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1 Introduction

Numerous problems in signal and image processing consist in finding the best
possible estimate x̂ of a quantity x̄ ∈ H from an observation y ∈ G (where H
and G are Hilbert spaces isomorphic to R

N and R
P respectively), potentially

corrupted by a linear operator Φ : H → G, which encapsulates deformation or
information loss, and by some additive zero-mean Gaussian noise ζ ∼ N (0P ,S),
with known covariance matrix S ∈ R

P×P , leading to the general observation
model

y = Φx̄+ ζ. (1)

Examples resorting to inverse problems include image restoration [13, 55], in-
painting [17], texture-geometry decomposition [3], but also texture segmentation
as recently proposed in [51]. A widely investigated path for the estimation of
underlying x̄ is linear regression [10,41], providing an unbiased linear regression
estimator x̂LR. Yet corresponding estimates suffer from large variances, which
can lead to dramatic errors in the presence of noise ζ [6].

An alternative relies on the construction of parametric estimators

G × R
L −→ H

(y,Λ) 7−→ x̂(y;Λ)
(2)

allowing some estimation bias, and thus leading to drastic decrease of the vari-
ance. Given some prior knowledge about ground truth x̄, e.g. [35], either
sparsity of the variable x̄ [63], of its derivative [37, 59, 66] or of its wavelet
transform [27], one can build parametric estimators performing a compromise
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between fidelity to the model (1) and structure constraints on the estimation.
In general, the compromise is tuned by a small number L = O(1) parame-
ters, stored in a vector Λ ∈ R

L. A very popular class of parametric estimators
relies on a penalization of a least squares data fidelity term formulated as a
minimization problem

x̂(y;Λ) ∈ Argmin
x∈H

‖y −Φx‖2W + ‖UΛx‖
q
q (3)

with ‖ · ‖W the Mahalanobis distance associated with W ∈ R
P×P , defined as

‖y −Φx‖W ,

√
(y −Φx)

⊤
W (y −Φx). (4)

UΛ : H → Q is a linear operator parametrized by Λ and ‖·‖q the ℓq-norm with
q ≥ 1 in Hilbert space Q.

Least Squares. While Ordinary Least Squares involve usual ℓ2 squared norm
as data-fidelity term, that is W = IP , Generalized Least Squares [61] make
use of the covariance structure of the noise through W = S−1, encapsulating
all the observation statistics in the case of Gaussian noise. This generalized
approach is equivalent to decorrelating the data and equalizing noise levels be-
fore performing the regression. Further, the Gauss-Markov theorem [1] asserts
that minimizing Weighted Least Squares provides the best linear estimator of
x̄, advocating for the use of Mahalanobis distance as data fidelity term in pe-
nalized Least Squares. Yet, in practice, Generalized Least Squares (or Weighted
Least Squares in the case when S is diagonal) requires not only the knowledge
of the covariance matrix, but also to be able to invert it. For uncorrelated
data, S is diagonal and, provided that it is well-conditioned, it is easy to invert
numerically. On the contrary, computing S−1 might be extremely challenging
for correlated data since S is not diagonal anymore and has a size scaling like
the square of the dimension of G. Thus, to handle possibly correlated Gaussian
noise ζ, using Ordinary Least Squares is often mandatory, even though it does
not benefit from same theoretical guarantees that Generalized Least Squares.
Nevertheless, we will show that the knowledge of S is far from being useless,
since it is possible to take advantage of it when estimating the quadratic risk.

Penalization. Appropriate choice of q and UΛ covers a large variety of well-
known estimators. Linear filtering is obtained for q = 2 [31], the shape of
the filter being encapsulated in operator UΛ [37], the hyperparameters Λ tun-
ing e.g. its band-width. It is very common in image processing to impose
priors on the spatial gradients of the image, using the finite discrete hori-
zontal and vertical difference operator D and one regularization parameter
Λ = λ > 0 (L = 1). For example, smoothness of the estimate is favored using
ℓ2 squared norm, performing Tikhonov regularization [37, 66], in which q = 2
and ‖UΛx‖qq , λ‖Dx‖22. Another standard penalization is the anisotropic total

variation [59] ‖UΛx‖qq , λ‖Dx‖1, corresponding to q = 1, where the ℓ1-norm
enforces sparsity of spatial gradients.

Risk estimation. The purpose of Problem (3) is to obtain a faithful estimation
x̂(y;Λ) of ground truth x̄, the error being measured by the so-called quadratic
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risk

E‖Bx̂(y;Λ)−Bx̄‖2W (5)

with B a linear operator, which enables to consider various types of risk. For
instance, whenB = Π is a projector on a subset ofH [30], the projected quadratic
risk (5) measures the estimation error on the projected quantity Πx̄. This case
includes the usual quadratic risk when B = IN . Conversely, when B = Φ, the
risk (5) quantifies the quality of the prediction ŷ(y;Λ) , Φx̂(y;Λ) with respect
to the noise-free observation ȳ , Φx̄ lying in G, and is known as the prediction
risk.
The main issue is that one does not have access to ground truth x̄. Hence,
measuring the quadratic risk (5) first requires to derive an estimator of

E ‖Bx̂(y;Λ)−Bx̄‖2
W

not involving x̄.
This problem was handled originally in the case of independent, identically
distributed, (i.i.d.) Gaussian linear model, that is for scalar covariance matrix
S = ρ2IP , by Stein [60, 64], performing a clever integration by part, leading to
Stein’s Unbiased Risk Estimate (SURE) [26, 47, 57, 65], initially formulated for
the prediction risk,

‖(Φx̂(y;Λ)− y)‖2
W

+ 2ρ2Tr (∂yx̂(y;Λ)) − Pρ2, (6)

whose expected value equals quadratic risk (5) with B = Φ. In the past years
SURE was intensively used both in statistical, signal and image processing ap-
plications [11, 26, 53]. It was recently extended to the case of independent but
not identically distributed noise [19, 73], corresponding to diagonal covariance
matrix S = diag(σ2

1 , . . . , σ
2
P ), and to the case when the noise is Gaussian with

potential correlations, with very general covariance matrix S. Yet, to the best
of our knowledge, very few numerical assessments are available for Gaussian
noise with non-scalar covariance matrices. A notable exception is [19], in which
numerical experiments are run on uncorrelated multi-component data, the com-
ponents experiencing different noise levels. The noise being assumed indepen-
dent, this corresponds to a diagonal covariance matrix S = diag(ρ21, . . . , ρ

2
P ),

with ρ2i the variance of the noise of the ith component.
Further, in the case when the noise is neither independent identically distributed
nor Gaussian, Generalized Stein Unbiased Risk Estimators were proposed, e.g.
for Exponential Families [30, 38] or Poisson noise [39, 42, 45].
As for practical evaluation of Stein estimator, more sophisticated tools might be
required to evaluate the second term of (6), notably when x̂(y;Λ) is obtained
from a proximal splitting algorithm [4, 20, 21, 50] solving Problem (3). Indeed
Stein estimator involves the Jacobian of x̂(y;Λ) with respect to observations
y, which might not be directly accessible in this case. In order to manage this
issue, Vonesch et al proposed in [69] to perform recursive forward differentia-
tion inside the splitting scheme solving (3), which benefits from few theoretical
results from [32]. This approach, even if remaining partially heuristic, proved
to be efficient for a large class of problems [24].

Hyperparameter tuning. Equation (3) clearly shows that the estimate x̂(y;Λ)
drastically depends on the choice of regularization parameters Λ. Thus, fine-
tuning of regularization parameters is a long-standing problem in signal and
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image processing. A common formulation of this problem consists in minimiz-
ing the quadratic risk with respect to regularization parameters Λ, solving:

minimize
Λ

E ‖Bx̂(y;Λ)−Bx̄‖2
W
. (7)

As emphasized in [30], approximate solution of (7) found selecting among the
estimates (x̂(y;Λ))

Λ∈RL the one reaching lowest SURE (6), as proposed in pi-
oneering work [60], leads to lower mean square error than classical Maximum
Likelihood approaches applied to Model (1).
The most direct method solving (7) consists in computing SURE (6) over a
grid of parameters [27,30,57], and to select the parameter of the grid for which
SURE is minimal. Yet, grid search methods suffers from a high computation
cost for several reasons. First of all, the size of the grid scaling algebraically
with the number of regularization parameters L, exhaustive grid search is of-
ten inaccessible. Recently, random strategies were proposed to improve grid
search efficiency [7]. Yet, for L ≥ 3, it remains very challenging if not unfea-
sible. Further, an additional difficulty might appear in the case when x̂(y;Λ)
is obtained from a splitting algorithm solving Problem (3). Indeed when the
regularization term ‖UΛx‖qq is nonsmooth, the proximal algorithms solving (3)
suffers from slow convergence rate, making the evaluation of Stein estimator at
each point of the grid very time consuming. Although accelerated schemes were
proposed [5, 16], grid search with L ≥ 2 remains very costly, preventing from
practical use.
When a closed-form expression of Stein estimator is available, exact function
minimization over the regularization parametersΛmight be possible. This is the
case for instance for the Tikhonov penalization for which Thompson et al. [62],
Galatsanos et al. in [33], and Desbat et al. in [25] took advantage of the linear
closed-form expression of x̂(y;Λ) to find the “best” regularization parameter,
i.e. to solve (7). Another well-known closed-form expression holds for soft-
thresholding, which is widely used for wavelet-shrinkage denoising e.g. [27, 44].
Note that Generalized Cross Validation [36] also makes use of closed-form ex-
pression for parameters tuning, but in a slightly different way, working on predic-
tion risk, solving (7) for B = Φ. Generalized Cross Validation and Stein-based
estimators were compared independently by Li [43], Thompson [62], and Des-
bat et al. in [25]. Further, Bayesian methods were proposed to deal with very
large number of hyperparameters L≫ 1, among which Sequential Model-Based
Optimization (SMBO), providing smart sampling of the hyperparameter do-
main [8]. Such methods are particularly adapted to machine learning, as they
manage huge amount of hyperparameters without requiring knowledge of the
gradient of the cost function [9].
In order to go further than (random) sampling methods, elaborated approaches
relying on minimization schemes were proposed, requiring sufficiently smooth
risk estimator, as well as access to its derivative with respect to Λ. From a C∞

closed-form expression of Poisson Unbiased Risk Estimate, Deledalle et al. [23]
proposed a Newton algorithm solving (7). Nevertheless, it does not generalize,
since it is very rare that one has access to all the derivatives of the risk estima-
tor. In the case when the noise is Gaussian i.i.d., Chaux et al. [19] proposed and
assessed numerically an empirical descent algorithm for automatic choice of reg-
ularization parameter, but with no convergence guarantee. For i.i.d. Gaussian
noise and estimators built as the solution of (3), Deledalle et al. [24] proposed
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sufficient conditions so that x̂(y;Λ) is differentiable with respect to Λ, and then
derived the differentiability of Stein’s Unbiased Risk Estimate. Further, they
elaborated a Stein Unbiased GrAdient estimator of the Risk (SUGAR) with
the aim of performing a quasi-Newton descent solving (7) using BFGS strategy.
SUGAR proved its efficiency in the automated hyperparameter selection in a
spatial-spectral deconvolution method for large multispectral data corrupted by
i.i.d. Gaussian noise [2]

Contributions and outline. We propose a Generalized Stein Unbiased GrA-
dient estimator of the Risk, for the case of Gaussian noise ζ with any covari-
ance matrix S, using the framework of Ordinary Least Squares, that is (5) with
W = IP , enabling to manage different noise levels and correlations in the ob-
served data.
Section 2 revisits Stein’s Unbiased Estimator of the Risk in the particular case
of correlated Gaussian noise with covariance matrix S and derives the Finite
Difference Monte Carlo SURE for this framework, extending [24]. Further, we
include a projection operator B = Π making the model versatile enough to fit
various applications.
In this context, Finite Difference Monte Carlo SURE is differentiated with re-
spect to regularization parameters leading to Finite Difference Monte Carlo
Generalized Stein Unbiased GrAdient estimator of the Risk, whose asymptotic
unbiasedness is demonstrated in Section 3. Generalized Stein Unbiased Risk
Estimate and Generalized Stein Unbiased GrAdient estimate of the Risk are
embedded in a quasi-Newton optimization scheme for automatic parameters
tuning, presented in Section 3.3. Moreover, the case of sequential estimators is
discussed in Section 3.2.
Then, in Section 4, the entire proposed procedure is particularized to an original
application to texture segmentation based on a wavelet (multiscale) estimation
of fractal attributes, proposed in [51, 52]. The texture model is cast into the
general formulation (1), y corresponding to a nonlinear multiscale transform of
the image to be segmented. Hence the noise ζ presents both inter-scale and
intra-scale correlations, leading to a non-diagonal covariance matrix S. Both
Stein Unbiased Risk Estimate and Stein Unbiased GrAdient estimate of the
Risk are evaluated with a Finite Difference Monte Carlo strategy, all steps of
which are made explicit for the texture segmentation problem.
Finally, Section 5 is devoted to exhaustive numerical simulations assessing the
performance of the proposed texture segmentation with automatic regulariza-
tion parameters tuning. We notably emphasize the importance of taking into
account the full covariance structure into account in Stein-based approaches.

2 Stein Unbiased Risk Estimate (SURE) with

correlated noise

This Section details the extension of Stein Unbiased Risk Estimator (6) when
W = IP to the case when observations evidence correlated noise, leading to
the Finite Difference Monte Carlo Generalized Stein Unbiased Risk Estimator,
R̂ν,ε(y;Λ|S), defined in (17).
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Notations. For a linear operator Φ : H → G, the adjoint operator is denoted
Φ∗ and characterized by: for every x ∈ H, and y ∈ G, 〈y,Φx〉 = 〈Φ∗y,x〉.
The Jacobian with respect to observations y of a differentiable estimator x̂(y;Λ)
is denoted ∂Λx̂(y;Λ).

