
HAL Id: hal-03044230
https://hal.science/hal-03044230

Submitted on 11 Dec 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Reducing AFDX jitter in a mixed NoC/AFDX
architecture

Laure Abdallah, Jérôme Ermont, Jean-Luc Scharbarg, Christian Fraboul

To cite this version:
Laure Abdallah, Jérôme Ermont, Jean-Luc Scharbarg, Christian Fraboul. Reducing AFDX jitter in a
mixed NoC/AFDX architecture. IEEE 14th International Workshop on Factory Communication Sys-
tems (WFCS 2018), Jun 2018, Imperia, Italy. pp.1–4, �10.1109/WFCS.2018.8402375�. �hal-03044230�

https://hal.science/hal-03044230
https://hal.archives-ouvertes.fr


Reducing AFDX jitter in a mixed NoC/AFDX
architecture

Laure Abdallah, Jérôme Ermont, Jean-Luc Scharbarg, Christian Fraboul
Université de Toulouse/IRIT/Toulouse INP-ENSEEIHT

2 rue Charles Camichel 31000 Toulouse

Email: {firstname.name}@enseeiht.fr

Abstract—Current avionics architecture are based on an 
avionics full duplex switched Ethernet network (AFDX) that 
interconnects end systems. Avionics functions exchange data 
through Virtual Links (VLs), which are static flows with bounded 
bandwidth. The jitter for each VL at AFDX entrance has to 
be less than 500 µs. This constraint is met, thanks to end 
system scheduling. The interconnection of many-cores by an 
AFDX backbone is envisionned for future avionics architecture. 
The principle is to distribute avionics functions on these many-
cores. Many-cores are based on simple cores interconnected by 
a Network-on-Chip (NoC). The allocation of functions on the 
available cores as well as the transmission of flows on the NoC 
has to be performed in such a way that the jitter for each VL 
at AFDX entrance is still less than 500 µs. A first solution has 
been proposed, where each function manages the transmission 
of its VLs. The idea of this solution is to distribute functions 
on each many-core in order to minimize contentions for VLs 
which concern functions allocated on different many-cores. In 
this paper, we consider that VL transmissions are managed by 
a single task in each many-core. We show on a preliminary case 
study that this solution significantly reduces VL jitter.

I. INTRODUCTION

Aircrafts are equipped with numerous electronic equipment. 
Some of them, like flight control and guidance systems, 
provide flight critical functions, while others may provide 
assistance services that are not critical to maintain airworthi-

ness. Current avionics architecture is based on the integration 
of numerous functions with different criticality levels into

single computing systems (mono-core processors) [6]. Such 
an architecture is depicted in Figure 1. Computing systems are 
interconnected by an AFDX (Avionics Full Duplex Switched

Ethernet) [1]. The End System (ES) provides an interface 
between a processing unit and the network.

The continuous need for increased computational power 
has fueled the on-going move to multi-cores architectures 
in hard real-time systems. But, multi-cores architectures are 
based on complex hardware mechanisms, such as advanced

branch predictors whose temporal behavior is difficult to 
master. Many-cores architectures are based on simpler cores 
interconnected by a Network-on-Chip (NoC). These cores 
are more predictable [9]. Thus, many-cores are promising 
candidates for avionics architecture.

A typical many-cores architecture provides Ethernet inter-

faces and memory controllers. For instance, Tilera Tile64 has

Fig. 1: An AFDX network.

3 Ethernet interfaces and 4 memory controllers [10], Kalray

MPPA has 8 Ethernet interfaces and 2 memory controllers [5].

An envisioned avionics architecture is depicted in Figure 2.

A set of many-cores are interconnected by an AFDX back-

bone, leading to a mixed NoC/AFDX architecture. Avionics

functions are distributed on these many-cores. Communica-

tions between two functions allocated on the same many-

cores use the NoC, while the communications between two

functions allocated on different many-cores use both the NoC

and the AFDX. Main constraints on this communication are

the following: (1) end-to-end transmission delay has to be

upper-bounded by an application defined value, (2) frame jitter

at the ingress of the AFDX network has to be smaller than a

given value (typically 500 µs). In single core architectures the

latter constraint is enforced by the scheduling implemented

in the End System. In many-cores architectures, frame jitter

mainly depends on the delay variation between the source core

and the source Ethernet interface. This variation is due to two

factors. First, the frame can be delayed on the NoC by other

frames transmitted between avionic functions. Second, the

Ethernet controller can be busy, transmitting another frame. [2]

proposes a mapping strategy which minimizes the first factor,

i.e. the variation of this NoC delay. Each core is allocated at

most one function. Each VL is managed by its source function.

