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Abstract—Caching content over CDNs or at the network edge
has been solidified as a means to improve network cost and offer
better streaming experience to users. Furthermore, nudging the
users towards low-cost content has recently gained momentum
as a strategy to boost network performance. We focus on the
problem of optimal policy design for Network Friendly Recom-
mendations (NFR). We depart from recent modeling attempts,
and propose a Markov Decision Process (MDP) formulation.
MDPs offer a unified framework that can model a user with
random session length. As it turns out, many state-of-the-art
approaches can be cast as subcases of our MDP formulation.
Moreover, the approach offers flexibility to model users who
are reactive to the quality of the received recommendations.
In terms of performance, for users consuming an arbitrary
number of contents in sequence, we show theoretically and using
extensive validation over real traces that the MDP approach
outperforms myopic algorithms both in session cost as well as
in offered recommendation quality. Finally, even compared to
optimal state-of-art algorithms targeting specific subcases, our
MDP framework is significantly more efficient, speeding the
execution time by a factor of 10, and enjoying better scaling
with the content catalog and recommendation batch sizes.

I. INTRODUCTION

A. Motivation

With multimedia traffic from Netflix, YouTube, Amazon,
Spotify, etc. comprising the lion’s share of Internet traffic [1],
reducing the “cost” of serving such content to users is of
major interest to both content providers (CP) and network
operators (NO) alike. This cost includes the actual monetary
cost for the CP to lease or invest in network and cloud
resources, but also network-related costs, related to resource
congestion, slowing down other types of traffic, stalling
multimedia streams etc.

Caching popular content near users has been a key step
in this direction in wired networks through the use of
CDNs [2], and more recently in wireless networks through
femtocaching [3]. In addition to cost reduction for CPs and
NOs, caching also allows for higher streaming rate, shorter la-
tency, etc. [4], which results in an improved viewing/listening
experience for the user. When platforms of video streaming
services can not offer high bitrate, user abandonment rates
rise [5]. Hence, reducing the cost of bringing interesting
content to users will benefit everyone: the users, the content
providers, and the network operators.

Recommendation systems (RSs) in popular content plat-
forms play an important role for this task: they suggest
interesting content to users. For example, 80% of requests

in Netflix, and more than 50% on YouTube, stem from the
platform recommendations [6], [7]. The traditional role of an
RS has been to make personalized recommendations to the
user, suggesting items from a vast catalog that best match her
interests using techniques like collaborative filtering [8], deep
neural networks [9], matrix factorization [10], etc. The vast
majority of popular RS systems focus on content relevance
and similarity, but they do not account for the network
cost of delivery. Such operation, which ignores network
costs in content recommendation algorithms inevitably leads
to largely sub-optimal network performance for all parties
involved.

B. Related Work

A handful of recent works have spotted the interplay
between recommendation-network vs QoS-cost, and have
proposed to modify the recommendation algorithms towards
a more network-friendly operation [11], [12], [13], [14], [15],
[16], [17]. The main objective of almost all these works is to
recommend content that is highly interesting to the user while
at the same time involves low delivery cost. A simple solution
to achieved this is to favor cached content [18]. While
various implementation barriers are sometimes cited [19], the
increasing convergence of CPs and NOs [20], especially in
the context of network slicing and virtualization suggests, that
in the very near future content providers will be the owners
of their own network (slice), and will be able to directly infer
the potential network cost of recommending and delivering
some content versus another.

To date, a number of these early network-friendly RS
proposals are basically (sometimes efficient) heuristics [14],
[16]. A large number of these works focuses on myopic
algorithms, where the RS aims to minimize delivery cost only
for the next content request [18]. In practice, however, when
visiting popular applications like YouTube, Vimeo, Spotify,
etc., a user [21], [22] consumes several contents one after the
other, guided and impacted by the RS system at each of these
steps. As a result, what the RS recommends while the user
watches some content in a viewing session, will not impact
the selection and delivery cost of just the next request, but
also all subsequent requests until the end of that session.

Myopic schemes are thus sub-optimal. Instead, one should
aim to find the optimal action now, that will minimize the
expected cost over the entire session, taking into account
both what the RS could suggest in future steps, as well
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as how the user might react to them. A couple of recent
works have attempted to tackle this exact problem using
convex optimization [12], [23]. While the authors manage
to formulate the problem as a biconvex [12] and linear pro-
gram [23], the latter yielding an optimal solution, these works
are characterized by the following two key shortcomings: (i)
the problem formulation requires the user session to be of
infinite length in order to derive closed form expressions for
the objective; (ii) although the problem is an LP in [23], we
will see that the runtime of their algorithm is quite slow.

C. Contributions and Structure

In this work, we approach the above Network Friendly
Recommendations (NFR) problem in a novel way. Our main
contributions can be summarized as follows:

(C.1) We propose a unified MDP framework to minimize
the expected caching cost over a random session of arbitrary
length, while suggesting the user high quality content. Our
approach is parameterized in such a way that many state-of-
the-art methods be adapted to our framework.

(C.2) The MDP is formed using as problem unknowns
the continuous item recommendation frequencies per viewed
content. In doing so, we do not need to search for the
optimal N -sized recommendation batch per viewed content,
thus avoiding the curse of dimensionality of MDPs. Our for-
mulation uses the least number of variables (K2 specifically,
where K is the size of the catalog) to describe the MDP
without losing in optimality, compared to the fully detailed
description. Noteworthy is the fact that the complexity of the
algorithmic solution becomes insensitive to the size N of
recommended batch per viewed content.

(C.3) We express the content transition probabilities in a
general way, which enables us to incorporate a variety of user
behaviors. Furthremore, the policy iteration steps in the solu-
tion of the Bellman equations can be naturally decomposed
into simpler continuous subproblems, which can be solved (i)
by low complexity linear, or convex programming techniques
and (ii) in parallel, offering an additional potential speedup
of K×.

