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A deep primal-dual proximal network for image restoration

Image restoration remains a challenging task in image processing. Numerous methods have been proposed to tackle this problem, which is often solved by minimizing a non-smooth penalized likelihood function. Although the solution is easily interpretable with theoretic guarantees, its estimation relies on an optimization process that can take time. Considering the important research efforts in deep learning for image classification and segmentation, this class of methods offers a serious alternative to perform image restoration but its adaptation to inverse problem is still challenging. In this work, we design a deep network, named DeepPDNet, built from primal-dual proximal iterations associated with the minimization of a standard penalized likelihood with an analysis prior, allowing us to take advantages from both worlds.

We reformulate a specific instance of the Condat-Vũ primal-dual hybrid gradient (PDHG) algorithm as a deep network with fixed layers. Each layer corresponds to one iteration of the primal-dual algorithm. The learned parameters are the primaldual proximal algorithm step-size and the analysis linear operator involved in the penalization (including the regularization parameter). These parameters are allowed to vary from a layer to another one. Two different learning strategies: "Full learning" and "Partial learning" are proposed, the first one is the most efficient numerically while the second one relies on standard constraints insuring convergence in the standard PDHG iterations. Moreover, global and local sparse analysis prior are studied to seek the better feature representation. We experiment the proposed DeepPDNet on the MNIST and BSD68 datasets with different blur and additive Gaussian noise. Extensive results shows that the proposed deep primal-dual proximal networks demonstrate excellent performance on the MNIST dataset compared to other state-of-the-art methods and better or at least comparable performance on the more complex BSD68 dataset.

Introduction

Inverse problem solving has been studied for many years with applications ranging from astrophysics to medical imaging. Among the numerous methods dedicated to this subject, we can first refer to the pioneer work by Tikhonov [START_REF] Tikhonov | Tikhonov regularization of incorrectly posed problems[END_REF], studying the stability by introducing a smooth penalization, but also to the fundamental contributions about penalized likelihood by Geman and Geman [START_REF] Geman | Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images[END_REF] in the discrete setting and its continuous counterpart proposed by Mumford and Shah [START_REF] Mumford | Optimal approximations by piecewise smooth functions and associated variational problems[END_REF]. An important research effort was then related to compressed sensing theory, sparsity and proximal algorithmic strategies, allowing to solve large size non-smooth penalized likelihood objective function [START_REF] Bauschke | Convex analysis and monotone operator theory in Hilbert spaces[END_REF][START_REF] Combettes | Proximal splitting methods in signal processing[END_REF]. Most of the contributions in inverse problems for image analysis between 2000 and 2015 were dedicated to such non-smooth objective functions leading to major improvements in the reconstruction performance. In parallel, in the domain of image classification and segmentation, outstanding performances have been achieved using deep learning strategies [START_REF] Lecun | Deep learning[END_REF], which offer a promising research direction for solving inverse problems too. However, its counterpart for inverse problems is still an active research area in order to obtain a solution as understandable and stable as the one obtained with the well-studied penalized likelihood minimization approaches.

Considering an original image x ∈ R N composed with N pixels and its degradation model:

z = Ax + ε (1) 
where A ∈ R M ×N models a linear degradation, ε ∼ N (0, α 2 I) models the effect of a white Gaussian noise of standard deviation α, and z ∈ R M denotes the observed data, the resolution of an inverse problem relies on the estimation of x from the observations z, and possibly the knowledge of A. Penalized likelihood approaches rely on the minimization of an objective function being the sum of a data fidelity term (likelihood) and a penalization (prior), expressed in its most standard formulation as:

x λ ∈ Argmin x 1 2 Ax -z 2 2 + λp(Hx), (2) 
where λ > 0 denotes the regularization parameter allowing a tradeoff between the first term, insuring the solution to be close to the observations (and mostly designed accordng to the noise statistics), and the penalization involving a linear operator H ∈ R P ×N and a function p : R P →] -∞, +∞]. The modelisation of the prior as the composition of a function with a linear operator allows us to model most of the standard penalization such as the smooth convex Tikhonov or hyberbolic Total Variation penalization [START_REF] Charbonnier | Deterministic edgepreserving regularization in computed imaging[END_REF], the anisotropic or isotropic Total Variation (TV) [START_REF] Rudin | Nonlinear total variation based noise removal algorithms[END_REF][START_REF] Rudin | Total variation based image restoration with free local constraints[END_REF][START_REF] Chambolle | Image recovery via total variation minimization and related problems[END_REF][START_REF] Chambolle | An algorithm for total variation minimization and applications[END_REF][START_REF] Osher | An iterative regularization method for total variation-based image restoration[END_REF][START_REF] Condat | Discrete total variation: New definition and minimization[END_REF] or its generalization referred as non-local TV (NLTV) [START_REF] Peyré | Non-local regularization of inverse problems[END_REF][START_REF] Li | Regularized non-local total variation and application in image restoration[END_REF], wavelet or frame based penalization in its analysis formulation [START_REF] Elad | Analysis versus synthesis in signal priors[END_REF][START_REF] Chaâri | Solving inverse problems with over-complete transforms and convex optimization techniques[END_REF], penalization based on Gaussian mixture models (GMM) such as EPLL [START_REF] Zoran | From learning models of natural image patches to whole image restoration[END_REF], or BM3D for image denoising [START_REF] Danielyan | BM3D frames and variational image deblurring[END_REF]. The reader can refer to [START_REF] Osher | An iterative regularization method for total variation-based image restoration[END_REF][START_REF] Pustelnik | Wavelet-based image deconvolution and reconstruction[END_REF] for detailed overview and comparisons of these penalizations. The choice of the penalization is very dependent of the application due to the expected computational processing time and the structure of the data that can vary a lot from an application to another one.

