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Abstract We consider a 1D elastic spin-crossover (SCO) chain in which each site may be in the 

low-spin or in the high-spin (HS) state. The sites interact elastically through a harmonic coupling 

and the local equilibrium distances depend on the spin states of the interacting sites. The 

Hamiltonian of the system is solved by Monte Carlo method running on the spin states and the 

atomic displacements. By considering the existence of an elastic frustration between the 

equilibrium distances of the nearest-neighbors and the next-nearest-neighbors, we succeeded, to 

highlight a number of original behaviors of the thermal dependence of the high-spin fraction, like 

multi-step transitions, incomplete spin transitions, emergence of self-organized structures and 

reentrant spin transitions, by adjusting only one control parameter.  The obtained results allow 

understanding several experimental data of 1D spin-crossover materials which seem to be model 

systems for elastic frustration. 

 

I. Introduction 

The magnetic spin change associated with the spin crossover (SCO) phenomenon represents a new 

paradigm of molecular bistability which emerges at the macroscopic scale, offering potential 

applications in the development of new generations of electronic devices such as non-volatile 

memories, molecular sensors, displays and reversible switches 1-5. In particular, Iron (II)-based 

spin-crossover materials 1, 3, 6-12 are fascinating objects, due to their labile electronic character 

which confers them the interesting property to convert from the diamagnetic low-spin (LS, 𝑒𝑔
0𝑡2𝑔
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𝑆 = 0) to a paramagnetic high-spin (HS, 𝑒𝑔
2𝑡2𝑔

4 , 𝑆 = 2) states, upon change of temperature. This 

feature is only possible when the energy gap between the HS and the LS states is of the order of 

magnitude of the thermal energy, which is possible when the central Fe-atom is surrounded by 

Nitrogen atoms in octahedral symmetry. However, the complete character of the transition 

between the LS and the HS states, even in weak-cooperative systems, cannot be understood 

without invoking the crucial role of the entropy difference between the LS and HS states. This 

entropy difference, originating from the large change in electronic and vibrational properties upon 

spin transition constitutes the driving force of this phenomenon. It is well known that the change 

in the electronic configuration of Fe, subsequent to the internal redistribution of the charges 

between  𝑒𝑔
0 and 𝑡2𝑔  orbitals, which are strongly coupled to the structure, significantly affects the 

coordination sphere of the metal, leading to a bigger volume of the molecule in the HS state. This 

local molecular volume change is delocalized over several unit cells through elastic interactions 

(which are known for their long-range nature) which propagate at the velocity of sound in the solid, 

leading at the transition temperature to a macroscopic volume change of ~3%, while the change of 

the Fe-ligand distances is almost 10% 5, 13-15, while the velocity of the HS-LS interfaces is around 

4-5 𝜇m/s 16. In solid state, the LS to HS conversions give rise to a rich variety of behaviours, going 

from (i) a gradual spin-transition transition, to (ii) sharp first-order transitions, (iii) incomplete 

transitions and (iv) multi-step transitions. It is important to mention that these types of transitions 

belong to the same class of molecular materials. For example, starting from a material exhibiting 

a first-order transition with hysteresis, and by changing the nature of the ligand or that of the anion 

(BF4, PF6, …) in some crystals leads to drastic changes like,  the appearance of a plateau along the 

LS to HS transition, or the presence of an incomplete phase transition 17. The reason for the 

sensitivity of the SCO materials to the steric effects (size of the ligands and anions) and their 

degrees of freedom (rotations, vibrations) along the thermal cycling is due to the important role of 

the elastic interactions in the SCO phenomenon which takes place cooperatively through the 

delocalization and interference between the local volume changes at the molecular level. As the 

elastic interactions propagate through the elastic medium, the nature, the mass, and the sterically 

hindered constituents play a major role in the resulting nucleation and growth modes of the SCO 

transition phenomenon. Several examples of two-steps transitions have been reported in literature. 

Sometimes it is due to competing short- and long-range interactions, as reported in the case of 

[Fe(2-pic)3]Cl2.EtOH 18. On the other hand, SCO lattices formed by interacting dinuclear molecules 
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may lead to two-step SCO too. In most of the cases, the transition of the first SCO center induces 

a distortion that changes the ligand field of the second Fe center, which then makes the transition 

at a different temperature, due to an elastic frustration. The two-step transition can be also 

accompanied by a symmetry breaking 19-23, as well as the presence of a self-organization of the 

spin state in the plateau region. Moreover, quite recently, some materials have been found to 

exhibit several steps 21, 24-25 at the transition, among them the case of the “Devil’s Staircase”22 is a 

very instructive example of the complexity generated by elastic interactions inside the SCO 

materials. Last but not least, several two-step transitions have also reported in 1D SCO materials 

26-28 REF, which confirms the general character of elastic frustration in these molecular systems.  

The case of multi-step transitions is challenging and most of the theoretical descriptions were 

based on Ising-like models 29-32 in which antiferromagnetic-like interactions are introduced in the 

phenomenological way. However, even though  the multi-step transition is an emergence property 

which comes out from antagonist or competing elastic interactions inside the solid: that is the 

concept of elastic frustration, expressing the existence of antagonist steric effects that we 

introduced recently in 19. There, we studied the case of a 2D elastic lattice that mimics a 2D spin-

crossover solid in which we have considered the existence of an energetic competition between 

the elastic energy along the lattice parameter direction and the diagonals. We have demonstrated 

that according to the rate of elastic frustration misfit between these two directions, almost all 

previously quoted experimental features in 2D systems can be produced, however, the case of 1D 

systems was not yet considered. So, based on this first success, we extend here our theory to study 

the case of frustrated and non-frustrated elastic 1D systems, using both Monte Carlo and analytical 

methods. 

In this contribution, we exclusively investigate the thermodynamic properties of an isolated one 

dimensional elastically-frustrated SCO chain. The more general case of interacting 1D chains will 

be considered in a further work. The elastic frustration is introduced through the existence of 

antagonist nearest- and next-nearest-neighbors equilibrium distances subsequent to the appearance 

of LS species in the lattice on cooling, while the HS state is chosen as frustration-free by 

construction. In the material, the elastic frustration may be caused by the existence of direct 

contacts between next-nearest neighbours SCO atoms via their ligands, or due to indirect 

interactions through adjacent chains which imposes additional constraints which oppose to the 
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degrees of freedom contacts (expansion or contraction) of the nearest-neighbours SCO atoms.  

Here, we modelled this additional interaction through a direct next-nearest neighbour elastic 

coupling between the SCO atoms that generates elastic frustration with the interaction between 

immediate surrounding atoms. We first demonstrate, using Monte Carlo (MC) simulations, that an 

isolated elastic chain of interacting SCO atoms leads easily to kinetic hysteretic first-order 

transitions, in good agreement with previous MC simulations performed on a different type of 

elastic model 33. Second, the introduction of an elastic frustration leads to a rich variety of thermal 

behaviour of the HS fraction, among which the famous multi-step 11, 21-24, 34-38 and incomplete 

transitions which lead to residual HS fractions at low-temperature, as well as re-entrant phase 

transitions 39 based on size effect changes. In addition, we observed the presence of clear spatial 

self-organizations modes of the HS and LS states in the plateau regions of multi-step transitions 

that are monitored by the strength of the elastic frustration.  

I The model Hamiltonian  

The spin-crossover chain is modeled as a homogeneous set of atoms (here sites) which can occupy 

two states, namely LS and HS, to which we associate a fictitious spin state, 𝑆, whose eigenvalues 

are respectively,  𝑆 = −1 and 𝑆 = +1. The lattice sites are coupled by springs and are constrained 

to move only along the direction of the chain. Each site is coupled elastically to its nearest 

neighbors (nn) by a spring of elastic constant 𝐴0 and to its next-nearest-neighbors by another spring 

of constant elastic, 𝐵0.  The equilibrium distances between two nn sites 𝑖 and 𝑗, is noted 𝑅𝑒𝑞
𝑛𝑛(𝑆𝑖 , 𝑆𝑗), 

and depend on their spin states. Similarly, the equilibrium distance between two nnn sites 𝑖 and 𝑘, 

is noted 𝑅𝑒𝑞
𝑛𝑛𝑛(𝑆𝑖 , 𝑆𝑘). The dependence of the equilibrium distances (i.e. the lattice parameters of 

the chain) on the spin states is written so as to ensure a bigger length of the chain in the HS state 

compared to that of the LS state. A schematic view of three electro-elastic configurations (HS-HS-

HS, HS-LS-HS and LS-LS-LS) of a central site surrounded by its nearest-neighbors is given in 

Fig. 1.  
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Figure 1: A schematic view of three electronic configurations of the central site and its nearest-

neighbors. The distance between the sites depends on the spin states. For simplicity, only three 

configurations among the eight possible states are depicted here. 

