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Statistical Admission Control in Multi-Hop
Cognitive Radio Networks

Guillaume Artero Gallardo, Gentian Jakllari , Lucile Canourgues, and André-Luc Beylot

Abstract—We address the problem of online admission control
in multi-hop, multi-transceiver cognitive radio networks where
the channel access is regulated by a bare-bones time-division
multiple access protocol and the primary user activity is modeled
as an ON/OFF process. We show that the problem of computing
the available end-to-end bandwidth–necessary for admission
control–is NP-Complete. Rather than working on an approx-
imation algorithm and analyzing its worst-case performance,
we relax the problem of online admission control by using
a randomized scheduling algorithm and analyzing its average
performance. Randomized scheduling is widely used because of
its simplicity and efficiency. However, computing the resulting
average throughput is challenging and remains an open problem.
We solve this problem analytically and use the solution as vehicle
for BRAND–a centralized heuristic for computing the average
bandwidth available with randomized scheduling between a
source destination pair in cognitive radio networks. Driven
by practical considerations, we introduce a distributed version
of BRAND and prove its correctness. An extensive numerical
analysis demonstrates the accuracy of BRAND and its enabling
value in performing admission control.

Index Terms—Multi-hop cognitive radio networks, statistical
admission control, TDMA, randomized scheduling.

I. INTRODUCTION

DRIVEN by unprecedented demand for wireless capacity
and increasing evidence that a lot of the licensed spec-

trum is underutilized [2], policymakers and technologists have
joined voices in calling for a shift from an exclusive and
static mode of allocating wireless spectrum to one that is more
adaptive to user traffic [3], [4]. This shift from the regulating
authorities, coupled with the emergence of the cognitive radio
network concept [5] as the enabling technology, has ignited
tremendous interest in cognitive radio networks capable of
intelligently exploiting the wireless spectrum [2]. Neverthe-
less, considering the architectural changes required, many
technical and policy challenges need to be ironed out before
this vision can become reality [4]. Towards this, a lot of
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effort has been put in developing solutions for cognitive radio
networks at the physical, link and the routing layers [6]–[9].
However, we are far from having all the answers.

One question that has not been addressed is that of online
admission control in multi-hop, multi-transceiver cognitive
radio networks where channel access is regulated by a TDMA
MAC. Given a newly arrived traffic session, before admitting
it, we would like to know whether there is enough bandwidth
for servicing its traffic demand. The question can be answered
by first computing the bandwidth currently available on the
path from the source to the destination node. Computing
the end-to-end bandwidth in wireless networks is not a new
problem [10], [11]. However, there are two reasons for revis-
iting it. First, most literature on legacy1 TDMA wireless
networks is focused on establishing worst-case bounds at the
expense of practicality. For example, some of the classic works
on the subject [10], [11] cannot be deployed in practice.
Reference [10] assumes a wireless node is always capable
of receiving from a one-hop neighbor while a second one-
hop neighbor is transmitting to someone else. Reference [11]
proposes a centralized solution as benchmarking tool for
quantifying the performance of distributed solutions. Solutions
landing themselves to practical implementations are rare [12].
Second, the cognitive radio architecture makes the problem
non-trivially different. In its landmark ruling [3], permitting
the use of unlicensed devices in the UHF spectrum, FCC
required that unlicensed devices - the secondary users - do not
interfere with incumbents - the primary users. Thus, the end-
to-end bandwidth will depend not only on the interference
among peers, as it is the case in legacy wireless networks, but
also on a different kind of interference. Primary users, as their
prerogative, will access the channel without making any effort,
such as following an agreed upon protocol, to avoid interfering
with secondary users.

In this work, we carefully consider the different constraints
and tradeoffs and address the problem of online admission
control in multi-hop cognitive radio networks in four steps.
First, we construct the problem of computing the available
end-to-end bandwidth in multi-hop cognitive radio networks.
This is not straightforward as one has to account for the
primary user interference. It may be tempting to think of
primary user interference as no different than secondary
interference. However, note that secondary users are required
to implement mechanisms, such as sensing [4], to avoid
interfering with primary user traffic. These mechanisms are

1We refer to non-cognitive architectures as legacy.



inevitably imperfect, leading to false positives and negatives
whose impact on the bandwidth needs to be carefully modeled
and calculated. Second, we analyze the problem and show
that it is NP-Complete. In light of this result, the traditional
approach would be to design an approximation scheduling
algorithm with a bounded worst-case performance [10], [11].
Instead, we relax the problem of online admission control
by using a randomized scheduling algorithm and accepting
an average end-to-end bandwidth. This is motivated by the
observation that a distributed solution to the relaxed version
of the problem is more useful to admission control than a
centralized solution that in theory could calculate a better
and more accurate bandwidth but that cannot be imple-
mented. Third, we introduce the Clique Sliding approach and
use it to analytically solve the problem of computing the
end-to-end bandwidth with randomized scheduling. Random-
ized scheduling is widely used in practice because of its
simplicity and efficiency [13]. However, computing the end-
to-end throughput resulting from its application on a multi-
hop path is a challenging and, to the best of our knowledge,
open problem. We use this solution as vehicle for BRAND,
a centralized algorithm for estimating the available Band-
width with RANDomized scheduling. Finally, we introduce
a distributed implementation of BRAND and using the Clock
Condition [14] prove its correctness. Our contributions may
be summarized as follows:

• We analyze the sources of interference in cognitive radio
networks, including how primary users impact the band-
width (Section III).

• We formally define the problem of computing the avail-
able bandwidth between a source destination pair in a
TDMA based multi-hop cognitive radio network and
show that it is NP-Complete (Section IV-A).

• We introduce a linear time algorithm that can compute
the average end-to-end throughput resulting from using
randomized slot scheduling for satisfying a given traffic
demand on every link of the path connecting a given
source destination pair (Section IV-C).

• We introduce BRAND, a heuristic for estimating
the available end-to-end bandwidth. BRAND lever-
ages our new algorithm to compute the average end-
to-end throughput for all possible traffic demands.
The maximum over all the computed throughput values
is returned as the available end-to-end bandwidth
(Section IV-B).

• We introduce a distributed version of BRAND, prove its
correctness and show that it can be implemented by most
routing protocol approaches (Section V).

• We perform an extensive numerical analysis of BRAND
in general and the throughput computation algorithm
in particular. Our analysis demonstrates the accuracy of
our algorithm and BRAND’s capability to provide correct
information for performing online admission control
in cognitive radio networks (Section VII).

II. RELATED WORK

In the following we present related works focused on
cognitive radio networks as well as works in the area of

bandwidth estimation and/or allocation for traditional wireless
networks.

Cognitive Radio Networks

A main goal of any cognitive radio architecture is to protect
the primary users from interference [9]. At the routing layer,
a node is required to adapt its path computations according
to the primary user activity. To this end, it can either route
around the primary user, thus potentially increasing the path
length, or, switch its transmission channel on the affected
links [15]. Obviously, both strategies will increase the end-to-
end delay. An optimal routing metric for multi-hop cognitive
radio networks is proposed in [16]. The authors analytically
demonstrate its optimality and accuracy for the cases of
mobile and static networks. While the works presented so
far are shown to handle well the primary users, none of
them addresses the problem of admission control for quality
of service. Works closer to the problem considered in our
work can be found in [17] and [18] where algorithms for
joint routing, link scheduling and spectrum assignment have
been studied. Nevertheless, the problem of computing the
end-to-end bandwidth of a multih-hop path is not addressed
in any of these works.

