiming the inevitability of unique probability measures
for representing agents beliefs, have blurred the distinction
between variability and ignorance. Modern theories of uncer-
tainty, by putting together probabilistic and set-valued rep-
resentations of information, provide a better account of the
various facets of uncertainty.

I. INTRODUCTION

The modeling of uncertainty is motivated by two concerns:
taming the variability of observed phenomena and facing
incomplete information in decision processes. These two
concerns are related by the fact that in the face of variability,
it is difficult to predict what the next state of the world
will be. Yet the two concerns are distinct in the sense that
variability is far from being the only cause of information
incompleteness. Moreover, variability is an objective phe-
nomenon, that supposedly corresponds to a property of the
world. On the contrary, incompleteness of information refers
to a human agent, and is thus irreducibly subjective. An agent
cannot make prediction about the world behavior because
of variability and because of lack of knowledge. But one
may miss knowledge about quantities that are not subject to
variability, like when guessing the birth date of a famous
person, or the height of a mountain.

However, the development of probability theory, as wit-
nessed by the Bayesian school especially, led to blur the
distinction between variability and ignorance, suggesting that
a unique probability distribution is enough to account for
both randomness and incomplete information. More recently,
new theories of uncertainty have emerged where partial
ignorance is acknowledged and represented separately from
randomness: the theories of imprecise probabilities, evidence,
and possibility respectively. The aim of this paper is to
suggest a unified view of these approaches.

II. SET-BASED REPRESENTATIONS OF PARTIAL
IGNORANCE

The basic tool for representing information incompleteness
is set theory: an ill-known quantity is represented as a
disjunctive set, i.e. a subset of mutually exclusive values, one
of which is the real one. This kind of uncertainty is naturally
accounted for in logical representations. In propositional
logic, a set of formulas viewed as constraints on the joint
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values of Boolean variables, generally does not single out
a unique assignment (a model). When a given proposition
is not entailed by a belief base, it does not imply that its
negation is necessarily entailed: there are propositions, the
truth of which cannot be inferred. This is when knowledge
is incomplete.

In the area of numerical modelling, the processing of
incomplete information is basically carried out by interval
analysis [18] or constraint propagation methods. Incomplete
information comes in the form of intervals assigned to
unknown quantities. Assigning an interval [a, b] to a quantity
x means that x is known to take one and only one value
in [a, b], but it is nor known which one. Note that x is
not necessarily a random quantity. It can be deterministic,
yet unknown. For instance, the reader may not know the
birth date of the president of Brazil, even if he or she can
suggest a time interval. Note that such an interval like [a, b]
is never an attribute of the world, since the real value of x is
precise. It is an attribute of an agent, an observer, a sensor,
etc. In this sense, the set-valued representation is subjective:
two individuals may come up with different intervals for
the value of x, both of them being correct, even if not
equally informative. The wider the set, the less informative.
Total ignorance corresponds to the whole domain of x being
possible.

The two modalities attached to this representation of
partial ignorance are the possibility (or plausibility) and the
certainty (or necessity), not probability. Asserting x ∈ [a, b]
comes down to declaring any value outside [a, b] as impos-
sible for x. Moreover, for an agent only knowing x ∈ [a, b]:

• Any event A understood as the assertion x ∈ A is
possible whenever A ∩ [a, b] is not empty.

• Any such event A is certain for this agent, whenever
[a, b] ⊆ A.

It is clear that possibility and certainty correspond to log-
ical consistency and logical entailment from the available
knowledge. This is the Boolean version of possibility theory
[12]. This type of uncertainty is captured by interval anal-
ysis. The basic problem in uncertainty analysis is: given a
mathematical model of the form y = f(x1, . . . , xn), find
the range of the output y, when all is known about inputs
xi, i = 1, . . . , n is that xi ∈ [ai, bi]. This type of approach
to partial ignorance, although perfectly sound, is crude and
potentially little informative if intervals are too wide, each
bound being respectively overpessimistic and overoptimistic.