 

At variance from the first electronic models, using Ising-like approaches 29, discrete elastic 

descriptions based on deformable lattices 40-50 were introduced so as to mimic the spatiotemporal 

features revealed by optical microscopy investigations 51-53 for the nucleation and growth of the 

spin state phases at the thermal transition of SCO single crystals. The present Hamiltonian of the 

SCO chain accounting for the electronic and elastic contributions is adapted from our previous 

electro-elastic model 46, 54 that we solved for several types of crystal shapes and sizes 55-61. The 1D 

version of the electro-elastic model writes 

 𝐻 = ∑
1

2
[∆ − 𝑘𝐵𝑇 ln(𝑔)]𝑆𝑖 + 𝐴0 ∑ [𝑟𝑖,𝑖+1 − 𝑅0

𝑛𝑛(𝑆𝑖 , 𝑆𝑖+1)]
2

𝑖𝑖 + 𝐵0 ∑ [𝑟𝑖,𝑖+2 − 𝑅0
𝑛𝑛𝑛(𝑆𝑖 , 𝑆𝑖+2)]

2
𝑖       (1) 

Before to discuss the origin of each term of Hamiltonian (1), it is important to mention here, for 

the non-specialist reader, that the magnetic exchange between spin-crossover atoms is negligible 

due to the large distance (~10 Å) which separates two iron sites. As a matter of fact, except the 

Prussian blue analogues 62-63, and with one exception 64 almost all molecular SCO materials do not 

show any magnetic ordering at low-temperature, and so the absence of the magnetic exchange 

between the SCO sites.  

The first term of (1) stands for the electronic contribution of the ligand-field energy ∆ at 0 K.  The 

second term, −𝑘𝐵𝑇 ln 𝑔, is an entropic term originating from the difference of effective 

degeneracies (electronic and vibrational) between the LS and the HS states, whose ratio, written 
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here, 𝑔 =
𝑔𝐻𝑆

𝑔𝐿𝑆
, is assumed to be temperature-independent. The molar entropy change at the 

transition, ∆𝑆 = 𝑅 ln 𝑔, easily derived from calorimetric data14, which allows the determination of 

g values, ranging from 100 and 2000. The second and the third terms of (1) describe the elastic 

interactions between the nearest- (nn) and next-nearest-neighbors (nnn), respectively. Here, the 

elastic constants 𝐴0 and 𝐵0 are assumed, for simplicity, as independent on spin and distortion 

variables. 

Thus in this model, the nn (resp. nnn) 𝑖 and 𝑖 ± 1 (resp. 𝑖 and 𝑖 ± 2) sites of the lattice with 

corresponding spins Si et 𝑆𝑖±1   (resp. Si et 𝑆𝑖±2) are linked through springs whose bond-lengths at 

equilibrium are noted 𝑅0
𝑛𝑛(𝑆𝑖 , 𝑆𝑗) (resp.  𝑅0

𝑛𝑛𝑛(𝑆𝑖 , 𝑆𝑘)). The atoms are constrained to move only 

along the 𝑥-direction. Let’s denote by, 𝑅0
𝐻𝐻 = 𝑅0(+1, +1), 𝑅0

𝐿𝐿 = 𝑅0(−1, −1) et 𝑅0
𝐻𝐿 =

𝑅0(+1, −1) the respective nn distances between the sites in the HH, HL and LL. In addition, we 

consider that 𝑅0
𝐻𝐿 =

1

2
(𝑅0

𝐻𝐻 + 𝑅0
𝐿𝐿), which means that the equilibrium distance between HS and 

LS sites is exactly equal to the average distance between those of LS-LS and HS-HS 

configurations. These electro-elastic configurations are summarized in Fig. 1, where we draw some 

possible situations.  It is quite easy to demonstrate that for the 1D chain, the general expressions 

of the nn and nnn equilibrium distances connect to the spin states through the simple formulae:  

                       𝑅𝑒𝑞
𝑛𝑛(𝑆𝑖 , 𝑆𝑗)  = 𝑅0

𝐻𝐿 +
𝛿𝑅

4
(𝑆𝑖 + 𝑆𝑗)                (2) 

                    𝑅𝑒𝑞,0
𝑛𝑛𝑛(𝑆𝑖 , 𝑆𝑘) = 2𝑅0

𝐻𝐿 +
1

2
𝛿𝑅(𝑆𝑖 + 𝑆𝑘) = 2𝑅𝑒𝑞

𝑛𝑛(𝑆𝑖 , 𝑆𝑘)         (3) 

Where the quantity  𝛿𝑅 = (𝑅0
𝐻𝐻 − 𝑅0

𝐿𝐿) is the lattice parameter misfit between the LS and HS 

phases.   

Within these equilibrium distances, the full LS and HS states are free from elastic frustration. 

Indeed, according to Eqs. (2)-(3), when the lattice is fully LS (resp. HS), the nn equilibrium 

distance, given by Eq. (2), is equal to 𝑅𝑒𝑞
𝑛𝑛(𝑆𝑖 = −1, 𝑆𝑗 = −1) =

1

2
𝑅𝑒𝑞,0

𝑛𝑛𝑛(𝑆𝑖 = −1, 𝑆𝑗 = −1) [resp. 

𝑅𝑒𝑞,0
𝑛𝑛 (𝑆𝑖 = +1, 𝑆𝑗 = +1) =

1

2
𝑅𝑒𝑞

𝑛𝑛𝑛(𝑆𝑖 = +1, 𝑆𝑗 = +1)], realizes the constraint of Eq. (3) for the 

nnn distances. As a result, the total elastic energy is null in both LS and HS states. 
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The idea of elastic frustration, at the heart of this paper, relates to the existence of a lattice 

mismatch between the nn and nnn distances, leading to antagonist equilibrium distances, similarly 

to Frenkel-Kontorova model 65, although there are fundamental differences. From the experimental 

point of view, these behaviors may originate from elastic constraints imposed by the interactions 

between ligands of adjacent molecules who generally have extended spatial occupations 14, 21, 40. 

Thus, some strong 𝜋 − 𝜋 stacking may contribute to ferro-elastic interactions, while other degrees 

of freedom (like “weak” hydrogen-hydrogen bonding) may hinder the volume expansion of the 

molecule from LS to HS. In the present model, and to fully meet the experimental data14 , we chose 

to keep the HS state free from any elastic frustration. In contrast, we impose an elastic frustration 

between the nn and nnn distances for the other configurations, i.e; HS-LS and LS-LS. The elastic 

frustration is introduced in the nnn equilibrium distance between sites, 𝑖, and, 𝑘, as follows (see 

supplemental material for its derivation), 

𝑅𝑒𝑞
𝑛𝑛𝑛(𝑆𝑖 , 𝑆𝑘) = 2𝑅𝑒𝑞

𝑛𝑛(𝑆𝑖, 𝑆𝑘) + 𝛿𝑅𝜉 (1 −
(𝑆𝑖+𝑆𝑘)

2
)  (4) 

Where, 𝜉, is a parameter expressing the frustration strength. Using expression (4), the HS state 

(𝑆𝑖 = +1, 𝑆𝑘 = +1) is indeed non-frustrated, since 𝑅𝑒𝑞
𝑛𝑛𝑛(+1, +1) = 2𝑅0

𝐻𝐻  ∀𝜉. When 𝜉 > 0, the 

equilibrium distances between nnn pairs for LL and HL configurations are respectively  

𝑅𝑒𝑞
𝑛𝑛𝑛(−1, −1) = 2𝑅0

𝐿𝐿 + 2𝛿𝑅𝜉 and 𝑅𝑒𝑞
𝑛𝑛𝑛(±1, ∓1) = 2𝑅0

𝐻𝐿 + 𝛿𝑅𝜉,   (5) 

 while those of nn sites are maintained to 𝑅0
𝐿𝐿  and  𝑅0

𝐻𝐿 , respectively.  

Table 1: Nearest-neighbors and next-nearest neighbors spin configurations of a system of three spins and their 

associated equilibrium distances showing the antagonist character introduced by the frustration parameter 𝜉. For 𝜉 =
0, nn and nnn fit each other.  

spin Configurations nn equilibrium distances nnn equilibrium distance 

HS-HS-HS 𝑅0
𝐻𝐻  𝑅0

𝐻𝐻  2𝑅0
𝐻𝐻 

HS-LS-HS 𝑅0
𝐻𝐿  𝑅0

𝐿𝐻 2𝑅0
𝐻𝐿 + 𝛿𝑅𝜉 

LS-LS-HS (= HS-LS-LS) 𝑅0
𝐿𝐿  𝑅0

𝐿𝐻 2𝑅0
𝐻𝐿 + 𝛿𝑅𝜉 

LS-HS-LS 𝑅0
𝐿𝐻 𝑅0

𝐻𝐿  2𝑅0
𝐿𝐿 + 2𝛿𝑅𝜉 

HS-HS-LS (=LS-HS-HS) 𝑅0
𝐻𝐻  𝑅0

𝐻𝐿  2𝑅0
𝐻𝐿 + 𝛿𝑅𝜉 

LS-LS-LS 𝑅0
𝐿𝐿  𝑅0

𝐿𝐿  2𝑅0
𝐿𝐿 + 2𝛿𝑅𝜉 
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 According to Table 1, where we have reported the eight spin configurations of a cluster of three 

neighboring sites, we see clearly that when the system is fully LS, for example, the elastic 

frustration parameter 𝜉 introduces antagonist equilibrium distances between nn and nnn distances. 