(C.4) For sessions with big horizon, the MDP has signif-
icant gains in terms of caching cost over myopic policies.
When compared to recently published works that consider
the infinite horizon NFR problem, our framework (due to the
reasons mentioned in (C.2) and (C.3)) is able speed-up the
execution time by a factor of 10, while achieving optimal
cost performance.

The paper is structured as follows. Section II sets up
the problem, presents the user-RS interaction and introduces
the RS input and objectives. Feasible, optimal and sub-
optimal recommendation policies are discussed. The problem
is formed as an MDP in its general form in Section III and an
algorithmic solution is described based on Bellman equations.
In Section IV we present our user model and explain its MDP
solution. Section V contains the evaluation of our policy
in terms of cost and user satisfaction performance against

heuristics and state of the art solutions. We conclude the paper
in Section VI.

II. PROBLEM SETUP

A. User session and recommendations

We consider a user who enters some multimedia appli-
cation, e.g. YouTube, and requests sequentially a random
number of items from its catalog K (|K| = K). Such
applications are equipped with a RS, responsible for helping
the users discover new content. Our user has some prior
underlying probability to request content i from K, which
we denote as p0(i); with vector p0 denoting the probability
mass function (pmf) for all i ∈ K. The length of each
session is random, and we assume that it follows a geometric
distribution with mean 1/(1− λ). It is further assumed here
that the session length is independent of the RS suggestions.
The user session has the following structure:
• The user starts the session from some random content i

drawn from the distribution p0.
• The RS, at every request, recommends N new contents;

we denote this N -sized batch as w.
• The user may follow the recommendations related to

content i, by clicking on a content among the N in the
batch w,

• Or the user ignores the recommendations and chooses
some other item based on initial preferences p0(i).

• The user exits the session with probability 1 − λ after
any request.

B. System input about user preferences

Entertainment oriented applications massively collect data
related to user interaction and content ranking, allowing them
to become increasingly effective in their recommendations.
According to the RS literature [24], [8], [25] user ratings are
used to infer the level of similarity [26] between contents.
In our paper, we formalise the notion of related content to
viewed content i as follows: For every content i, there exists
a similarity value with all other items in the catalog K. The
similarity with content j is quantified by the value uij ∈
[0, 1], forming the K-length row vector ui. This information
is summarized in the square non-symmetric K × K matrix
U .

We further denote by Ui(N), the set with the N < K
highest uij values related to content i. Note that the values
of ui are not normalized per content, i.e. the matrix U is
not stochastic. The matrix U , which represents the content
relations, is considered as input for the RS.

The RS assumes that the user feels satisfied with some
recommendation batch, if this includes items j with high
uij values. User satisfaction is denoted by Qi(w) and is
quantified by the ratio

Qi(w) :=
∑
j∈w

uij

/ ∑
m∈Ui(N)

uim. (1)

It is measured per viewed content i and recommendation
batch w; it depends on the entries of U , the size N of the
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batch and the policy. The denominator in (1) is the maximum
batch quality Qmaxi so that Qi(w) ∈ [0, 1]. The expression
states that the higher the sum uij of the recommendation
batch, the happier the user is. Both the content popularity
vector p0 and the similarity matrix U is information that the
RS has at its disposal, from measurements over time.

C. Network-related costs
From the network’s perspective, each content i ∈ K has a

non-negative network cost ci, c = [c1, . . . , cK ]T , associated
to its delivery to the user. The content delivery cost might
depend on several factors such as its size (in MB), its routing
expenses, its location on the network etc. A session of L > 1
requests incurs a cumulative cost on the network. Due to
the impact of RS on user requests, the sequence of costs
{c(St)}Lt=0 will depend on the RS policy, where St is the
state visited at t and c(St) is the cost of the state St. Thus, our
primary objective is to come up with policies R (to be defined
more formally next), which promote low-cost contents and
ultimately minimize the session’s average cost, while at the
same time satisfying the user’s natural preference for higher
content relevance

minimize
R

{
1

L

L∑
t=1

c(St)

}
. (2)

Letting ci ≥ 0 to be real positive, gives the flexibility to
capture various network-related scenarios such as

1) Maximize cache-hit rate: set ci ∈ {0, 1} for
{cached, uncached} contents respectively.

2) Minimize content delivery cost: set ci ∈ R to include
delay and bandwidth in the CDN case.

D. Policies
Our focus in this work is to find policies for arbitrary user

sessions in terms of average length. The policies should aim
at minimizing the expected session network-cost, while guar-
anteeing a good (and controllable) level of user satisfaction.
Before formally defining the optimization problem in the next
section, we present here in detail what is a policy and how
it is modeled in our framework, and also three reasonable
heuristics. As mentioned previously, when the user visits file
i, the RS proposes any N -sized recommendation batch of
unique contents (excluding self-recommendation i). The set
of all N -sized batches w forms the set of actions when the
user views content i, which we denote as Ai. To formally
define a policy, we need to associate each recommendation
batch w ∈ Ai with a frequency of use µi(w). The frequencies
of all the batches related to i should sum up to 1. This gives
rise to two classes of policies.
• Deterministic: A unique batch w can appear per viewed

object. For every i there is a single action w for which
µi(w) = 1.

• Randomized: At least two actions have µi(w) > 0. This
means that at every appearance of i, the user might see
a different N -tuple of contents, chosen randomly.

The cardinality of the action set Ai is exploding, leading to(
K−1
N

)
variables per item over which we must optimize. As an

example, for catalog K = 1000 and N = 3 recommendations
the RS needs to introduce 165 Billion unknown µ’s.