III. BAYESIAN PROBABILITY AS A REPRESENTATION OF
PARTIAL IGNORANCE

That probability theory may account for the variability of
observed phenomena is clear, once statistical data is used
to infer probabilities, interpreted as limit frequencies. How-
ever, this interpretation of probability is not valid for non-
repeatable events. Several scholars in the XXth century, like
Ramsey, De Finetti and Savage have introduced the notion
of subjective probability so as to account for the fact that
individuals entertain beliefs about non-repeatable situations.
This trend has led to the Bayesian view of probability.

The operational definition of a degree of probability is
then an amount of money an agent is ready to bet on
the occurrence of an event. In such a betting experiment,
the agent provides betting odds under an exchangeable bet
assumption: it says that the agent is ready to buy a lottery
ticket about the event at the same price as (s)he would sell it.
On this basis, Bayesians claim that any state of incomplete
knowledge of an agent can (and should) be modelled by a
single probability distribution on the appropriate referential,
and that degrees of belief coincide with probabilities that can
be revealed by observing the betting behaviour of the agent.
Failing to use a unique probability distribution, the agent is
sure to lose money (this is called the Dutch book).

The idea that it is always possible to come up with
a precise probability model, whatever the agent’s state of
knowledge, looks debatable. It is not clear that incomplete
knowledge should be modelled by the same tool as variability
(a unique probability distribution) [16]. One may argue,
following e.g. Walley [24], that the lack of knowledge is
precisely reflected by the situation where the probability of
events is ill-known, except maybe for a lower and an upper
bound. In the face of ignorance, it is not clear that individuals
would buy and sell a lottery tickets at the same price: the
selling price would be higher than the buying price, the
difference being all the higher as the ignorance is signif-
icant. Moreover one may also have incomplete knowledge
about the variability of a non-deterministic quantity if the
observations made were poor, or if only expert knowledge is
available. This point of view may to some extent reconcile
subjectivists and objectivists: it agrees with subjectivists that
human knowledge matters in uncertainty judgements, but it
concedes to objectivists that such knowledge is generally
not rich enough to allow for a full-fledged probabilistic
modelling.

Bayesian betting rates cannot distinguish between the
situation of total ignorance and the situation of complete
knowledge about a perfectly random phenomenon. The same
uniform probability accounts for an unknown die and a
die known as fair. In the face of ignorance this uniform
probability is enough for a decision-maker accepting Savage
decision theory as the way to follow when choosing among
acts. It becomes debatable when a new information requires
a belief revision process or when conservative risk analysis
must be carried out. In a crime case involving suspects
Peter Paul and Mary, if it is only known that the killer

is a man with probability one-half, a Bayesian may attach
probability one fourth to Peter and to Paul. If it is known
later that Peter has an alibi, it sounds safer to bet again
on the updated set of suspects (at equal odds on Mary and
Paul), than to consider Mary as having more chance to be
the killer due to Bayes rule attaching probability two-third
to her. In the case of risk analysis, based on propagating
uncertainty through a mathematical model, precise subjective
probability assessments of ill-known inputs will lead to alter
the variance of the output in a debatable way: part of this
calculated variance will be due to ignorance, not to effective
variability, but they cannot be told apart. Yet, variance due
to ignorance can be reduced by collecting more information,
while variance due to variability just reflects the behaviour
of the phenomenon under concern.