2.1 Observation model

In this work, we consider observations y, supposed to follow Model (1), as
stated in Assumption 1 with a degradation operator Φ assumed to be full-rank,
as stated in Assumption 2.

Assumption 1 (Gaussianity). The additive noise ζ ∈ G is Gaussian: ζ ∼
N (0P ,S), where 0P is the null vector of G and S ∈ R

P×P is the covari-
ance matrix of the noise, where P = dim(G). Thus, the density probability law
associated with the model (1) writes

y ∼
1√

(2π)P |detS|
exp

(
−
‖y −Φx̄‖2

S−1

2

)
. (8)

Assumption 2 (Full-rank). The linear operator Φ : H → G is full rank, or
equivalently Φ∗Φ is invertible.

2.2 Estimation problem

Let x̂(y;Λ) be a parametric estimator of ground truth x̄ ∈ H, defined in a
unique manner from observations y ∈ G and hyperparameters Λ ∈ R

L.

Remark 1. For instance, x̂(y;Λ) can be the Penalized Ordinary Least Squares
estimator, defined in (3). In this case full-rank Assumption 2 ensures the unicity
of the minimizer. Nevertheless, we emphasize that Sections 2 and 3 address
Problem (7) in a more general framework.

The possibility that the quantity of interest might be a projection of x̄ on
a the subspace I of H is considered. One can think for instance of physics
problems, in which only part of variables have a physical interpretation.

Definition 1. The linear operator Π : H → H performs the orthogonal pro-
jection on subspace I capturing relevant information about x̄. Moreover, from
both Assumption 2 and the projection operatorΠ, we define the linear operator
A : G → H as the composition

A , Π (Φ∗Φ)
−1

Φ∗. (9)

The risk is defined as the projected estimation error made on the quantity
of interest Πx̄ by the estimator, measured via an ordinary squared ℓ2-norm.

R[x̂](Λ) , Eζ ‖Πx̂(y;Λ)−Πx̄‖22 . (10)

Remark 2. Another usual definition of the risk involves the inverse of the co-
variance matrix [30] through a Mahalanobis distance writing

RM[x̂](Λ) , Eζ ‖Πx̂(y;Λ)−Πx̄‖2
S−1 . (11)
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requiring the knowledge of S−1, which might be non-trivial or even inaccessi-
ble for correlated noise presenting non-diagonal covariance matrix. Hence our
approach uses exclusively ordinary quadratic risk defined in (10). Nevertheless,
these two approaches, even though being different, shares interesting common
points which will be mentioned briefly in the following (see Remark 3).

The aim of this work is automatic fine-tuning the regularization parameters
Λ in order to minimize the ordinary risk (10) defined above. Yet in practice,
the optimal regularization parameters Λ† satisfying

Λ† ∈ Argmin
Λ∈RL

R[x̂](Λ) (12)

is inaccessible. In the following, we propose a detailed procedure to closely
approach Λ†, by minimizing a Generalized Stein Unbiased Risk Estimator ap-
proximating R[x̂](Λ).

2.3 Generalized Stein Unbiased Risk Estimator

The risk defined in (10) depends explicitly on ground truth x̄ and hence is in-
accessible. Stein proposed an unbiased estimator of this risk, known as Stein
Unbiased Risk Estimator (SURE) in the case of i.i.d. Gaussian noise, recalled
in Equation (6). This estimator was then extended to very general noise dis-
tributions (see e.g. [30] for Exponential Families, including Gaussian densities).
In particular, when the noise ζ is Gaussian, with possible non-trivial covariance
matrix, Theorem 1 provides a generalization of Stein’s original estimator, which
constitutes the starting point of this work.
Stein’s approach for risk estimation crucially relies the following hypothesis on
estimator x̂(y;Λ):

Assumption 3 (Regularity and integrability). The estimator x̂(y;Λ) is contin-
uous and weakly differentiable with respect to observations y. Moreover, the
quantities 〈A∗Πx̂(y;Λ), ζ〉 and ∂yx̂(y;Λ) are integrable against the Gaussian
density:

1√
(2π)P |detS|

exp

(
−
‖ζ‖2

S−1

2

)
dζ.

Theorem 1. Consider Model (1), together with Assumptions 1 (Gaussianity),
2 (Full-rank), 3 (Integrability), and linear operator A defined in (9). Then
generalized Stein’s lemma applies, and leads to

R[x̂](Λ) = Eζ

[
‖A (Φx̂(y;Λ)− y)‖22 + 2Tr (SA

∗Π∂yx̂(y;Λ))− Tr(ASA
∗)
]
,

(13)

the quantity in the brackets being the so-called Generalized Stein Unbiased Risk
Estimator.

Proof. A detailed proof is provided in Appendix A.

Remark 3. Interestingly, when considering the squared Mahalanobis distance
in the defintion of the risk (11), Stein Unbiased Risk Estimator has the same
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global structure, yet, instead of involving the covariance matrix S it involves its
inverse writing

R̃[x̂](Λ) = Eζ

[
‖A (Φx̂(y;Λ)− y)‖2

S−1 + 2Tr (A∗Π∂yx̂(y;Λ))− Tr(AA∗)
]
.

(14)

2.4 Finite Difference Monte Carlo SURE

In the proposed SURE expression (13), the quantity Tr (SA∗Π∂yx̂(y;Λ)) ap-
pearing in (13), called the degrees of freedom, concentrates the major difficulties
in computing Stein’s estimator in data processing problems, as evidenced by
the prolific literature addressing this issue in the case S ∝ IP [28, 40, 65, 67].
Indeed, it involves the product of the P × P matrix SA∗Π with the P × P Ja-
cobian matrix ∂y(x̂(y,Λ)). Not only the product of two P × P matrices might
be extremely costly in computational efforts but also the Jacobian matrix, be-
cause of its large size, P ≫ 1, might also be very demanding to compute (or
even to estimate). Two-step Finite Difference Monte Carlo strategy together
with Assumption 4 presented below, enable to overcome theses difficulties and
to built a usable Stein Unbiased Risk Estimator, denoted R̂ν,ε(y;Λ|S), defined
in Equation (17).

Assumption 4 (Lipschitzianity w.r.t. observations). Let x̂(y;Λ) an estimator
of x̄, depending on observations y, and parametrized by Λ.
(i) The mapping y 7→ x̂(y;Λ) is uniformly L1-Lipschitz .
(ii) ∀Λ ∈ R

L, x̂(0P ;Λ) = 0N , with 0N (resp. 0P ) the null vector of H (resp.
G).

Step 1. Trace estimation via Monte Carlo:
In the way to practical degrees of freedom estimation, the first step is to remark
that it far less costly to compute the product of the P × P matrix SA∗Π with
∂y(x̂(y,Λ))[ε] ∈ R

P , the Jacobian matrix applied on a vector ε ∈ R
P . Further,

straightforward computation shows that if ε ∈ R
P is a normalized random

variable ε ∼ N (0P , IP ), and M ∈ R
P×P any matrix, then

Tr(M) = Eε〈Mε, ε〉.

Thus, following the suggestion of [24,34,57], if one has access to ∂y(x̂(y,Λ)) [ε],
then, since S is a covariance matrix and hence is symmetric,

Tr (SA∗Π∂yx̂(y;Λ)) = Eε 〈SA∗Π∂yx̂(y;Λ)[ε], ε〉

= Eε 〈A
∗Π∂yx̂(y;Λ)[ε],Sε〉 , (15)

and 〈A∗Π∂yx̂(y;Λ)[ε],Sε〉 provides an estimator of degrees of freedom.

Step 2. First-order derivative estimation with Finite Differences:
Second step consists in tackling the problem of estimating ∂y(x̂(y,Λ)) [ε] when
no direct access to the Jacobian ∂y(x̂(y,Λ)) is possible. In this case, the deriva-
tive can be estimated using the normalized random variable ε and a step ν > 0
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making use of Taylor expansion

x̂(y + νε;Λ)− x̂(y;Λ) ≃
ν→0

∂y(x̂(y;Λ)) [νε]

⇐⇒ ∂yx̂(y;Λ) [ε] = lim
ν→0

1

ν
(x̂(y + νε;Λ)− x̂(y;Λ)) .

It follows

Tr (SA∗Π∂yx̂(y;Λ)) = Eε lim
ν→0

1

ν
〈SA∗Π (x̂(y + νε;Λ)− x̂(y;Λ)) , ε〉

= Eε lim
ν→0

1

ν
〈A∗Π (x̂(y + νε;Λ)− x̂(y;Λ)) ,Sε〉 . (16)

Elaborating on Formula (16) and Assumption 4, the following theorem provides
an asymptotically unbiased Finite Differences Monte Carlo estimator of the risk,
which can be used in a vast variety of estimation problems.

Theorem 2. Consider the observation Model (1), the operator A defined in (9)
together with Assumptions 1 (Gaussianity), 2 (Full-rank), 3 (Integrability), and
4 (Lipschitzianity w.r.t. y). Generalized Finite Differences Monte Carlo SURE,
writing

R̂ν,ε(y;Λ|S) , ‖A (Φx̂(y;Λ)− y)‖22 (17)

+
2

ν
〈A∗Π (x̂(y + νε;Λ)− x̂(y;Λ)) ,Sε〉 − Tr(ASA

∗),

is an asymptotically unbiased estimator of the risk R[x̂](Λ) as ν → 0, meaning
that

lim
ν→0

Eζ,εR̂ν,ε(y;Λ|S) = R[x̂](Λ). (18)

Proof. The proof of Theorem 2 is postponed to Appendix B.

Remark 4. The use of Monte Carlo strategy is advocated in [24] so that to
reduce the complexity of SURE evaluation, replacing costly P × P matrices
product by products of P × P matrix by vector of size P . Yet, the product
of S ∈ R

P×P with ε ∈ R
P , as well as the product of A∗Π ∈ R

P×N with
x̂(y;Λ) ∈ R

N , might still be extremely costly. Hopefully, we will see that, in
data processing problems (e.g. for texture segmentation in Section 4), both the
covariance matrix S and linear operator A (through the degradation Φ) benefit
from sufficient sparsity so that the calculations can be handled at a reasonable
cost.

3 Stein’s Unbiased GrAdient estimator of the

Risk (SUGAR)

From the estimator of the risk R̂ν,ε(y;Λ|S) provided in previous Section 2.3,
basic grid search approach could be performed, in order to estimate the optimal
Λ†, as defined in (12). Yet, the exploration of a fine grid of Λ ∈ R

L might be
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time consuming if the evaluation of x̂(y;Λ) is costly, which is the case when
x̂(y;Λ) is sequential, i.e. obtained from an optimization scheme. Moreover, the
size of a grid in R

L with given step size grows algebraically with L. Altogether,
this precludes grid search when L > 2.
Inspiring from [24], this section addresses this issue in the extended case of corre-

lated noise. We provide in Equation (19) a generalized estimator ∂ΛR̂ν,ε(y;Λ|S) ∈
R

L of the gradient of the risk with respect to hyperparameters Λ. Further, we
demonstrate that the Finite Difference Monte Carlo estimator ∂ΛR̂ν,ε(y;Λ|S)
is an asymptotically unbiased estimator of the gradient of the risk (10) with
respect to Λ.
In Algorithm 1, we provide an example of sequential estimator, relying on an
accelerated primal-dual scheme, designed to solve (3), with its differentiated
counterpart, providing both x̂(y;Λ) and its Jacobian ∂Λx̂(y;Λ) ∈ R

N×L with
respect to Λ.
Hence, costly grid search can be avoided, the estimation of Λ† being performed
by a quasi-Newton descent, described in Algorithm 3, which minimizes the es-
timated risk R̂ν,ε(y;Λ|S), making use of its gradient ∂ΛR̂ν,ε(y;Λ|S).

3.1 Differentiation of Stein Unbiased Risk Estimate

Proposition 1. Consider the observation Model (1), the operator A defined
in (9) together with Assumptions 1 (Gaussianity), 2 (Full-rank), 3 (Integrabil-
ity), 4 (Lipschitzianity w.r.t. y), and 5 (Lipschitzianity w.r.t. Λ) Assumptions.

Then the Finite Difference Monte Carlo SURE R̂ν,ε(y;Λ|S), defined in (17),
is weakly differentiable with respect to both observations y and parameters Λ,
and its gradient with respect to Λ, as an element of RL, is given by

∂Λ

[
R̂ν,ε(y;Λ|S)

]
, 2 (AΦ∂Λx̂(y;Λ))

∗
A (Φx̂(y;Λ)− y) (19)

+
2

ν
(A∗Π (∂Λx̂(y + νε;Λ)− ∂Λx̂(y;Λ)))

∗
Sε,

Proof. The Finite Difference Monte Carlo SURE R̂ν,ε(y;Λ|S), defined by For-
mula (17) is a combination of continuous and weakly differentiable functions
with respect to both observations y and parametersΛ, composed with (bounded)
linear operators, and thus is continuous and weakly differentiable. Further, the
derivation rules apply and lead to the expression of Finite Difference Monte
Carlo SUGAR estimator given in Formula (19).

Assumption 5 (Lipschitzianity w.r.t. hyperparameters). Let x̂(y;Λ) be an esti-
mator of x̄, depending on observations y, and parametrized by Λ. The mapping
Λ 7→ x̂(y;Λ) is uniformly L2-Lipschitz continuous with constant L2 being in-
dependent of y.

Remark 5. As argued in [24], when the estimator x̂(y;Λ) can be expressed as
a (composition of) proximal operator(s) of gauge(s) of compact set(s)1, As-
sumption 5 holds. Thus, in the case of (3) when G = H, Φ = IH, and
‖UΛx‖qq = λ‖x‖qq, for any q ≥ 1 the Lipschitzianity w.r.t. Λ is ensured. More-
over, in the case of Tikhonov regularization, i.e. q = 2 and ‖UΛx‖qq = λ‖Dx‖22

1For C ⊂ G a non-empty closed convex set containing 0G , the gauge of C is defined as
γC(y) , inf {ω > 0 |y ∈ ωC}.
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in (3), if Φ = IH and D∗D is diagonalizable with strictly positive eigenvalues,
then Assumption 5 is verified. Apart from these two well-known examples, prov-
ing the validity of Assumption 5 in the general case of Penalized Least Square
is a difficult problem and is foreseen for future work.