1) Item-wise recommendation frequencies: To overcome
this serious modeling issue, we use a different approach.
Related to viewed content i, we introduce the item-wise
recommendation frequencies ri = {rij} as the new set of
unknown variables. In fact, these quantities can be expressed
through the per-batch frequencies, and they actually summa-
rize their information as follows,

rij =
∑
w∈Ai

µi(w)1{j∈w} , ∀j ∈ K. (3)

Therefore, rij ∈ [0, 1] represents the overall probability of
object j to appear in any recommendation batch related to
i, without specifying the other N − 1 elements of the batch.
For the vector ri we can verify that it satisfies the size N of
the recommendation batch, with equality

K∑
j=1

rij =

K∑
j=1

∑
w∈Ai

µi(w)1{j∈w} = N ∀i ∈ K. (4)

If the policy is deterministic, then for every content i there
are exactly N entries rij = 1, and the rest are equal to
zero. On the other hand, if the policy is randomised, then
at least two entries rij < 1. To see this in a small example,
consider the randomised policy with feasible batches Ai =
{{1, 2}, {1, 3}} associated with batch-frequencies {0.5, 0.5}.
This translates to item-wise frequencies ri1 = 1.0, ri2 = 0.5
and ri3 = 0.5, while the remaining rij’s are zero. For each
content i, we relate a frequency vector ri of size K. By
concatenating these vectors as R = [rT1 , ..., r

T
K ] ∈ RK×K we

form the policy. We have thus reduced the unknowns to just
K2, a considerable improvement!

Remark: The definition of a policy R through the rij
frequencies, can allow to generate recommendation batches
with the appropriate µi(w) batch-frequencies. For a deter-
ministic policy, the N non-zero rij entries per i define the
unique N -sized batch w ∈ Ai. Now, in the case of a
randomised policy, for some j’s it holds rij < 1, so there
are more than one potential batches. We can use the random
vector generation technique found in [27, Fact 1, Probabilistic
Placement Policy], where different batches of size N are
randomly sampled, while guaranteeing that each content j
appears with probability rij . In the case of our previous
simple example given ri1 = 1.0, ri2 = 0.5 and ri3 = 0.5, we
can reproduce the batches and their frequencies as follows.
Given N = 2 recommendation slots, each slot will be time-
shared by contents whose frequencies sum-up to 1. So the first
slot will always be occupied by item “1” because ri1 = 1.0.
The second slot will be time-shared by “2” and “3”, 50% of
the time each, so that µ({1, 2}) = 0.5 and µ({1, 3}) = 0.5,
thus reproducing the more detailed policy. This technique can
be generalised to N > 2.

2) Simple Myopic Policies: Here we list some practical
intuitive policies, which either favor low network-cost or user
satisfaction or both, but are myopic in the sense that they
consider only the impact of the immediate next request.
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TABLE I: Main Notation

K Content catalog of size K
λ Prob. that the user stays in the session
N Recommendation batch size
p0 Baseline popularity of contents
uij Similarity of item j to i
U Adjacency matrix, U = [uT

1 , . . . ,u
T
K ]

Ui(N) Set of N highest uij values, related to i
αij Prob. to click on j when in i from recommendations
w Recommendation batch, the RS action
rij Prob. that j appears in the recommendation batch w
Qi(w) User satisfaction by the recommendation batch w
q Lower level of Qi enforced by RS
ci Network cost of content i
St State/Content visited at time t

• Top-N policy (RQ): Suggest the N files that are most
similar to i, i.e. the ones that correspond to the simi-
larities in Ui(N) (ties broken uniformly). This choice
maximizes user satisfaction.

• Low Cost policy (RC): Suggest the N contents with
lowest cost. In the case of ties for the cost cj , recom-
mend contents arbitrarily.

• q-Mixed policy (RMIX ): Assign q · 100 of the budget
for user satisfaction. If items are tied in uij , choose
the lowest cost to favor the network. Then assign the
remaining budget to the lowest cost items. For q → 1,
RMIX → RQ, and for q → 0, RMIX → RC

In [18], cached and related items are placed on the top of
the recommendation list, while the rest of the list remains
intact. Moreover, [28] targets the problem of joint caching
and recommendation. For some given cache allocation, the
RS’s objective is to promote items that minimize the caching
cost of the next request only, ignoring the possibly many
subsequent ones. In both works, the authors allow some
window of recommendations for the user satisfaction, and
the rest is dedicated to the network gains, which is why these
policies could be effectively mapped to q-Mixed.

III. PROBLEM FORMULATION AND SOLUTION

We will now cast the problem of optimal sequential rec-
ommendations as a Markov Decision Process (MDP) with
the objective to minimize the expected cumulative cost in
user sessions of arbitrary average length. The user behaviour
related to the quality of recommendations will be implicitly
taken into account.

A. Defining the MDP

The MDP is defined by the quadruple (K,A, P, c) whose
entries refer to the following: as state we consider the
currently viewed content, hence the state-space K is the
content catalog. Following the discussion in the previous
section about per-item frequencies, the action set A is the
set of all K ×K real matrices R, whose entries rij ∈ [0, 1]
determine the frequency of suggesting item j when viewing
content i. Based on the assumptions, the user is Markovian,
as her next visited state is fully determined by the current
one and not the full history. Moreover, P is the probability

transition matrix K×K, where Pij is the probability to jump
next to content j if the user currently views content i and
essentially serves as the environment of the MDP will specify
the Pij in the following section.

We assume that the RS knows the user behavior (the Pij
dynamics) and optimizes the actions accordingly. Learning
the user while optimizing (e.g. through reinforcement learn-
ing) is deferred to future work. Note that we do not take
into account the time spent on each content by the user
nor partial content viewing, but both variations can be easily
integrated in our framework. Finally, a random item sequence
{S0, S1, S2, . . . }, with St ∈ K, corresponds to a random
sequence of content costs {c(S0), c(S1), c(S2), . . . }; hence
for some St = i (the i-th content ID), the cost induced to
the network is exactly ci. The following expression gives
the transition probability of state evolution in a general way,
letting room for further assumptions to be integrated later on
in the model

Pij = P{i→ j} = αij · rij + (1−
K∑
l=1

αil · ril) · p0(j). (5)

The above expression is somewhat reminiscent of the
random web surfer transitions for PageRank [29], [30], and
has the following interpretation. The user can transit to j in
two ways. If content j is in the recommendation batch, the
user clicks on j with probability αij ∈ [0, 1]. In the event
that the user ignores all of the N items in the batch, she
chooses j with probability p0(j) from personal preferences.
To see why (5) describes exactly this process, we substitute
rij from (3) to get,

Pij = αij
∑
w∈Ai

µi(w)1{j∈w} + (
1

N

K∑
j=1

∑
w∈Ai

µi(w)1{j∈w}︸ ︷︷ ︸
(4)
=1

−
K∑
l=1

αil
∑
w∈Ai

µi(w)1{l∈w})p0(j) =

∑
w∈Ai

µi(w)

(
αij1{j∈w} + (1−

K∑
l=1

αil1{l∈w})p0(j)

)
Observe that for deterministic policies, there is a single w
for which µi(w) = 1, the Pij is unique, whereas in the case
of randomized policies we view Pij as the average transition
probability from i→ j, over all batches.