In this paper, we mainly address the second factor. We

propose a static scheduling of Ethernet transmissions, based

on a table. Each transmission is allocated a periodic slot. The

scheduling is managed by a dedicated core.

The remainder of the paper is as follows. Section II intro-

duces current AFDX and NoC architectures. Section III ex-

plains the addressed problem. The new approach is described

in Section IV. Section V presents preliminary results on a case

study. Finally, Section VI concludes with some future works.



��������	
�

���

���

���

�
�

�
�

�
�

Fig. 2: A mixed NoC/AFDX architecture

II. SYSTEM MODEL

We summarize the main features of both an AFDX flows

and many-cores considered in this paper.

A. AFDX flows

A VL defines a unidirectional connection between one

source function and one or more destination functions. Each

VL is characterized by two parameters:

• Bandwidth Allocation Gap (BAG). Minimal time in-

terval separating two successive frames of the same VL.

Value from 1 to 128 ms.

• Lmin and Lmax. Smallest and largest Ethernet frame, in

bytes, transmitted on the VL.

In current architectures, each ES performs a traffic shap-

ing for each VL to control that frames are transmitted in

accordance with BAG and authorized frame size. The queued

frames, which are ready to be transmitted, are then selected

depending on a strategy configured in the VL scheduler. There-

fore, it is possible that more than one VL has a packet ready

and eligible for transmission. In this case, a queuing delay

(jitter) is introduced. This jitter, computed at the transmitting

ES, is the time between the beginning of BAG interval and

the first bit of the frame to be transmitted in that BAG. This

jitter must not be greater than 500µs.

B. NoC Architecture and Asumptions

In this paper, we consider a Tilera-like NoC architecture,

i.e. a 2D-Mesh NoC with bidirectional links interconnecting a

number of routers. Each router has five input and output ports.

Each input port consists of a single queuing buffer. The routers

at the edge of the NoC are interconnected to the DDR memory

located north and south of the NoC via dedicated ports. The

first and last columns of the NoC are not connected directly

to the DDR. Besides, the routers at the east side connects

the cores to the Ethernet interfaces via specific ports. Many

applications can be allocated on a NoC. Each application is

composed of a number of tasks, where one core executes only

one task. These tasks do not only communicate with each

other (core-to-core flows), but also with the I/O interfaces,

i.e. the DDR memory and Ethernet interfaces (core-to-I/O

flows). These flows are transmitted through the NoC following

wormhole routing [8], an XY policy and a Round-Robin

arbitration. Besides, a credit-based mechanism is applied to

control the flows. A flow consists of a number of packets,

corresponding to the maximal authorized flow size on the NoC.

Indeed, a packet is divided into a set of flits (flow control

digits) of fixed size (typically 32-bits). The maximal size of

a NoC packet is of 19 flits as in Tilera NoC. The wormhole

routing makes the flits follow the first flit of the packet in

a pipeline way creating a worm where flits are distributed

on many routers. The credit-based mechanism blocks the flits

before a buffer overflow occurs. The consequence of such a

transmission model is that when two flows share the same path,

if one of them is blocked, the other one can also be blocked.

Thus, the delay of a flow can increase due to contentions

on the NoC. The Worst-case Traversal Time (WCTT) of a

flow can be computed using different methods proposed in the

literature [7]. In this paper, we choose RCNoC [3] to compute

the WCTT as it leads to tightest bounds of delays compared

to the existing methods on a Tilera-like NoC. This method

considers the pipeline transmission, and thus computes the

maximal blocking delay a flow can suffer due the contentions

with blocking flows.

III. PROBLEM STATEMENT

Both incoming and outgoing flows are transmitted on the

NoC. The mapping strategy has a big impact on the delay

of these flows on the NoC, since this delay depends on the

core where source and destination tasks are mapped and on

contentions encountered by flows on their path. Authors of

[4] have proposed a mapping strategy called MapIO that

minimizes the delay of incoming Ethernet flows.

However, this mapping strategy does not consider the out-

going I/O flows. Actually, an outgoing I/O flow is transmitted

following three steps: (1) A core sends data to the nearest port

of DDR memory, (2) then it sends a DMA command to the

Ethernet interface on a separate network. This DMA command

indicates the placement of data in the DDR memory, and it

is stored into a DMA command FIFO queue. (3) When the

Ethernet interface executes the DMA command, data packets

are then sent from the same port of DDR memory to the same

Ethernet interface. The packets of an outgoing I/O flow will

incur a contention with different types of communications on

the NoC which could lead to a jitter.