Theorem 3. Consider the observation Model (1), the operator A defined in (9)
together with Gaussianity 1, Full-rank 2, Integrability 3, Lipschitzianity w.r.t.
y 4, and Lipschitzianity w.r.t. Λ 5 Assumptions. Then generalized Finite Dif-
ference Monte Carlo SUGAR, ∂ΛR̂ν,ε(y;Λ) defined in Equation (19), is an
asymptotically unbiased estimate of the gradient of the risk as ν → 0, that is

∂ΛR[x̂](Λ) = lim
ν→0

Eζ,ε∂ΛR̂ν,ε(y;Λ|S) (20)

Proof. The proof of Theorem 3 is postponed to Appendix C.

Remark 6. Finite Difference Monte Carlo estimator of the gradient of the risk,
∂ΛR̂ν,ε(y;Λ|S), defined in Equation (19), involves the Jacobian ∂Λx̂(y;Λ) ∈
R

N×L which could be a very large matrix, raising difficulties for practical use.
Nevertheless, in most applications, the regularization hyperparameters Λ ∈ R

L,
have a “low” dimensionality L = O(1) ≪ N . Thus, it is reasonable to expect
that the Jacobian matrix ∂Λx̂(y;Λ) ∈ R

N×L can be stored and manipulated,
with similar memory and computational costs than for x̂(y;Λ) (see Section 3.2).

3.2 Sequential estimators and forward iterative differen-
tiation

The evaluation of ∂ΛR̂ν,ε(y;Λ) from Formula (19) requires the Jacobian ∂Λx̂(y;Λ).
Yet, when no closed-form expression of estimator x̂(y;Λ) is available, computing
the gradient ∂Λx̂(y;Λ) might be a complicated task. A large class of estimators
x̂(y;Λ) lacking closed-form expression are those obtained as the limit of iterates
as

x̂(y;Λ) = lim
k→∞

x[k](y;Λ), (21)

for instance when x̂(y;Λ) is defined as the solution of a minimization problem,
e.g. (3).
In the case when x̂(y;Λ) is a sequential estimator, given an observation y, it
is only possible to sample the function Λ 7→ x̂(y;Λ), for a discrete set of reg-
ularization hyperparameters {Λ1,Λ2, . . .}, running the minimization algorithm
for each hyperparameters Λ1,Λ2, . . .. It is a classical fact in signal processing
that no robust estimator of the differential can be built from samples of the
function, thus more sophisticated tools are needed. Provided some smoothness
conditions on the iterations of the minimization algorithm, iterative differenti-

ation strategy [24] gives access to a sequence of Jacobian ∂Λx̂
[k](y;Λ), relying

on chain rule differentiation presented in Proposition 2.

Considering Problem (3), splitting algorithms [4, 20, 50] are advocated to
perform the minimization. We chose the primal-dual scheme proposed in [16],
Algorithm 2, taking advantage of closed-form expressions of the proximal op-
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erators [58] of both the data-fidelity term and the penalization2. Chambolle-
Pock algorithm, particularized to (3), is presented in Algorithm 1. Further, Φ
being full-rank (Assumption 2), denoting by Sp(Φ∗Φ) the spectrum of Φ∗Φ,
γ = 2min Sp(Φ∗Φ) is strictly positive. Hence the data-fidelity in (3) term turns
out to be γ-strongly convex, and the primal-dual algorithm can be accelerated
thank to Step (31) of Algorithm 1, following [16]. The iterative differentiation
strategy providing ∂Λx

[k](y;Λ) is presented in the second part of Algorithm 1.
Other iterative differentiation schemes are detailed in [24].

Proposition 2. Let Ψ : RN×L → R
N be a differentiable function of variable

x ∈ H, differentiably parametrized by Λ ∈ R
L, and

(
x[k]

)
k∈N

the sequential
estimator defined by iterations of the form

x[k+1] = Ψ(x[k];Λ). (22)

The gradient of x[k] with respect to Λ can be computed making use of the chain
rule differentiation

∂Λx
[k+1] = ∂Λ

(
Ψ(x[k];Λ)

)
= ∂xΨ(x[k];Λ)[∂Λx

[k]] + ∂ΛΨ(x[k];Λ), (23)

where ∂xΨ(x;Λ)[δ] denotes the differential of Ψ with respect to variable x ap-
plied on vector δ, and ∂ΛΨ(x;Λ) the gradient of Ψ with respect to Λ. The
differentiability of Ψ should be understood in the weak sense.

Remark 7. Two particular cases are often encountered in iterative differentiation
(see Algorithm 1):
(i) Linear operator Ψ(x;Λ) , UΛx. Assuming that (x 7→ UΛx)Λ is a family
of linear operators, with a differentiable parametrization by Λ, the chain rule
writes

∂Λx
[k+1] = UΛ∂Λx

[k] + (∂ΛUΛ)x
[k], (24)

since the differential of the linear operator UΛ with respect to x is itself. See
(33) and (35), in Algorithm 1 for applications of the chain rule with linear
operators.
(ii) Proximal operator Ψ(x;Λ) , proxτ‖·‖2,1

(x). The proximal operator being
independent of Λ, the chain rule simplifies to

∂Λx
[k+1] = ∂xproxτ‖·‖2,1

(x[k])[∂Λx
[k]] (25)

with the differential of the so-called ℓ2 − ℓ1 soft-thresholding proxτ‖·‖2,1
with

respect to x = (x1, x2), applied on δ = (δ1, δ2) having the closed-form expression

∂xproxτ‖·‖2,1
(x)[δ] =

{
0 if ‖x‖2 ≤ τ

δ − τ
‖x‖2

(
δ − 〈δ,x〉

‖x‖2
2
x
)

else.
(26)

See (34) and (36), in Algorithm 1 for applications of the chain rule with proxi-
mal operators.

2see http://proximity-operator.net for numerous proximal operator closed-form expres-
sions

12



Algorithm 1 Accelerated primal-dual scheme for solving (3) with iterative
differentiation with respect to regularization parameters Λ.

Routines: x̂(y;Λ) = PD(y,Λ)
(x̂(y;Λ), ∂Λx̂(y;Λ)) = ∂PD(y,Λ)

Inputs:
Observations y
Regularization hyperparameters Λ
Strong-convexity modulus of data-fidelity term
γ = 2minSp(Φ∗Φ)

Initialization:
Descent steps τ [0] = (τ

[0]
1 , τ

[0]
2 ) such that τ

[0]
1 τ

[0]
2 ‖UΛ‖2 < 1

Primal, auxiliary and dual variables x[0] ∈ H, w[0] = x[0],
z[0] ∈ Q

Preliminaries: Jacobian with respect to Λ: ∂Λx
[0], ∂Λw

[0], ∂Λz
[0]

for k = 1 to Kmax do

{Accelerated Primal-Dual}

z̃
[k] = z[k] + τ

[k]
1 UΛw

[k] (27)

z[k+1] = prox
τ
[k]
1 (‖·‖q

q)
∗

(
z̃
[k]
)

(28)

x̃
[k] = x[k] − τ

[k]
2 U∗

Λ
z[k+1] (29)

x[k+1] = prox
τ
[k]
2 ‖y−Φ·‖2

2

(
x̃
[k]
)

(30)

θ[k] = 1/

√
1 + 2γτ

[k]
2 , τ

[k+1]
1 = τ

[k]
1 /θ[k], τ

[k+1]
2 = θ[k]τ

[k]
2 (31)

w[k+1] = x[k] + θ[k]
(
x[k+1] − x[k]

)
(32)

{Accelerated Differentiated Primal-Dual}

∂Λz̃
[k] = ∂Λz

[k] + τ
[k]
1 UΛ∂Λw

[k] + τ
[k]
1

∂UΛ

∂Λ
w[k] (33)

∂Λz
[k+1] = ∂z̃proxτ [k]

1 (‖·‖q
q)

∗

(
z̃
[k]
) [
∂Λz̃

[k]
]

(34)

∂Λx̃
[k] = ∂Λx

[k] − τ
[k]
2 U∗

Λ
∂Λz

[k+1] − τ
[k]
2

∂UΛ

∂Λ
z[k+1] (35)

∂Λx
[k+1] = ∂x̃proxτ [k]

2 ‖y−Φ·‖2
2

(
x̃
[k]
) [
∂Λx̃

[k]
]

(36)

∂Λw
[k+1] = ∂Λx

[k] + θ[k]
(
∂Λx

[k+1] − ∂Λx
[k]
)

(37)

end for

Outputs:
Finite-time solution of Problem (3) x̂(y;Λ) , x̂

[Kmax]

Finite-time Jacobian w.r.t. hyperparameters ∂Λx̂(y;Λ) ,

∂Λx̂
[Kmax]

Definition 2 (Generalized SURE and SUGAR for sequential estimators). Let
x̂(ℓ;Λ) be a sequential estimator in the sense of (21). The associated risk es-
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timate R̂ν,ε(y;Λ|S) and gradient of the risk estimate ∂ΛR̂ν,ε(y;Λ|S) are com-
puted running Algorithm 1 twice: first with input y (observations), second with
input y + νε (perturbed observations). Then, generalized SURE is computed
from Formula (17), and generalized SUGAR from Formula (19). These steps are
summarized into routines respectively called “SURE” and “SUGAR”, detailed
in Algorithm 2.

3.3 Automatic risk minimization

Theorem 2 provides an asymptotically unbiased estimator of the risk R[x̂](Λ),

denoted R̂ν,ε(y;Λ|S), based on Finite Difference Monte Carlo strategy. Hence,
for sufficiently small Finite Difference step ν > 0, we can expect that the solu-
tion Λ† of Problem (7), minimizing the true risk, is well approximated by the

hyperparameters Λ̂
†

ν,ε minimizing the estimated risk

Λ̂
†

ν,ε(y|S) ∈ Argmin
Λ∈RL

R̂ν,ε(y;Λ|S). (45)

Then, since the dimensionality of Λ ∈ R
L is “low” enough (see Remark 6),

Problem (45) is addressed performing a quasi-Newton descent algorithm, using

the estimated gradient of the risk ∂ΛR̂ν,ε(y;Λ|S), provided by Theorem 3.

A sketch of quasi-Newton descent, particularized to Problem (45), is de-

tailed in Algorithm 3. It generates a sequence
(
Λ[t]

)
t∈N

converging toward a

minimizer of R̂ν,ε(y;Λ|S). This algorithm relies on a gradient descent step (48)

involving a descent direction d[t] obtained from the product of BFGS approx-
imated inverse Hessian matrix H [t] and the gradient ∂ΛR̂ν,ε(y;Λ|S) obtained
from SUGAR (see Algorithm 2). The descent step size α[t] is obtained from a line
search, derived in (47), which stops when Wolfe conditions are fulfilled [22, 49].

Finally, the approximated inverse Hessian matrix H [t] is updated according to
Definition 3.

Remark 8. The line search, Step (47), is the most time consuming. Indeed, the
routines SURE and SUGAR are called for several hyperparameters of the form
Λ[t] + αd[t], each call requiring to run differentiated primal-dual scheme twice.

Definition 3 (BroydenFletcherGoldfarbShanno (BFGS)). Let d[t] be the de-
scent direction and u[t] the gradient increment at iteration t, the approximated
inverse Hessian matrix H [t] BFGS update writes

H [t+1] =

(
IL −

d[t]
(
u[t]
)⊤

(
u[t]
)⊤

d[t]

)
H [t]


IL −

u[t]
(
d[t]
)⊤

(
u[t]
)⊤

d[t]


+ α[t]

d[t]
(
d[t]
)⊤

(
u[t]
)⊤

d[t]
.

(52)

This step constitutes a routine, named “BFGS”, defined as

H [t+1]
, BFGS(H [t],d[t],u[t]). (53)
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Algorithm 2 Generalized SURE and SUGAR for sequential x̂(y;Λ).

Routines: R̂ν,ε(y;Λ|S) = SURE(y,Λ,S, ν, ε)

∂ΛR̂ν,ε(y;Λ|S) = SUGAR(y,Λ,S, ν, ε)

Inputs: Observations y
Regularization hyperparameters Λ
Covariance matrix S

Monte Carlo vector ε ∈ R
P ∼ N (0P , IP )

Finite Difference step ν > 0

{Solution of (3) from Algorithm 1}

x̂(y;Λ) = PD(y,Λ) (38)

x̂(y + νε;Λ) = PD(y + νε,Λ) (39)

{Finite Difference Monte Carlo SURE (17)}

R̂ν,ε(y;Λ|S) = ‖A (Φx̂(y;Λ)− y)‖22 (40)

+
2

ν
〈A∗Π (x̂(y + νε;Λ)− x̂(y;Λ)) ,Sε〉 − Tr(ASA∗)

{Solution of (3) and its differential w.r.t. Λ from Algorithm 1}

(x̂(y;Λ), ∂Λx̂(y;Λ)) = ∂PD(y,Λ) (41)

(x̂(y + νε;Λ), ∂Λx̂(y + νε;Λ)) = ∂PD(y + νε,Λ) (42)

{Finite Difference Monte Carlo estimators (17) and (19)}

R̂ν,ε(y;Λ|S) = ‖A (Φx̂(y;Λ)− y)‖22 (43)

+
2

ν
〈A∗Π (x̂(y + νε;Λ)− x̂(y;Λ)) ,Sε〉 − Tr(ASA∗)

∂ΛR̂ν,ε(y;Λ|S) = 2 (AΦ∂Λx̂(y;Λ))∗ A (Φx̂(y;Λ)− y) (44)

+
2

ν
(A∗Π (∂Λx̂(y + νε;Λ)− ∂Λx̂(y;Λ)))

∗
Sε

Output: Risk estimate R̂ν,ε(y;Λ|S)

Gradient of the risk estimate ∂ΛR̂ν,ε(y;Λ|S)

For detailed discussions on low memory implementations of BFGS, box con-
straints management, and others algorithmic tricks the interested reader is re-
ferred to [12, 22, 49].