Lemma 1. If αij < 1 and p0(i) > 0 ∀ i, j ∈ K, then the
MDP (K,A, P, c) is unichain, i.e., it has only one class of
states for any policy.

To prove this, one needs to show that the state-space of the
MDP forms an irreducible Markov chain, which is true if all
state-pairs are communicating, i.e. Pij > 0 in (5). It suffices
to consider p0(j) > 0 ∀ j and

∑K
l=1 αil · ril < 1.

B. Optimization Objective

As explained earlier, we consider a user who consumes
sequentially a random number of contents before exiting the
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session. The induced cost is cumulative over the steps, and
since transition probabilities and session-length are random,
so is the total cost. The user is considered to start from a
given arbitrary state S0 - whose cost is not accounted for as
it is outside the recommender’s control, and then her session
generates a sequence of costs c(St), with t = 1, . . . , L, which
depends on the policy R. Note that the costs in consecutive
states are not I.I.D., given the Markovian structure of the
problem. The total cost induced by the requests of the user is∑L
t=1 c(St) and our objective is to minimize is the average

total cost.

Lemma 2. The average total cost v(s) starting from initial
state S0 = s can be written as an infinite horizon cost with
discounts

v(s) = Es

[
L∑
t=1

c(St)

]
= Es

[ ∞∑
t=1

λt−1 · c(St)

]
, (6)

where the Es stands for conditioning on the starting state
being S0 = s ∈ K, [31, eq. 4.13].

Equality in (6) holds because the random session length L
is assumed to be distributed as a Geom(λ). The expectation
of the total cost is found by applying the law of total
expectation

Es
( L∑
t=1

c(St)

)
=

∞∑
l=1

P(L = l) · Es
( l∑
t=1

c(St)

)
. (7)

We refer the reader to [31, Prop. 5.3.1] for more details. The
parameter λ is called the discount factor in the sense that the
cost incurred in the immediate future is more important than
the cost in the far future. The relative importance of future
costs depends on the value of λ ∈ [0, 1]. Starting from state
i ∈ K we want to minimize

(Main OP).

v∗(i) = min
R

{
E
( ∞∑

t=1

λt−1c(St, R) | S0 = i

)}
∀ i ∈ K (8)

subject to
K∑

j=1

rij = N, ∀i ∈ K (9)

0 ≤ rij ≤ 1, ∀i, j ∈ K (10)
rii = 0, ∀i ∈ K (11)
K∑

j=1

rij · uij ≥ q ·Qmax
i , ∀i ∈ K. (12)

where q ∈ [0, 1] is the tuning quality parameter.

St is the random variable of the state at step t, and i
(or s) is its realisation taking values in K. The optimization
variables are the {rij} per-item recommendation frequencies.
The feasible space is shaped by the set of constraints imposed
on the RS policy, which has to obey four specifications:
• (9): Recommend exactly N items per content view.
• (10): rij ∈ [0, 1] is a time-sharing proportion.
• (11): No self-recommendation is allowed.
• (12): Maintain an average user satisfaction per viewed

content above a pre-defined q, i.e. E [Qi(w)] ≥ q (see (1)).
Constraint (9) incorporates the number of recommendation

slots N in the constraints, following (4). Using the per-
item frequencies the solution complexity becomes insensitive
to the value of N , something not possible with the initial
batch formulation, where the number of batch combinations
increases with N .

A hard constraint on the average user satisfaction from
the recommendation batch is introduced in (12). If active,
the RS is restricted to maintain an average user satisfaction
≥ q for every item i ∈ K, regardless of how the user
reacts to good/bad recommendations. We denote the feasible
set of policies for viewed content i by Ri = {rij :
(9), (10), (11), (12)}. The feasible set is denoted by R and is
convex as the intersection of linear inequalities, equalities and
box constraints. It is described by K2+3K linear constraints
in total.

C. Optimality

The optimal solution to Main OP, i.e., the optimal vector
v∗ = [v∗(1), . . . , v∗(K)] for any initial state s is unique and
satisfies the Bellman optimality equations (see [Puterman,
Theorem 6.2.3] and apply Lemma 1).

Bellman Optimality Equations. The optimal value vector
must satisfy the following K (Bellman) equations, one per
state,

v∗(i) = ci + λ min
ri∈Ri

{ K∑
j=1

Pij(ri) · v∗(j)
}
∀i ∈ K. (13)

where Pij(ri) is defined in (5) and ci indicates the immediate
cost of visiting state i. We can apply well established iterative
algorithms to solve these equations [31], [32]; we choose here
the well-known policy iteration (PI). A key contribution of
our work is that unlike “vanilla” MDPs with discrete actions,
in each iteration we are required to solve a minimization
problem in the K-sized variable ri for each state i, see
(13) which radically reduces the interior minimization step
of PI. Importantly, as v∗ remains the same during the policy
improvement step (the for loop over the K states), the K
minimizers can be straightforwardly parallelized.