Let us illustrate the delays of these steps with the example in

Figure 3. Two VLs V L1 and V L2 are respectively generated

by tasks t1DDR and t2DDR. At the begining of V L1 first

BAG period, t1DDR sends V L1 data to the nearest port of

DDR memory. This transmission can take up to WCTTtoDRR.

Step 2 (transmission of the DMA command to the Ethernet

interface) is done after this worst-case delay. Thus step 1

duration is constant and does not generate any jitter. Similarily,

step 2 duration is assumed to be constant, since the DMA com-

mand is sent on a separate network. Thus all the jitter comes

from step 3 (transmission of the data from DRR memory



t1DDR

t2DDR

DDR

Ethernet

Interface

WCTTToDDR

command
executed

D
M

A
c
o
m

m
a
n
d

VL1

d1

BAG

Jitter

VL2 VL1

WCTTToDDR

Jitter

d2d dVL2

Fig. 3: A possible transmission on a given VL.

to the Ethernet interface. Considering V L1 first BAG period

in Figure 3, the jitter is the delay d1 of this transmission,

which is between 0 and its worst-case duration. The jitter can

be much higher. Indeed, for V L1 second BAG period, the

Ethernet interface is busy with V L2 when it receives V L1

DMA command. The delay due to V L2 has to be added to

the jitter, leading to an overall value of d+ dV L2 + d2.

The authors of [2] extended the MapIO strategy. Several

rules have been defined to minimize the delay of outgoing I/O

flows on the NoC, i.e. d, d1 and d2 in Figure 3. One rule

consists in allocating the source tasks of outgoing I/O flows

in columns with minimum DDR usage. These DDR flows can

be delayed by other inter-core flows. Thus, rules map tasks on

cores in order to minimize the number of such flows going in

the same direction as DDR ones. Therefore, a rule minimizes

the number of flows that can delay an outgoing I/O flow on

its path. The solution considered in this paper is based on the

mapping strategy in [2]. The goal is to avoid that the Ethernet

interface is busy when it receives a DMA command (like for

V L1 second period in Figure 3).

IV. A DEDICATED CORE FOR OUTGOING I/O FLOWS

We propose to dedicate a specific core of the NoC to the

transmission of VL through the Ethernet interface. The idea

is to execute only one task tDDR for all the applications. This

task can be executed on every free node of the NoC since the

transmission of the command of the DDR uses another internal

network. For the implementation, we consider that this task is

the only task of a function named COM1. This function is then

mapped on the NoC using the considered mapping strategy.

The behaviour of the task tDDR is as follow:

1) Reception of a message from the final task of the

function: the data that need to be sent are in the DDR.

In such a way, we do not change the behaviour of the

functions presented in section II-B. The transmission of

the message is constant and can be considered as a part

of the execution time of the sending task of the function.

2) Transmission of a DDR command to the DDR. The

corresponding data are then transmitted from the DDR

to the Ethernet interface.

In this paper, we consider that the schedule of the DDR

commands, and so the VLs sent by the functions, can be done

by using a scheduling table. The goal of this method is to

reduce the jitter induced by the transmission of other VLs from

the memory to the Ethernet interface through the NoC and the

transmission of these VLs through the Ethernet interface. The

considered scheduling table is composed of slots of 31.25µs.

port 1port 2port 3port 4port 5

4567 3 2 1 0

5

6

7

0

1

2

3

4

(10,0) (0,0)

8910

8

9

10

port 11port 12port 13port 14port 15port 16port 17port 18

port 6port 7port 8

FADEC7

tf3

tf2

tf0

tf4

tf6

tf5

tf1th6 th7
th8th4

th1 th0th2th3

th5

th9

HM10

(0,5)

th11

th6th7

th10

th9 th8

th4

th1

th0

th2

th3 th5

th12th13 th14

th15

HM16
th6

th7

th8th4

th1 th0

th2th3

th5

HM9

tf6

tf7

tf1

tf0

tf4

tf3

tf5

tf2

tf8

tf10

tf9

FADEC11

FADEC13

tf6

tf7 tf1tf0

tf4 tf3

tf5 tf2

tf8

tf10

tf9

tf11

tf12

th9

th8 th7

th10

th11

th6

th4 th1

th2

th0

th5

th3

HM12

th9th8th7

th10

th6
th4

th1th2 th0

th5

th3

HM11

tDDR

port1port2port3port4port5

4567 3 2 1 0

5

6

7

0

1

2

3

4

(10,0) (0,0)