Non-Cognitive (Legacy) Networks

The problem of QoS in non-cognitive wireless multi-hop
architectures, with a single or multiple radios, has been subject
to significant research efforts and an exhaustive survey is
beyond the scope of this paper. Here we simply summarize
a subset of the published results closest to the work presented
in this paper. The problem of admission control for QoS
routing in multi-hop networks is studied by numerous works,
including [19] and the references therein. In [19], it is shown
that for a TDMA architecture, the problem of computing
the residual end-to-end bandwidth for a multi-hop path is
NP-Complete. A greedy heuristic is proposed and incorporated
in the AODV routing protocol. However, this heuristic was
designed for a single radio, non-cognitive radio architecture
and, as we discuss in Section VII, cannot be readily applied
to a cognitive radio architecture. In [20], Alicherry et al. study
the joint routing and channel assignment problem for the case
of wireless mesh networks with multiple radios. They propose
a constant approximation algorithm to the NP-hard problem
of maximizing the overall network throughput subjected to
fairness constraints. Similarly, [21] introduces a distributed,
online and provably efficient algorithm for joint routing,
channel assignment and scheduling in multi-hop multi-radio
ad hoc networks. In [10] Kodialam and Nandagopal consider
the problem of joint routing and link scheduling and propose
a solution which consists of forming a set of constraints
and solving a linear programming problem. A set of neces-
sary conditions for a rate vector to be achieved is avail-
able in [11]. In [12] the capacity region of multi-radio
multi-channel wireless networks has been studied by intro-
ducing a multi-dimensional conflict graph characterizing the
interference between adjacent (radio, link, channel)-tuples.
An admission control scheme is introduced by deriving a



set of local sufficient conditions for flow feasibility in such
networks. The proposed solution can identify the feasible
flows. However, among the feasible flows it can only provide
a positive answer for admission for the ones that satisfy the
sufficient conditions; there is no answer for the feasible flows
that do not satisfy the sufficient conditions. What is more,
in this work as well as in [10] and [11], the focus has been
on the offline version of the admission control problem. That
is, given a network with no prior allocations, the problem
considered is that of computing the maximum rate that can
be admitted between a source and a destination. In our work,
we focus on the online version of the admission control
problem: Given a live network, where capacity is allocated
as traffic sessions arrive, the problem we tackle is that of
computing the bandwidth available between a source and a
destination at the time a new traffic session arrives.

III. MODELING INTERFERENCE IN COGNITIVE

RADIO NETWORKS

In the following, we describe in detail how we model a
multi-hop, multi-transceiver cognitive radio network.

A. Network Model

We model a multi-hop cognitive radio network as a graph
G = (V, E), where V is the set of nodes and E the
links. We assume that the network comprises only symmetric
links. Every cognitive radio node is equipped with a constant
number of half-duplex transceivers, each capable of sensing
and transmitting on B predefined orthogonal wireless chan-
nels. The transceivers can support several bit-rates on all the
channels. An additional transceiver could be used for control
signaling. We assume the channel assignment is performed by
a spectrum allocation protocol [22] and focus on estimating
the available end-to-end bandwidth once such assignment is
completed. The only assumption we make about the frequency
assignment algorithm is that only one frequency channel is
assigned between a particular pair of neighboring nodes.

B. Cognitive Channel Access

As a prerequisite for using licensed spectrum, cognitive
radios are not allowed to use the channel when it is in use
by the respective licensed user. In literature, this is referred
to as the secondary-primary2 hierarchy, with the primary
(licensed) user having strict priority over the secondary user
when accessing the channel. In this setting, the key novel
challenge when designing a channel access protocol is maxi-
mizing the realized capacity of the cognitive radio without
adversely affecting the Primary User, despite not knowing
the latter’s communication pattern [23], [24]. In response to
this challenge, several new MAC protocols for cognitive radio
networks have been proposed [6]. For all the diversity of
the proposed solutions, one thing underlying all the protocols
is the need for a sensing module for identifying when the
cognitive radio may be interfering with the primary user. In its

2We will use the terms primary user/secondary user, primary/secondary and
PU/SU interchangeably.

most basic form, this module relies on physically sensing
the channel [4] periodically to look for primary user activity.
When possible, the physical sensing can be complemented by
a database of well-known primary users [25].

Given the functionality of the sensing module, a MAC
protocol for cognitive radio networks needs to provide periods
of network silence dedicated to sensing for primary user
activity. What is more, since the activity of the primary
user may be completely unknown, the sensing periods need
to be periodic. This means that, at given time intervals,
all cognitive radios in the network will stop from gener-
ating any traffic, and instead, focus on sensing. This is a
requirement that can be easily accommodated by a TDMA
protocol. Indeed, most MAC protocols proposed for cognitive
radio networks [26], [27], including the IEEE 802.22 MAC,
are based on TDMA. Nevertheless, some solutions based on
random access have also been proposed [7], [8], [28], [29].

While there is no clear winner yet among the MAC proto-
cols proposed, we believe a deterministic medium access
protocol will better serve an architecture where multiple
technologies share the same spectrum and synchronization is
required for sensing. Therefore, we adopt a system in which
a TDMA MAC with frame size S is implemented on every
assigned channel. Every time-slot starts with a sensing period.
When a node needs to transmit data to a neighboring node,
it can get access to the medium by reserving time-slots on the
frequency channel assigned to this particular link. For ease of
presentation, we refer to the pair (channel, timeslot) simply
as, a slot.

C. Interference in Cognitive Radio Networks

There are two kinds of interference sources in a cognitive
radio network. One, the interference caused by other cognitive
radios in the same interference domain, usually referred to
as secondary-to-secondary interference. And two, the inter-
ference caused by the Primary User. The first is not unlike
the interference legacy wireless networks have to cope with:
Nodes running the same protocol contend for access to the
same channel. The primary user interference, however, is
different: As its prerogative, the primary user can choose to
access the channel at any given time with the expectation
of no interference from any potential secondary users. In the
following, we discuss how these two sources of interference
are modeled in this work.

1) Secondary-to-Secondary Interference: For the
secondary-to-secondary interference we use the model
usually employed in TDMA systems on half-duplex wireless
transceivers. Specifically, when a particular node needs to
transmit data it reserves a new time-slot on the channel it has
been assigned. For the time-slot to be reserved, it needs to
satisfy the following requirements:

1) It is not used on this channel by the node itself for
transmitting,

2) It is not used on this channel by a one-hop neighbor for
transmitting,

3) It is not used on this channel by a two-hop neighbor for
transmitting.



We assume every node knows the slot allocations in its
two-hop neighborhood and thus can check the satisfiability
of the above constraints.

2) Quantifying the Primary User Interference: Once the
sensing module identifies a primary user, the cognitive radios
should stop all communications. Therefore, it is required
that a cognitive radio spends part of the time sensing for
primary users and part of the time actually transmitting data.
To accommodate this requirement, in our model an amount
of time in every slot is dedicated to sensing. The optimal
ratio between sensing and channel access depends on several
factors, including the Primary User activity, the radio envi-
ronment, etc, and its computation is orthogonal to our work.
We refer the reader to [30] and references therein for an
authoritative treatment of the subject. Note that, the correctness
of our scheme does not depend on the exact values of sensing
and access time.

If during the sensing period a primary is identified,
no communication will take place in the access part of the slot.
Otherwise, the cognitive radio is free to access the channel.