D. Versatility of look-ahead horizon via the choice of λ

The MDP has the upside of being flexible on the range of
problems it can tackle; part of this flexibility is the application
of an arbitrary average session length that can be controlled
by λ. Existing works in the literature analyze infinitely long
sessions, like in [12], [23], which is of course unrealistic. The
MDP framework introduced in the current work, uses λ as a
tuning parameter that controls the average session length to
be equal to (1− λ)−1. Let us observe some special cases.

Case: λ→ 0. The objective function in (8), becomes v(s) =
Es[00c(S1)+01c(S2)+. . . ] = Es[c(S1)] (with the convention
00 := 1) i.e., the user starting state is S0 = s and does exactly
one more request which generates loss c(S1). For λ→ 0, the
only future cost is the immediate cost cj that is incurred by
visiting state S1 = j at t = 1. Thus we can explicitly compute
v(s) = Es[c(S1)] =

∑K
j=1 Ps,jcj and find the optimal policy
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by solving K (one for each starting state s ∈ K) minimization
problems

min
rs∈Rs

{ K∑
j=1

Ps,j(ri) · cj
}
∀ s ∈ K. (14)

Setting λ = 0 in Main OP, our MDP returns the q-Mixed
policy.

Case: λ→ 1. For the infinite horizon, the value v(s) diverges
for λ = 1 (no discount) as it allows infinitely many steps to
add-up in the cost. However, we can instead find the time-
average long-term cost (see [31, Cor.8.2.5]), which is equal
to limλ→1(1−λ)vλ(s) . This is the limit of the ratio of sum
cost over average session-length and it is finite for unichain
MDPs (Lemma 1).

Short and long length λ. Since v(s) indicates the expected
cumulative cost-to-go, for λ → 0 the state from which the
user starts her session matters, and the values of the vector
v(s) will differ. On the contrary for λ → 1, as the v(s)
tend to infinity (v(s) is cumulative and larger as λ grows),
the relative difference between the states becomes negligible.
That is all the states have approximately the same value and
the starting state s does not matter.

In reality, the session length is somewhere in the middle.
To determine the value of λ in practice, we use the fact that
the mean session-length is equal to 1/(1− λ). Then, the RS
could measure empirical averages of the user session lengths
to determine an estimate λ̂ and substitute this value in the
MDP to derive appropriate recommendations.

IV. A USER MODEL

The transition probabilities Pij in (5) allow to model
various types of user response to the recommendation policy.
The user behaviour is summarised by her click-through
probabilities {ai,j}. These can take specific expressions and
be functions of uij or even rij to represent some “reactivity”
of the user to the policy, and each choice represents a different
type of behaviour. Note that as long as Pij is a convex or
linear function of rij , our framework can solve it optimally
and efficiently. We study here a specific user, who remains
equally curious about any recommended item, provided that
the long-term quality of recommendations remains reasonably
good. Then, the response of this “curious” user is:

αij = α/N for E[Qi] ≥ q ∀i. (15)
The above reads that the user wants to be satisfied by at least
q from the RS recommendations (see (12)). Her transition
probabilities (i.e., (5)) now become

P{i→ j} =
α

N
· rij + (1− α) · p0(j), (16)

where notice that
∑K
l=1

α
N · rij = α. If the user is satisfied,

her expected click-through rate α remains fixed throughout
the session, and she may click any of the N recommended
items uniformly at random. Another, perhaps more pragmatic
interpretation, is that the RS can just measure some data
regarding the user’s clickthrough rate and how this relates
to the average user satisfaction, and uses these estimates to
calibrates the MDP. The tuple (α, q) comprises a wide range

of user attitudes ranging from highly curious (high α, low q)
to rather conservative (medium/high α, very high q).

MDP Solution. Using (16), the Bellman equations take the
form, ∀i ∈ K,

v∗(i) = ci + v̄ + λ
α

N
min
ri∈Ri

{ K∑
j=1

rij · v∗(j)
}
, (17)

where v̄ := λ(1 − α)
∑K
j=1 p0(j)v∗(j) is independent of i.

Therefore, in each greedy improvement step, the optimizer
will have to solve the following optimization problem.

(Inner OP).

min
ri∈Ri

{ K∑
j=1

rij · v∗(j)
}

subject to Ri = {rij : (9), (10), (11), (12)}
where q ∈ [0, 1] is the tuning quality parameter of (12).

Lemma 3. The greedy improvement step of Policy Iteration
for the curious user, reduces to solving the Inner OP which
is a Linear Program (LP) of size K; the objective and all
the constraints are linear on the variables rij .

The K LPs in the inner loop of PI can be solved using
standard software (e.g. CPLEX). Note here, that solving
the MDP returns a randomised policy in general, due to
the constraint (12). Moreover, the Bellman equations reveal
structural properties of the policy, showing optimality for
myopic heuristics as special cases.

Property 1. For q = 1, the optimal policy is the Top-N.

Proof. For q = 1, the rhs of (12) becomes 1 ·
∑
l∈Ui(N) uil =

Qmax
i . Assume that the optimal policy for content i is to

assign rij = 1 to contents that correspond to Ui(N − 1),
and rij = x > 0 to some content with uij /∈ Ui(N) and
rim = 1 − x to the least related item with uim ∈ Ui(N).
Then the constraint (12) reads∑

uil
l∈Ui(N−1)

+ (1− x)uim + xuij ≥
∑

uil
l∈Ui(N−1)

+ uim

(uij − uim) · x ≥ 0 (18)
By definition, uim > uij and thus the inequality cannot hold
if we assign a positive budget to any item j with uij /∈ Ui(N).

Property 2. For q = 0 the optimal policy is the Low Cost.