8910

8

9

10

port11port12port13port14port15port16port17port18

port6port7port8

FADEC7

tf3

tf2

tf0

tf4

tf6

tf5

tf1th6 th7
th8th4

th1 th0th2th3

th5

th9

HM10

(0,5)

th11

th6th7

th10

th9 th8

th4

th1

th0

th2

th3 th5

th12th13 th14

th15

HM16 th6

th7

th8th4

th1 th0

th2th3

th5

HM9

h14h14

h15h15
FADEC13

tf6

tf7 tf1tf0

tf4 tf3

tf5 tf2

tf8

tf10

tf9

tf11

tf12

th9

th8 th7

th10

th11

th6

th4 th1

th2

th0

th5

th3

HM12

th9th8th7

th10

th6th4

th1th2 th0

th5

th3

HM11

tf6

tf7

tf1tf0

tf4

tf3

tf5

tf2

tf8

tf10tf9

FADEC11

1111

HMHM77

th3

th4

th5

th6

th0

th1

th2

7

th5h5

tth6h6

th0h0

h1

h2

tDDR

Fig. 4: Mapping 8 (left) and 9 (right) applications on a 10x10

many-core using ex MapIO.

The global duration of the table is 128 ms. So the number of

slots is 4096. The table is composed of 128 lines of 1 ms, each

line contains 32 slots. A set of slots is allocated to each VL

sent by the applications by considering the BAG duration: a

VL will obtain a slot at exactly each BAG. Such a scheduling

is represented in Table I. In this example, we denoted by the

name of the application the slot when the corresponding VL

should be sent. As an example, a VL from the application

HM7 has a BAG duration equal to 2 ms. It can be located

in column 1 of lines 1, 3, . . . , 127. In the same manner, VL

from the application HM9 has a BAG of 4 ms and is located

in column 10 of lines 0, 4, 8, . . . , 124.

This scheduling guarantees that the VLs are sent from the

memory to the Ethernet interface at different times, leading to

a reduction of the jitter induced by the transmission of other

VLs. In such a way, the only delay that a VL can suffer when

it is transmitted from the DDR is due to the interferences from

the transmission of internal communications through the NoC

that share the same path as the VL.

V. PRELIMINARY CASE STUDY

The considered case study is composed of critical and non

critical applications:

• Full Authority Digital Engine (FADEC) application:

It controls the performance of the aircraft engine. It

receives 30 KBytes of data from the engine sensors

via an Ethernet interface and sends back 1500 Bytes of

data to the engine actuators. The application FADECn

is composed of n tasks denoted tf0 to tfn−1. tfn−1 is

dedicated to send the commands to the engine actuators

via the Ethernet interface. Except tfn−1, all other tasks

exchange 5 KBytes of data through the NoC. They also

send 5 KBytes of data to tfn−1.

• Health Monitoring (HM) application: It is used to rec-

ognize incipient failure conditions of engines. It receives

through an Ethernet interface, a set of frames of size

130 KBytes and sends back 1500 bytes of data actuators.

The application HMn is composed of n tasks, denoted

th0 to thn−1. The last task thn−1 is dedicated to send

the data actuators to the Ethernet interface. The task thi
sends 2240 bytes of data to thi+1 through the NoC, with

i ∈ [0, n − 2]. All these tasks finish their processing by

storing their frames into the memory.



TABLE I: Scheduling table of the VL sent by each application.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0 HM9 FA13

1 HM7 HM10 FA7

2 HM16 HM11 HM12

3 HM7 FA11

4 HM9

5 HM7 HM10

6 HM12

7 HM7

127 HM7 HM12

………………………………………………………………………………………………………………………………

TABLE II: Maximum jitter experienced by the transmission

of VL, in µs

8 applications 9 applications

distributed tDDR 436.5 558.3
one tDDR 77,5 80,9

FADEC applications are critical, while HM applications are

non-critical. Figure 4 shows the mapping of 8 applications (3

FADEC and 8 HM) and 9 applications (3 FADEC and 6 HM)

on the NoC.