IV. BLENDING SET-VALUED AND PROBABILISTIC
REPRESENTATIONS OF UNCERTAINTY

Modern uncertainty theories put together probabilistic and
set-valued representations, which allows for a clear sepa-
ration between randomness and incompleteness. Moreover,
it makes set-valued representations much more expressive.
The most general approach consists in moving from the
use of a single probability to a set of probabilities, all the
larger as information is poor. It may express imprecision
about an ill-known (objective) probability model and induces
upper and lower probabilities of events. The subjective view
can be accommodated by giving up the exchangeable bet
assumption. The minimal selling and maximal buying prices
of a lottery ticket winning one pound if an event occurs
correspond to the upper and lower probabilities of the event,
respectively [24]. Another way of blending probability and
set representations is to randomize the latter. Random sets
are the basis of the mathematical theory of evidence [22].
The idea is to define a probability distribution not on a state
space, but on the powerset thereof. Each probability weight
attached to a set corresponds to an amount of probability
that should be shared among the elements of this set, but
is not by lack of information. Upper and lower probabilities
induced by this random set representation are special cases
of imprecise probabilities. Finally, the last representation
framework consists in assuming that possibility is a matter
of degree, values in the set containing the unknown quantity
being more or less plausible (or surprising [21]). This is
possibility theory [13], based on possibility distributions.
In possibility theory, information is thus summarized by
fuzzy sets [25]. It is important to figure out that the reason
why fuzzy set theory is relevant for uncertainty handling is
because it is a set-based approach, not just because it is fuzzy
in the sense of Zadeh (i.e. gradual rather than abrupt). The
bridge to imprecise probability comes from the fact that fuzzy
sets representing possibility distributions are equivalent to
consonant (nested) random sets [13].

A. Imprecise probabilities

The theory of imprecise probabilities has been system-
atized and popularized by Walley’s book [24]. In this theory,



uncertainty is modeled by a family P of probability distri-
butions. Lower and upper probability bounds are defined as
follows :

P∗(A) = inf
P∈P

P (A) and P ∗(A) = sup
P∈P

P (A).

These two measures are dual to each other (P∗(A) = 1 −
P ∗(Ac)), and specifying one of them is enough to completely
characterize the probability family. Let P∗∗ = {P |∀A ⊆ X
measurable, P∗(A) ≤ P (A) ≤ P ∗(A)}. In general, we have
P ⊂ P∗∗ , since P∗∗ can be seen as a projection of P on events.
A family P can also be defined by a set of restrictions of
the type

P (A) ≤
∑
xi∈A

p(xi) ≤ P (A)

When it defines a non empty probability set P and each
bound P (A) and P (A) is attained by one probability mea-
sure in P , the representation is said to be coherent.

B. Random disjunctive sets

Formally, a random set is a mapping from a probability
space (Ω,A, P ) to the power set ℘(X) of another space
X , also called a multi-valued mapping Γ. The set Γ(ω)
represent incomplete knowledge about a random variable
when the realization is ω in the probability space (as opposed
to random sets which are conjoints of elements like an ill-
known region in a digital image). Then this multimapping
induces a probability family on X representing all probability
functions on X that could be found from all measurable
mappings Ω → X compatible with Γ [8]. Upper and lower
probabilities probabilities on events in X are then generated.
Such lower and upper probabilities are respectively called
belief and plausibility functions by Shafer [22] and denoted
Bel and Pl respectively. He uses an alternative (and useful)
representation of the random set consisting of a distribu-
tion of positive masses m over the power set ℘(X) s.t.∑

E⊆X m(E) = 1 and m(∅) = 0. Namely if E = Γ(ω),
then let m(E) = p(ω). A set E that receives strictly positive
mass is called a focal set. The mass m(E) is interpreted as
the probability of knowing only E as containing the actual
solution to the problem under concern. We have :

Bel(A) =
∑

E,E⊆A m(E)
Pl(A) = 1−Bel(Ac)

=
∑

E,E∩A 6=∅ m(E).

There is a one-to-one correspondence between the mass
distribution and the belief function since

m(E) =
∑
B⊂E

(−1)|E−B|Bel(B).

This last equation is known as the Möbius inverse and can be
applied to any kind of lower probability function. The pos-
itivity of the mass function obtained by the Möbius inverse
is characteristic of the random set setting. In the finite case,
it can be shown that the lower probability function is an ∞-
monotone capacity. The set PBel = {P |∀A ⊆ X measurable,

Bel(A) ≤ P (A) ≤ Pl(A)} is coherent and forms the
probability family induced by the belief function. Note that
Shafer [22] does not refer to an underlying probability space,
nor does he uses the fact that a belief function is a lower
probability: in his view, extensively taken over by Smets
[23], Bel(A) is supposed to quantify an agent’s belief per
se with no reference to a probability. However, the basic
mathematical tool common to Dempster’s upper and lower
probabilities and to the Shafer-Smets view is the notion of
(generally finite) random disjunctive set.