Proof. Assume that we can order the optimal values v∗(i)
in increasing order v∗(1) < · · · < v∗(K). To find v∗(i) we

need to solve minri∈Ri

{∑K
j=1 rij ·v∗(j)

}
. For the case q =

0, we can analytically compute v∗(i), because the optimal
decision is to assign rij = 1 to the lowest v∗(j) (excluding
v∗(i)). We can identify two cases for the expression of v∗(i).
Case (a): If 1 ≤ i ≤ N then

v∗(i) = ci + v̄ + λ

 N∑
j=1:j 6=i

v∗(j) + v∗(N + 1)

 (19)
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where in the above expression we need to make sure we
exclude the self recommendation from the evaluation. Else
for Case (b): i > N , the expression becomes

v∗(i) = ci + v̄ + λ

N∑
j=1

v∗(j). (20)

We need to compare the values of the states in pairs. There
are three possibilities for the pairs. Pair-case (I): 1 ≤ i, j ≤ N
and i < j, we get the difference (using (19))
v∗(i)− v∗(j) < 0⇒ (ci − cj) + λ(v∗(j)− v∗(i)) < 0,

where for the second term above N −1 terms have cancelled
out. Notice that due to the ordering, λ(v∗(j)−v∗(i)) > 0, so
it must hold that ci−cj < 0 for the above expression to have
a negative sign. Pair-case (II): 1 ≤ i ≤ N and j > N , we
use (19) and (20) and we result in the exact same expression
for their difference as above. Finally, for Pair-case (III): N <
i < j, we use (20)

v∗(i)− v∗(j) < 0⇒ ci − cj < 0. (21)
Therefore, the optimal costs-to-go v∗(i) are ordered exactly
as the immediate costs ci, which concludes that for content i,
recommending the N lowest costs excluding i is optimal.

V. VALIDATION

We evaluate the performance of the proposed MDP rec-
ommendation policy in terms of cost and user satisfaction
(against other myopic ones) and of computational efficiency.

A. Simulation Setup

Caching Policy and Baseline Cost. In our simulations, we
assume that for each dataset, the number of cached items
is M = 0.01 ·K, where K is the size of the corresponding
catalog. This number is similar to other works [3] or [14]. We
cache the first M IDs of the catalog, i.e., C = {1, . . . ,M}.
We consider a uniform personal preference distribution p0

i.e., p0 ∼ Uniform(1, . . . ,K). Thus, the caching policy is
essentially random and the performance of all policies will
be unaffected by p0. We proceed like that as our goal is to
understand the true gains that come from the RS’s network
friendliness, and not the ones hailing from the potential
skewness of p0. Furthermore, the cost of the non-cached
items is set to an arbitrary price, say 10.0 units, and of
the cached ones to an arbitrary smaller price, say 0.0. If
we assume that there is no RS in place, or equivalently
the user never follows recommendations and all requests are
generated according to p0 (i.e., the standard Independent
Reference Model), the hit probability phit = 0.01, which
easily translates to C = 10.0× (1− phit) + 0.0× phit = 9.9
units of cost per request. The numbers above hold for all the
plots of the section since uniform p0 and M/K = 0.01 hold
everywhere.
Simulation and Metrics. The RS knows exactly the user
model and the evaluated policy is the optimal one computed
by the MDP. The first metric is the average cost, denoted
as C (which is network-oriented) and the second one is the
average user satisfaction denoted as Q; both are measured per
content request. We perform a Monte Carlo simulation where
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we generate 1000 sessions of random size L, where L ∼
Geom(λ) (λ is a parameter of the simulation). Therefore,
we measure CL (see (2)) and QL (see (1)) For some fixed
λ, the quantities C and Q are produced by further averaging
CL and QL over 1000 runs. In some experiments we will
also report the cache hit relative gain of MDP against other
policies which will be defined as pMDP

hit −prefhit

prefhit

· 100%.

Execution of the PI Algorithm. All experiments were car-
ried out using a PC with RAM: 8 GB 1600 MHz DDR3 and
Processor: 1,6 GHz Dual-Core Intel Core i5. The minimizers
of Inner OP that arise were solved through CPLEX.

B. Traces

We use three datasets to construct three content relation
graphs U (Section II-B), two real ones and one synthetic.
MovieLens. We consider the Movielens movie rating
dataset [33], containing 69162 ratings (0 to 5 stars) of 671
users for 9066 movies. We apply an item-to-item collabo-
rative filtering to extract the missing user ratings, and then
use the cosine similarity with range [−1, 1] of each pair of
contents. We floor all values < 0.5 to zero and leave the
remaining ones intact. Finally, we remove from the library
contents with less than 25 related items to end up with a
relatively dense U .
YouTube. We consider the YouTube dataset found in [34].
From this, we choose the largest component of the library
and build a graph of 2098 nodes (contents) if there is a link
from i → j. As the values of the dataset were uij ∈ {0, 1},
whenever an edge was found, we assigned it a random weight
uij ∼ Uniform(0.5, 1).
Synthetic. We consider a synthetic content graph U ; this way
we can see how the algorithm behaves in a more uniform U .
We decide the size of the library K, and for every item in
the library we draw a number out of Uniform(1, 100) which
serves as the number of neighbors of i. We then assign on
the edges a random weight uij ∼ Uniform(0.5, 1).

For these datasets, we present the statistics related to U ,
and its relation to the cached contents. To this end, based on
U , we consider there is an edge from i → j if uij > 0 and
we are interested on the out-degree of the nodes. The graph
in general is directed.
• deg−i : out-degree of node i.
• deg−i (C): out-degree of node i directed only to nodes in

the set C (the set of cached items).
In Fig.1, on the x-axis we see the deg−i in logarithmic

scale, and on the y-axis its ccdf. We can conclude for the
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TABLE II: Statistics - Datasets
MovieLens YouTube Synthetic

Nodes 1060 2098 2000
Total Edges 20162 11288 99367
mean deg− 19.02 5.38 49.68

mean deg−(C) 0.17 0.06 0.51
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two real traces, that the deg−i tends to be quite high only for
a small fraction of the nodes.