Note, however, that sensing is not perfect. It can very well
happen that, while no primary user is identified during the
sensing period, a primary user does become active for the
whole or part of the access time. When this happens, the exact
consequences on whatever secondary user transmissions going
on will vary depending on the location and the power strength
of the primary user. We follow a somehow pessimistic assump-
tion: A primary, when active, will interfere destructively with
any secondary communication taking place in its range.3

If we denote with η the part of the slot access time that will
be available to the secondary user, based on the reasoning so
far, we have:

η = P[sensing the channel idle]

× (Fraction of Access Time Free of PU)

Denoting with ul the probability of a primary user becoming
active on link l during a particular slot, the fraction of the

slot access time available to the secondary on link l can be
computed as follows:

ηl = (1 − ul)
2 (1)

Proof: The PU’s channel state can be modeled by an
alternative ON/OFF process [23], [24], [31]. The lengths of the
ON and OFF states related to link l, respectively Ton and Toff

can be assumed to be exponentially distributed as follows:

fon(t) = λone−λont

foff (t) = λoffe−λoff t

with parameters λon and λoff estimated with maximum
likelihood methods. Jiang et al. [24], [31] have focused on
computing the quantity of PU-SU interference accumulated
during the access time for evaluating the impact of SU’s
communications on PU’s Quality of Service and appropriately
tuning the access time. Defining I0(Taccess) as the expected
length of all ON states within time Taccess given that Taccess

3We assume that if a secondary can sense a primary user then the particular
secondary is in the interference range of the primary user.

begins from the OFF state and I1(TA) the same given that
Taccess begins from the ON state, they demonstrated that
I0(Taccess) and I1(Taccess) satisfy two renewal equations and
derived their closed-form expressions. Regarding the commu-
nication link l, as P[occurence of the OFF state] = 1 − ul,
we get:

I l
0(Taccess) = ulTaccess − u2

l ×
1

λoff
×

[

1−e−Taccessλoff /ul

]

(2)

and

I l
1(Taccess) = ulTaccess + (1 − ul)

2

×
1

λon
×

[

1 − e−Taccessλoff /ul

]

(3)

Although the sensing may declare the primary channel idle,
it is still possible that PU’s communications begin just before
the sensing period ends. This situation can occur if the
computed energy does not exceed the selected threshold.
Therefore, we define the quantity of interference relative to
a slot access time as:

Ql =
(1 − ul) × I l

0(Taccess) + ul × I l
1(Taccess)

Taccess
(4)

where Taccess corresponds to the slot access time. Substituting
Equations 2 and 3 in Equation 4 leads to Ql = ul and ηl =
(1 − ul)

2.

Taking into account the sensing time, the fraction of slot

duration, fl, available for secondary-to-secondary communi-
cation is:

fl = ηl ×
Taccess

Tsensing + Taccess
(5)

Eq. (1) quantifies the effect of two things on the capacity for
the secondary. First, the interference from the primary, who as
the owner of the frequency is bounded by no protocol to try to
avoid interference with an ongoing secondary communication.
And second, the mechanism put in place, i.e. sensing, for
satisfying the requirement of doing no harm to the primary.

IV. COMPUTING THE AVAILABLE END-TO-END

BANDWIDTH FOR ADMISSION CONTROL

A. Problem Definition

Let d, expressed in bits per second, be the amount of
bandwidth demanded by an application. Before admitting to
route this demand, we would first like to know whether
this demand can be satisfied end-to-end. This question can
be answered by simply computing the currently available
end-to-end bandwidth of the path to the destination.

Definition 1: The available end-to-end bandwidth of a

path is the maximum amount of data, in bits per second, that

can be currently transported over the path.

Remark 1: Unlike the maximum end-to-end bandwidth,

the available bandwidth is time sensitive and depends on the

current conditions and allocations in the network. If there

is no other ongoing traffic in the network and there is no



TABLE I

THE MAIN NOTATIONS USED IN THE PAPER

primary user activity, the available bandwidth is equivalent to

the maximum path bandwidth.

Constructing the formal problem definition: A path
is modeled as a directed chain n1 → n2 · · · → nNH+1

comprising NH hops. For ease of presentation, we denote a
link ni → ni+1 as li. The bit-rate of every link is denoted
by φi and, for every link, the maximum TDMA frame size is
S slots. To take into account the effect of self-interference, that
is, links on the same path interfering with each other, we use
the exponential notation (j) to specify that the considered
quantity is evaluated just before node nj on the same path
does its allocations. Using this convention, we define A

(j)
i as

the number of slots available at node ni for communication
on the link li just before nj does its own allocations.

Let us analyze the network behavior when admitting a new
flow with demand d. The first node on the path, n1, converts
the flow demand, d, to the required number of slots, r1, to be
allocated on the first path link, l1. The number of required
slots will depend on the demand, the link bit-rate, φ1, the
TDMA frame size, S, as well as the primary user interference
(quantified in Section III-C.2, Eq. (5)):

r1 =

⌈
d

φ1 × f1
× S

⌉

Let ai denote the number of slots allocated on every hop i ∈
{1, .., NH} for serving this particular flow. For every hop this
number will depend on both the demand and how many slots
are actually available for new allocations. Thus, for the first
hop we have a1 = min(r1, A

(1)
1 ). If a1 < r1 the demand on

the second link will be lower than the original demand, d.
To distinguish the two, we denote the demand on the second
link, which depends on the allocation on the first link as, d1.
Table I lists the notations used in the paper.

Rigorously speaking, d1 = min
(

d, a1 × (φ1×f1

S )
)

, where
the quantity by which a1 is multiplied is the capacity of a
single slot on the first link. We can generalize these results
for any hop, i > 1, as follows:

ri =

⌈
di−1

φi × fi
× S

⌉

(6)

ai = min (ri, A
(i)
i ) (7)

di = min

(

di−1, ai ×

(
φi × fi

S

))

(8)

Thus, for a specific demand d, the realized end-to-end

throughput is min (d1, d2, . . . , dNH
) = dNH

, since di ≥
di+1. This analysis gives us a way for tackling the main
problem: computing the available end-to-end bandwidth.

Problem 1: Computing the available end-to-end bandwidth

of a path is equivalent to solving the following optimization

problem:

max
d∈Id

dNH
(d) (9)

where Id = [0, min(φ1, φ2, . . . , φNH
)].

The optimization problem thus defined leads to two obser-
vations:

1) The realized end-to-end throughput, dNH
(d), given a

demand, d, obviously depends on d.
2) dNH

(d) depends on how the slots are allocated on every
hop.

Theorem 1: Computing the available end-to-end bandwidth

of a path in a TDMA-based multi-hop cognitive radio networks

with multiple transceivers is NP-complete.

Proof: The proof is straightforward so we provide
a sketch. We show that our problem is NP-Complete by
reducing the problem of computing the maximum path band-
width in a single-channel TDMA-based multi-hop network,
therein referred to as P2, to our problem, therein referred to
as P1. To this end, we consider the instance of P1 where
a same channel with a constant data rate is assigned on
every link along the path and the probability of primary
activity on all links is zero. Solving P2 actually consists of
solving one instance of P1. Since P2 has been shown to be
NP-complete [19], that concludes the proof.

B. BRAND: An Approach for Estimating the Available

End-to-End Bandwidth of a Path

With the problem of computing the available end-to-end
bandwidth being NP-Complete, the overwhelming approach
in literature has been to design a scheduling heuristic.
We follow a different approach: We select a specific slot-
scheduling algorithm and focus on computing the available
end-to-end bandwidth resulting from applying this particular
algorithm. As scheduling algorithm we select the randomized
scheduling [13]: when a node needs to assign a certain
number of slots, it will select at random among those avail-
able. Randomized scheduling is widely used because of its
simplicity and efficiency even though the worst case perfor-
mance can be poor.