Indeed, the nn distance should lead to a total nnn equilibrium distance equal to  

2𝑅0
𝐿𝐿  while the nnn distance imposes an equilibrium distance equal to  

2𝑅0
𝐿𝐿 + 2𝛿𝑅𝜉. The emerging nn and nnn equilibrium distances will be then the result of the 

optimization of the elastic energy, and its value will obviously depend on the strengths of the nn 

and nnn elastic constants, as it will be seen later. To be general, the elastic frustration will always 

appear as as soon as there is a LS site in the system since the nnn equilibrium distances in LL and 

HL configurations are bigger than their non-frustrated values, 2𝑅0
𝐿𝐿  and  2𝑅0

𝐻𝐿 .  

In the simulations, we considered the following values for the non-frustrated equilibrium distances, 

𝑅0
𝐿𝐿 = 1𝑛𝑚, 𝑅0

𝐻𝐻 = 1.2𝑛𝑚, 𝑅0
𝐻𝐿 = 1.1𝑛𝑚, which gives, 𝛿𝑅 = 0.2 𝑛𝑚. The elastic constants have 

been fixed to, 𝐴0 = 𝐵0 = 14000 𝐾. 𝑛𝑚−2 = 14 𝑚𝑒𝑉. 𝐴−2. These values lead to an estimated 

average bulk modulus, G≈A_0/R_0 ~ 8 GPa, which is in excellent agreement with available 

experimental data of Brillouin scattering performed on the single crystal of [Fe(ptz)6](ClO4)2 

which led to bulk modulus values found in the range 5-20 GPa 66-67. The value of the ligand-field 

energy is Δ0 = 450𝐾 and that of the degeneracy ratio,  ln 𝑔 = 5. This value leads to an entropy 

change at the transition ∆𝑆 = 41 J.K.mol-1 in good agreement with experimental data of heat 

capacity measurements 14.  

 

 III. Results and discussion: 

The spin transition is described here through the usual variables, among which the HS fraction, 

nHS, which connects to the average magnetization < 𝑆 >, and also through fraction 𝑛𝐻𝐿 , of 

neighboring HS-LS pairs, as well as through the average value of the lattice parameter < 𝑑 >.   

These quantities can be expressed simply as, 

𝑛𝐻𝑆 =
(1+<𝑆>)

2
, 𝑛𝐻𝐿 =

1−<𝑆𝑖𝑆𝑗>

4
 and  < 𝑑 > =  

∑ (𝑥𝑗−𝑥𝑖)𝑖𝑗

(𝑁−1)
               (6) 
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Where, < S > is the average spin value, < 𝑆𝑖𝑆𝑗 > is the average value of nn spin-spin correlation, 

and (𝑥𝑗 − 𝑥𝑖)  is the distance between neighboring sites 𝑖 and 𝑗.  

In view of the complex structure of Hamiltonian (1) in which spin and distortion variables are 

intricate, and so which cannot be solved analytically, we use the Monte Carlo (MC) technique to 

study its thermal properties considering the frustration strength 𝜉 as a control parameter. 

 The simulations are performed on a chain of 60 sites and the MC simulations concerned both spin 

and lattice position variables, using a sequential procedure. The stochastic algorithm is performed 

in the following way: for a site 𝑖 randomly selected, with spin 𝑆𝑖 = ±1 and position, 𝑥𝑖, a new spin 

value 𝑆𝑖
′ = −𝑆𝑖 is set without position change. This spin change is accepted or rejected by the usual 

Metropolis criterion. Once the new spin value is accepted then the lattice is relaxed mechanically 

by a slight motion of nodes (selected randomly) with a quantity 𝛿𝑥 = 0.001 which is much smaller 

than the distance between the spin states. The procedure of the lattice relaxation is repeated 10 

times for each spin flip. Afterwards, a new site will be selected randomly and so on … Once all 

nodes of the lattice are visited for the spin change, we define such step as the unit of the Monte 

Carlo step and denoted “MCS”. In the present simulations, the thermal properties are calculated 

by changing the temperature each by 1K step. At each temperature, we perform 10000 MCS to 

reach the equilibrium state and we use 1000 other MCS for the statistics. Within this procedure, 

each site is displaced 600 times for 1 MCS. So, at each temperature, each spin state and lattice 

position are updated 107 and 6 109 times, respectively.  We have checked that increasing the 

simulation time does not affect the final results, which ensures that we reached the stationary state 

for spin and lattice position variables.   

Figs. 2a and 2b summarize the system’s behavior for two values of the elastic constants, 𝐴0 =

𝐵0 = 2000 𝐾. 𝑛𝑚−2 and  𝐴0 = 𝐵0 = 14000 𝐾. 𝑛𝑚−2, respectively for 𝜉 = 0. We see clearly that 

while the chain presents a gradual transition between the LS and HS states for weak elastic 

constants, it clearly undergoes a "first-order transition" with a large thermal hysteresis, a 

characteristic of a strong cooperative SCO system, for the case of a strong elastic interaction. A 

selected number of snapshots showing the spatial distribution of spin states at different 

temperatures along the spin transitions are presented in Fig. S1 of the supplemental material. In 

both cases, the change of the length of the chain at the transition is well identified. 
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Let us now discuss the presence of the hysteretic behavior of Fig. 2b, even though that the system 

is 1D. This thermal hysteresis has a kinetic origin and can be attributed to finite size effects. Indeed, 

as we have demonstrated in a previous work 33 devoted to the study of dynamic phase transitions 

in 1D spin-phonon coupling model, which constitutes a variant of the present Hamiltonian, the 

kinetic hysteresis widths increases almost linearly with the inverse of the chain length. That being 

said, it should also be highlighted that since the two simulations are performed using the same 

temperature scan rate, the presence of the kinetic hysteresis in Fig. 2b is clearly a strengthened by 

the increase of the elastic cooperativity inside the system.  

The strength of the cooperative interactions is identified here as proportional to the misfit of elastic 

energy per site, (𝐴0 + 2𝐵0)𝛿𝑅
2. It is worth noticing here, that this behavior contrasts with that of 

the usual Ising 1D chains with short-range interactions, the kinetic hysteresis of which are less 

wider. One may think that the presence of elastic interactions, which are known to lead to long-

range interactions, making the system belonging to mean-field universality class 68 at least for a 

two-dimensional system, clearly lead to larger energy barriers which may then enhance the 

existence of these kinetic thermal hysteresis. In the experimental systems 1D spin-crossover 

systems, the SCO chains are rarely isolated and several types of interactions may connect them, 

starting with weak hydrogen bonding to strong stacking, which then leads to 3D structures which 

however should keep the memory of their strong 1D character. In such situations, true first-order 

transitions or very sharp transitions are allowed.   

 At the transition temperature, 𝑇1/2
0 , we fulfill the relation <  𝑆 > = 0 (𝑛𝐻𝑆 = 0.5) and <  𝑑 > =

𝑅0
𝐻𝐿 . According to the general law that at the transition, the total effective ligand field becomes 

equal to zero, we simply obtain from Hamiltonian (1),  

𝑇1/2
0 =

∆

𝑘𝐵 ln(𝑔)
       (7) 
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Figure 2: a) Thermal dependence of the HS fraction 𝑛𝐻𝑆 in the non-frustrated case (𝜉 = 0) for two different set of 

values of the elastic interactions: (a) the case of weak coupling, 𝐴0 = 𝐵0 = 2000 K.nm-2  leading to a gradual spin 

transition, and b) the case of strong coupling 𝐴0 = 𝐵0 = 14000 K.nm-2  leading with the same temperature scan rate 

to a hysteretic behavior. The thermal hysteresis has a kinetic origin. (see text for more explanation).  
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Figure 3: a) MC results of the thermal dependence of the HS fraction 𝑛𝐻𝑆 of Hamiltonian (1) for different values of 

the elastic frustration strength, 𝜉, showing the first-order transition with hysteresis (pink and blue), as well two-step 
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transitions with a plateau (red and black).  b) Corresponding thermal dependence of the average nn distances. Notice 

the monotonous increase of the relaxed lattice parameter of the LS state (i.e. < 𝑟𝑖𝑗 >  at 0 K) as 𝜉 increases. c) spatial 

distribution of the spin states (red=HS and blue=LS) along the thermal transition for 𝜉 = 1, showing a self-

organization of the spin states in the plateau region.  The parameter values are 𝑅0
𝐿𝐿 = 1𝑛𝑚, 𝑅0

𝐻𝐻 = 1.2𝑛𝑚, 𝑅0
𝐻𝐿 =

1.1𝑛𝑚, 𝛿𝑅 = 0.2 𝑛𝑚, 𝐴0 = 𝐵0 = 14000 𝐾. 𝑛𝑚−2 = 14𝑚𝑒𝑉. 𝐴−2, Δ0 = 450𝐾 , ln 𝑔 = 5. Here too, the hysteresis 

appearing in a) and b) have a kinetic origin.  