C. Results: Sensitivity Analysis

Effect of mean session size (L). We first compare the
performance benefits of MDP which has look-ahead capabil-
ities against myopic ones, when the size of the user session
increases. To this end, in Fig. 2, we vary the parameter
λ (Section II) to simulate random sessions with mean size
L = {1, 2, 5, 25, 50, 100}; we remind the reader that L =
(1 − λ)−1. We compare the performance of MDP against
the three myopic ones discussed in Section II-D. For the
Movielens we set q = 90%, and for the Youtube q = 70% in
order to ensure high user satisfaction Q for the cost-oriented
policies. This hard constraint of Q is depicted in Figs. 2(c),
2(d) with a dashed grey line. For the q-Mixed policy we set it
accordingly, hence it becomes a 0.9-Mixed and a 0.7-Mixed
policy. The extreme policy Top-N achieves Q = 1, which
is the upper bound for any policy, and the worst C. In total
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Fig. 3: MDP-Optimal and q-Mixed evaluated on L = 25 requests (N = 2)

contrast, the Low Cost returns the best possible cost but is
infeasible. The policy q-Mixed offers user satisfaction at or
above the feasibility boundary.

Obs. #1: The MDP-optimal policy keeps the user satisfaction
feasible while achieving the minimum cost C, in Figs. 2(a),
2(b) from the feasible myopic policies. Moreover, in Fig.
2(e), we show the relative gain of the MDP with respect to
q-Mixed as reference policy. Note that the respective gains
against Top-N , which is omitted from the plot as it has no
bias towards C, are more than 1000%. Reasonably, the longer
the horizon, the larger the gains of MDP which is equipped
with look-ahead capabilities.

A Note on Caching. Our caching is essentially random. We
could instead cache the items that have the most neighbors
(in terms of U ) or cache the top-M items from the stationary
distribution as created by the recommendation policy Top-N .
Thus, we can loosely state that the cost performances of the
MDP we see here, serve as a lower bound.

Effect of q and α. For each dataset, in Fig. 3(a), we pick
some α and tighten the quality constraint by increasing q.
In the same fashion, in Fig. 3(b), we pick some q for every
dataset and increase the value of α. We present here only
the average cost per request, since the RS quality achieved is
equal to the q value selected. Furthermore, we omit the two
extreme policies, Top-N and Low Cost, and only compare to
q-Mixed, who also seeks a (suboptimal) tradeoff between cost
and user satisfaction. The first thing to notice is that, for q = 1
and q = 0, the two policies coincide, which is an immediate
result of Properties 1 and 2 as the optimal policies are Top-N
and Low-Cost respectively. For all intermediate q values, it is
evident that the MDP-optimal policy improves performance
compared to the q-Mixed. We can also observe that the MDP-
optimal policy is able to better exploit the increase of α as
the gap between the policies becomes wider. This should not
come as a surprise since the myopic policies do not take into
consideration the dynamics of user transitions. Note that an
average session of L = 25, could loosely correspond to a
45min session of watching YouTube short clips [22].

Effect of recommendation batch size (N ). In Fig. 2(f), we
focus on the effect of N on the expected cost. We provide
a heatmap with increasing L on the y-axis and increasing N
on the x-axis. We observe that irrespective of L, the cost is
becoming worse with the increase of N even for the Synthetic
graph which has a much larger deg−(C) = 0.51.
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Obs. #3: Network-friendly recommendations is not an easy
task, but many network-friendly recommendations is even
harder. To better grasp this, consider a myopic RS. To satisfy
both parties (network and user), when the user is at content
i, the RS must have many cached and related contents to
recommend, which by definition are less than cached or
related.

D. Execution Time Savings (and not only)

Up to this point, we investigated tradeoffs between differ-
ent policies. Yet an important contribution of this work is its
computationally efficient framework, which we discuss next.

Item-frequency vs Batch-frequency formulation. One of
the main contributions of this work is that it formulates a
continuous problem of item-frequencies, rather than batch-
frequencies. This is profitable computationally both in the
number of variables and in execution time. In Fig. 4(a), we
choose a catalog of K = 150, and solve the MDP using our
approach and compare it against the brute force solution of
a batch-MDP, which enumerates all the feasible tuples (the
ones that satisfy the quality constraints), and picks the best
one. As claimed in Section II-D, we see that the increase of
N is devastating for the batch-frequency MDP, whereas our
item-frequency approach is insensitive to it.

Catalog Increase. In this part, we investigate the execution
times of our item-frequency MDP algorithm, by varying
the catalog size. We select L = 20, increase the content
library size, run the algorithm, and report the time it took
until completion. These results show that our MDP can
tune recommendations of practical size and not only toy
scenarios of some hundred items. As stated in [3], even a
library of K = 1000 can be considered practical since it
could refer to the 1000 most popular files of Netflix for
example. The authors in [14] perform simulation with sizes
K = 1000 and K = 10000, which is the same order as
our experiments; however, they do not report any execution
time results. The MDP needs about 9000 seconds (≈ 2.5h)
for a library of 8000, using the 8Gb RAM PC, and under-
exploited parallelisation. These run-times will be significantly
decreased in a powerful server with multiple cores, as the
Policy Iteration algorithm we have implemented runs on as
many cores as it finds available.

Here we compare our MDP with the policy of [23] where
the objective is to minimize the per request average cost over

an infinite size session. Their framework easily reduces to
ours by setting λ → 1 (in practice we set λ = 0.9, that is
10 steps look-ahead) and assuming αij = α

N , i.e., uniform
click towards recommended content. In [23], the authors
formulate the average cost minimization as an LP of size
K2 and the optimal solution is found using CPLEX. Their
solution is constrained to obey stationarity which builds a
very demanding set of constraints and is unrealistic as the
size of a user session is finite in practice. In Table III, for the
two datasets, we report the execution time of the algorithm
and the achieved mean cost C under the stationary regime,
i.e., we plug our policy into the objective of [23]. In that table,
we refer to our policy as MDP(0.9) (due to the selected λ)
and to the one of [23] as OPT.

TABLE III: MDP(0.99) vs OPT (under [23])
Cost (units) Exec. Time (s)

MDP(0.9) OPT MDP(0.9) OPT
Movielens 5.5625 5.5432 105 560
Youtube 6.1005 6.1001 253 1997

The results of this experiment are summarized in Table III.
Impressively, there is an execution time speed up by a factor
of 5 and 10 for the two datasets, while sacrificing almost
nothing in terms of cost performance.