Algorithm 1 provides a high-level description of BRAND,
our solution for estimating the available end-to-end Band-
width with RANDom scheduling. It works as follows: For
every possible demand d, the necessary slots are allocated
at random among those available on every link and the
resulting end-to-end throughput is computed (Section IV-C).
By Eq. (9), the available end-to-end bandwidth is simply the
maximum end-to-end throughput realized over all possible
demands d.



Fig. 1. On a 3-hop path, a given slot can belong to one of the 8 possible slot sets: E1,2,3 (set of slots available for allocation on all 3 links), E1,2,3 (set
of slots available to none of the links), E1,2,3, E1,2,3, E1,2,3, E1,2,3, E1,2,3, E1,2,3. When an allocation takes place on l1, the proportion of the slots
allocated, p1, (area painted in gray) is transferred from the sets E1,2,3, E1,2,3, E1,2,3, E1,2,3 to E1,2,3 to account for the interference. The same is repeated
for the allocations on l2 and l3. The challenge is estimating the size of the “gray” (or, equivalently, “white”) areas in every set after each allocation. (a) Initial
state of the available slots partition. (b) After allocation on the first link. (c) After allocation on the second link. (d) After allocation on the third link.

Algorithm 1 BRAND (Available Bandwidth With
RANDom Scheduling)
Output : The available end-to-end bandwidth

1 : begin
2 : for every possible demand d do

//Use randomized scheduling.

3 : avThput← Compute-averageThput (d);
4 : if avThput > AvailBW then
5 : AvailBW ← avThput;

6 : Return AvailBW ;

The value of the demand, d, is upper-bounded by the
lowest radio bit-rate in the network and lower-bounded by 0.
Since this is a slotted system, the values of d have to be
multiples of the smallest slot capacity in the network. Thus,
the possible values of d that need to be considered are bounded
by a constant. The non-trivial step of BRAND, line 3 in
Algorithm 1, is computing the average end-to-end throughput
when the required slots for satisfying a particular demand, d,
are assigned at random. Note that, because the slots are
allocated at random, we can only compute the average and
not the exact value of the resulting end-to-end throughput.
In Section IV-C, we give a centralized approach that, given
a demand d, computes the average end-to-end throughput
realized. In Section V we propose a distributed approach.

C. Computing the Average End-to-End Throughput With

Random Scheduling

We propose an analytical framework for computing the
average end-to-end throughput that could be realized if a new
demand d is admitted and randomized scheduling is used on
every link. This calculation constitutes line 3 in Algorithm 1.

(1) The Case of a 3-hop Path

At first we solve the problem of computing the average
throughput on a 3-hop path. This helps introduce our approach
along with the notations we use (see Table I) before we show
how it is extended to the general case of a n-hop path.

Let PSAT (path’s slots availability table) be a 2-dimensional
array of B × S columns and NH lines showing the available
slots across the NH hops constituting the particular path and
the B available frequencies at any given time – the total path
capacity.

• 3-hop available slots partition – not all slots are

created equal: Let A1 be the set of slots (represented by their
respective indices {1, . . . , S.B} in the PSAT table) available
for reservation on link l1 at the beginning of the computation
process. These slots are not all equal – some are available
on l1, l2 and l3, some only on l1, some on l1 and l2 but
not l3, and some are available on l1 and l3 but not l2.
Allocating slots available on all three links will reduce the
slots available on l2 and l3 and by extension the end-to-end
throughput; allocating slots available only on l1 will have
no bearing on l2 and l3. Clearly, for the same number of
slots allocated on l1, depending on which specific slots are
actually allocated, the resulting end-to-end throughput can be
different. Therefore, to compute the end-to-end throughput, we
divide the available slots into sets of slots whose allocation
impacts the bandwidth the same way – the 3-hop available

slots partition. Fig. 1(a) illustrates the concept.

• Computing the average throughput of a 3-hop path

given a demand d: Fig. 1 gives a high level picture of how
the computation process works. Fig. 1(a) – we carry a 3-hop
available slots partition that produces 8 different sets: E

(1)
1,2,3

(set of slots available for allocation on all 3 links), E
(1)

1,2,3

(set of slots available to none of the links), E
(1)

1,2,3
, E

(1)

1,2,3
,

E
(1)

1,2,3
, E

(1)

1,2,3
, E

(1)

1,2,3
, E

(1)

1,2,3
. The exponent, 1, indicates that

the particular membership of each set is valid until node n1

performs its allocations. Fig. 1(b) – node n1 tries to allocate
enough slots to satisfy the demand d. As the slots are allocated
uniformly at random, it is possible that a portion of slots is
allocated (“painted gray”) from each of the 4 possible sets:
E

(1)
1,2,3, E

(1)

1,2,3
, E

(1)

1,2,3
, E

(1)

1,2,3
. Fig. 1(c) – node n2 tries to

allocate enough slots to satisfy the demand generated by n1.
It is conditioned by the initial state of the system as well as
the allocations of n1. Its own allocations can affect each of
the sets E

(2)
1,2,3, E

(2)

1,2,3
, E

(2)

1,2,3
, E

(2)

1,2,3
.

Fig. 1(d) – finally, node n3 tries to allocate enough slots to
satisfy the demand generated by n2. It is conditioned by the
initial state, the slots allocated by n1 and those allocate by n2.
The slots that n3 is able to allocate define the end-to-end
throughput given the demand d at n1. Computing it requires
calculating the impact of each allocation on the 8 available
slot sets – or, using the illustration, computing the size of the
“gray” areas.



Algorithm 2 shows the solution. To make the problem
tractable, we relax it by recasting Equations 6-8 (Section IV-A)
to use average values while maintaining the same nota-
tions. In addition, although mathematically speaking E[a3] 6=

min
(

E[r3], E[A
(3)
3 ]

)

, we do such an approximation to reduce
the calculation complexity. As shown in Section VII, this
approximation does not degrade the performance of the overall
estimation process.

Algorithm 2 Computing the Average End-to-End
Throughput on a 3-Hop Path Using the Available Slots
Partition

input : d, S, φ1, φ2, φ3, f1, f2, f3, A
(1)
1 , A

(1)
2 , A

(1)
3

output : a1, a2, a3, d1, d2, d3

1 : begin
//The cardinalities of the 8 sets

resulting from the available slots

partition.

2 : C
(1)

1,2,3
, C

(1)

1,2,3
, C

(1)

1,2,3
, C

(1)

1,2,3
, C

(1)

1,2,3
, C

(1)

1,2,3
, C

(1)

1,2,3
, C

(1)
1,2,3;

//Allocation on l1
3 : r1 ← ⌈

d
φ1×f1

× S⌉;

4 : a1 ← min (r1, A
(1)
1 );

5 : d1 ← min
 
d, a1 ×

φ1×f1

S

!
;

6 : p1 ← a1/A
(1)
1 ;

7 : A
(2)
2 ← A

(1)
2 − p1.(C

(1)

1,2,3
+ C

(1)
1,2,3);

8 : A
(2)
3 ← A

(1)
3 − p1.(C

(1)

1,2,3
+ C

(1)
1,2,3);

//Allocation on l2
9 : r2 ← ⌈

d1

φ2×f2

× S⌉;

10 : a2 ← min (r2, A
(2)
2 );

11 : d2 ← min
 
d1, a2 ×

φ2×f2

S

!
;

12 : p2 ← a2/A
(2)
2 ;

13 : A
(3)
3 ← A

(2)
3 − p2.[C

(1)

1,2,3
+ (1− p1).C

(1)
1,2,3];

//Allocation on l3
14 : r3 ← ⌈

d2

φ3×f3
× S⌉;

15 : a3 ← min (r3, A
(3)
3 );

16 : d3 ← min
 
d2, a3 ×

φ3×f3

S

!
;

17 : return d3;

• Domino Effect: Algorithm 2 leverages the random nature
of the scheduling algorithm to compute the average number
of slots impacted in every available slots partition set. For
example, a proportion a1/A

(1)
1 , line 7 in Algorithm 2, of the

available slots on l1 is likely to be reserved by n1. Therefore,
in lines 8 and 9, we can calculate the impact of this allocation
on the available slots partition sets and, by extension, the slots
left available for allocation on links l2 and l3. This reveals
why this problem is fundamentally hard: an allocation on l1
can impact the allocations on all the following links, creating
what we refer to as a domino effect.