C. Fuzzy sets as possibility distributions

A possibility distribution π [12] is a mapping from
X to the unit interval such that π(x) = 1 for some
x ∈ X . Formally, a possibility distribution is equivalent
to the membership function of fuzzy set µ(x) = π(x) ∀x.
Possibility distributions were introduced by Zadeh [25] as
flexible constraints induced by fuzzy natural language state-
ments. Twenty years earlier, Shackle [21] had introduced
an equivalent notion called distribution of potential surprise
(corresponding to 1 − π(x)) with a view to represent non-
probabilistic uncertainty. Several set-functions can be defined
from a possibility distribution π, especially [12]:

• Possibility measures: Π(A) = supx∈A π(x)
• Necessity measures: N(A) = 1−Π(Ac)

The possibility degree of an event expresses the extent to
which this event is plausible, i.e., consistent with a possible
state of the world. Necessity degrees express the certainty
of events, by duality. Under these measures, the possibility
quantified by distribution π is potential (in the spirit of
Shackle), i.e. π(x) = 1 does not guarantee the corresponding
value x.

A (potential) possibility degree can be viewed as an upper
bound of a probability degree [13]. Let Pπ = {P,∀A ⊆
X measurable, N(A) ≤ P (A) ≤ Π(A)} be the set of
probability measures encoded by a possibility distribution
π. This representation is coherent since upper and lower
probabilities induced by Pπ are precisely Π and N .

In the finite case, a possibility distribution is also equiv-
alent to a random set whose focal elements are nested.
Namely, a belief function (resp. a plausibility function) is
a necessity measure (resp a possibility measure) if and
only if they derive from a mass function with nested focal
sets (already in [22]). Their characteristic property is then
N(A ∩ B) = min(N(A), N(B)) (resp. Π(A ∪ B) =
max(Π(A),Π(B)). In this situation, the same amount of
information is contained in the mass function m and the
possibility distribution π(x) = Pl({x}). In the general non-
nested case, m cannot be reconstructed from Pl({x}).

V. PRACTICAL REPRESENTATIONS OF INCOMPLETE
KNOWLEDGE

Imprecise probabilities are complex to represent, much
more than probability measures, whether on finite sets or the
real line. On a finite set X with N elements, a lower prob-
ability needs 2N values to be specified (and a consistency



check to make it sure that the corresponding family is not
empty). It defines a convex polyhedron, which may have up
to N ! vertices. If X is defined via a set of Boolean variables,
there is a counterpart of Bayesian networks, called credal
networks, which allow the use of probability bounds on
much smaller subspaces. In general, to completely specify a
probability family induced by a random set, one still needs to
give 2|X| different values, thus not reducing the complexity
of the representation with respect to a capacity. However,
simple belief functions having only a few positive focal sets
do not exhibit such a complexity. From a computational
perspective, the main advantage of random sets is that they
can be seen as a probability distribution over subsets of X .
Therefore, they can easily be simulated by some process
such as Monte-Carlo sampling, which is not the case for
other Choquet capacities. On the real line, a random set is
often restricted to a finite collection of closed intervals with
associated weights, and one can then easily extend results
from interval analysis [18] to random intervals [20]. For
continuous random intervals, the mass function is replaced by
a mass density bearing on intervals. In the following we point
out existing simple representations of probability families [9].

A. Fuzzy sets and intervals

At most |X| values are needed to completely specify a
possibility distribution, making them easier to represent than
general random sets. On the real line, continuous (or upper
semi-continuous) unimodal possibility distributions on the
real line encompass closed intervals and are called fuzzy
intervals [12]. They have a very natural interpretation as sets
of nested confidence intervals [10] or probabilistic inequal-
ities, like Chebyshev’s [11]. Ill-known probability models
where only some parameters are known, like the support
and the mode, are liable to a possibilistic representation
[1]. Possibility distributions are thus the simplest models
of probability families, and they play a central role when
modeling vague assessments of probabilities (see [6]).