Convergence conditions for quasi-Newton algorithms relies on the behavior of
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Algorithm 3 Automated selection of hyperparameters minimizing quadratic
risk.

Inputs: Observations y
Covariance matrix S

Monte Carlo vector ε ∈ R
P ∼ N (0P , IP )

Finite Difference step ν > 0

Initialization: Λ[0] ∈ RL, Inverse Hessian H [0] ∈ RL×L,
Gradient ∂ΛR̂

[0] = SUGAR(y,Λ[0],S, ν, ε)

for t = 0 to Tmax − 1 do

{Descent direction from gradient of the risk estimate:}

d[t] = −H [t]∂ΛR̂
[t] (46)

{Line search to find descent step:}

α[t] ∈ Argmin
α∈R

R̂(Λ[t] + αd[t]), with R̂(Λ) = SURE(y,Λ,S, ν, ε) (47)

{Quasi-Newton descent step on Λ:}

Λ[t+1] = Λ[t] + α[t]d[t] (48)

{Gradient update:}

∂ΛR̂
[t+1] = SUGAR(y,Λ[t+1],S, ν, ε) (49)

{Gradient increment}

u[t] = ∂ΛR̂
[t+1] − ∂ΛR̂

[t] (50)

{BFGS update of inverse Hessian (52):}

H [t+1] = BFGS(H [t],d[t],u[t]) (51)

end for

Outputs:
Finite-time solution of Problem (45) Λ̂

BFGS

ν,ε (y|S) , Λ[Tmax]

Estimate with automated selection of Λ x̂
BFGS
ν,ε (y|S) ,

PD(y,Λ[Tmax])

second derivatives of the objective function [49]. Most of the time, when it comes
to sequential estimators, one has no information about the twice differentiability
of generalized SURE with respect to hyperparameters. Hence, the convergence
of Algorithm 3 will be assessed numerically. Further, quasi-Newton algorithms
being known to be sensitive to initialization, special attention needs to be paid to
the initialization of both hyperparameters Λ and approximated inverse Hessian
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H (see Section 5.2.4).

Remark 9. Given a parametric estimator x̂(y;Λ), possibly obtained by another
routine than PD, Algorithms 2 and 3 can be used, provided that one has a
routine equivalent to ∂PD, computing ∂Λx̂(y;Λ). The reader can find other
differentiated proximal algorithms in [24].

4 Hyperparameter tuning for texture segmen-
tation

The formalism proposed above for the automated selection of the regularization
hyperparameters is now specified to total-variation based texture segmentation.
Section 4.1 formulates the texture segmentation problem as the minimization
of a convex objective function. Then, in Section 4.2, this segmentation pro-
cedure is cast into the general formalism of Sections 2 and 3. The hypothesis
needed to apply Theorems 2 and 3 are discussed one by one in the context of
texture segmentation. Finally, the practical evaluation of the estimators of the
risk R̂ν,ε(ℓ;Λ|S) and of the gradient of the risk ∂ΛR̂ν,ε(ℓ;Λ|S) is discussed in
Section 4.3.

4.1 Total-variation based texture segmentation

4.1.1 Piecewise homogeneous fractal texture model

Let X ∈ R
N1×N2 denote the texture to be segmented, consisting of a real-valued

discrete field defined on a grid of pixels Ω = {1, . . . , N1}× {1, . . . , N2}. Texture
X is assumed to be formed as the union of M independent Gaussian textures,
existing on a set of disjoint supports,

Ω = Ω1 ∪ · · · ∪ ΩM , with Ωm ∩ Ωm′ = ∅ if m 6= m′. (54)

Each homogeneous Gaussian texture, defined on Ωm is characterized by two

global fractal features, the scaling (or Hurst) exponentHm and the variance Σ
2

m,
that fully control its statistics. Interested readers are referred to e.g., [51] for
the detailed definition of Gaussian fractal textures. Figures 1b and 1c propose
examples of such piecewise Gaussian fractal textures, with M = 2 and mask
shown in Figure 1a.

4.1.2 Local regularity and wavelet leader coefficients

It was abundantly discussed in the literature (cf. e.g. [48, 54, 70–72]) that tex-
tures can be well-analyzed by local fractal features (local regularity and local
variance), that can be accurately estimated from wavelet leader coefficients, as
extensively described and studied in e.g. [56,72], to which the reader is referred
for a detailed presentation.

Let χ
(d)
j,n denote the coefficients of the undecimated 2D Discrete Wavelet

Transform of image X , at octave j = j1, . . . , j2 and pixel n ∈ Ω, with the
2D-wavelet basis being defined from the 4 combination (hence the orienta-
tions d ∈ {0, 1, 2, 3}) of 1D wavelet ψ and scaling functions. Interested read-

ers are referred to e.g., [46] for a full definition of the χ
(d)
j,n. Wavelet leaders,
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(a) Elliptic mask (b) X: Texture “D” (c) X: Texture “E”

Figure 1: (a) Mask for piecewise textures composed of two regions: “back-
ground” (in black) on which the texture is characterized by homogeneous local

regularity h̄ ≡ H0 and local variance σ̄2 ≡ Σ
2

0 and “foreground” (in white) on
which the texture is characterized by homogeneous local regularity h̄ ≡ H1 and

local variance σ̄2 ≡ Σ
2

1. (b) and (c) Synthetic piecewise homogeneous textures
used for performance assessment, with resolution 256× 256 pixels.

{Lj,n, j = j1, . . . , j2, n ∈ Ω}, are further defined as local suprema over a spatial

neighborhood and across all finest scales of the χ
(d)
j,n [72]:

Lj,n = sup
d = {1, 2, 3}
λj′,n′ ⊂ 3λj,n

∣∣∣2jχ(d)
j′,n′

∣∣∣ , where

{
λj,n =

[
n, n+ 2j

[
,

3λj,n = ∪
p∈{−2j ,0,2j}2

λj,n+p.

(55)

Local regularity h̄n and local variance σ̄2
n at pixel n can be defined via the local

power law behavior of the wavelet leaders across scales [71, 72]:

Lj,n = σ̄n2
jh̄nβj,n, as 2j → 0, (56)

where βj,n can be well approximated for large classes of textures [70] as log-
normal random variables, with log-mean µ = 0. For piecewise fractal textures
X described in Section 4.1.1, local regularity h̄ ∈ R

N1×N2 and local variance
σ̄2 ∈ R

N1×N2 maps are piecewise constant, reflecting the global scaling exponent
H and variance Σ2 of the homogeneous textures as:

(∀m ∈ {1, . . . ,M})
(
∀n ∈ Ωm

)
h̄n ≡ Hm and σ̄2

n ≡ Σ
2

mF (Hm, ψ), (57)

with F (Hm, ψ) a deterministic function studied in [68] and not of interest here.
Taking the logarithm of Equation (56) leads to the following linear formulation

ℓj,n = v̄n + jh̄n + ζj,n, as 2j → 0 (58)

with log-leaders ℓj,n = log2(Lj,n), log-variance v̄n = log2 σ̄n and zero-mean
Gaussian noise ζj,n = log2(βj,n). In the following, the leader coefficients at scale
2j are denoted ℓj ∈ R

N1N2 , and the complete collection of leaders is stored in
ℓ ∈ R

JN1N2 .
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4.1.3 Total variation regularization and iterative thresholding

The linear regression estimator inspired by (58)

(
ĥLR(ℓ)
v̂LR(ℓ)

)
= argmin(

h
v

)
∈R2N1N2

j2∑

j=j1

‖jh+ v − ℓj‖
2
2 (59)

achieves poor performance in estimating piecewise constant local regularity and
local power, hence precluding an accurate segmentation of the piecewise homo-
geneous textures. Thus, a functional for joint attribute estimation and segmen-
tation was proposed in [51], leading to the following Penalized Least Squares (3):

(
ĥ(ℓ;Λ)
v̂(ℓ;Λ)

)
∈ Argmin(

h
v

)
∈R2N1N2

j2∑

j=j1

‖jh+ v − ℓj‖
2
2 + λhTV(h) + λvTV(v), (60)

where TV stands for the well-known isotropic Total Variation, defined as a
mixed ℓ2,1-norm composed with spatial gradient operators

TV(h) =
∑

n∈Ω

√
(D1h)

2
n + (D2h)

2
n =

∑

n∈Ω

‖(Dh)n‖2, (61)

where D1 : RN1N2 → R
N1N2 (resp. D2 : RN1N2 → R

N1N2) stand for the discrete
spatial horizontal (resp. vertical) gradient operator. This TV-penalized least

square estimator is designed to favor piecewise constancy of the estimates ĥ and
v̂, making used of ℓ1-norm, i.e. q = 1 in (3).

Finally, following [14,15], the estimate ĥ(ℓ;Λ) is thresholded to yield a posterior

piecewise constant map of local regularity T ĥ(ℓ;Λ), taking exactly M different

values Ĥ1(ℓ;Λ), . . . , ĤM (ℓ;Λ). The resulting segmentation

Ω = Ω̂1(ℓ;Λ) ∪ · · · ∪ Ω̂M (ℓ;Λ) (62)

is deduced from T ĥ(ℓ;Λ), defining

(∀m ∈ {1, . . . ,M}) , Ω̂m(ℓ;Λ) =

{
n ∈ Ω

∣∣∣∣
(
T ĥ(ℓ;Λ)

)
n
≡ Ĥm(ℓ;Λ)

}
. (63)

This is illustrated in Figure 2, for a two-region synthetic texture with ground
truth piecewise constant local regularity h̄ in Figure 2a.

4.2 Reformulation in term of Model (1)

4.2.1 Observation y

To cast the log-linear behavior (58) into the general model (1), vectorized quan-
tities for v̄, h̄ and ℓ are used. The N1 ×N2 maps h̄ and v̄ are reshapped into
vectors x̄ ∈ R

N , with N = 2N1N2, ordering the pixels in the lexicographic
order. The log-leaders ℓ = (ℓj)j1≤j≤j2

, composed of J , j2 − j1 + 1 octaves of
resolution N1 × N2 are vectorized, octaves by octaves, with lexical ordering of
pixels, ℓ ∈ R

P , with P = JN1N2.
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(a) Ground truth h̄ (b) Estimate ĥ(ℓ;Λ) (c) Thresholded T ĥ(ℓ;Λ)

Figure 2: Example of the thresholding of ĥ(ℓ;Λ) to obtain a two-region seg-
mentation where ℓ denotes the wavelet learders associated with the Texture
X : “E” displayed in Figure 1c

Equation (58) can then be cast into general model (1) as:

Observations y = ℓ ∈ R
P , P = JN1N2 (64)

Ground truth x̄ =

(
h̄

v̄

)
∈ R

N , N = 2N1N2 (65)

Linear degradation Φ :





R
N → R

P
(
h̄

v̄

)
7→
(
jh̄+ v̄

)
j1≤j≤j2

.
(66)

4.2.2 Full-rank operator Φ

Proposition 3 asserts that Φ∗Φ is invertible (Assumption 2).

Proposition 3. The linear operator Φ defined in (66) is bounded and its adjoint
writes

Φ∗ :





R
P → R

N

(ℓj)j1≤j≤j2
7→




∑j2
j=j1

jℓj

∑j2
j=j1

ℓj


 (67)

Further, Φ is full rank, and the following inversion formula holds

(Φ∗Φ)
−1

=
1

F2F0 − F 2
1

(
F0IN/2 −F1IN/2

−F1IN/2 F2IN/2

)
, Fα ,

j2∑

j=j1

jα, α ∈ {0, 1, 2}.

(68)

Proof. Formula (67) is obtained from straightforward computations. Then,
combining (66) and (67), leads to

Φ∗Φ =

(
F2IN/2 F1IN/2

F1IN/2 F0IN/2

)
(69)

which is finally inverted using the 2× 2 cofactor matrix formula.
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4.2.3 Projection operator

Performing texture segmentation the discriminant attribute is the local regular-
ity h, while local power v is an auxiliary feature. Hence the projected quadratic
risk (10) customized to texture segmentation reads:

R[ĥ](Λ) , Eζ

∥∥∥ĥ(ℓ;Λ)− h̄
∥∥∥
2

2
, (70)

with ĥ(ℓ;Λ) defined in (60).
Then, the particularized projection operator in Definition 1 takes the matrix

form

Π ,

(
IN/2 ZN/2

ZN/2 ZN/2

)
so that Π

(
h̄

v̄

)
=

(
h̄

0N/2

)
(71)

where IN/2 (resp. ZN/2) denotes the identity (resp. null) matrix of size N/2×

N/2 and 0N/2 the null vector of RN/2.

4.2.4 Regularity of the estimates

Proposition 4. Problem (60) has a unique solution

(
ĥ(ℓ;Λ)
v̂(ℓ;Λ)

)
.

This solution is continuous and weakly differentiable w.r.t. ℓ and integrable
against the Gaussian probability density function (Assumption 3). Further, both

ĥ(ℓ;Λ) and v̂(ℓ;Λ) are uniformly L1-Lipschitz w.r.t. ℓ (Assumption 4).