While quantifying the domino effect on all allocations is
manageable for 3 hops, it becomes intractable for the general
case of a n-hop path. For k ∈ {0, 1, . . . , n}, the number of
sets containing the slots available to k hops but not the other
n − k equals

(
n
k

)
. Thus, the number of sets resulting from

the n-hop available slots partition would be:
∑n

k=0

(
n
k

)
= 2n.

In the following, we present the Interference-Clique sliding
approach, capable of breaking the domino effect, thus, making

the problem of computing the average end-to-end throughput
tractable.

(2) The General Case of a n-Hop Path

The interference-clique sliding approach breaks the domino
effect by processing the end-to-end bandwidth estimation
clique by clique while using only a constant number of
variables. We define an interference-clique, or simply clique,4

as any set of three consecutive links on the path. For instance,
a 4-hop path comprises two cliques: c1 = {l1, l2, l3} and c2 =
{l2, l3, l4}.

When processing a clique i, the goal is to calculate ai,
the number of slots that will be allocated on link li given a
demand d at the source. As shown by Eq.(7) in Section IV-A,
ai depends on the demand arriving from link l1 and the slots
available when the allocation takes place, A

(i)
i . Given the

3-hop available slots partition of clique i, we have:

A
(i)
i = C

(i)

i,i+1,i+2
+ C

(i)

i,i+1,i+2
+ C

(i)

i,i+1,i+2
+ C

(i)
i,i+1,i+2

(10)

The challenge in solving Eq.(10) is computing the cardi-
nalities of the available slots set based on the initial state of
the system, i.e. before any allocations for serving the demand
d taking place. Generally speaking, when processing the ith

clique, the impact of the allocations on the two previous links
can be correctly estimated by updating the cardinalities of the
sets resulting from its 3-hop available slots partition as follows:

C
(i)
i = C

(1)
i − pi × Ii + ui + vi (11)

where

C
(j)
i =

(
C

(j)

i,i+1,i+2
C

(j)

i,i+1,i+2
· · · C

(j)
i,i+1,i+2

)

pi =
(
pi−2 pi−1 [pi−2 + pi−1.(1 − pi−2)]

)

and

Ii =







C
(i−2)

i−2,i−1,i,i+1,i+2
· · · C

(i−2)

i−2,i−1,i,i+1,i+2

C
(i−2)

i−2,i−1,i,i+1,i+2
· · · C

(i−2)

i−2,i−1,i,i+1,i+2

C
(i−2)

i−2,i−1,i,i+1,i+2
· · · C

(i−2)
i−2,i−1,i,i+1,i+2







The vector ui serves to compensate a set that is not affected
by allocations on all the links. The vector vi is then used
to update the sets receiving slots that, due to the allocation
process, become unavailable on other links. The values of
vectors ui and vi depend on some variables used in pi and Ii
and are given in the Appendix of the companion technical
report [32].

In the following we solve Eq.(11) for all the possible cases.
• Interference-Clique 1: Clique 1 is the easiest to process

as it does not depend on any previous allocations. Exactly
a1 = min(r1, A

(1)
1 ) slots are reserved for communication on

link l1. The remaining available slots on l1 are not considered
anymore and the calculation is passed on to clique 2.
• Interference-Clique 2: To measure correctly the impact

on clique 2 by the reservations on l1, the 3-hop available slots

4We use the terms clique and interference-clique interchangeably.



partition related to clique 2 is extended to the 4-hop available
slots partition so as to include l1. Thus, we have:

C
(1)

2,3,4
= C

(1)

1,2,3,4
︸ ︷︷ ︸

impacted by
allocations on l1

+ C
(1)

1,2,3,4
︸ ︷︷ ︸

not impacted

(12)

Therefore, an average proportion p1 = a1/A
(1)
1 of slots

in E
(1)

1,2,3,4
is likely to become unavailable for reservation on

link l2 after node n1 performs its allocations.
Assuming there is no interference between l1 and l4,

the clique 2 sets can be updated as follows:

C
(2)

2,3,4
= C

(1)

2,3,4
− p1.C

(1)

1,2,3,4

C
(2)

2,3,4
= C

(1)

2,3,4
− p1.C

(1)

1,2,3,4

C
(2)

2,3,4
= C

(1)

2,3,4
− p1.C

(1)

1,2,3,4

C
(2)

2,3,4
= C

(1)

2,3,4
− p1.C

(1)

1,2,3,4

C
(2)

2,3,4
= C

(1)

2,3,4
− p1.C

(1)

1,2,3,4

C
(2)
2,3,4 = C

(1)
2,3,4 − p1.C

(1)
1,2,3,4

C
(2)

2,3,4
= C

(1)

2,3,4
+ p1.

(

C
(1)

1,2,3,4
+ C

(1)

1,2,3,4
+ C

(1)
1,2,3,4

)

C
(2)

2,3,4
= C

(1)

2,3,4
+ p1.

(

C
(1)

1,2,3,4
+ C

(1)

1,2,3,4
+ C

(1)

1,2,3,4

)

(13)

• Interference-Clique 3: This clique is impacted by the
allocations on the two previous links, l1 and l2. Furthermore,
we need to keep in mind that l3 is impacted by the allocation
on l1 and l2 while l4 only by the allocation on l2. Therefore,
we have:

C
(1)
3,4,5 = C

(1)
1,2,3,4,5

︸ ︷︷ ︸

impacted by allocations
on l1 and then l2

+ C
(1)

1,2,3,4,5
︸ ︷︷ ︸

impacted by allocations
on l1 but not l2

+ C
(1)

1,2,3,4,5
︸ ︷︷ ︸

impacted by allocations
on l2 but not l1

+ C
(1)

1,2,3,4,5
︸ ︷︷ ︸

not impacted

(14)

which leads to:

C
(3)
3,4,5 = C

(1)
3,4,5 − [p1 + p2(1 − p1)].C

(1)
1,2,3,4,5

−p1.C
(1)

1,2,3,4,5
− p2.C

(1)

1,2,3,4,5
(15)

Measuring the impact of allocations on l1 and l2 is equivalent
to transferring slots from one set to another. Indeed, from
the previous equations, we can conclude that, on average,
p1.

[

C
(1)
1,2,3,4,5 + C

(1)

1,2,3,4,5

]

slots and
[

p2(1 − p1).C
(1)
1,2,3,4,5+

p2.C
(1)

1,2,3,4,5

]

slots in the set E
(1)
3,4,5 are allocated by links

l1 and l2, respectively. Due to the nature of the interference,
when updating the sets resulting from the 3-hop available
slots partition related to clique 3, on average p1.

[

C
(1)
1,2,3,4,5+

C
(1)

1,2,3,4,5

]

slots from the set E
(1)
3,4,5 are transferred to E

(1)

3,4,5

and
[

p2(1 − p1).C
(1)
1,2,3,4,5 + p2.C

(1)

1,2,3,4,5

]

to the set E
(1)

3,4,5
.