B. P-boxes and generalized p-boxes

A p-box [17] is defined by a pair of cumulative distri-
butions on the real line such that F ≤ F , bounding the
cumulative distribution of an imprecisely known probability
function with density p. It can be viewed as a generalized in-
terval as well. The corresponding set of probabilities Pp−box

is representable by a belief function whose focal elements
are of the form {x, F (x) ≥ α} \ {x, F (x) ≥ α}. A p-box
is a covering approximation of a parameterized probability
model whose parameters (like mean and variance) are only
known to belong to an interval.

A p-box can be induced from a possibility distribution
π, letting F (x) = N((−∞, x]) and F (x) = Π((−∞, x]),
but the probability family Pp−box induced by this p-box is
strictly larger than Pπ[1]. So, while a fuzzy interval induces
a p-box, such generated p-boxes are less informative than the
possibility distributions they are computed from.

Interestingly, the notion of cumulative distribution is based
on the existence of the natural ordering of numbers. On a

finite set, no obvious notion of cumulative distribution exists.
In order to make sense of this notion over X , one must equip
it with a complete preordering and define two cumulative
distributions according to this ordering. it comes down to a
family of nested confidence sets ∅ ⊆ A1 ⊆ A2 ⊆ . . . ⊆
An ⊂ X . The family Pp−box can then be represented by the
following restrictions on probability measures

αi ≤ P (Ai) ≤ βi i = 1, . . . , n (1)

with α1 ≤ α2 ≤ . . . ≤ αn ≤ 1 and β1 ≤ β2 ≤ . . . ≤ βn ≤
1. If we take X = < and Ai = (−∞, xi], it is easy to see
that we retrieve the usual definition of P-boxes.

A family Pp−box described by a generalized P-box can
be encoded by a pair of possibility distributions π1, π2 s.t.
Pp−box = Pπ1 ∩Pπ2 where π1 comes from constraints αi ≤
P (Ai) and π2 from constraints P (Ai) ≤ βi. Again, it is
representable by a belief function [9].

C. Probability Intervals

Probability intervals over the finite space X are defined as
lower and upper probability bounds restricted to singletons xi

[5]. They can be seen as a set of intervals L = {[li, ui], i =
1, . . . , n} defining the family

PL = {P |li ≤ p(xi) ≤ ui∀xi ∈ X}

it is easy to see that PL is totally determined by 2|X| values.
PL is non-empty provided that

∑n
i=1 li ≤ 1 ≤

∑n
i=1 ui.

A set of probability intervals L will be called reachable if,
for each xi, each bound ui and li can be reached by at least
one distribution of the family PL. Reachability is equivalent
to the condition∑

j 6=i

lj + ui ≤ 1 and
∑
j 6=i

uj + li ≥ 1

Lower and upper probabilities P∗(A), P ∗(A) are calculated
by the following expressions

P∗(A) = max(
∑

xi∈A li, 1−
∑

xi /∈A ui),
P ∗(A) = min(

∑
xi∈A ui, 1−

∑
xi /∈A li).

De Campos et al. [5] have shown that these bounds are
Choquet capacities of order 2. It is easy to extract p-
boxes from probability intervals and conversely, but some
information is lost in the process.

D. Clouds

A cloud [19] can be seen as an Interval-Valued Fuzzy Set
F such that (0, 1) ⊆ ∪x∈XF (x) ⊆ [0, 1], where F (x) is an
interval [δ(x), π(x)]. It implies that π(x) = 1 for some x
and δ(y) = 0 for some y. A probability measure P on X is
said to belong to a cloud F if and only if ∀α ∈ [0, 1]:

P (δ(x) ≥ α) ≤ 1− α ≤ P (π(x) > α) (2)

under all suitable measurability assumptions. From this defi-
nition, a cloud (δ, π) is equivalent to the cloud (1−π, 1−δ).
If X is a finite space of cardinality n, let Ai = {xi, π(xi) >



αi+1} and Bi = {xi, δ(xi) ≥ αi+1} A cloud can thus be
defined by the following restrictions [9]:

P (Bi) ≤ 1− αi ≤ P (Ai) and Bi ⊆ Ai i = 1, . . . , n (3)

where 1 = α0 > α1 > α2 > . . . > αn > αn+1 = 0 and
∅ = A0 ⊂ A1 ⊆ A2 ⊆ . . . ⊆ An ⊆ An+1 = X; ∅ = B0 ⊆
B1 ⊆ B2 ⊆ . . . ⊆ Bn ⊆ Bn+1 = X.