Proof. As shown in [51], the objective function

(h,v) 7→

j2∑

j=j1

‖jh+ v − ℓj‖
2
2

︸ ︷︷ ︸
∥∥∥∥Φ

(
h
v

)
−ℓ

∥∥∥∥
2

2

+λhTV(v) + λvTV(v) (72)

is convex, being the sum of convex terms. Further, computing the eigenvalues of
Φ∗Φ shows that the least squares data fidelity term is γ-strongly convex, with

γ = 2min Sp(Φ∗Φ) > 0 (73)

where Sp(Φ∗Φ) stand for the spectrum of the (bounded) linear operator Φ∗Φ.
Hence, the objective function (72) has a unique minimum, being the unique
solution of Problem (60), as mentioned in Remark 1.
Further, (60) falls under the general formulation of Penalized Least Squares (3),
which can be written

x̂(y;Λ) = argmin
x∈H

‖y −Φx‖2W + JΛ(x), (74)

where JΛ(x) = ‖UΛx‖1 is built from a linear operator UΛ depending on reg-
ularization parameters λh and λv as

Λ =

(
λh
λv

)
∈ R

2
+, and UΛ =





R
2N1N2 → R

2N1N2 × R
2N1N2(

h

v

)
7→

((
λhD1h

λvD1v

)
,

(
λhD2h

λvD2v

))
.

(75)
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JΛ is convex, proper and lower semicontinuous, then, following [67], (74) can
be rewritten as a constrained optimization problem

(x̂(y;Λ), ẑ(y;Λ)) = argmin
x∈H,z∈G

‖y − z‖2W + JΛ(x), such thatz = Φx (76)

⇐⇒ ẑ(y;Λ) = argmin
z∈G

‖y − z‖2W + (ΦJΛ) (z) (77)

⇐⇒ ẑ(y;Λ) = prox(1/2)ΦJΛ
(y) (78)

where

(ΦJΛ) (z) , min
{x|Φx=z}

JΛ(x) (79)

denotes the pre-image of JΛ under Φ, which is as well convex, proper and lower
semicontinuous.
Then, from (78), the estimator ẑ(y;Λ) is non expansive, i.e. 1-Lipschitz, be-
cause the proximal operators share that same property. Moreover, from (76),
ẑ(y;Λ) = Φx̂(y;Λ), and since Φ is full-rank according to Proposition 3

x̂(y;Λ) = (Φ∗Φ)
−1

Φ∗ẑ(y;Λ). (80)

Φ being bounded, we conclude that the estimator x̂(y;Λ) is uniformly L1-
Lipschitz, with L1 = ‖Φ‖−1 justifying Assumption 4, (i).
Being uniformly L1-Lipschitz, x̂(y;Λ) is continuous and weakly-differentiable
(see Theorem 5 of Section 4.2.3 in [32]). As a consequence, both 〈A∗Πx̂(y;Λ), ζ〉
and ∂Λx̂(y;Λ) are integrable against the Gaussian density and Assumption 3
holds.
Finally, setting y = 0P , for any Λ ∈ R

L, x̂(0P ;Λ) = 0N reaches the minimum.
The solution being unique from Proposition 3, 0N is the unique solution and
Assumption 4, (ii) is verified.
Further, it is reasonable to expect that the uniform Lipschitzianity with re-
spect to hyperparameters results of Remark 5, extend to the estimator ĥ(ℓ;Λ),
defined in (60). Yet, to the best of our knowledge, no direct proof that Lips-
chitzianity Assumption 5 holds for general Penalized Least Squares exists. This
issue is a scientific question in itself and will be addressed in future work.

4.3 Practical computation of R̂ν,ε and ∂ΛR̂ν,ε

This section addresses all technical issues encountered in running Algorithm 2,
in the context of texture segmentation described above.

4.3.1 Covariance structure of the observations

The additive noise ζj,n appearing in Equation (58) being Gaussian, Gaussianity
Assumption 1 holds. The covariance matrix S of noise ζ reads

S
j′,n′

j,n , E ζj,nζj′,n′ = Cj′

j Ξj′

j (n− n′), (81)

where

Cj′

j , E ζj,nζj′,n, Cj′

j independent of n (82)

quantifies the inter-scale covariance, and Ξj′

j encapsulate the stationary spatial

correlations, with correlation length proportional to max(2j, 2j
′

).
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4.3.2 Matrix product Sε

Following Remark 4, in general, the direct product Sε required for the practical
evaluation of Finite Difference Monte Carlo SURE (17) is intractable because
of the large size of matrix S. Yet, in the case of log-leaders, the spatial correla-
tions presenting the Toeplitz structure (81), the product Sε can be computed
efficiently, making (17) usable in practice.

Indeed, given ε ∈ R
JN1N2 = (εj)

j2
j=j1

J , with εj ∈ R
N1N2 ,

(Sε)j,n =

j2∑

j′=j1

∑

n′∈Ω

S
j′,n′

j,n εj′,n′ =

j2∑

j′=j1

Cj′

j

∑

n′∈Ω

Ξj′

j (n− n′)εj′,n′ =

j2∑

j′=j1

Cj′

j Ξj,j′ ∗ εj .

(83)

which is the sum of J convolution products, denoted ∗, of high dimensional

vector ε ∈ R
N1N2 with “low dimensional” finite support window Cj′

j Ξj,j′ . Hence
evaluating Sε appears to be far less costly than a general product of matrix of
size P × P by a vector of size P .

4.3.3 Operator A

In the same vein, the matrices Φ∗ (67), (Φ∗Φ)
−1

(68) and Π (71) turn out to be
very sparse, since they act independently on each pixel. Thus, the same sparse
(pixel-wise) structure follows for

A = Π (Φ∗Φ)
−1

Φ∗ =
1

F0F2 − F 2
1

(
(F0 + j1F1)IN/2 · · · (F0 + j2F1)IN/2

ZN/2 · · · ZN/2

)
.

(84)

Hence the products A∗Πx̂(y;Λ) and A∗Π∂Λx̂(y;Λ), appearing in the Finite
Difference Monte Carlo risk (17) and gradient of the risk (19) estimators, are
very cheap to compute, involving O(N) operations.

4.3.4 Evaluation of Tr(ASA∗)

The evaluation of risk estimate R̂ν,ε(ℓ;Λ|S), at Step (40) of generalized SURE
and SUGAR Algorithm 2 requires the computation of the trace of an N × N
matrix, with N possibly of order 106, e.g. in image processing.
In the present application, combining the structure of covariance matrix S (81)
and the sparse expression of A (84), provides a compact expression of the third
term of generalized SURE (17) detailed in Proposition 5, which can be evaluated
with very little computational effort.

Proposition 5 (Third term of Stein Unbiased Risk Estimate). Consider tex-
ture’s leader coefficients (58), whose covariance matrix S evidences the sparse
structure described in (81). Define the linear operator A from Formula (9),
using operator Φ (66) and projector Π (71). Then, the third term of Stein
estimator of the risk (17) reads

Tr(ASA
∗) =

N/2

(F0F2 − F 2
1 )

2



∑

j,j′

(
F 2
1 C

j′

j − 2F0F1j
′Cj′

j + F 2
0 jj

′Cj′

j

)

 , (85)
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where the quantities {Fα, α = 0, 1, 2} are defined in (68) and Cj′

j denotes the

covariance between scales 2j and 2j
′

, as defined in (82).

Proof. Proof is postponed to Appendix D.

5 Hyperparameter tuning performance assess-
ment

The aim of this section is to assess quantitatively, by means of numerical sim-
ulations, the performance in the estimation of the optimal hyperparamaters.
To that end, Section 5.1 will detail the numerical simulation set-up and Sec-
tion 5.2 will concentrate on several algorithmic issues. Section 5.3 will show on
the prominent role of covariance matrix S, evaluating the impact of partial vs.
full covariance matrix in Section 5.3.2 and comparing true vs. estimated covari-
ance matrix in Section 5.3.3. Section 5.4 will further assess quantitatively how
well optimal hyperparameters are estimated in the absence of available ground
truth, with respect to different quality metrics.

5.1 Numerical simulation set-up

5.1.1 Textures

For sake of simplicity, we consider the two-region caseM = 2, with elliptic mask
displayed in Figure 1a. Synthetic textures of resolution N1 × N2 = 256× 256,
characterized by two attributes configurations:

• Configuration “D”, “difficult”, one realization being displayed in Figure 1b

(
H1,Σ

2

1

)
= (0.5, 0.6) (background),(

H2,Σ
2

2

)
= (0.75, 0.7) (central ellipse).

• Configuration “E”, “easy”, one realization being displayed in Figure 1c

(
H1,Σ

2

1

)
= (0.5, 0.6) (background),(

H2,Σ
2

2

)
= (0.9, 1.1) (central ellipse).

are generated from a Matlab routine designed by ourselves (see [51]).

5.1.2 Multiscale analysis

A 2D undecimated wavelet transform of the textured image is computed at scale
2j , with mother wavelet obtained as a tensor product of 1D least asymmetric
Daubechies wavelets, with 3 vanishing moments, see [46] for more details.
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5.1.3 Performance evaluation

Following [51, 52], for a given textured image X , and the derived log-leaders

(ℓj)
j2
j=j1

, two performance indices are used:

• The one-sample quadratic risk on local regularity, computed from one
sample of log-leaders ℓ computed on the single image X

R(ℓ;Λ) ,
∥∥∥ĥ(ℓ;Λ)− h̄

∥∥∥
2

2
, (86)

with estimator ĥ(ℓ;Λ) defined in (60) and ground truth h̄ defined in (57).

• The segmentation error, defined as the percentage of incorrectly classified
pixels

P(ℓ;Λ) ,
∣∣∣Ω1 ∩ Ω̂2(ℓ;Λ)

∣∣∣+
∣∣∣Ω̂1(ℓ;Λ) ∩Ω2

∣∣∣ , (87)

where ∪mΩ̂m(ℓΛ) is the estimated partition (62), obtain from TV-based
texture segmentation, as described in Section 4.1.3.

Remark 10. By definition of the quadratic risk (70) and one-sample quadratic

risk (86), EζR(ℓ;Λ) = R[ĥ](Λ). In practice however, only one realization of

ℓ is available, hence the quadratic risk R[ĥ](Λ) is not accessible. Thus, in the
following experiments, the one-sample quadratic risk R(ℓ;Λ), defined in (86), is

used as a reference to which Stein risk estimator R̂ν,ε(ℓ;Λ|S) will be compared.

5.2 Algorithmic set-up

5.2.1 Primal dual with iterative differentiation

Problem (60) is solved using the accelerated primal-dual algorithm 1, with pri-
mal variable x , (h,v), taking advantage of strong-convexity of the data fidelity
term. The maximal number of iterations is set to Kmax = 5 105, and a threshold
on the normalized duality gap is set to 10−4 (see [51]).

5.2.2 Scaling range

The estimation of piecewise constant local attributes requires to focus on fine
scales. Thus, ideally, the least square term (59) would involve the two finest
scales of the multiscale representation, and range from j1 = 1 to j2 = 2. Yet,
the efficiency of acceleration strategy of Algorithm 1 increases with the strong-
convexity modulus γ (73), displayed in Table 1, which is observed to increase
with j2, as j1 = 1 is fixed. Thus, a trade-off between locality and convergence
speed leads to select j2 = 3.

5.2.3 Finite Difference Monte Carlo parameters

The Monte Carlo vector ε ∈ R
P , P = JN1N2, is drawn randomly, according to

a i.i.d. normalized Gaussian N (0P , IP ). We adapt the heuristic of [24] or the
Finite Difference step ν to the case of correlated noise as

ν =
2

Pα
max

(√
Cj

j , j ∈ {1, . . . , J}

)
, α = 0.3, (88)
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j2 = 2 j2 = 3 j2 = 4 j2 = 5 j2 = 6

γ 0.29 0.72 1.20 1.69 2.20

Table 1: Strong-convexity modulus γ of data-fidelity term of (72), computed
from Formula (73), for fixed j1 = 1 and varied j2. The bold entry correspond
to the range of scales used in the experiments of Sections 5.

where Cj
j is the variance of the log-leaders ℓj at scale 2j .

The derivatives with respect to hyperparameters of the estimates, ∂Λĥ, ∂Λv̂,
are obtained by iterative differentiation of primal dual algorithm, customized to
texture segmentation in Appendix 1.

5.2.4 BFGS quasi-Newton initialization and parameters

To perform the risk minimization sketched in Algorithm 3, we used the GRadient-
based Algorithm for Non-Smooth Optimization, implemented in GRANSO tool-
box3, from the BFGS quasi-Newton algorithm proposed in [22]. It consists of a
low memory BFGS algorithm with box constraints, enabling to enforce positive
λh and λv. The maximal number of iterations of BFGS Algorithm 3 is set to
Kmax = 250, while the stopping criterion on the gradient norm is set to 10−6.
As mentioned in Section 3.3, the initialization of quasi-Newton algorithms might
drastically impact their convergence. Hence, we propose a model-based strategy
for initializing Λ and H . The initialization of λh and λv is performed by bal-
ancing the data fidelity term and the penalization appearing of functional (72).
The data fidelity term grows like the variance of the noise

E

j2∑

j=j1

‖jh̄+ v̄ − ℓj‖
2
2 = tr(S), (89)

and the penalization term can be evaluated using
(
ĥLR, v̂LR

)
introduced in (59).

Thus, the initial hyperparameters Λ for BFGS Algorithm 3 are set to

Λ[0] =
(
λ
[0]
h , λ[0]v

)
, where λ

[0]
h =

tr(S)

2TV(ĥLR(ℓ))
, and λ[0]v =

tr(S)

2TV(v̂LR(ℓ))
.

(90)

The inverse Hessian matrix H [0] ∈ R
2×2, is initialized to enforce Λ[1] = (1 ±

κ)Λ[0]. It is chosen diagonal with coefficients

H [0] = diag

(∣∣∣∣∣
κλ

[0]
h

∂λh
R̂ν,ε(ℓ;Λ

[0]|S)

∣∣∣∣∣ ,
∣∣∣∣∣

κλ
[0]
v

∂λv
R̂ν,ε(ℓ;Λ

[0]|S)

∣∣∣∣∣

)
. (91)

In practice, we used κ = 0.5 for all experiments. It is observed that this choice
of H [0] avoids the first iteration falling away from natural hyperpamaters scal-
ing (90), which would induce huge computational cost to reach to optimal hy-
perparameters.