• Interference-Clique 4 and beyond: When processing the
third clique, the entries of matrix Ii referred strictly to sets
that had not changed from the beginning of the estimation

process. However, that is not the case when processing the
fourth clique. The corresponding sets are likely to have been
impacted by allocations on the previous links. For example,
E

(2)

2,3,4,5,6
is probably impacted by the allocations on l1 and

thus needs to be updated. A straightforward solution would
identify the sets resulting from the 6-hop available slots
partition and estimate how each set is impacted. This method
is correct but the number of resulting sets grows exponentially
with the number of links and thus is intractable.

Fortunately, the random nature of the scheduling algorithm
can simplify the analysis and bound by a constant the number
of variables to deal with at every clique. Say we want to
characterize a set used in the clique i, e.g. E

(i−2)

i−2,i−1,i,i+1,i+2
,

as a function of its initial state. We start by doing the 2-hop
available slots partition related to li−2 and li−1. This parti-
tion leads to four disjoint sets: E

(j)

i−2,i−1
,E(j)

i−2,i−1
,E(j)

i−2,i−1

and E
(j)
i−2,i−1. Let us first work on E

(j)

i−2,i−1
. This set can

also be partitioned into eight subsets resulting from the 3-hop
available sets partition of clique i. In this partition the slot
space equals E

(j)

i−2,i−1
rather than {1, 2, . . . , S.B}, leading to

subsets of the following form E
(j)

i−2,i−1,i,i+1,i+2
. A property

of the set E
(j)

i−2,i−1
is that along the estimation process, it can

only transfer slots to the set E
(j)

i−2,i−1
and cannot receive slots

from another. Therefore, the number of slots that initially
belonged to the set E

(j)

i−2,i−1
but became unavailable just

before the allocation on link li−2 equals C
(1)

i−2,i−1
−C

(i−2)

i−2,i−1
.

These slots became unavailable due to allocations on li−4

and li−3. Because of the random nature of the slot reservation
process, these slots were taken uniformly at random among
the subsets partitioning E

(j)

i−2,i−1
. We can thus represent the

number of slots that became unavailable in E
(j)

i−2,i−1,i,i+1,i+2
with the discrete random variable Xi−2,i−1,i,i+1,i+2 taking

its values in the set {0, . . . , C
(1)

i−2,i−1
− C

(i−2)

i−2,i−1
} and

following a hypergeometric distribution with parameters
(C

(1)

i−2,i−1
, C

(1)

i−2,i−1,i,i+1,i+2
, C

(1)

i−2,i−1
−C

(i−2)

i−2,i−1
). From this

identification we can deduce that, for C
(1)

i−2,i−1
strictly

positive, the average value of this random variable equals
[(C

(1)

i−2,i−1
− C

(i−2)

i−2,i−1
)/C

(1)

i−2,i−1
] × C

(1)

i−2,i−1,i,i+1,i+2
.

More generally, just before node ni−2 does its alloca-
tions, C(i−2)

i−2,i−1
/C

(1)

i−2,i−1
of the initially available slots remain

available in every subset partitioning E
(j)

i−2,i−1
. The quantity

C
(i−2)

i−2,i−1,i,i+1,i+2
can be computed as follows:

C
(i−2)

i−2,i−1,i,i+1,i+2
= C

(1)

i−2,i−1,i,i+1,i+2
× αi−2,i−1 (16)

where the reduction factor of the set E
(j)

i−2,i−1
equals

αi−2,i−1 =







0, if C
(1)

i−2,i−1
= 0

C
(i−2)

i−2,i−1

C
(1)

i−2,i−1

=
C

(i−2)

i−2,i−1,i
+ C

(i−2)

i−2,i−1,i

C
(1)

i−2,i−1,i
+ C

(1)

i−2,i−1,i

,

otherwise

(17)



and is related to clique (i − 2) as it can be computed at the
beginning of the process of this clique. The same analysis
can be applied to the other two sets of interest, E

(j)

i−2,i−1

and E
(j)
i−2,i−1. However, it needs modification for the case

of E
(j)

i−2,i−1
when C

(1)

i−2,i−1
= 0 as this set can receive slots

from E
(j)
i−2,i−1 due to the allocations on the previous links.

To correctly update the resulting subsets, we compute the
proportion of slots transferred from E

(j)
i−2,i−1 to E

(j)

i−2,i−1
.

The quantity C
(i−2)

i−2,i−1,i,i+1,i+2
can be computed as follows:

C
(i−2)

i−2,i−1,i,i+1,i+2
= C

(1)
i−2,i−1,i,i+1,i+2 × τi−2 (18)

with

τi−2 =
C

(i−2)

i−2,i−1

C
(1)
i−2,i−1

=
C

(i−2)

i−2,i−1,i
+ C

(i−2)

i−2,i−1,i

C
(1)

i−2,i−1,i
+ C

(1)
i−2,i−1,i

(19)

if C
(1)
i−2,i−1 is strictly positive, and zero otherwise.

Note that for all the apparent complexity, the clique-
sliding approach does a single pass on the path, with a
constant number of computations on every clique. Therefore,
the running time is linear on the length of the path.

V. DISTRIBUTED IMPLEMENTATION OF BRAND

The centralized version of BRAND can be easily used
with source routing protocols, like DSR [33], where the path
computation is centralized at the source. However, this is not
the case for non-source routing protocols, like the popular
OLSR [34], where the route computation is performed at
every node in distributed fashion. To address this limitation
we present a simple mechanism that enables the distributed
execution of BRAND.

Algorithm 3 Distributed BRAND
Input : Bandwidth Request Packet BP

1 : begin
2 : if (I’m the source node) then
3 : Initialize (BP);
4 : Transmit (BP, next_hop);
5 : Return;

//Look up the routing table.

6 : next_hop← get_next_hop(BP.destID);

7 : if (get_hopCount (BP) == 1) then
8 : Transmit (BP, next_hop);
9 : else

10 : Compute_Bandwidth_Clique(BP, avail_BW );
11 : if (next_hop == BP.destID) then
12 : Transmit (avail_BW, BP.sourceID);
13 : else
14 : Update (BP);
15 : Transmit (BP, next_hop);

BRAND’s interference-clique sliding approach (Section IV-
C) is what makes it amenable to a distributed computation,
for two reasons. The computation at every step requires only
knowledge of the interference clique at hand and the three
reduction factors, α, resulting from the computation on the

Fig. 2. The BRAND computation is executed clique by clique – first clique
being l1, l2, l3, second l2, l3, l4, and so forth. Node n3 knows the source, n1,
the previous hop, n2, and next hop, n4, allowing it to bootstrap the BRAND
computation.

previous clique. Second, the sliding is strictly linear, needing
a single pass from the source to the destination.

A straightforward solution would work as follows. The first
node on the path would execute the computation for the first
clique, comprising links l1, l2, l3. Once the computation was
done, the node would insert the results of the computation as
well as the reduction factors in a control packet, call it the
bandwidth packet (BP) and would transmit it to the next hop
on the path asking it to perform the same for the second clique,
comprising links l2, l3, l4. The process would be repeated till
the destination, which would complete the sliding and send
the results back to the source node. Assuming the BP packet
is received by the destination, the result would be identical to
centralized BRAND.