 

When the elastic frustration between nn and nnn sites comes into play in the strong cooperative 

case, the curve of the HS fraction is moved to low-temperature regions and the spin transition 

transforms from first-order with hysteresis to a two-step transition with a large plateau around 

𝑛𝐻𝑆 = 0.5 (red and black cures of Fig. 3a). This behavior appears beyond some threshold value 

of, 𝜉. Thus, for small values of the frustration parameter, 𝜉 , one obtains again the usual "first-

order transition" between LS and HS states, but the width of the hysteresis is severely reduced. 

Increasing ξ values, results in a change of the thermal dependence of the HS fraction into a two-

step spin transition, Figure 3b allows stablishing a close relation between the elastic and electronic 

properties of the lattice. As a matter of fact, the low-temperature value of the average lattice 

parameter, 〈𝑑〉, increases monotonously with  𝜉  and when its value exceeds 𝑅0
𝐻𝐿 = 1.1𝑛𝑚  (see 

red curve in Fig. 3b), a plateau starts to emerge in the thermal dependence of 𝑛𝐻𝑆 and 〈𝑑〉. To get 

a clearer idea of the organization mode of the spin states inside the plateau region, we plotted in 

Fig. 3c, the spatial configurations of the spin states (red dots=HS and blue dots=LS) inside the 

lattice along the thermal transition of the two-step behavior obtained for 𝜉 = 1 in Fig. 3a. A clear 

evidence of the presence of an ordered state HS-LS-HS-LS, noted for simplicity HL, is observed 

in the plateau region, i.e. for 40 ≤ 𝑇 ≤ 45 𝐾.  This behavior is confirmed by the study of the 

temperature-dependence of the proportion of neighboring HS-LS pairs (obtained from MC 

simulations), 𝑛𝐻𝐿(𝑇), which is presented in Fig. S2 of the SM. One expects this quantity to increase 

around the transition temperatures and to fall down in the LS and HS states. This is indeed the case 

for 𝜉 = 0.4 and 0.6, where small peaks are visible on their associated curves. The amplitude of 

the maximum increases as 𝜉 increases, and reaches the value, 𝑛𝐻𝐿~ 0.5 for 𝜉 = 1 in the 

temperature interval 25 − 60K. Since, 𝑛𝐻𝐿 = 𝑛𝐿𝐻, it clearly appears that the presence of this large 

maximum is the signature of the presence of an ordered state HS-LS-HS-LS, which will be noted 

for simplicity as (HLHLHL…) 
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To confirm these facts, we display in Figures 4a and 4b the spatial organization of the spin states 

in the plateau region of the black curve of figure 3 corresponding to the value, 𝜉 = 1 at a 

temperature 𝑇 = 40K, situated in the middle of the plateau region.  An antiferromagnetic-like 

(HLHLHL…) order inside the plateau, where each HS (resp. LS) molecule is surrounded by nn 

LS (resp. HS) molecules is then confirmed.  In addition, one can see the presence antiphase 

boundaries, highlighted by the green squares, because the symmetric configuration (LHLHLH…) 

has the same energy.  

 

 

Figure 4: a) Snapshot of the spatial distribution of the spin states of a chain of 60 sites, showing an anti-

ferromagnetic-like organization in the plateau region of the black curve of Fig. 1a at 𝑇 = 40 K and 𝜉 =  1.  

b) Space-dependence of the distance between nn successive atoms along the chain, showing a constant 

value except at the border of the chain and around the anti-phase boundaries LL where 𝑑𝑥 falls down. An 

excellent correlation is observed between the electronic and the structural behaviors.  
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To clarify the role of the elastic interactions in the emergence of the antiferromagnetic-like 

ordering, we draw the space dependence of the nn inter-site distances along the chain. The results, 

presented in Fig. 4b, shows that the interatomic distance, 𝑑𝑥 = 𝑥𝑖+1 − 𝑥𝑖, keeps a constant value, 

𝑑𝑥 = 1.18𝑛𝑚,  in the antiferromagnetic-like region, and shows some local variation around the 

antiphase boundaries. Interestingly, and as expected, in the region of a monotonous lattice 

parameter, a region with consecutive HS-LS configurations, the average distance 𝑑𝑥 is different 

from the nn value, 𝑅0
𝐻𝐿 = 1.1 nm. Due to the ordered structure of the system, only two kinds of 

nnn configurations are found: namely HS-LS-HS or LS-HS-LS. The latter imposes nnn 

equilibrium distances equal to 2𝑅0
𝐻𝐻 = 2.4nm for the first case, and  

2𝑅0
𝐿𝐿 + 2𝛿𝑅𝜉 = 2.4nm (see Table 1) for the second case.  The interatomic distance 𝑑𝑥 = 1.18𝑛𝑚 

of the mechanically relaxed state emerging from the simulations is then the distance which 

minimizes the total elastic energy, and clearly, its dependence on the elastic constants is non-linear. 

So, to consider this important problem from a general view point, we propose in the following a 

simple analytical procedure, to determine the expressions of these relaxed nn distances.   

III.1 Analytical expressions of the relaxed lattice parameters:  

To understand the behavior of the elastic properties of the model, which monitor those of the HS 

fraction, we study analytically the 𝜉-dependence of the relaxed nn distance, 𝑑𝑥, in three selected 

ordered electronic configurations of interest, of Fig. 3, namely HH (=HS-HS-HS…), LL (=LS-LS-

LS…)  and HL (=HS-LS-HS-LS…), corresponding respectively to a system fully HS, fully LS 

and antiferro-magnetically ordered.  The thermal dependence of the average nn distance,  

First, when the lattice adopts the HS phase, there is no elastic frustration, and so its minimum 

elastic energy is always zero, ∀ 𝜉,  that is because the equilibrium nn and nnn distances are 𝑅0
𝐻𝐻   

and 2𝑅0
𝐻𝐻, respectively.  In contrast, the LS and the ordered antiferro-like structure are frustrated 

for 𝜉 ≠ 0, and their total relaxed elastic energies remain non-zero, due to the incompatibility 

between their nn and nnn equilibrium distances, as previously discussed.  

Let us denote by 𝑅𝐿𝐿
𝑟𝑒𝑙𝑎𝑥  and 𝑅𝐻𝐿

𝑟𝑒𝑙𝑎𝑥  the relaxed nn distances corresponding to LL and HL 

macroscopic states. We assume that the lattice parameter is homogeneous along the chain. Let’s 

denote by 𝑥 (resp. 2𝑥) the distance between the nn (resp. nnn), then it follows from Hamiltonian 



15 
 

(1) that the total non-relaxed energy of the system (including electronic and elastic contributions) 

in these configurations write as  

𝐸𝐻𝐻 = 𝑁∆𝑒𝑓𝑓 + (𝑁 − 1)𝐴0 (𝑥 − 𝑅𝑒𝑞
𝑛𝑛(+1, +1))

2

+ (𝑁 − 2)𝐵0 (2𝑥 − 𝑅𝑒𝑞
𝑛𝑛𝑛(+1, +1))

2

          (8a)                   

𝐸𝐿𝐿 = −𝑁∆𝑒𝑓𝑓 + (𝑁 − 1)𝐴0 (𝑥 − 𝑅𝑒𝑞
𝑛𝑛(−1, −1))

2

+ (𝑁 − 2)𝐵0 (2𝑥 − 𝑅𝑒𝑞
𝑛𝑛𝑛(−1, −1))

2

         (8b)                  

𝐸𝐻𝐿 = (𝑁 − 1)𝐴0 (𝑥 − 𝑅𝑒𝑞
𝑛𝑛(−1, +1))

2

+
(𝑁−2)

2
𝐵0 (2𝑥 − 𝑅𝑒𝑞

𝑛𝑛𝑛(+1, +1))
2

+
(𝑁−2)

2
𝐵0 (2𝑥 −

𝑅𝑒𝑞
𝑛𝑛𝑛(−1, −1))

2

   (8c) 

Substituting 𝑅𝑒𝑞
𝑛𝑛(𝑆𝑖 , 𝑆𝑗) and 𝑅𝑒𝑞

𝑛𝑛𝑛(𝑆𝑖, 𝑆𝑘) by their expressions given in Eqs. (2) and (4), the elastic 

energy densities in the case of a long chain (𝑁 ≫ 1) become : 

𝐸𝐿𝐿 = −∆𝑒𝑓𝑓 + 𝐴0(𝑥 − 𝑅0
𝐿𝐿)2 + 4𝐵0(𝑥 − 𝑅0

𝐿𝐿 − 𝛿𝑅𝜉)2   (9a) 