Let Pδ,π be the probability family described by the cloud
(δ, π) on a referential X . Clouds are closely related to
possibility distributions and p-boxes as follows [9]:

• Pδ,π = Pπ∩P1−δ using the probability families induced
by the two possibility distributions π and 1− δ.

• A cloud is a generalized p-box iff the sets {Ai, Bi, i =
1, . . . , n} form a nested sequence (i.e. there is a com-
plete order with respect to inclusion); in other words, it
means that π and δ are comonotonic. So a comonotonic
cloud generates upper and lower probabilities that are
plausibility and belief functions.

• When the cloud is not comonotonic, Pδ,π generates
lower probabilities that are not even 2-monotone. It
is anyway possible to approximate upper and lower
probabilities of events from the outside by possibility
and necessity measures based on π and 1− δ:

max(Nπ(A), N1−δ(A)) ≤ P (A) ≤ min(Ππ(A),Π1−δ(A)).

The belief and plausibility functions of the random set s.t.
m(Ai\Bi−1) = αi−1−αi are inner approximations of Pδ,π ,
which become exact when the cloud is monotonic.

When π = δ the cloud is said to be thin. In the finite case,
Pπ,π = ∅. To make it not empty, we need a one-step index
shift, such that (assuming the πi’s are decreasingly ordered)
δi = 1−πi+1 (with πn+1 = 0). Then, Pδ,π contains a single
distribution p such that pi = πi − πi+1. In the continuous
case Pπ,π contains an infinity of probability measures
and corresponds to a random set whose realizations are
doubletons (the end-points of the cuts of π).

The above representations of imprecise probabilities are
easier to handle than general probability families. They
often require less evaluations to be fully specified and they
allow many mathematical simplifications that increase com-
putational efficiency (except, perhaps, for non-comonotonic
clouds).

VI. BASIC PROBLEMS IN UNCERTAINTY THEORIES

Probability theory is used either to capture stochastic fea-
tures of a population of situations, or to measure degrees of
belief of agents. Even if the two purposes converge for agents
that derive their degrees of belief from the knowledge of
frequencies, the two kinds of probability are not of the same
nature. While frequentist probabilities refer to a population
of situations and represent generic knowledge, subjective
probabilities are elicited on the basis of single contingent
events. This distinction is important to better understand
various uncertainty management problems and how to to
state and solve them when imprecise probabilities enter the
picture. Especially, insofar as one may admit that reality

is precise but only our perception of reality is imprecise,
there cannot be such thing as a fully objective imprecise
probability model. Even when capturing variability, i.e. when
a set P of probability measures is assumed to contain the
“true” probability measure P that governs a process, the
imprecision itself is always subjective in the sense that it will
vary from one observer to another. As for subjective upper
and lower probabilities, they can be viewed as degrees of
belief and plausibility of contingent events, without assuming
the existence of a true probabilistic representation of belief
(both Shafer [22] and Smets [23] reject this assumption) and
without reference to statistics. Shafer-Smets evidence theory
is about uncertain testimonies, not about induction from data
tainted with variability.

In the following, we briefly review basic problems of
imprecise probability management:

• Learning imprecise models vs. eliciting degrees of belief
Since the assumption of a unique probability distribution
is often made in statistics, the basic learning problem is
how to is to extract a probability distribution from data.
When data is scarce, it would seem more natural to get
imprecise probabilities. For instance, confidence inter-
vals on distribution parameters naturally define proba-
bility families. Moreover the Imprecise Dirichlet model
[3] offers a tool to relate the number of observations
to the width of probability intervals without resorting
to so-called uninformative priors. Another important
problem is to adapt classical methods for inferential
statistics to the case of imprecise (interval or fuzzy)
data. In the case of subjective probabilities, elicitation
techniques are tailored to produce unique probability
functions. Yet expert knowledge is imprecise, and more
naturally comes under the form of nested intervals with
various confidence levels. Some effort is needed to
adapt existing elicitation techniques towards producing
possibility distributions and generalized p-boxes, that
naturally capture nested intervals.