3http://www.timmitchell.com/software/GRANSO/
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5.3 Covariance of leaders

5.3.1 Covariance estimation procedure

No closed-form formula exists to compute exactly the covariance matrix S from
the texture’s attributes. Hence, from one sample ℓ, computed from a single tex-
ture X , the estimated covariance matrix, denoted Ŝ, is computed using classic
sample covariance estimator:

Ŝj′,n′

j,n ,
1

|Ω|

∑

n∈Ω

ℓj,nℓj′,n+δn −


 1

|Ω|

∑

n∈Ω

ℓj,n




 1

|Ω|

∑

n∈Ω

ℓj′,n


 , (92)

for spatial lag δn , n′ − n, leading to inter-scale covariance

Ĉj′

j = Ŝj′,n
j,n (93)

and spatial correlations

Ξ̂j′

j (δn) =
Ŝ
j′,n′

j,n

Ĉj′

j

. (94)

Then, for Textures “D” and “E”, a true covariance matrix S is obtained numer-

ically by averaging the above estimated covariance matrix Ŝ
(q)

over Q = 5000
texture samples as:

S ,

〈
Ŝ

(q)
〉Q

q=1

, (95)

the samples being generated with the mathematical model of [51].

5.3.2 Impact of partial versus full covariance on estimated risk

We now assess the impact of using two partial versions of the full true covariance
matrix S, described in (95):

1. Variance matrix Svar neglecting both inter-scale and spatial correlations,
reduces to the variances Cj

j of the ℓj ’s, and hence is diagonal

Svar
j′,n′

j,n = Cj
j δj,j′δn,n′ . (96)

2. Inter-scale covariance matrix S int, neglecting spatial correlations, reduces

to cross-correlations Cj′

j between the ℓj ’s and the ℓj′ ’s at same location

Sint
j′,n′

j,n = Cj′

j δn,n′ . (97)

For texture “D”, both R̂ν,ε(ℓ;Λ|Svar) (Fig. 3e) and R̂ν,ε(ℓ;Λ|S int) (Fig. 3i)

fail to reproduceR(ℓ;Λ) (Fig. 3a). Hence, the selected hyperparameters Λ̂
†

ν,ε(ℓ|Svar) (‘�’)

and Λ̂
†

ν,ε(ℓ|S int) (‘⋄’) do not coincide with the optimal ΛR (‘+’). The corre-

sponding segmentations, T ĥ(ℓ; Λ̂
†

ν,ε(ℓ|Svar)) (Fig. 3f) and T ĥ(ℓ; Λ̂
†

ν,ε(ℓ|S int))
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(Fig. 3j), differ significantly from the targeted T ĥ(ℓ;ΛR) (Fig. 3b).

On the opposite, R̂ν,ε(ℓ;Λ|S) (Fig. 3m) perfectly matches R(ℓ;Λ) (Fig. 3a).
Thanks to the exact computation of the constant term Tr(ASA∗) in Proposi-

tion 5, the order of magnitude R(ℓ;Λ) is well reproduced by R̂ν,ε(ℓ;Λ|S), as

observed on the colorbars in Figure 3. Further, Λ̂
†

ν,ε(ℓ|S int) (‘△’) coincides

with ΛR (‘+’), leading to segmentation T ĥ(ℓ; Λ̂
†

ν,ε(ℓ|S)) (Fig. 3n) similar to

T ĥ(ℓ;ΛR) (Fig. 3b).
Similar observations can be made for Texture “E” at columns 3, 4 of Figure 3.

Altogether, these two examples illustrate that the full covariance is necessary
so that R̂ν,ε(ℓ;Λ|S) provides an accurate estimate of R(ℓ;Λ). Moreover, ΛR

appears to be well approximated by the optimal hyperparameters Λ†
ν,ε(ℓ|S),

obtained using full covariance.

5.3.3 Impact of estimating the covariance matrix

In practice, on has access to only the estimated covariance matrix Ŝ. This
Section compares generalized SURE computed from estimated covariance Ŝ to
SURE computed assuming the knowledge of true covariance S.

For Texture “D”, R̂ν,ε(ℓ;Λ|Ŝ) (Figure 4b) is identical to R̂ν,ε(ℓ;Λ|S) (Fig-

ure 4a). Further, optimal hyperparameters Λ̂
†

ν,ε(ℓ|Ŝ) (‘△’) perfectly matches

Λ̂
†

ν,ε(ℓ|S) (‘△’) and lead to similar segmentations, T ĥ(ℓ; Λ̂
†

ν,ε(ℓ|Ŝ)) (Figure 4f)

and T ĥ(ℓ; Λ̂
†

ν,ε(ℓ|S)) (Figure 4e). These observations are precisely quantified
in Table 2 in term of values of R(ℓ;Λ) and percentage of misclassified pixels.
The same observations can be made for Texture “E”.

Altogether, Figure 4 and the quantitative results reported in Table 2 show

that R̂ν,ε(ℓ;Λ|Ŝ) provides an accurate estimate of R(ℓ;Λ), and that Λ̂
†

ν,ε(ℓ|Ŝ)
is a good estimate of ΛR.

Texture “D” Texture “E”

Hyperparameter Λ R(ℓ;Λ) P(ℓ;Λ) R(ℓ;Λ) P(ℓ;Λ)

ΛR ‘+’ 2.32 103 7.79% 2.66 103 5.34%

Λ̂
†

ν,ε(ℓ|S) ‘△’ 2.35 103 5.51% 2.83 103 9.58%

Λ̂
†

ν,ε(ℓ|Ŝ) ‘△’ 2.35 103 5.51% 2.96 103 4.61%

Λ̂
BFGS

ν,ε (ℓ|S) ‘▽’ 2.36 103 4.66% 2.83 103 3.71%

Λ̂
BFGS

ν,ε (ℓ|Ŝ) ‘▽’ 2.36 103 6.22% 2.83 103 3.27%

Table 2: Grid search v.s. BFGS Algorithm 3 performance in term of
quadratic error R(ℓ;Λ) and segmentation error P(ℓ;Λ) for the two different
Textures “D” and “E”.
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Texture “D” Texture “E”

(a) R(ℓ;Λ) (b) Min. R ‘+’ (c) R(ℓ;Λ) (d) Min. R ‘+’

(e) R̂ν,ε(ℓ;Λ|Svar)
(f) Min. R̂.(·|Svar)
‘�’

(g) R̂ν,ε(ℓ;Λ|Svar)
(h) Min. R̂.(·|Svar)
‘�’

(i) R̂ν,ε(ℓ;Λ|S int)
(j) Min. R̂.(·|S int)
‘⋄’

(k) R̂ν,ε(ℓ;Λ|S int)
(l) Min. R̂.(·|S int)
‘⋄’

(m) R̂ν,ε(ℓ;Λ|S) (n) Min. R̂.(·|S) ‘△’ (o) R̂ν,ε(ℓ;Λ|S) (p) Min. R̂.(·|S) ‘△’

(q) P(ℓ;Λ) (r) Min. P ‘∗’ (s) P(ℓ;Λ) (t) Min. P ‘∗’

Figure 3: Error maps for TV-based texture segmentation on a grid of Λ =
(λh, λv), and segmentation obtained with associated optimal hyperparameters
for piecewise Textures “D” (column 1, 2) and “E” (column 3, 4). Estimated risks

R̂νε(ℓ;Λ|S) computed either with variance matrix Svar (second row), inter-scale
covariance matrix S int (third row), or full covariance matrix S (fourth row) are
compared.
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Texture “D” Texture “E”

(a) R̂ν,ε(ℓ;Λ|S) (b) R̂ν,ε(ℓ;Λ|Ŝ) (c) R̂ν,ε(ℓ;Λ|S) (d) R̂ν,ε(ℓ;Λ|Ŝ)

(e) Min. R̂.(·|S) ‘△’ (f) Min. R̂.(·|Ŝ) ‘△’ (g) Min. R̂.(·|S) ‘△’ (h) Min. R̂.(·|Ŝ) ‘△’

(i) Auto. selec. ‘▽’ (j) Auto. selec. ‘▽’ (k) Auto. selec. ‘▽’ (l) Auto. selec. ‘▽’

Figure 4: Generalized SURE computed either from true covariance matrix
S (95), or from estimated covariance matrix (92) for Textures “D” and “E” (first
row). Segmentations obtained minimizing the above generalized SURE (second
row). Segmentations obtained with automated selection of hyperparameters
from Algorithm 3, using generalized SUGAR with either true covariance matrix
or estimated covariance matrix (third row).

5.4 Automated selection of hyperparameters

Section 5.3 has shown the relevance of Algorithm 3 by comparing its performance
against those obtained from a grid search on hyperparameters Λ. Section 5.4
will now test the practical effectiveness of the proposed procedure by assessing
the convergence of the quasi-Newton algorithm and corresponding performance
in hyperparameter selection and segmentation, avoiding the recourse to any
ground truth and hence to the greedy and unfeasible grid search.

5.4.1 Effective convergence of quasi-Newton Algorithm

The convergence of quasi-Newton Algorithm 3 is assessed empirically comparing

automatically selected hyperparameters Λ̂
BFGS

ν,ε with optimal hyperparameters

found from exhaustive grid search Λ̂
†

ν,ε.

Figures 4a and 4b illustrate that Λ̂
BFGS

ν,ε (ℓ|S) (‘▽’) and Λ̂
BFGS

ν,ε (ℓ|Ŝ) (‘▽’)

respectively match Λ̂
†

ν,ε(ℓ|S) (‘△’) and Λ̂
†

ν,ε(ℓ|Ŝ) (‘△’) in the case of Tex-
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ture “D”. Similar conclusions can be drawn from Figures 4c and 4d for Tex-
ture “E”.

Figure 4 and the quantitative results provided in Table 2 show the conver-
gence of Algorithm 3 using S (resp. Ŝ) toward the minimum of R̂ν,ε(ℓ;Λ|S)

(resp. R̂ν,ε(ℓ;Λ|Ŝ)).

In term of computational cost, Algorithm 3 requires an average of 40 calls
of Algorithm 1, compared to 225 calls needed to perform grid search at Sec-
tion 5.3.2.

5.4.2 Automated selection of Λ and segmentation performance

Ten realizations of Textures “D” and “E” are generated following the proce-
dure described in Section 5.1.1. For each of them, Algorithm 3 is run twice, first
using S and second using Ŝ.

Since here no grid search is performed, the minimum value of quadratic risk
is unknown. The performance will hence be measured in terms of normalized
one-sample quadratic risk R̃ defined as

R̃(ℓ|S) =
R(ℓ; Λ̂

BFGS

ν,ε (ℓ|S))

‖ĥLR(ℓ)− h̄‖22
=

‖ĥ
BFGS

ν,ε (ℓ|S)− h̄‖22

‖ĥLR(ℓ)− h̄‖22
, (98)

measuring the improvement of the estimation achieved using TV-based texture
segmentation (60) with hyperparameters automatically selected by Algorithm 3,

compared to the classical least square estimate ĥLR.
Averaged performance over ten realizations, presented in Table 3, show that

the quadratic risk R obtained is decrease by a factor of 16 for Texture “D”
and of 14 for Texture “E”. The corresponding segmentation error is as low as
6% for Texture “D”, and 3% for Texture “E”. Further, the use of estimated
covariance matrix does not degrade achieved performance compare to using true
covariance matrix.

Hence, Algorithm 3, using the estimated covariance Ŝ, computed from (92),
provides an efficient, parameter-free, automated and data-driven texture seg-
mentation procedure.

Texture “D” Texture “E”

Covariance matrix S Ŝ S Ŝ

R̃(ℓ|·) 0.060± 0.003 0.057± 0.002 0.071± 0.003 0.073± 0.004

P(ℓ; Λ̂
BFGS

ν,ε (ℓ|·)) (%) 5.4± 0.7 6.8± 1.5 3.3± 0.7 2.8± 0.3

Table 3: Averaged performance of TV-based texture segmentation with auto-
mated selection of hyperparameters.
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6 Conclusion

This work was focused on devising a procedure for the automated selection of
the hyperparameters of parametric estimators, such as e.g., parametric linear
filtering or penalized least squares. The main result obtained here consists of
a theoretically grounded and practical operational fully-automated data driven
procedure, that requires neither ground truth nor expert-based knowledge and
work satisfactorily even when applied to a single observation of data.

To that end, Stein Unbiased Risk Estimator (SURE) was rewritten to ac-
count for additive correlated Gaussian noise, with any covariance structure. The
main contribution compared to state-of-the-art procedure relies on including the
covariance matrix of the noise only in SURE, rather than in the data fidelity
term. The benefit is twofold: handling with a strongly convex function when
Penalized Least Square is considered, and avoiding costly, if not intractable,
inversion of the covariance matrix. Differentiating this Generalized SURE with
respect to hyperparameters, an estimator for the risk gradient was designed, per-
mitting to propose a Generalized Finite Difference Monte Carlo Stein Unbiased
GrAdient Risk (SUGAR) estimate. The asymptotic unbiasedness of General-
ized SUGAR was assessed theoretically, based on regularity assumptions on the
parametric estimator.
Further, the case of sequential parametric estimators is discussed in depth in
the case of primal-dual minimization scheme for Penalized Least Squares and a
differentiated scheme is derived.

Embedding Generalized SURE and SUGAR into a quasi-Newton algorithm
enabled to perform an automated risk minimization. An explicit algorithm per-
mitting to implement the minimization was proposed.

To assess the performance of this automated hyperparameter selection proce-
dure devised in a general setting, it has been customized to the specific problem
of texture segmentation, based on multiscale descriptors (wavelet leaders) and
nonsmooth Total-Variation based penalization. This problem is uneasy because
observations are in nature multiscale, with inhomogeneous variance across scales
and correlations both across scales and in space at each scale. Further, vari-
ances and correlations are unknown and need to be estimated directly from data.