𝐸𝐻𝐿 = 𝐴0(𝑥 − 𝑅0
𝐻𝐿 )2 + 2𝐵0(𝑥 − 𝑅0

𝐻𝐻)2 + 2𝐵0(𝑥 − 𝑅0
𝐿𝑙 − 𝛿𝑅𝜉 )

2
      (9b) 

𝐸𝐻𝐻 = ∆𝑒𝑓𝑓 + (𝐴0 + 4𝐵0)(𝑥 − 𝑅0
𝐻𝐻)2.   (9c) 

The relaxed distances are obtained by minimizing these expressions with respect to 𝑥, which leads 

to, 

      𝑥𝐻𝐻
𝑟𝑒𝑙𝑎𝑥=𝑅0

𝐻𝐻                (10a) 

𝑥𝐿𝐿
𝑟𝑒𝑙𝑎𝑥 = 𝑅0

𝐿𝐿 +
4𝜉

𝑘+4
𝛿𝑅    (10b) 

𝑥𝐻𝐿
𝑟𝑒𝑙𝑎𝑥 = 𝑅0

𝐻𝐿 +
2𝜉

𝑘+4
𝛿𝑅   (10c) 

Where 𝑘 =
𝐴0

𝐵0
 is the ratio between the nn and nnn elastic constants. The linear  𝜉-dependence of 

the three relaxed nn distances in the LL, HL and HH states is represented in Fig. S3 of the 

supplemental material, where the reader can remark the existence of a particular point 𝜉𝑐 = 1.25 

above which the relaxed HL and LL distances become bigger than that of the HS state. 

 Eqs. (10b-c) bring to light, the non-linear dependence of the relaxed nn distance with the elastic 

constants. Moreover, we see that the relaxed nn distances in the LS (𝑥𝐿𝐿
𝑟𝑒𝑙𝑎𝑥) and in the ordered 

antiferro-like HS-LS state, (𝑥𝐻𝐿
𝑟𝑒𝑙𝑎𝑥), are bigger than their respective non-frustrated values, 𝑅0

𝐿𝐿  and 

𝑅0
𝐻𝐿  they are simply linear increasing functions of the frustration parameter 𝜉 > 0 and the lattice 
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parameter misfit 𝛿𝑅.  In the case where, 𝐵0 ≫ 𝐴0, the nn potential dominates which leads to 𝑘~0, 

and the frustration becomes maximum.  

To check the reliability of these analytical predictions, we compared in Fig. 5 the analytical values 

of, 𝑅𝐿𝐿
𝑟𝑒𝑙𝑎𝑥(𝜉), in the LS state, given by Eq. (10b), with those derived from the MC simulations of 

Fig. 4, at 0 K. An excellent agreement is found between these two sets of data, thus confirming 

the relevance of the present approach.     

According to Eqs. (10), the elastic frustration, tends to expand locally the lattice parameter in the 

LL and HL states, resulting in the stabilization of the HS state. This fact is identified as the main 

reason for which the representative curves of the HS fraction 𝑛𝐻𝑆(𝑇) (Fig. 2) shift to lower 

temperature region when increasing 𝜉 values.  
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Figure 5: Relaxed nn distance, 𝑅𝐿𝐿
𝑟𝑒𝑙𝑎𝑥 , in the LS state vs elastic frustration strength, 𝜉. The blue squares 

are MC data and the red line corresponds to the analytical prediction of Eq. (10b). The calculations are 

performed at 𝑇 = 10K. Remark the excellent quantitative predictions of the analytical approach.  

 

 

III.2 Frustration-dependence of the total energies 

To go further in the analysis of the thermal dependence of the HS fraction of Fig. 3, we calculate 

the total relaxed energies in the HH, HL and LL states, which are easily obtained by replacing in 
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Eqs. 9a-c, the relaxed nn distances, 𝑅𝐻𝐻
𝑟𝑒𝑙𝑎𝑥 , 𝑅𝐿𝐿

𝑟𝑒𝑙𝑎𝑥 , 𝑅𝐻𝐿
𝑟𝑒𝑙𝑎𝑥  by their expressions in (10a-c). The 

mechanically relaxed in the ordered LL, HL and HH configurations write,   

𝐸𝐿𝐿
𝑟𝑒𝑙𝑎𝑥 = −𝑁∆𝑒𝑓𝑓 + 𝑁 (

𝜉

𝜉𝑐
𝛿𝑅)

2
[𝐴0 + 4𝐵0(1 − 𝜉𝑐)2] = −𝑁∆𝑒𝑓𝑓 + 4𝑁𝐴0𝛿𝑅

2𝜉2 𝑘2+4

(𝑘+4)2  (11a) 

𝐸𝐻𝐿
𝑟𝑒𝑙𝑎𝑥 = 𝑁 (

𝜉

2𝜉𝑐
𝛿𝑅)

2
[𝐴0 + 2𝐵0(1 − 𝜉𝑐)2] +

𝑁𝐵0

2
𝛿𝑅

2 (1 + 𝜉 (
1

𝜉𝑐
− 2))

2

 =
𝑁𝐵0

2
𝛿𝑅

2 [4
𝑘+1

𝑘+4
𝜉2 −

4𝜉 + 1]  (11b) 

𝐸𝐻𝐻 = 𝑁∆𝑒𝑓𝑓 (11c) 

Where, 𝜉𝑐 =
𝑘+4

4
.  
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Figure 6: Thermal-dependence of the total analytical energies given by Eqs. (15)-(17) of the three 

lattice configurations, LL, HH, HL, for 𝜉 = 1. The thermal dependence of the system follows the 

energy minimum landscape, which leads to A-B-C-D  pathway, along which in the plateau B-C 

(blue curve), the HL state is stabilized. The transition temperatures, 23.2 K and 68.5 K at which 

these intersections take place, are in excellent agreement with MC data of Fig. 3.  

 

The thermal evolution of the total relaxed energies of the LL, HL and HH lattices, depicted in Fig. 

6, for the case, 𝜉 = 1, leads to interesting information. The three linear plots, clearly demonstrate 

that on both cooling and heating processes, the energy of the LL (in red) and HH (in black) cross 

that of the HL (in blue) at first. Since the system follows the minimum energy pathway (the states 

are considered here as ordered and so their entropies are zero), it is found that the 

antiferromagnetic-like HL state is stabilized in the course of the thermal process, illustrated by the 

letters A, B, C, D in Fig. 6. Moreover, the numerical values of the predicted transition 

temperatures, 𝑇− = 23.2 K and 𝑇+ = 68.5 K, corresponding to LL→HL and HL→HH 

transformations, are in excellent agreement with MC data of Fig. 3. The behavior of the plateau 

width as a function of 𝜉 is considered in detail in the forthcoming sections. 

III.3 Effect of the elastic frustration on the transition temperatures and phase diagram 

At equilibrium thermodynamics, the transition temperature between two coexisting phases 

correspond to the temperature for which their corresponding free energies are equal, that is the 

Maxwell point. Here, we aim to find the analytical expressions of the equilibrium temperatures  

corresponding to the transitions between LL, HL and HH states. For simplicity, we consider that 

the transition occurs between ordered states, then their associated entropies are equal to zero. Thus, 

the condition of equal free energies transforms to equal internal energies. 

However, one should mention that, in the presence of a first-order transition with a thermal 

hysteresis, this analytical method will note give the limiting temperatures (𝑇− , 𝑇+) of the 

hysteresis (which depend on the lifetime of metastable states), but will lead to the so-called 

equilibrium temperatures, while the MC simulations do exactly the contrary.  So to compare the 

results, the equilibrium temperature is then derived from MC data as ~(𝑇− + 𝑇+)/2.  
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First, we start by determining the transition temperature, 𝑇𝑒𝑞, corresponding to the hysteresis loops 

of Fig. 2a, corresponding to cooperative transformation between full LS and HS states. Since the 

transition takes place between two ordered states, namely LS and HS, their entropies are null, 

which transforms the condition of equal free energies to that of equal energies, thus giving, 

𝐸(𝑇 = 𝑇𝑒𝑞 , < 𝑆𝑖 >= +1, 𝑥 = 𝑅𝑟𝑒𝑙𝑎𝑥
𝐻𝐻 ) = 𝐸(𝑇 = 𝑇𝑒𝑞  , < 𝑆𝑖 >= −1, 𝑥 = 𝑅𝑟𝑒𝑙𝑎𝑥

𝐿𝐿 ). Using the 

computed total energies whose expressions are given in Eqs. (7), one easily arrives  at the 

frustration-dependence of the transition temperature, 

𝑇𝑒𝑞(𝜉) =
Δ0

𝑘𝐵 ln 𝑔
−

𝐴0𝛿𝑅
2 𝜉2

2 ln 𝑔
[

5

𝜉𝑚𝑎𝑥
2 −

8

𝜉𝑚𝑎𝑥
+ 4] ,  (12) 

in which we recognise as first term the transition temperature of the usual Ising-like model. The 

second contribution is that of the elastic frustration which brings an additional effective ligand 

field energy to ∆0.  As a consequence, the global transition temperature of the system shows a 

quadratic decrease with the frustration parameter.  