Preliminary results are shown in Table II. Distributed tDDR

corresponds to the solution described in Section III. The

mapping strategy of [2] has been defined to improve the

transmission of outgoing flows. Then, it allows a significant

reduction of the jitter, leading to a jitter value less than 500µs

for an 8 applications mapping. But, the jitter is still greater

than 500µs when mapping 9 applications. As expected, the

solution proposed in the paper significantly reduces the jitter of

the VLs. The jitter becomes lower than 100µs when mapping

both 8 and 9 applications on the NoC.

This proposed solution schedules the transmission of frames

of a given VL but the frames have to wait for their slot. As an

example, VL from HM10 in Table I has to be sent at slot 8 of

line 2. If the message from the application to the transmission

node arrives after the beginning of this slot, the VL has to

wait for the slot 8 of line 5. One solution to overcome this

waiting time is the overbooking of the slots, for instance one

slot each milliseconds for a VL with a BAG of 4ms.

VI. CONCLUSION

In this paper, we proposed to replace the mono-core pro-

cessors in avionics architecture by a NoC-based many-cores

architecture. Thus, End Systems are replaced by many-cores.

Different mapping strategies have been used in order to

minimize the jitter provided by the interferences on the NoC.

The jitter increases by increasing the size of the NoC and

the number of functions and we show on a realistic avionics

architecture that it leads to an excess of the maximum allowed

jitter. The main contribution of the paper is that it proposes a

new VL transmission strategy which considers one dedicated

node in the many-core architecture to shape the traffic and

schedules the outgoing I/O flows. The preliminary results show

that the jitter is significantly reduced and only depends on the

interferences that can occur on the transmission path between

the DDR and the I/O interface.

Further works concern how to construct the scheduling table

in order to take into account the overbooking of the slots.

REFERENCES

[1] Aeronautical Radio Inc. ARINC 664. Aircraft Data Network, Part 7:

Avionic Full Duplex Switched Ethernet (AFDX) Network, 2005.
[2] Laure Abdallah, Jérôme Ermont, Jean-Luc Scharbarg, and Christian

Fraboul. Towards a mixed NoC/AFDX architecture for avionics applica-
tions. In IEEE 13th International Workshop on Factory Communication

Systems, WFCS 2017, Trondheim, Norway, May 31 - June 2, 2017, pages
1–10, 2017.

[3] Laure Abdallah, Mathieu Jan, Jérôme Ermont, and Christian Fraboul.
Wormhole networks properties and their use for optimizing worst case
delay analysis of many-cores. In 10th IEEE International Symposium

on Industrial Embedded Systems (SIES), pages 59–68, Siegen, Germany,
June 2015.

[4] Laure Abdallah, Mathieu Jan, Jérôme Ermont, and Christian Fraboul.
Reducing the contention experienced by real-time core-to-i/o flows over
a tilera-like network on chip. In Real-Time Systems (ECRTS), 2016 28th

Euromicro Conference on, pages 86–96. IEEE, 2016.
[5] Benoı̂t Dupont de Dinechin, Duco van Amstel, Marc Poulhiès, and

Guillaume Lager. Time-critical computing on a single-chip massively
parallel processor. In Proc. of the Conf. on Design, Automation & Test

in Europe (DATE’14), pages 97:1–97:6, 2014.
[6] RTCA DO. 178c. Software considerations in airborne systems and

equipment certification, 2011.
[7] Thomas Ferrandiz, Fabrice Frances, and Christian Fraboul. Using

Network Calculus to compute end-to-end delays in SpaceWire networks.
SIGBED Review, 8(3):44–47, 2011.

[8] Prasant Mohapatra. Wormhole routing techniques for directly connected
muti-computer systems. ACM Computer Survey (CSUR), 30(3):374–410,
September 1998.

[9] Vincent Nélis, Patrick Meumeu Yomsi, Luı́s Miguel Pinho, José Carlos
Fonseca, Marko Bertogna, Eduardo Quiñones, Roberto Vargas, and An-
drea Marongiu. The Challenge of Time-Predictability in Modern Many-
Core Architectures. In 14th Intl. Workshop on Worst-Case Execution

Time Analysis, pages 63–72, Madridr, Spain, July 2014.
[10] David Wentzlaff, Patrick Griffin, Henry Hoffmann, Liewei Bao, Bruce

Edwards, Carl Ramey, Matthew Mattina, Chyi-Chang Miao, John
F. Brown III, and Anant Agarwal. On-chip interconnection architecture
of the tile processor. IEEE Micro, 27(5):15–31, 2007.