We now do the exact opposite; for smaller sessions,
L = {1, 2, 3, 4, 5}, we present the relative gain of MDP over
the policy of [23] and the q-Mixed. Our approach finds the
optimal cost for all L. The smaller the horizon, the bigger the
gain of MDP with respect to [23]. Reasonably, as the horizon
increases, the relative gain fades as [23] is exactly tailored
for very long sessions. Note that for such small sessions the
MDP rutime is obviously even lower than the one shown in
Table III, because smaller L translates to smaller λ, which
implies faster convergence of the policy iteration. Finally, as
seen in previous plots, the gain over the q-Mixed is growing
with the horizon L.

TABLE IV: Evaluating on smaller L, Movielens

Gain over L=1 L=2 L=3 L=4 L=5
[23] (%) 21.29 16.27 10.4528 4.48 4.87
q-Mix (%) 0.01 9.67 21.46 22.39 27.69

VI. CONCLUSIONS

We have developed a very promising MDP framework for
optimal look-ahead NFR that is able to exploit the structure
of the content graph and discover non-obvious recommen-
dations. More importantly, by using item-frequency recom-
mendations in the Bellman equations we have proposed an
algorithm that scales well both with the size of content library,
as well as with the batch-size. The complexity remains low
as the inner optimization problems have less unknowns, they
are linear or at worse convex, and allow for parallelisation.
Finally, as MDP sets the stage for learning-based approaches,
we firmly believe that our reduced variable representation
MDP (via the item-frequency) can significantly speed up the
training phase of such algorithms.
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dation and service costs in swarming systems,” in Proc. IEEE ICC,
2015.

[14] L. E. Chatzieleftheriou, M. Karaliopoulos, and I. Koutsopoulos,
“Jointly optimizing content caching and recommendations in small cell
networks,” IEEE Trans. on Mobile Computing, vol. 18, no. 1, pp. 125–
138, 2019.

[15] L. Song and C. Fragouli, “Making recommendations bandwidth aware,”
IEEE Trans. on Inform. Theory, vol. 64, no. 11, pp. 7031–7050, 2018.

[16] S. Kastanakis, P. Sermpezis, V. Kotronis, and X. Dimitropoulos,
“CABaRet: Leveraging recommendation systems for mobile edge
caching,” in Proc. ACM SIGCOMM Workshops, 2018.

[17] D. Liu and C. Yang, “A learning-based approach to joint con-
tent caching and recommendation at base stations,” arXiv preprint
arXiv:1802.01414, 2018.

[18] D. K. Krishnappa, M. Zink, C. Griwodz, and P. Halvorsen, “Cache-
centric video recommendation: an approach to improve the efficiency
of youtube caches,” ACM TOMM, vol. 11, no. 4, p. 48, 2015.

[19] A. Al-Dailami, C. Ruan, Z. Bao, and T. Zhang, “Qos3: Secure
caching in https based on fine-grained trust delegation,” Security and
Communication Networks, vol. 2019, 2019.

[20] J. Krolikowski, A. Giovanidis, and M. Di Renzo, “Optimal cache
leasing from a mobile network operator to a content provider,” in IEEE
INFOCOM 2018-IEEE Conference on Computer Communications,
pp. 2744–2752, IEEE, 2018.

[21] “The average mobile YouTube session is now 40 min-
utes, Google says.” https://www.cio.com/article/2949473/
the-average-mobile-youtube-session-is-now-40-minutes-google-says.
html.

[22] “Google spells out how YouTube is coming after TV.” http://www.
businessinsider.fr/us/google-q2-earnings-call-youtube-vs-tv-2015-7/.

[23] T. Giannakas, T. Spyropoulos, and P. Sermpezis, “The order of things:
Position-aware network-friendly recommendations in long viewing
sessions,” in WiOpt, 2019.

[24] J. L. Herlocker, J. A. Konstan, A. Borchers, and J. Riedl, “An algorith-
mic framework for performing collaborative filtering,” in 22nd Annual
International ACM SIGIR Conference on Research and Development
in Information Retrieval, SIGIR 1999, pp. 230–237, Association for
Computing Machinery, Inc, 1999.

[25] L. Spinelli and M. Crovella, “Closed-loop opinion formation,” ACM
WebSci ’17, pp. 73–82, 2017.

[26] Y. Lv, T. Moon, P. Kolari, Z. Zheng, X. Wang, and Y. Chang, “Learning
to model relatedness for news recommendation,” ACM WWW ’11,
pp. 57–66, 2011.

[27] B. Blaszczyszyn and A. Giovanidis, “Optimal geographic caching in
cellular networks,” in 2015 IEEE international conference on commu-
nications (ICC), pp. 3358–3363, IEEE, 2015.

[28] L. E. Chatzieleftheriou, M. Karaliopoulos, and I. Koutsopoulos,
“Caching-aware recommendations: Nudging user preferences towards
better caching performance,” in Proc. IEEE INFOCOM, 2017.

[29] S. Brin and L. Page., “The anatomy of a large-scale hypertextual web
search engine,” Computer Networks and ISDN systems, vol. 30, no. 1-7,
pp. 107–117, 1998.

[30] O. Fercoq, M. Akian, M. Bouhtou, and S. Gaubert, “Ergodic control
and polyhedral approaches to pagerank optimization,” IEEE Trans. on
Automatic Control, vol. 58, pp. 134–148, Jan 2013.

[31] M. L. Puterman, Markov Decision Processes.: Discrete Stochastic
Dynamic Programming. John Wiley & Sons, 2014.

[32] D. P. Bertsekas and J. N. Tsitsiklis, Neuro-dynamic programming,
vol. 5. Athena Scientific Belmont, MA, 1996.

[33] “https://grouplens.org/datasets/movielens.”
[34] http://netsg.cs.sfu.ca/youtubedata/, 2007.

10