Numerical simulations, conducted on ten realizations of synthetic piecewise
fractal textures, permitted to show that the proposed strategy yield satisfactory
performance in selecting automatically the penalization hyperparameter, lead-
ing to excellent texture segmentation, with no ad-hoc (or expert-based) tuning
and without prior knowledge for ground truth, and using one-sample estimate
of the covariance matrix.

The corresponding Matlab routines, developed by ourselves and imple-
menting these tools, ready for applications to real-world texture segmentation,
where hyperparameter tuning constitutes an on-going hot topic, will be made
publicly available to the research community in a documented toolbox at the
time of publication.
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A Proof of Theorem 1

Proof. For ease of computation we first define the predictor in Definition 4 and
the ground truth prediction in Definition 5.

Definition 4 (Predictor). From the estimator of underlying features x̂(y;Λ)
one can equivalently consider a prediction estimator

ŷ(y;Λ) , Φx̂(y;Λ). (99)

Indeed, from Assumption 2, Φ∗Φ is invertible, and the relation (99) can be
inverted computing

x̂(y;Λ) = (Φ∗Φ)
−1

Φ∗ŷ(y;Λ). (100)

Definition 5 (Prediction ground truth). The noise-free observation writes

ȳ , Eζy = Φx̄. (101)

Thus, the quadratic risk defined in (10) can be expressed using operator A
defined in (9) as

R[x̂](Λ) = Eζ ‖Πx̂(y;Λ)−Πx‖22 = Eζ‖Π (Φ∗Φ)
−1

Φ∗ (ŷ(y;Λ)− ȳ)‖22,
(102)

(9)
= Eζ‖A (ŷ(y;Λ)− ȳ)‖22

which will be easier to manipulate in the following when expressed in term of
noise-free (or noisy) observations ȳ (or y) and prediction ŷ.

By construction, the matrix A, defined in (9), performs both:

• The projection on the interest subspace I of H via the linear operator Π.

• The transition from predicted quantities ŷ to estimated features x̂, mak-
ing use of relation (100).

From now, for sake of simplicity, we make implicit the dependency of x̂ in
(y;Λ). From the model (1) and the Assumption 1 on the noise probability
distribution, one directly derive two useful relations:

Eζ ‖A (y − ȳ)‖22
(101)
= Eζ ‖A (y −Φx̄)‖22 = Eζ ‖Aζ‖22

Hyp. 1
= Tr(ASA∗),

(103)

Eζ〈Ay,A (y − ȳ)〉
E(y−ȳ)=0

= Eζ〈A (y − ȳ) ,A (y − ȳ)〉
Hyp. 1
= Tr(ASA∗).

(104)
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Thus the risk can be expanded as

R[x̂](Λ)

, Eζ ‖A (ŷ − ȳ)‖22

= Eζ

[
‖A (ŷ − y)‖22 + ‖A (y − ȳ)‖22 + 2〈A (ŷ − y) ,A (y − ȳ)〉

]

(103)
= Eζ

[
‖A (ŷ − y)‖22 + 2〈Aŷ,A (y − ȳ)〉 − 2〈Ay,A (y − ȳ)〉

]
+Tr(ASA∗)

(104)
= Eζ

[
‖A (ŷ − y)‖22 + 2〈Aŷ,A (y − ȳ)〉

]
− 2Tr(ASA∗) + Tr(ASA∗)

= Eζ

[
‖A (ŷ − y)‖22 + 2〈Aŷ,A (y − ȳ)〉

]
− Tr(ASA∗)

= Eζ

[
‖A (Φx̂− y)‖22 + 2〈A∗AΦx̂, (y −Φx̄)〉

]
− Tr(ASA∗)

= Eζ ‖A (Φx̂− y)‖22 + 2Eζ〈A
∗AΦx̂, ζ〉 − Tr(ASA∗)

= Eζ ‖A (Φx̂− y)‖22 + 2Eζ〈A
∗Πx̂, ζ〉 − Tr(ASA∗),

re-injecting the definition of A (9) in terms of Φ and Π.

The second term, Eζ〈A
∗Πx̂(y;Λ), ζ〉, is called the degrees of freedom [29].

From Assumption 3 it is well-defined and writes

Eζ〈A
∗Πx̂(y;Λ), ζ〉 = (105)

1√
(2π)P |det(S)|

∫
〈A∗Πx̂(y;Λ), ζ〉 exp

(
−
ζ∗S−1ζ

2

)
dζ,

(106)

hence requiring generalized Stein’s lemma to be estimated4.
Because of the off-diagonal terms in S−1, the Integration by Parts (IP)

required to transform (105) cannot be directly justified, thus Stein’s lemma
generalization to G-valued random variable ζ is not straightforward. Hence we
propose to first diagonalize S−1 (which is a symmetric matrix) in a orthonormal
basis, obtaining

S−1 = V∗DV,

with V an orthonormal matrix (which columns are eigenvectors of S−1) and
D = diag(β1, . . . , βP ) containing (positive) eigenvalues of S−1. Then, setting
ϑ = Vζ

Eϑ〈A
∗Πx̂(y;Λ),ϑ〉 =

1√
(2π)P |det(S)|

∫
〈A∗Πx̂(y;Λ),V−1ϑ〉 exp

(
−
ϑ∗Dϑ

2

)
|det(V−1)|dϑ.

with ϑ∗Dϑ =
∑P

p=1 βp|ϑp|
2.

4 Stein’s lemma states that, for a real random variable ζ ∼ N (0, σ2), if f : R → R is
a function such that both Eζ [ζf(ζ)] and Eζ [f

′(ζ)] exist, then Eζ [ζf(ζ)] = σ2
Eζ [f

′(ζ)]. Its
demonstration relies on appropriate integration by parts.
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Since V is orthonormal: V−1 = V∗ and |det(V−1)| = 1, leading to

Eϑ〈A
∗Πx̂(y;Λ),ϑ〉

=
1√

(2π)P |det(S)|

∫
〈VA∗Πx̂(y;Λ),ϑ〉 exp

(
−
ϑ∗Dϑ

2

)
dϑ

=
1√

(2π)P |det(S)|

∫ P∑

p=1

(VA∗Πx̂(y;Λ))p ϑp exp

(
−

∑P
p=1 βp|ϑp|

2

2

)
dϑ1 . . .dϑP

(IP)
= Eϑ

[
P∑

p=1

1

βp

∂ (VA∗Πx̂(y;Λ))p
∂ϑp

]

= Eϑ

[
Tr

(
D−1 ∂ (VA∗Πx̂(y;Λ))

∂ϑ

)]
,

where
∂ (VA∗Πx̂(y;Λ))

∂ϑ
denotes the Jacobian matrix of VA∗Πx̂(y;Λ) with

respect to the variable ϑ , V−1ζ. In order to go back to variable ζ, we make
use of (1) relating y and ζ, and apply the reverse change of variable ζ , Vϑ

and obtain

∂ (VA∗Πx̂(y;Λ))

∂ϑ
= V

∂ (A∗Πx̂(y;Λ))

∂ζ
V−1 = V

∂ (A∗Πx̂(y;Λ))

∂y
V−1,

because ∂ζy = IP (the identity matrix of size P × P ).
Using the cyclicality of trace and the fact that V is orthonormal, we finally

obtain a closed-form expression of the degrees of freedom:

Eϑ〈A
∗Πx̂(y;Λ),ϑ〉 = Eζ

[
Tr

(
D−1V

∂ (A∗Πx̂(y;Λ))

∂y
V−1

)]
,

= Eζ

[
Tr

(
V−1D−1V

∂ (A∗Πx̂(y;Λ))

∂y

)]
,

= Eζ

[
Tr

(
S
∂ (A∗Πx̂(y;Λ))

∂y

)]
,

= Eζ [Tr (SA∗Π∂yx̂(y;Λ))]

B Finite Difference Monte Carlo SURE

Proof. First, remark that since y 7→ x̂(y;Λ) is Lipschitz continuous from As-
sumption 4, it is Lebesgue differentiable almost everywhere and its Lebesgue
derivative equals its weak derivative almost everywhere. Then, based on Theo-
rem 1, the only difficulty relies in dominating the degrees of freedom, since it is
the only term depending on the Finite Difference step ν.
Applying successively both Monte Carlo and Finite Difference strategies pre-
sented in Section 2.4 we obtain

Tr (SA∗Π∂yx̂(y;Λ))
Monte Carlo

= Eε

〈
SA∗Π

∂x̂(y;Λ)

∂y
[ε] , ε

〉
(107)

Finite Difference
= Eε

〈
A∗Π lim

ν→0

x̂(y + νε;Λ)− x̂(y;Λ)

ν
,Sε

〉
.
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Making use of the centered normalized Gaussian probability density function of
ε, the above expectation writes

Eε

〈
A∗Π lim

ν→0

x̂(y + νε;Λ)− x̂(y;Λ)

ν
,Sε

〉
(108)

(p.d.f. of ε) =

∫

RP

lim
ν→0

〈
A∗Π

x̂(y + νε;Λ)− x̂(y;Λ)

ν
,Sε

〉
e−

‖ε‖2

2 dε

(2π)P/2

Then the following majorations hold
∣∣∣∣
〈
A∗Π

(x̂(y + νε;Λ)− x̂(y;Λ))

ν
,Sε

〉∣∣∣∣ e
− ‖ε‖2

2 (109)

(Cauchy-Schwarz) ≤

∥∥∥∥A
∗Π

(x̂(y + νε;Λ)− x̂(y;Λ))

ν

∥∥∥∥ ‖Sε‖ e−
‖ε‖2

2

(Bounded operators) ≤ ‖A∗‖‖Π‖

∥∥∥∥
x̂(y + νε;Λ)− x̂(y;Λ)

ν

∥∥∥∥ ‖S‖‖ε‖e−
‖ε‖2

2

(Hyp. 4: L1-Lipschitz) ≤ ‖A∗‖‖Π‖L1‖ε‖‖S‖‖ε‖e−
‖ε‖2

2 ,

with ‖ε‖2e−
‖ε‖2

2 integrable over RP . Further, the domination being independent
of ν the limit can be interchanged with the integral on variable ε which gives

∫

RP

lim
ν→0

〈
A∗Π

x̂(y + νε;Λ)− x̂(y;Λ)

ν
,Sε

〉
e−

‖ε‖2

2 dε

(2π)P/2
(110)

= lim
ν→0

∫

RP

〈
A∗Π

x̂(y + νε;Λ)− x̂(y;Λ)

ν
,Sε

〉
e−

‖ε‖2

2 dε

(2π)P/2
,

and
∣∣∣∣∣ limν→0

∫

RP

〈
A∗Π

x̂(y + νε;Λ)− x̂(y;Λ)

ν
,Sε

〉
e−

‖ε‖2

2 dε

(2π)P/2

∣∣∣∣∣

≤ ‖A∗‖‖Π‖L1‖S‖

∫

RP

‖ε‖2
e−

‖ε‖2

2 dε

(2π)P/2
<∞. (111)

Then, Equation (110) means that

Tr (SA∗Π∂yx̂(y;Λ)) = lim
ν→0

Eε

〈
A∗Π

x̂(y + νε;Λ)− x̂(y;Λ)

ν
,Sε

〉
. (112)

Further, the majoration obtained in Equation (111) not depending on ζ (since
L1 does not depend on y, as stated in Assumption 4), neither on ν, the limits
on ν and the expected value with respect to Gaussian random noise ζ can be
interchanged so that

EζTr (SA∗Π∂yx̂(y;Λ)) = Eζ lim
ν→0

Eε

〈
A∗Π

x̂(y + νε;Λ)− x̂(y;Λ)

ν
,Sε

〉

(113)

= lim
ν→0

Eζ,ε

〈
A∗Π

x̂(y + νε;Λ)− x̂(y;Λ)

ν
,Sε

〉
.

giving the asymptotic unbiasedness of the Finite Difference Monte Carlo esti-
mator of degrees of freedom and hence of the Finite Difference Monte Carlo
SURE (17).
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C Finite Difference Monte Carlo SUGAR

Proof. We remind that Finite Difference Monte Carlo SUGAR is composed of
two terms, denoted (∂1) and (∂2) in the following:

∂ΛR̂ν,ǫ(y;Λ|S) , (114)

2 (AΦ∂Λx̂(y;Λ))
∗
A (Φx̂− y)

(∂1)
+
2

ν
〈A∗Π (∂Λx̂(y + νε;Λ)− ∂Λx̂(y;Λ)) ,Sε〉

(∂2)

.

Since the estimator x̂(y;Λ) is weakly differentiable with respect to Λ, so is the
true risk R[x̂](Λ). Thus, for any continuously differentiable test function ϕ :
R

L → R ∈ C1(V) with compact support denoted V ⊂ R
L, and any component

l ∈ {1, . . . , L} of the gradient of the risk ∂ΛR[x̂](Λ)
∫

RL

(∂ΛR[x̂](Λ))l ϕ(Λ) dΛ =

∫

V

(∂ΛR[x̂](Λ))l ϕ(Λ) dΛ (115)

(Weak differentiability) = −

∫

V

R[x̂](Λ) (∂Λϕ(Λ))l dΛ

(Definition of the risk (10)) = −

∫

V

Eζ ‖Πx̂(y;Λ)−Πx‖22 (∂Λϕ(Λ))l dΛ

(Theorem 1) = −

∫

V

Eζ,ε lim
ν→0

R̂ν,ε(y;Λ|S) (∂Λϕ(Λ))l dΛ

(Theorem 2) = −

∫

V

lim
ν→0

Eζ,εR̂ν,ε(y;Λ|S) (∂Λϕ(Λ))l dΛ

(Dominated convergence)
(DC 1)

= − lim
ν→0

∫

V

Eζ,εR̂ν,ε(y;Λ|S) (∂Λϕ(Λ))l dΛ

(Fubini)
(Fu 1)
= − lim

ν→0
Eζ,ε

∫

V

R̂ν,ε(y;Λ|S) (∂Λϕ(Λ))l dΛ

(Proposition 1) = lim
ν→0

Eζ,ε

∫

V

(
∂ΛR̂ν,ε(y;Λ|S)

)
l
ϕ(Λ) dΛ

(Fu 2)
= lim

ν→0

∫

V

Eζ,ε

(
∂ΛR̂ν,ε(y;Λ|S)

)
l
ϕ(Λ) dΛ

(DC 2)
=

∫

V

lim
ν→0

Eζ,ε

(
∂ΛR̂ν,ε(y;Λ|S)

)
l
ϕ(Λ) dΛ.