A large panel of proximal-based algorithmic strategies have been developed to estimate x λ [START_REF] Bauschke | Convex analysis and monotone operator theory in Hilbert spaces[END_REF][START_REF] Combettes | Proximal splitting methods in signal processing[END_REF][START_REF] Condat | Proximal splitting algorithms: Relax them all![END_REF]. Among the most standard ones we can refer to forward-backward (FB) algorithm [START_REF] Combettes | Signal recovery by proximal forward-backward splitting[END_REF] and related schemes as the iterative soft-thresholding algorithm (ISTA) and its accelerations [START_REF] Beck | A fast iterative shrinkage-thresholding algorithm for linear inverse problems[END_REF][START_REF] Chambolle | On the convergence of the iterates of the Fast Iterative Shrinkage/Thresholding Algorithm[END_REF], Douglas-Rachford (DR) algorithm [START_REF] Combettes | A Douglas-Rachford splitting approach to nonsmooth convex variational signal recovery[END_REF], ADMM or Split bregman iterations for which links have been estabslished with DR [START_REF] Setzer | Split Bregman algorithm, Douglas-Rachford splitting and frame shrinkage[END_REF], and more recently proximal primal-dual schemes (see [START_REF] Condat | Proximal splitting algorithms: Relax them all![END_REF] for a detailed review), especially PDHG [START_REF] Condat | A primal-dual splitting method for convex optimization involving lipschitzian, proximable and linear composite terms[END_REF][START_REF] Vũ | A splitting algorithm for dual monotone inclusions involving cocoercive operators[END_REF] providing a general algorithm that can be reduced to either FB or DR. In this work we propose to focus on this last mentioned primal-dual scheme [START_REF] Condat | A primal-dual splitting method for convex optimization involving lipschitzian, proximable and linear composite terms[END_REF] which appears flexible enough to solve (2) without requiring strong assumptions on A neither on H but only p to be convex, lower-semicontinuous and proper. The iterations of [START_REF] Condat | A primal-dual splitting method for convex optimization involving lipschitzian, proximable and linear composite terms[END_REF][START_REF] Vũ | A splitting algorithm for dual monotone inclusions involving cocoercive operators[END_REF] in the specific context of (2) are:

x [k+1] = x [k] -τ A * (Ax [k] -z) -τ H * y [k] y [k+1] = prox σλp * y [k] + σH(2x [k+1] -x [k] ) (3) 
where prox denotes the proximity operator [START_REF] Bauschke | Convex analysis and monotone operator theory in Hilbert spaces[END_REF] and p * is the conjugate function of p. Under technical assumptions, especially involving the choice of the step-size τ and σ, the sequence (x [k] ) k∈N is insured to converge to x λ . For the challenging question of the selection of the optimal λ, one can either have recurse to supervised learning by selecting the optimal λ using a training database or to unsupervised technique such as the Stein Unbiased Risk Estimator (i.e. SURE), which is probably one of the most efficient technique considered in the recent literature of inverse problem solving [START_REF] Ammanouil | A parallel and automatically tuned algorithm for multispectral image deconvolution[END_REF][START_REF] Pascal | Automated data-driven selection of the hyperparameters for total-variation based texture segmentation[END_REF]. It relies on

minimize λ E{ φ( x λ -x) 2 },
and on providing a reformulation of its expression without the knowledge of ground-truth x, leading either to the estimation risk when φ = I (can be handled in the context of inverse problems with full rank A) or a prediction risk that is φ = A (for more general linear degradation) [START_REF] Ramani | Monte-carlo SURE: A black-box optimization of regularization parameters for general denoising algorithms[END_REF][START_REF] Eldar | Generalized SURE for exponential families: Applications to regularization[END_REF][START_REF] Pesquet | A SURE approach for digital signal/image deconvolution problems[END_REF][START_REF] Deledalle | Stein unbiased gradient estimator of the risk (sugar) for multiple parameter selection[END_REF].