The analytical curve 𝑇𝑒𝑞(𝜉) is plotted in the region I of the phase diagram of Fig. 7, where it 

excellently agrees with the results of MC simulations.   

III.4  The condition for the appearance of the two-step spin transitions: 

The thermal dependence of the HS fraction of Fig. 3a indicates that high values of 𝜉 lead to the 

emergence of a plateau around 𝑛𝐻𝑆~0.5 in the thermal transition, where the spin states show an 

antiferromagnetic-like self-organization (HLHLHL…), denoted here HL for simplicity. Our 

objective in this section is to find the analytical expressions of the transition temperatures, 𝑇𝑒𝑞
−  and 

𝑇𝑒𝑞
+ , at which occur the LL↔HL and HL↔HS conversions, respectively. For that, one should 

remark that at these temperatures, the total energies of the elastically relaxed LL, HL and HH states 

must obey the following conditions   

𝐸(𝑇 = 𝑇𝑒𝑞
+  , < 𝑆𝑖 >= +1, 𝑥 = 𝑅𝑟𝑒𝑙𝑎𝑥

𝐻𝐻 ) = 𝐸(𝑇 = 𝑇𝑒𝑞
+  , < 𝑆𝑖 >= 0, 𝑥 = 𝑅𝑟𝑒𝑙𝑎𝑥

𝐻𝐿 )  (13a) 

and 

𝐸(𝑇 = 𝑇𝑒𝑞
−  , < 𝑆𝑖 >= −1, 𝑥 = 𝑅𝑟𝑒𝑙𝑎𝑥

𝐿𝐿 ) = 𝐸(𝑇 = 𝑇𝑒𝑞
−  , < 𝑆𝑖 >= 0, 𝑥 = 𝑅𝑟𝑒𝑙𝑎𝑥

𝐻𝐿 )  (13b) 
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Using the expressions of energies found in Eqs. (11) , we arrive immediately after from 

simplifications to, 

𝑇+(𝜉) = 𝑇𝑒𝑞
0 −

2𝐴0𝛿𝑅
2

𝑘𝐵 ln 𝑔
[

5

8𝜉𝑚𝑎𝑥
2 −

1

𝜉𝑚𝑎𝑥
+ 1] 𝜉2 +

2𝐴0𝛿𝑅
2

𝑘𝐵 ln 𝑔
(𝜉 − 1/2)         (14a) 

and  

𝑇−(𝜉) = 𝑇𝑒𝑞
0 +

2𝐴0𝛿𝑅
2

𝑘𝐵 ln 𝑔
[

−15

4𝜉𝑚𝑎𝑥
2 +

6

𝜉𝑚𝑎𝑥
− 2] 𝜉2 − 

2𝐴0𝛿𝑅
2

𝑘𝐵 ln 𝑔
(𝜉 − 1/2)            (14b) 

The two-step transitions exist as soon as 𝑇+(𝜉) > 𝑇−(𝜉) and 𝑇−(𝜉) > 0. These two conditions 

impose an interval of 𝜉 values limited here to 0.65 < 𝜉 < 1.25 for the present used model 

parameter values. This behavior corresponds to region 2 of the phase diagram of Fig. 7, where the 

representative curves of 𝑇±(𝜉) are displayed and compared to MC data, with which they also show 

an excellent agreement. Moreover, Eqs. (10) allows to deduce the width of the plateau region as  

Δ𝑇 = 𝑇+(𝜉) − 𝑇−(𝜉) =
𝐴0𝛿𝑅

2

𝑘𝐵 ln 𝑔
[

10

4𝜉𝑚𝑎𝑥
2 −

4

𝜉𝑚𝑎𝑥
] 𝜉2 +

4𝐴0𝛿𝑅
2

𝑘𝐵 ln 𝑔
𝜉 −

2𝐴0𝛿𝑅
2

𝑘𝐵 ln 𝑔
,        (15) 

showing a parabolic increase with the elastic frustration strength.  
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Figure 7: Phase diagram 𝑇(𝜉 ) summarizing the behaviour of the transition temperatures vs the frustration 

parameter ξ obtained by MC (squares) simulations and analytically (continuous lines). Three regions are 

found: (1) for 0.2 < 𝜉 < 0.65, a one-step spin transition between HS and LS with hysteresis. Black squares 

are MC data and the red line is the analytical prediction for 𝑇𝑒𝑞(𝜉 ). (ii) 0.65 < 𝜉 < 1.2 complete two-step 

transitions region. Red (resp. green) and blue rep. violet) squares (resp. lines) are MC (resp. analytical) data 

of 𝑇−(𝜉)  and 𝑇+(𝜉). Region (3), 1.2 < 𝜉 < 1.65  is the region of incomplete, two-step but gradual 

transitions. For 𝜉 > 1.65 the thermal hysteresis re-appears, announcing the existence of a re-entrance 

phenomenon.  

 

III.5. Incomplete spin transitions and modulated structures   

A spin transition is usually called incomplete 24, 40, when the conversion on cooling from the full 

HS state leads at low-temperature to a mixed phase of LS and HS states. This means that there is 

a residual fraction of HS species which do not convert at very low-temperature. This phenomenon 

is often observed in spin transition materials and was not considered seriously from the physics 

side, probably because everybody is looking for complete and hysteretic transitions. However, the 

existence of a reluctant HS fraction at low-temperature presents challenging problems of elasticity, 

and one has to understand what is the physical origin behind this very common observation. In the 

present study, the 1D elastic chains lead to incomplete spin transitions beyond the threshold 

frustration rate value 𝜉~1.2, as shown in Fig. 8a,  where we notice that the system stabilizes at 0 

K only a quantified number of residual HS fractions: 𝑛𝐻𝑆 = 1/3, 𝑛𝐻𝑆 = 2/3 and 𝑛𝐻𝑆 = 3/4  for 

high 𝜉 values. Concomitantly, the corresponding evolution of the average nn distance at 0 K, 

shows a continuous and linear increase with respect to 𝜉.  Theoretically speaking, the existence of 

a residual HS fraction at 0K requires fulfilling the constraint 𝑅𝐿𝐿
𝑟𝑒𝑙𝑎𝑥 ≥ 𝑅0

𝐻𝐻 , which according to 

Eq. (10b), is expected for 𝜉𝑐 =
𝐴0+4𝐵0

4𝐵0
, evaluated to 𝜉𝑚 = 1.25. A meticulous inspection of the 

MC data of Fig. 8b giving the thermal-dependence of the average nn distance for several 𝜉 values, 

shows that the incomplete transition appears sooner in the simulation, i.e. from 𝜉 = 1.2. The small 

discrepancy between the analytical predictions and the simulations is attributed to kinetic effects 

of the MC procedure at low-temperature, which considerably slows down the thermal activation 

which increases the lifetime of the relaxation processes. These results are summarized in region 3 

of the phase diagram of Fig. 7 which displays the 𝑇 − 𝜉 behavior of incomplete and multi-step 

transitions.  
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Figure 8: (a) Thermal dependence of the HS fraction for strong frustration parameter values 𝜉 =
1.2, 1.6, 1.7, 1.8, 2, showing incomplete spin transitions (b) thermal-dependence of the corresponding 

average nn distances. Only three values are obtained for the HS residual fractions (𝑛𝐻𝑆 values at 0 K): 1/3, 

2/3 and 3/4, associated with the ordered structures LLH≡HL2 (𝜉 = 1.2), LHH≡LH2 (𝜉 = 1.6) and 

LHHH≡LH3 (𝜉 = 2). Remark the existence of the re-appearance of a “first order transition” for strong 

elastic frustrations, 𝜉 = 1.6-2. The parameter values are the same as those of Fig. 2.   

 

Figures 9, presents the electroelastic configuration of the chain at 𝑇 = 1 K, corresponding 

respectively to 𝜉 = 1.2, and 1.6 of Fig. 8. The electronic configuration is given by the information 

of the spin state of each site (blue=LS and red=HS) and the information about the elastic 

configuration is obtained through the variation of the consecutive nn distances along the chain 

direction (𝑥). The latter is denoted 𝑑𝑥 and is given by 𝑑𝑥 = |𝑟𝑖+1 − 𝑟𝑖|. Thus for 𝜉 = 1.2, the low-

temperature phase is made of a well organized LLH (L2H) structure, with the presence of some 



23 
 

anti-phase boundaries which separate the two equivalent structures L2H and HL2. Interestingly, 

the spatial-dependence of the corresponding nn distances along the chain axis gives a periodic 

modulated structure, perturbed at some points by the presence of these phase boundaries. The 

modulation of the structure contrasts with that of HL phase of Fig. 3, for which 𝑑𝑥 remains uniform 

between two consecutive anti-phase boundaries. 
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Figure 9: Electronic and elastic configurations of the chain corresponding to the low-temperature phase 

of Fig. 8 for (a)  𝜉 = 1.2  at 𝑇 = 1 K and (b) 𝜉 = 1.6 at 𝑇 = 1 K.   For  𝜉 = 1.2, two types of equivalent 

orders L2H and HL2 are obtained with the presence of anti-phase boundaries. The associated nn distance 

modulates spatially along the chain. For 𝜉 = 1.6, a perfect LH2 structure is obtained with a modulation of 

the lattice parameter.  