• Uncertainty propagation Given several inputs, some
modeled by intervals, some modeled by probability
distributions, some by possibility distributions, how to
compute the output of a mathematical models? It is
possible to use Monte-Carlo methods conjoined with in-
terval analysis, when the imprecise probabilities derive
from random sets [20], [2]. However the important issue
of modeling independence and accounting for partial
knowledge about dependence in imprecise probability
theories remains an open topic to a large extent [4].

• Inference from contingent information A classical use
of probabilistic models is the following: given a prob-
abilistic model, representing generic knowledge, and
deterministic observations on a contingent situation,
predict whether some property is true in this situation
(diagnosing a fault, assigning a class to an instance,
etc...). This is done by Bayesian conditioning. In the
case of imprecise probability models, this is done by an
extension of Bayesian conditioning consisting in finding



upper and lower conditional probabilities P (A | B),
where B captures the contingent observations, and A is
the event of interest, when P varies in {P ∈ P, P (B) >
0} [24]. This is a matter of querying the knowledge P
by focusing it to the reference class B [15].

• Revision In the above problem, the set of probabilities
P does not evolve because it is not of the same nature
as the contingent information. In the case of revision. P
represents prior incomplete uncertain information about
a case, and B is of the same nature, yet certain. The
input information tells us that P (B) = 1, so that
some subjective probabilities in P can be ruled out. It
leads to changing P into {P ∈ P, P (B) = 1}, or,
if empty, {P ∈ P, P (B) maximal }. Then, in many
cases, P ∗(A | B) = P∗(A∩B)

P∗(A) [15]. In evidence theory,
this is Dempster rule of conditioning [22]. It revises P
and differs from the imprecise Bayesian conditioning
rule, even if both rules coincide if P contains a single
probability measure.

• Fusion The fusion problem consists in merging several
bodies of uncertain information of the same nature
issued from several sources. This is a problem that
was of interest at the origins of probability theory (the
merging of uncertain testimonies in legal procedures). It
was revived in the late XXth century with the emergence
of the computer, in robotics (merging sensor informa-
tion), in reliability (merging expert opinions), in signal
processing (merging digital images), etc. There are now
many fusion rules especially in possibility theory [14],
evidence theory [22], and in probability theory as well
[7]. Fusion can be viewed as a preliminary step before
inference (laying bare a ‘sure input” from contradictory
reports), and as a generalization of revision (Dempster
rule of combination [22] can be viewed as a generaliza-
tion of Dempster rule of conditioning).

• Statistics with imprecise data In the face of imprecise or
fuzzy data, or for the purpose of summarizing the output
of an uncertainty propagation or a fusion procedure in
the framework of imprecise probabilities, it is useful
to summarize information for the user. It is possible
to compute mean values and variances, empirical or
theoretical; however they will generally be imprecise,
and can be difficult to compute. P-boxes can also be
extracted [2]. But such p-boxes are generally not enough
to address questions such as the probability for an output
to lie between two bounds. A considerable effort is
required to make imprecise statistics palatable for users.

VII. CONCLUSION

Imprecise probabilities are a natural concept for conjointly
handling variability of phenomena and incomplete knowl-
edge about them. Imprecise modeling is unusual. In classical
approaches, a probabilistic model is an approximate but
precise representation of variability. It is assumed that the
precise results it produces are not too far from observations
of a random reality. In contrast, an imprecise model is of

higher order: it represents both knowledge about reality and
knowledge about knowledge. There is a need to reconsider
the foundations of statistics in this perspective. We reviewed
simplified representations of imprecise probabilities, that
should eventually help solving related computational prob-
lems at the practical level.
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