The problem with this solution is that, with non-source
routing, a particular node does not know which direction a
given packet is going beyond the next hop. That means the
source node only knows the next hop for a given path, when
doing the computation for the first clique of that path requires
knowledge of the next three hops. To overcome this challenge,
we propose a simple trick: Simply shift the interference-
clique calculation by two hops down the path. As illustrated
in Figure 2, the BRAND computation is bootstrapped by
node n3, which regardless of the routing protocol will know
n1, the source, n2, the previous hop and n4, the next hop.
Equipped with the information necessary,5 n3, performs the
BRAND computation for the first clique. Once the computa-
tion is done, it sends the BP control packet to n4 and the rest
proceeds as in the straightforward solution. Algorithm 3 gives
the specification of the distributed algorithm in pseudo-code
for the case of non-trivial (longer than two hops) paths.

Finally, in the following we show the correctness of distrib-
uted BRAND.

Theorem 2: Assuming the bandwidth packet (BP) is even-

tually received by all nodes along the path and the commu-

nications follow the protocol model [35], distributed BRAND

results in the same computation as centralized BRAND.

Proof: For distributed BRAND to give the same result as
centralized BRAND it suffices to show that clique computa-
tions take place in order. That is, computation in clique i − 1
always happens-before computation in clique i. That is equiva-

5A simple heart-beat protocol can give every node the quantities φ, f, p, A
for all links in the two-hop neighborhood.



Fig. 3. The model for estimating the end-to-end delay.

lent to showing that if C(Ek) is the time at which Algorithm 3
is executed at node nk along the path, C(Ek−1) < C(Ek)
∀k [14]. This is straightforward given that Algorithm 3 is
executed only upon reception of a BP packet, and based on the
protocol model assumption a BP packet for a given flow on a
given path can be received by node k only once transmitted
by node k − 1.

VI. R-BRAND: ADMISSION CONTROL FOR

TIME-SENSITIVE APPLICATIONS

In this section, we show how to modify BRAND so as
to provide admission control to time-sensitive traffic flows.
At the high level, R-BRAND, the real-time tailored version
of BRAND, works by repeating the following fours steps as
long as there are flows waiting admission:

1) Compute the available end-to-end bandwidth with
BRAND,

2) Determine the amount of RTP flows that can be admitted
end-to-end, given the bandwidth required by every single
flow,

3) Compute the average6 end-to-end delay for that set of
newly admitted flows,

4) Decide whether admission can be granted given the end-
to-end QoS constraints.

To estimate7 the average end-to-end delay, we adopt a
queuing system approach and model a path as a set of Nh

queues with finite buffer sizes disposed in tandem, as illus-
trated in Fig. 3. A service corresponds to a transmission
occurring over a link i at rate µi packets per second. Given
that ai slots would be allocated on the i-th link (this quantity
is evaluated during the execution of step 1), the probability of
server i being active at an arbitrary time is fi = ri/S. The i-th
queue blocking probability, Bi, depends on the values of µi

as well the traffic intensity entering the queue, λi. Given its
value, the traffic intensity entering the following queue equals
λi+1 = (1 − Bi)λi. Denoting with Qi and Ri the average
number of packets stored in queue i and the average delay
of packets traversing that queue, respectively, the Little’s law
gives: Ri = Qi/((1 − Bi)λi),

We compute R, the average end-to-end delay, as the sum
of the values Ri for all the queues composing the path.
Due to space constraints, however, the rest of the analysis
can be found in the Appendix C of the companion technical
report [32].

6Tail delay would be a better metric for admission control of real-time traffic.
However, considering the difficulty of computing it, we relax the problem and
work with average delay.

7We use the notations from Table I.

VII. PERFORMANCE EVALUATION OF BRAND

In this section, we evaluate BRAND numerically using
MATLAB and compare it with the work of Zhu and
Corson [19] and Kodialam and Nandagopal [11].

A. Simulation Parameters

Nodes implement a TDMA MAC with a 50 ms frame
comprising 40 time slots. The frame is divided into a control
part, for slot scheduling, and data transmission part. During
the control period, a node broadcasts beacons containing
information regarding its own allocations and that of its
one-hop neighbors, allowing all nodes to eventually acquire
two-hop information. 20% of every data transmission slot is
dedicated to sensing and the rest to data transmissions. As the
specific spectrum assignment process is beyond the scope of
this paper, we simply use the following probabilistic model
to select the assigned channel for each communication link:
P[channel1] = 0.80, P[channel2] = 0.10, P[channel3] =
0.05 and P[channel4] = 0.05.

In practice, link rates depend on the local environment
and may fluctuate with time. To approximate this behavior,
we sample every link rate φi according to a normal distribution
with mean µφ and standard deviation σφ where µφ is the mean
link transmission rate on the corresponding assigned channel
and σφ is taken proportional to µφ. In all the simulation results
presented here σφ = µφ × 0.10. For the channels consid-
ered, we choose: µφ(channel1) = 2Mbps, µφ(channel2) =
1.5Mbps, µφ(channel3) = 800kbps and µφ(channel4) =
250kbps. According to the corresponding cumulative distri-
bution function, the generated transmission rates for µφ =
2000kbps and σφ = 400kbps oscillate between 1000kbps and
3000kbps.

BRAND Parameters: BRAND calculates the available end-
to-end bandwidth by computing the average end-to-end
throughput realized over all possible demands and returning
the highest value. In this evaluation, the demand values are
taken in the range Id = [0, min (φ1, φ2, . . . , φNH

)] (kbps) with
step ∆φ = 10kbps.

Basis for Comparison: To the best of our knowledge, there
is no other work that tackles the problem of computing the
available end-to-end bandwidth for a cognitive radio network.
The closest to our work is that by Zhu and Corson [19], which
computes the available bandwidth for legacy TDMA multi-
hop network. Furthermore, we use the algorithm proposed
by Kodialam and Nandagopal [11] and the optimal solu-
tion obtained by solving the integer linear program with
lpsolve [36] as benchmarking tools.

B. End-to-End Bandwidth With BRAND

We perform the following experiment for comparing
BRAND to KODIALAM and the optimal. We choose the
values of no secondary interference, pa, for every link
uniformly at random in (0, 1) and generate PSAT tables
for various path sizes. We run BRAND and KODIALAM
in MATLAB using these PSAT tables and compute the avail-
able end-to-end bandwidth for different values of primary



Fig. 4. Available end-to-end bandwidth values computed by BRAND and
KODIALAM as function of the optimal values, obtained by using lpsolve to
solve the integer linear program.

user interference. As computing the optimal slot scheduling
is NP-Complete, we formulate the problem as an integer
linear program, see the Appendix of the companion tech-
nical report [32], and use lpsolve [36] to generate optimal
scheduling assignments for a given PSAT table of a given
path. Figure 4 shows that BRAND is very competitive
when compared to KODIALAM, an algorithm proposed as
benchmarking tool by its inventors mainly because it cannot
be computed in distributed fashion, as well as the optimal
scheduler.

C. End-to-End Throughput With Randomized Scheduling

The most novel and challenging part of BRAND is its
algorithm for computing the average throughput of randomized
scheduling, introduced in Section IV-C. Given the involved
analysis of the algorithm, here we perform a simple experiment
for verifying its correctness. For a specific value of hop-count
and probability of no secondary interference, pa, we generate
a PSAT table using MATLAB. The algorithm is applied using
the PSAT table and the average end-to-end throughput is
computed for all demands described in Section VII-A. With
the same PSAT and traffic demands, we run simulations
in MATLAB in which the slots are selected at random on every
hop. The simulation is run multiple times and the seed for
the random generator is changed every time. The throughput
values measured at the end of each simulation are averaged
over all runs. In Figure 5, for every demand, the computed and
the measured throughput values for pa = 33% and pa = 50%
are plotted on the x and y-axis, respectively. The probability of
PU interference is set to 10%. The data shown are for a 10-hop
path, a very large value. Even for this challenging scenario,
after 5 runs the measurements are already converging to the
computed values.