Similarly, Figure 9b illustrates the configuration of the low-temperature state of the partial 

transition obtained in Fig. 8 for  𝜉 = 1.6 . Now, the HS fraction is 
2

3
, and a perfect LHH (LH2) 

ordered state is obtained. Again, the spatial distribution of the nn distances shows a nice periodic 

modulated structure, in qualitative very good agreement with several experimental results 22-23, 34-

37 reported in the literature of SCO materials. 

Obviously, the state LH2 already started to appear around 𝑇 = 50 K for 𝜉 = 1.6, as revealed by 

the presence of a plateau at 𝑛𝐻𝑆 =
2

3
  in the black curve of Fig. 8a. However, the presence of 

thermal fluctuations, introduce entropic effects in the structure, which renders much more 

difficulty in distinguishing LH2 and H2L states. Thus, at 𝑇 = 25 K, for example, one expects a 
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between LH2, H2L on the one hand and HL2, L2H form the other hand and then one will deal with 

an interplay between the complexity and the disorder. 

Obviously, the phase LH2 already started to appear around T=50K for 𝜉 = 1.6, as revealed by the 

presence of a plateau at 𝑛𝐻𝑆 =
2

3
 in the black curve of Fig. 6a. However, the presence of thermal 

fluctuations introduces entropic effects in the structure, which renders much more difficulty in 

distinguishing LH2 and HL2 states. Thus at 𝑇 = 25K, for example, one expects a transition 

between LH2, HL2 on the one hand and LH2, L2H from the other hand. One will deal then with the 

complexity, self-organization 69 and disorder. 

To ensure that we have not skipped any intermediate configuration, we conducted intensive MC 

simulations at very low-temperature, in which we calculate the HS fraction as a function of  𝜉, 

used here as a control parameter. The results are presented in Fig. 10. A multi-step transition is 

obtained with hysteresis, revealing the 𝜉 values at which the lattice undergoes a structural 

instability.  An inspection of two lattice snapshots for the two selected values 𝜉 = 1.25 and 𝜉 =

1.8, lead to perfectly organized states, L2H and H2L, as those of Fig. 8.  Obviously, changing the 

temperature will change the diagram 𝑛𝐻𝑆(𝜉) of Fig. 10, due to the already discussed entropic 

effects.  
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Figure 10: frustration-dependence of the HS fraction at 1 K, showing a multi-step behavior. The transition 

from the LS to the HS state goes through the stabilization of two ordered intermediate states, namely HL2 

and LH2, whose spatial structures are given in Fig. 8. The model parameters are the same as those of Fig. 

2. 

The emergence of the HL, L2H and H2L structures are clearly intrinsic to the one-dimensional 

structure of the chain. For example in the two-dimensional version of this model, that we studied 

recently 19, we found complex organized structures in partial SCO transitions, among which the 

antiferro-like structure and more complicated ones like H4L, whose spatial organization recalled 

Penrose's patterns.   

So, to get more insights about the physical reasons for emergence of these particular, HL, HL2, 

H2L, states, we calculated analytically the total relaxed energies of these three phases. In the 

following, we attempt an analytical determination of the relaxed nn distances for these three 

configurations, from which we derive the mechanically relaxed elastic energy. Let’s start with the 

modulated structure   HL2 (=HLLHLLHLL…). Here one sees that the structure consists of a 

periodic series of HS-LS, LS-LS, LS-HS etc. As a consequence, the nn can be only LS-LS or HS-

LS. Let us denote by 𝑥 the non-relaxed LS-LS nn distance and by 𝑦 that of the nn HS-LS distance. 

The total energy, which includes the electronic and (nn and nnn) elastic contributions writes (see 

SM for the details). 

 𝐸𝐿2𝐻 =
−𝑁

3
(∆0 − 𝑘𝑇 ln 𝑔) +

𝑁𝐴0

3
[(𝑥 − 𝑅0

𝐿𝐿)2 + 2(𝑦 − 𝑅0
𝐻𝐿)2] +

𝑁𝐵0

3
[2(𝑥 + 𝑦 − 2𝑅0

𝐿𝐿 −

2𝛿𝑅𝜉)2 + (2𝑦 − 2𝑅0
𝐻𝐿 − 𝛿𝑅𝜉)2]       (16) 

The relaxed LS-LS and HS-LS distances are determined by minimizing 𝐸𝐿2𝐻 with respect to  

𝑥 and 𝑦, i.e., 
𝜕𝐸

𝐿2𝐻

𝜕𝑥
= 0 and 

𝜕𝐸
𝐿2𝐻

𝜕𝑦
= 0, which leads to the following relaxed nn distances,  

𝑥𝑟𝑒𝑙𝑎𝑥 = 𝑅𝐿𝐿
𝑟𝑒𝑙𝑎𝑥 =

(𝑘(𝑘 + 3) − 4)𝑅0
𝐿𝐿 + 2(𝑘 + 4)𝑅0

𝐻𝐿 + 2𝑘𝛿𝑅𝜉

𝑘2 + 5𝑘 + 4
       (17a) 

𝑦𝑟𝑒𝑙𝑎𝑥 = 𝑅𝐻𝐿
𝑟𝑒𝑙𝑎𝑥 =

𝑘

2
𝑅0

𝐿𝐿 + 2𝑅0
𝐻𝐿 + 𝛿𝑅𝜉 −

𝑘 + 2

2
𝑥𝑟𝑒𝑙𝑎𝑥             (17b) 

Replacing the parameters, 𝑘 = 1, 𝑅0
𝐿𝐿 = 1nm, 𝑅0

𝐻𝐿 = 1.2nm, and 𝛿𝑅 = 0.2nm by their numerical 

values, we evaluated in the case  𝜉 = 1.2,  the following values for relaxed distances: 𝑅𝐿𝐿
𝑟𝑒𝑙𝑎𝑥 =

1.148nm and 𝑅𝐻𝐿
𝑟𝑒𝑙𝑎𝑥 = 1.218nm. The latter are in excellent agreement with the numerical results 
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of MC simulations, shown in Fig. 8a, which gives a modulated structure with 𝑅𝐿𝐿
𝑟𝑒𝑙𝑎𝑥 =1.1428nm 

and 𝑅𝐻𝐿
𝑟𝑒𝑙𝑎𝑥 = 1.226nm. 

Based on this success, we apply the same procedure to study the modulated structure LH2, (=LS-

LS-HS-LS-LS-HS…) whose total elastic energy writes  

𝐸𝐻2𝐿 =
𝑁

3
(∆0 − 𝑘𝑇 ln 𝑔) +

𝑁𝐴0

3
[(𝑥 − 𝑅0

𝐻𝐻 )2 + 2(𝑦 − 𝑅0
𝐻𝐿 )2] +

𝑁𝐵0

3
[2(𝑥 + 𝑦 − 2𝑅0

𝐻𝐿 −

𝛿𝑅𝜉)2 + (2𝑦 − 2𝑅0
𝐻𝐻)2]    (18) 

where 𝑥 is the distance between two nn HS-HS states and 𝑦 is that between two HS and LS nn 

sites. The minimization with respect to these two variables gives the following relaxed distances  

  

𝑥𝑟𝑒𝑙𝑎𝑥 = 𝑅𝐻𝐻
𝑟𝑒𝑙𝑎𝑥 =

(𝑘(𝑘 + 3) − 4)𝑅0
𝐻𝐻 + 2(𝑘 + 4)𝑅0

𝐻𝐿 + 2(𝑘 + 2)𝛿𝑅𝜉

𝑘2 + 5𝑘 + 4
    (19a) 

𝑦𝑟𝑒𝑙𝑎𝑥 = 𝑅𝐻𝐿
𝑟𝑒𝑙𝑎𝑥 =

𝑘

2
𝑅0

𝐻𝐻 + 2𝑅0
𝐻𝐿 + 𝛿𝑅𝜉 −

𝑘 + 2

2
𝑥𝑟𝑒𝑙𝑎𝑥     (19b) 

Here again, according to the model parameter values, which are the same as for the previous case, 

except for 𝜉 = 1.6, we evaluate 𝑥𝑟𝑒𝑙𝑎𝑥 = 𝑅𝐻𝐻
𝑟𝑒𝑙𝑎𝑥 = 1.292nm and 𝑦𝑟𝑒𝑙𝑎𝑥 = 𝑅𝐻𝐿

𝑟𝑒𝑙𝑎𝑥 = 1.182nm. 