(DC 1) In order to apply dominated convergence theorem interchanging the
limit on ν and the integral on V, since ϕ is a test function with compact domain
V, we derive a bound of Eζ,εR̂ν,ε(y;Λ|S) which is independent of both ν and
Λ. Using the probability density functions we have

Eζ,εR̂ν,ε(y;Λ|S) =

∫

ζ

∫

ε

R̂ν,ε(y;Λ|S)GS(ζ)GI(ε)dζdε (116)

where GS (resp. GI) denotes the Gaussian probability density function with
covariance matrix S (resp. I)

GS(ζ) ,
exp

(
−‖ζ‖2

S−1/2
)

√
(2π)P |detS|

(
resp. GI(ζ) ,

exp
(
−‖ζ‖22/2

)
√
(2π)P

)
. (117)
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We remind that R̂ν,ε(y;Λ|S) is decomposed of three terms

R̂ν,ε(y;Λ|S) ,

‖A (Φx̂− y)‖22
(1)

+
1

ν
〈A∗Π (x̂(y + νε;Λ|S)− x̂(y;Λ|S)) ,Sε〉

(2)

− Tr(ASA∗)
(3)

.

(118)

which will be bounded separately.
(1) First, combining Assumptions (i) and (ii) of Assumption 4, we have

‖x̂(y;Λ)− x̂(0P ;Λ)‖ ≤ L1 ‖y − 0P ‖ =⇒ ‖x̂(y;Λ)‖ ≤ L1 ‖y‖ , (119)

which can be used to bound first term (1) of (118) as

‖A (Φx̂− y)‖ ≤ ‖A‖ ‖Φx̂− y‖

≤ ‖A‖ (‖Φx̂‖+ ‖y‖)

≤ ‖A‖ (‖Φ‖‖x̂‖+ ‖y‖)

≤ ‖A‖ (‖Φ‖L1‖y‖+ ‖y‖)

≤ ‖A‖ (‖Φ‖L1 + 1) ‖y‖ . (120)

Since by definition ζ = y − Φx, y 7→ ‖y‖ is integrable against the Gaussian
density GS(ζ), and the above domination being independent of ν, it enable us
to apply dominated convergence.
(2) Making use of the domination of Equation (109) we have

∣∣∣∣
〈
A∗Π

(x̂(y + νε;Λ)− x̂(y;Λ))

ν
,Sε

〉∣∣∣∣ (121)

≤ ‖A∗‖‖Π‖L1‖ε‖‖S‖‖ε‖,

and ‖ε‖2 being integrable against GI(ε), dominated convergence applied.
(3) The third term being constant, the domination is obvious.
Putting altogether the majoration of (1), (2) and (3)

∣∣∣Eζ,εR̂ν,ε(y;Λ|S)
∣∣∣ ≤

∫

ζ

∫

ε

‖A‖ (‖Φ‖L1 + 1) ‖y‖ GS(ζ)GI(ε)dζdε

+

∫

ζ

∫

ε

‖A∗‖‖Π‖L1‖S‖‖ε‖2 GS(ζ)GI(ε)dζdε

+

∫

ζ

∫

ε

Tr(ASA∗)GS(ζ)GI(ε)dζdε ≤ ∞, (122)

the majoration being independent of ν and Λ dominated convergence applies.

(Fu 1) The above domination of Equation (122) being independent of Λ, then
Fubini’s theorem applies.

(Fu 2) The first term of (114), denoted as (∂1) can be easily dominated by an
integrable function. Indeed, Assumption 5 implies that ∂Λx̂(y;Λ) is uniformly
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bounded by L2, independently of y. Then it follows from Cauchy-Schwarz
inequality and the domination of Equation (120)

2
∥∥(AΦ∂Λx̂(y;Λ))

∗
A (Φx̂− y)

∥∥ ≤ 2‖AΦ∂Λx̂(y;Λ)‖‖A (Φx̂− y)‖,

≤ 2‖A‖‖Φ‖L2‖A‖ (ΦL1 + 1) ‖y‖. (123)

Hence, since ‖y‖ is integrable against GS(y−Φx)GI(ε) and the domination be-
ing independent of ν, both Fubini and dominated convergence theorems apply.

The second term of (114), denoted as (∂2), corresponding to the derivative
of the estimation of degrees of freedom, can be rewritten as

2

ν
〈A∗Π (∂Λx̂(y + νε;Λ)− ∂Λx̂(y;Λ)) ,Sε〉 ,

2

ν
〈u(ζ + νε;Λ)− u(ζ;Λ), ε〉

where we set u(z;Λ) , SA∗Π∂Λx̂(Φx + z;Λ). Since ∂Λx̂(y;Λ) is uniformly
bounded by L2, independently of y, and all the linear operators are assumed to
be bounded, then Λ 7→ u(z;Λ) is bounded by some Lu > 0, independently of
z. Then

Eζ,ε

[
2

ν
〈A∗Π (∂Λx̂(y + νε;Λ)− ∂Λx̂(y;Λ)) ,Sε〉

]
(124)

=

∫

ζ

∫

ε

2

ν
〈u(ζ + νε;Λ)− u(ζ;Λ), ε〉 GS(ζ)GI(ε) dζdε

=

∫

ζ

∫

ε

2

ν
〈u(ζ + νε;Λ), ε〉 GS(ζ)GI(ε) dζdε−

∫

ζ

∫

ε

2

ν
〈u(ζ;Λ), ε〉 GS(ζ)GI(ε) dζdε

=

∫

ζ

∫

ε

2

ν
〈u(ζ;Λ), ε〉 (GS(ζ − νε)− GS(ζ))GI(ε) dζdε.

Further, the following majoration holds
∥∥∥∥
2

ν
〈u(ζ;Λ), ε〉 (GS(ζ − νε)− GS(ζ))GI(ε)

∥∥∥∥ ≤
2

ν
Lu‖ε‖ |GS(ζ − νε)− GS(ζ)| GI(ε).

(125)

Up to a unitary variable change (see Appendix A, with ϑ = V−1ε), we can

assume that the covariance matrix is diagonal, with diagonal terms
(
s2i
)P
i=1

so
that

GS(ζ) =

P∏

i=1

exp
(
−|ζi|2/2s2i

)
√
2πs2i

(126)

and we define the one-dimensional Gaussian densities as

gs2
i
(ζi) ,

exp
(
−|ζi|2/2s2i

)
√
2πs2i

. (127)

From Taylor inequality,

|gs2
i
(ζi − νεi)− gs2

i
(ζi)| ≤

∫

(0,νεi)

|g′s2
i
(ζi − τ)| dτ, (128)
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where (0, νεi) denotes the ordered interval, taking into account that εi might
be negative that is

(0, νεi) =

{
[0, νεi] if εi ≥ 0
[νεi, 0] else

(129)

then
∫

ζi

|gs2
i
(ζi − νεi)− gs2

i
(ζi)| dζi ≤

∫

ζi

∫

(0,νεi)

|g′s2
i
(ζi − τ)| dτdζi

≤

∫

(0,νεi)

(∫

ζi

|g′s2i
(ζi − τ)| dζi

)
dτ

=

(∫

R

|g′s2
i
(t)| dt

)
ν|εi| < +∞

since the derivative of the Gaussian density is integrable over R.
Going back to the integrals over variables ζ, ε ∈ R

P of Equation (124)

∥∥∥∥
∫

ζ

∫

ε

2

ν
〈u(ζ;Λ), ε〉 (GS(ζ − νε)− GS(ζ))GI(ε) dζdε

∥∥∥∥ (130)

≤

∫

ζ

∫

ε

2

ν
Lu‖ε‖ |GS(ζ − νε)− GS(ζ)| GI(ε) dζdε

=

∫

ε

2

ν
Lu‖ε‖

P∏

i=1

(∫

ζi

|gs2
i
(ζi − νεi)− gs2

i
(ζi)| dζi

)
GI(ε) dε

≤

∫

ε

2

ν
Lu‖ε‖

P∏

i=1

((∫

R

|g′s2
i
(t)| dt

)
ν|εi|

)
GI(ε) dε

|εi| ≤ ‖ε‖ ≤

∫

ε

2νP−1‖Luε‖‖ε
P ‖

P∏

i=1

(∫

R

|g′s2
i
(t)| dt

)
GI(ε) dε

(0 < ν ≤ 1) ≤

∫

ε

2Lu‖ε‖
P+1

P∏

i=1

(∫

R

|g′s2
i
(t)| dt

)
GI(ε) dε < +∞

Indeed, ‖·‖ being the euclidean norm (∀i) |εi| ≤ ‖ε‖. Moreover, since we are
interested in the limit ν → 0, we can assume without loss of generality that
0 > ν ≤ 1 and thus νP−1 ≤ 1. We conclude using the fact that any power of
‖ε‖ is integrable against GI(ε), combined to the fact that the support V of ϕ is
compact, which enable to apply Fubini’s theorem to exchange

∫
V
and Eζ,ε.

(DC 2) The above majoration does not depends on ν. Further, the Lipschitzian-
ity assumptions provides the existence P-a.s. of

lim
ν→0

Eζ,ε

(
∂ΛR̂ν,ε(y;Λ|S)

)
l

then dominated convergence theorem applies to invert lim
ν→0

and
∫
V
which com-

pletes the proof.
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D Constant term of Stein Unbiased Risk Esti-

mate

Proof. Because of the cyclicality of the trace, one has Tr(ASA∗) = Tr(A∗AS),

then using the definition of A , Π (Φ∗Φ)
−1

Φ∗,

A∗A = Φ (Φ∗Φ)
−1

Π∗Π (Φ∗Φ)
−1

Φ∗

then turning to the block-matrix form to perform the products

(Φ∗Φ)
−1

Π∗Π (Φ∗Φ)
−1

=
1

(F0F2 − F 2
1 )

2

(
F0IN/2 −F1IN/2

−F1IN/2 F2IN/2

)(
IN/2 ZN/2

ZN/2 ZN/2

)(
F0IN/2 −F1IN/2

−F1IN/2 F2IN/2

)

=
1

(F0F2 − F 2
1 )

2

(
F0IN/2 −F1IN/2

−F1IN/2 F2IN/2

)(
F0ZN/2 −F1IN/2

ZN/2 ZN/2

)

=
1

(F0F2 − F 2
1 )

2

(
F 2
0 IN/2 −F0F1IN/2

−F0F1IN/2 F 2
1 IN/2

)
.

Using again cyclicality of the trace

Tr(ASA∗) = Tr
(
Φ (Φ∗Φ)

−1
Π∗Π (Φ∗Φ)

−1
Φ∗S

)

= Tr

(
Φ

1

(F0F2 − F 2
1 )

2

(
F 2
0 IN/2 −F0F1IN/2

−F0F1IN/2 F 2
1 IN/2

)
Φ∗S

)

= Tr

(
1

(F0F2 − F 2
1 )

2

(
F 2
0 IN/2 −F0F1IN/2

−F0F1IN/2 F 2
1 IN/2

)
Φ∗SΦ

)

Then using the action of Φ and Φ∗, explicited in Formula (66) we have the
matrix representation

Φ =




1IN/2 IN/2

2IN/2 IN/2

...
...

JIN/2 IN/2


 ∈ R

JN1N2×2N1N2. (131)

Using of the decomposition of S into J2 blocks S
j′

j = Cj′

j Ξj′

j ∈ R
N/2×N/2, we

obtain

Φ∗SΦ =

(∑
j,j′ jj

′S
j′

j

∑
j,j′ j

′S
j′

j∑
j,j′ jS

j′

j

∑
j,j′ S

j′

j

)
, 1 ≤ j, j′ ≤ J. (132)

41



It follows

Tr(ASA∗)

= Tr

(
1

(F0F2 − F 2
1 )

2

(
F 2
0 IN/2 −F0F1IN/2

−F0F1IN/2 F 2
1 IN/2

)(∑
j,j′ jj

′S
j′

j

∑
j,j′ j

′S
j′

j∑
j,j′ jS

j′

j

∑
j,j′ S

j′

j

))

=
1

(F0F2 − F 2
1 )

2Tr

(∑
j,j′ F

2
0 jj

′S
j′

j − F0F1j
′S

j′

j

∑
j,j′ F

2
0 j

′S
j′

j − F0F1S
j′

j∑
j,j′ F

2
1 jS

j′

j − F0F1jj
′S

j′

j

∑
j,j′ F

2
1S

j′

j − F0F1j
′S

j′

j

)

=
1

(F0F2 − F 2
1 )

2Tr


∑

j,j′

(
F 2
0 jj

′S
j′

j − F0F1j
′S

j′

j + F 2
1S

j′

j − F0F1j
′S

j′

j

)

 .

(133)

Then, one can remark that

Tr(Sj′

j ) ,
∑

n∈Ω

S
j′,n
j,n =

∑

n∈Ω

Cj′

j =
N

2
Cj′

j . (134)

since the filter Ξj′

j is supposed to be normalized, in the sense that its maximum
value equals 1. Finally

Tr(ASA∗) =
N/2

(F0F2 − F 2
1 )

2

∑

j,j′

(
F 2
0 jj

′Cj′

j − F0F1j
′Cj′

j + F 2
1 C

j′

j − F0F1j
′Cj′

j

)
.

(135)
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