D. Admission Control Performance

BRAND is designed for enabling admission control.
As such, we expect any flow with demand less than or equal to
the available bandwidth computed by BRAND to be admitted
end-to-end. To verify that this is the case, we perform the
following two-step experiment. In the first step, we apply
BRAND on a 4-hop path and compute the available end-to-end

Fig. 5. Numerical verification of the correctness of the algorithm for
computing the average throughput introduced in Section IV-C. The y−axis
represents the values obtained numerically, and for these graphs are averages
over 5 runs. The probability of PU interference, u, is set to 10%.

Fig. 6. The x-axis represents the available end-to-end bandwidth computed
by BRAND for various probabilities of no secondary interference. The y-axis
represents the end-to-end throughput measured in simulations – utilizing the
same PSAT as the computation – when the traffic demand is equal to the
respective end-to-end bandwidth computed by BRAND. The data shown here
is for paths of four (NH = 4) and ten hops (NH = 10). Nearly 100%

admission is achieved.

bandwidth for various values of pa. Specifically, we perform
the computation on PSAT tables generated by taking the
probabilities of no secondary interference, pa, in (0, 1) while
the primary user interference is set to 10%. One PSAT table is
generated per value of pa and one bandwidth value per PSAT
is computed by BRAND.

The available bandwidth values computed by BRAND in the
first step are used as input in the second step of the experiment.
Specifically, for every value of pa and respective PSAT used
in the first step, we run a simulation during which a single
session with traffic demand equal to the available bandwidth
computed by BRAND for this value of pa is initiated end-
to-end. We measure the end-to-end throughput realized during
the simulation and plot it as function of the computed demand.
To provide more data about the behavior of BRAND we
repeat the same experiment for a 10-hop path, as long a
path as one can expect to encounter in deployed multi-hop
cognitive radio networks. As shown in Figure 6, the measured
throughput is practically identical to the computed values
of the available bandwidth. This demonstrates that BRAND
delivers the bandwidth it promises and provides nearly 100%
admission.



Fig. 7. The presence of multi-rate links and primary users does not affect BRAND’s accuracy. Ignoring them, however, leads to significant errors, as high
as 900%, when calculating the available end-to-end bandwidth. (a) Multiple-Transceivers, Multiple-Rates, u=10%. (b) Multiple-Transceivers, Multiple-Rates,
u=20%. (c) Multiple-Transceivers, Multiple-Rates, u=50%.

E. Cognitive Effect: Primary Users and Multi-Rate Links

We now evaluate the performance of BRAND for a cogni-
tive network architecture in which nodes access the spectrum
as secondary users. In addition to BRAND, we also use the
Zhu heuristic in this part of the evaluation. The latter was
designed for a single-rate, single-transceiver legacy architec-
ture so clearly it would be unfair to expect it to perform as
well as BRAND. Instead, the reason for which we include
it in this evaluation is for quantifying the consequences of
ignoring the primary user and multi-rate links when computing
the available bandwidth.

To evaluate the “cognitive” effect, we repeat the experiment
of the previous section using multi-transceivers, multiple-rates
and varying probabilities of the Primary User occurrence.
As shown in Figure 7 BRAND almost always estimates the
correct value for the available capacity. On the other hand,
ignoring the operating specifics of the cognitive radio networks
leads to significant errors, as high as 900%, when calculating
the available end-to-end bandwidth. A careful analysis of the
data, especially that of Figure 7(c), does show that, at times,
Zhu realizes a higher available bandwidth in simulations.
As predicted by Equation 1 in Section III-C.2, protecting
the Primary User comes at a cost in terms of bandwidth,
explaining the smaller bandwidth values computed by BRAND
at times.

F. Distributed BRAND: Mobility, Channel Fading, Sensing

Errors and Multiple Flows

In this experiment, we consider a more realistic scenario
that includes mobility, channel fading and PU sensing errors
for evaluating the performance of distributed BRAND. We set
up a multi-hop cognitive radio network of 30 nodes placed at
random on a 1000mx1000m area. We select at random four
source-destination pairs and start generating unicast sessions.
Whenever a new traffic session arrives we use the distributed
implementation of BRAND for performing admission control.
We carry out two sets of experiments, one with no mobility
for isolating the effect of sensing errors and a second where
we evaluate the effect of fading and node mobility.

Figure 8 shows the performance of distributed BRAND for
various PU sensing error levels. As the data shows, BRAND is

Fig. 8. Sensing error of x% means the sensing module underestimates the PU
activity by x%. Every point is an average across all sessions in the network.
For the most part, distributed BRAND deals well with sensing errors, even
when those errors reach 30%.

resilient to sensing errors and that, even when the PU activity
is underestimating by 30%, the estimation errors are modest
in most cases.

Finally, we evaluate the effect of fading and mobility on
distributed BRAND. For this set of experiments we use the
random waypoint mobility model and consider two levels of
maximum speed: 5m/s and 15 m/s, corresponding to pedestrian
and vehicle movement, respectively. The routing tables are
updated once a minute, as is the case for popular routing
protocols like OLSR. In addition we add Rayleigh fading. As
the data in Figure 9 shows, for static topologies, where the only
source of error is channel fading, BRAND is accurate. When
the mobility is introduced the accuracy starts to drop although
the drop is limited at pedestrian speeds. As is to be expected,
at vehicular speed the errors start becoming significant and we
do not recommend using BRAND in this context.

G. R-BRAND: Admission Control for

Time-Sensitive Applications

Finally, in the following experiment we evaluate the perfor-
mance of R-BRAND.

Method: The analysis is performed on 64kbps voice call
flows with RTP packets sent once every 20ms. We carried



Fig. 9. Performance of distributed BRAND with mobility, channel fading
and multiple concurrent flows.

Fig. 10. End-to-end delay as a function of the number of admitted flows.
A larger number of admitted flows means there was more available capacity
initially, resulting in smaller end-to-end delays.

out the experiments on 4-hop paths with TDMA frame size
S=32 slots and buffers of size K=16. The duration of every
time-slot was set to 0,625ms. All the links operated on data
rates almost equaling 2Mbps. We compare the estimation for
the the end-to-end delay given by R-BRAND with the average
of what is observed over 5 simulation runs of 20-second
duration.

Results: Figure 10 depicts the average end-to-end delay
achieved by the RTP packets as a function of the number
of flows admitted end-to-end by R-BRAND (packet delivery
ratio > 95%). The data shows that R-BRAND is capable of
performing delay-based admission control – its computation of
end-to-end delay closely resembles what was observed during
the simulations.

VIII. CONCLUSION

In this paper, we revisited the problem of admission
control for the cognitive radio context. With the problem NP-
Complete, we relaxed the requirement for exact end-to-end
bandwidth and replaced it with a quest for an average end-
to-end bandwidth using randomized scheduling. We solved
analytically the problem of estimating the average throughput
with randomized scheduling by introducing the concepts of
l-link available slots partition and clique sliding, reducing the
calculation complexity from exponential to linear. The solution

was used as vehicle for BRAND, an algorithm for computing
the average available bandwidth of a given source, destina-
tion pair. A thorough numerical analysis demonstrated the
correctness of BRAND as well as its capability to accurately
take into account the cognitive radio context, in particular the
Primary User and multi-rate links. The distributed version of
BRAND was shown to deliver almost 100% admission rate
in a variety of conditions, thus, validating our choice to work
with the relaxed version of the admission control problem.
Finally, we introduced a version of BRAND tailored for time-
sensitive applications and showed that it can perform delay-
based admission control.
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