These values are here also in excellent agreement with those obtained from MC simulations, 

𝑅𝐻𝐻
𝑟𝑒𝑙𝑎𝑥=1.2938 nm and 𝑅𝐻𝐿

𝑟𝑒𝑙𝑎𝑥=1.1801 nm, shown in the snapshot of Fig. 8b. 

Inserting the relaxed distances obtained in Eqs. (17) and (18) in their associated energies given in 

Eqs. (16) and (18), we immediately arrive at the relaxed energy densities, 
𝐸

𝐿2𝐻
𝑟𝑒𝑙𝑎𝑥

𝑁
 and 

𝐸
𝐻2𝐿
𝑟𝑒𝑙𝑎𝑥

𝑁
. 

𝐸𝐿2𝐻
𝑟𝑒𝑙𝑎𝑥

𝑁
=

−1

3
(∆0 − 𝑘𝑇 ln 𝑔) +

𝐴0𝛿𝑅
2

3
(

329

100
𝜉2 −

10

19
𝜉 +

3

4
)     (20a) 

𝐸
𝐻2𝐿
𝑟𝑒𝑙𝑎𝑥

𝑁
=

1

3
(∆0 − 𝑘𝑇 ln 𝑔) +

𝐴0𝛿𝑅
2

3
(

3

5
𝜉2 −

9

10
𝜉 +

9

8
)     (20b) 

Figure 11a, summarizes the behavior of the total relaxed energies at 0 K of the five states, namely 

LL, L2H, HL and H2L as the function of the frustration parameter, 𝜉.  If we follow the lowest 

energy states by varying, 𝜉, we see clearly that from 𝜉 = 0 to 𝜉 = 1.0031, the LS (𝑛𝐻𝑆 = 0) state 

is fundamental and then a first transition to the L2H (𝑛𝐻𝑆 =
1

3
) state occurs at 𝜉 = 1.0031. A second 

crossover is obtained for 𝜉 = 1.5593 at which the system switches to H2L (𝑛𝐻𝑆 =
2

3
) state, and 

then the last transition to the HH (𝑛𝐻𝑆 = 1) takes place at, 𝜉 = 1.91. Once again, these analytical 

predictions are in excellent agreement with MC data of Fig. 10. In addition, From Fig. 11a it is 
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evident that in the interval 𝜉 = 1.17-1.5, several crossovers in close excited states occur between 

LL and HL, H2L and HL, as well as between LL and H2L. These transitions can be activated by a 

small temperature change, although the latter introduces a major impact on the energy level 

scheme, as shown in Fig. 11b.   
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Figure 11: Calculated 𝜉 -dependence of the total relaxed energies of the five states, HH, L2H, HL, 

and H2L, (a) at 0K and (b) at 20 K. In the case a) four remarkable points located between 𝜉1
∗ =

1.0031 , 𝜉4
∗ = 1.18191 define the minimum energy pathway, along which the states among LL, 

L2H, H2L and HH will appear during the phase transitions. (b) The same reasoning is also used at 

20 K where the transitions take place between at 20K the 𝜉1 to 𝜉3 points are respectively equal 

𝜉1
∗ = 0.87 and  𝜉4

∗ = 1.47. These results are in excellent agreement with MC data of Fig. 8.   

 

III.6 Evidence of reentrant spin transitions 

Among the interesting consequences of the elastic frustration, we mention the existence of non-

monotonous behavior of the thermal dependences of the HS fraction. Thus, Fig. 8b shows a clear 

evidence of a re-entrance phenomenon in the thermal behavior of the HS fraction when the 
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frustration rate is increased. The re-entrance phenomenon is well known in physics of phase 

transition as a phenomenon (second order phase transition, for example) which exists at some 

values of a control parameter, then it disappears in some interval values and re-appears again 

beyond some threshold value. Examples in literature of re-entrant phenomena come from 

magnetism and ferroelectricity and have been intensively studied in the past 70-72. In the present 

work, we remark that while for  𝜉 = 0.4, the chain displays a sharp transition with hysteresis 

although it is a kinetic one, between HH and LL states, the latter (i.e., the transition) transforms to 

gradual and incomplete between HH and H2L states, which in turn converts to a mixed L2H-HL 

state. Interestingly, by increasing 𝜉 values beyond the threshold, 𝜉 = 1.2, the thermal transition 

becomes sharper (case 𝜉 = 1.6) and the hysteresis re-appears again between HH and H2L states 

(𝜉 = 1.6). The reappearance of the thermal transition is a signature of a re-entrant phase transition. 

To understand this behavior one must analyze the dependence of the average value of the relaxed 

lattice parameter misfit between the HH and the H2L states. As can be seen in Fig. 8b, the average 

value of the lattice parameter of the H2L state at low-temperature exceeds the value of the non-

frustrated HS state, 𝑅0
𝐻𝑆 for a certain value of 𝜉~1.25. This value is exactly the one at which the 

misfit 𝑥𝐻𝐻
𝑟𝑒𝑙𝑎𝑥 − 𝑥𝐿𝐿

𝑟𝑒𝑙𝑎𝑥 = 𝛿𝑅 (1 −
4𝜉

𝑘+4
) changes its sign, i.e. for 𝜉𝑐 =

𝑘+4

4
= 1 +

𝐴0

4𝐵0
 (= 1.25, 

according to the used parameter values). For this special value, the relaxed nn distances of the HH, 

LL and HL states are equal as shown in Fig. S3 of the SM. However, the elastic interaction energy 

depends on the square of the lattice parameter misfit, i.e. (𝑥𝐻𝐻
𝑟𝑒𝑙𝑎𝑥 − 𝑥𝐿𝐿

𝑟𝑒𝑙𝑎𝑥)
2
. As a result, the latter 

becomes minimum at 𝜉 = 𝜉𝑐  and increases for 𝜉 > 𝜉𝑐. This increase of the elastic energy due to 

frustration enhances the cooperativity of the system, which then recovers the thermal hysteretic 

behavior.  

The present situation may take place at the surface of nanoparticles where the ligand field, the 

elastic constants and the equilibrium distances play in favor of the HS state, as does the 𝜉 

parameter, here. Interestingly, re-entrant phase transitions have been reported very recently in SCO 

nanoparticles, studied by Mössbauer spectroscopy 39, 73 where the first-order character of the spin 

transition vanishes under some size and re-appears again below some a threshold nanoparticle size. 

It is then legitimate to ask whether the elastic frustration is at the origin of this phenomenon in 

such small systems 

 

IV Conclusion: 

1D spin-crossover solids are widely studied in the literature and they lead to a rich variety of 

behaviors, among them first-order, gradual, two-step, partial transitions etc. While already studied 

by 1D Ising-like models 20, 74-76 including only competing ferro- and antiferro- interactions which 

consist in ad-hoc interactions introduced to reproduce the multi-step character of some transitions. 

For our best knowledge, 1D SCO chains including elastic frustration have never been considered 



30 
 

from the elastic point of view. So, we have designed in the present work a simple elastic model for 

1D spin-crossover networks including an elastic frustration between nnn sites leading to antagonist 

equilibrium between nearest- and newt-nearest-neighbors. The model is solved using MC 

simulations performed on the spin states and the lattice positions. We have also developed an 

analytical method to predict the thermal behavior and the frustration dependence of the HS fraction 

and the nn relaxed distance, even for the case of modulated spin-state structures along the chain.   

First of all, we demonstrated that the introduction of a frustration between nn and nnn equilibrium 

distances allows to stabilize intermediate states in the course of the thermal transition between the 

LS and the HS phases. According to the strength of the elastic frustration, we found that three 

macroscopic values of the HS fraction, namely, 𝑛𝐻𝑆 =
1

2
,  

1

3
 and 

2

3
 can be obtained, corresponding 

to well organized antiferro-magnetic (HL), L2H and H2L structures. An inspection of the spatial 

dependence of the lattice parameters in these three phases allowed to demonstrate that the HL 

state, except around the anti-phase boundaries, exhibits a uniform and constant lattice parameter, 

while L2H and H2L patterns lead to modulated lattice parameter structures, which is commensurate 

with that of the spin state. The fact that this model gives, by changing only one parameter, almost 

all the observed thermal behaviors in SCO chains, is a strong indication of its relevance. Among 

the extensions of the present model, we mention the possibility to include the elastic frustration 

also in the HS state. Moreover, the frustration parameter itself may depend on temperature, thus 

following the difference of rigidities between the LS and HS states. The extension of the present 

model to include inter-chain elastic interactions surely deserves to be considered in a near future. 

Last but not least, we are currently extending this model to study the case of binuclear molecules 

which are known in literature to present thermally-induced two-step transition behavior, which has 

been only described in the past using Ising-like models including competing ferro- and anti-ferro 

like exchange interactions. This problem deserves to be studied using an adequate extension of the 

electro-elastic model.  
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