A recent alternative to non-smooth optimization relies on supervised learning based on neural networks (see [START_REF] Lucas | Using deep neural networks for inverse problems in imaging: Beyond analytical methods[END_REF][START_REF] Ravishankar | Deep convolutional framelets: A general deep learning framework for inverse problems[END_REF] for review papers). The contributions dedicated to this subject are wide but the common point is to learn a set of parameters Θ from a training data set S = {(x s , z s )|s = 1, . . . , I} by minimizing an emprirical loss function of the form:

E(Θ) := 1 I I s=1 f Θ ( z (z s )) -x (x s ) 2 .
The simplest approach consists in considering f Θ as a CNN [START_REF] Mao | Using deep neural networks for inverse problems in imaging: Beyond analytical methods[END_REF][START_REF] Ulyanov | Deep image prior[END_REF][START_REF] Xu | Deep convolutional neural network for image deconvolution[END_REF], leading to z (z) = z and x (x) = x. Improved performance can be achieved when the learning is performed on wavelet or frame coefficients [START_REF] Kang | A deep convolutional neural network using directional wavelets for low-dose x-ray ct reconstruction[END_REF][START_REF] Ye | Deep convolutional framelets: A general deep learning framework for inverse problems[END_REF][START_REF] Bubba | Learning the invisible: A hybrid deep learning-shearlet framework for limited angle computed tomography[END_REF] (leading to z and x associated with the frame transform), and/or on backprojected data i.e. z (z) = A † z (or also alternative relying on z (z) = A * z) [START_REF] Jin | Deep Convolutional Neural Network for inverse problems in imaging[END_REF]. More recently, the design of f Θ relies on the knowledge built for many years in inverse problems, for instance by truncated a Neumann series [START_REF] Gilton | Neumann networks for linear inverse problems in imaging[END_REF], or by unfolding iterative methods such as ISTA iterations as proposed in the pioneer work by Gregor and LeCun [START_REF] Gregor | Learning fast approximations of sparse coding[END_REF], or based on proximal interior point algorithm as in [START_REF] Bertocchi | Deep unfolding of a proximal interior point method for image restoration[END_REF], and more recently by unfolding a proximal primal-dual optimization method [START_REF] Adler | Learned primal-dual reconstruction[END_REF] where proximal operators have been replaced with CNN (see also [START_REF] Zhang | Learning deep CNN denoiser prior for image restoration[END_REF] for similar ideas). The last class of approaches, especially [START_REF] Bertocchi | Deep unfolding of a proximal interior point method for image restoration[END_REF], offer a framework particularly studied for stability analysis [START_REF] Combettes | Deep neural network structures solving variational inequalities[END_REF].

Our contributions are to first reformulate a specific instance of the Condat-Vũ primaldual hybrid gradient (PDHG) algorithm applied to solve (2) as a deep network with fixed layers. Each layer corresponds to one iteration of the primal-dual algorithm (Section 2). Based on this relation, a second contribution consists in reformulating primal-dual algorithm into a deep network framework aiming to learn both the algorithmic parameters σ, τ and also the regularization parameter λ and the linear operator H (as a unique entity λH) for a fixed number of layers K, leading to the proposed DeepPDNet (Section 3). Then, we design a backpropagation procedure based on explicit differential with respect to the parameter that we want to estimate. Global and local sparse analysis prior are studied to seek the better feature representation (Section 4). Finally, the proposed network is evaluated on image restoration problems with different levels of complexity in terms of noise, blur and database (Section 5).

2 Neural networks versus Primal-dual proximal scheme

Condat-Vũ algorithm

The design of our neural network relies on a criterion based on a reformulation of (2), which is summarized in Problem 1.

Problem 1. Let A ∈ R M ×N , z ∈ R M , L ∈ R P ×N
and g is a convex, l.s.c, and proper function from R P to ] -∞, +∞] such that

x λ ∈ Argmin x 1 2 Ax -z 2 2 + g(Lx). (4) 
A particular instance of this problem is provided in [START_REF] Geman | Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images[END_REF] where g • L = λp(H•). In the specific case where p = • 1 , then L = λH. This reformulation allows us to combine the estimation of λ and H.

In order to solve the non-smooth objective function (4) in a general setting without specific assumptions on L and A (e.g. a tight frame or a matrix associated with a filtering operation with periodic boundary effects), the most flexible and intellegible algorithm in the literature is certainly the Condat-Vũ algorithm [START_REF] Condat | A primal-dual splitting method for convex optimization involving lipschitzian, proximable and linear composite terms[END_REF], whose iterations specified to the resolution of Problem 1 are summarized in Algorithm 1.

Algorithm 1: Primal-dual splitting algorithm for solving Problem 1.

1 Set: τ > 0, σ > 0, such that 1 τ -σ L 2 ≥ A 2 2 
2 Initialization: (x [1] , y [1] ) ∈ H × G

3 for k = 1, . . . K do 4 x [k+1] = x [k] -τ A * (Ax [k] -z) -τ L * y [k] 5 y [k+1] = prox σg * y [k] + σL(2x [k+1] -x [k] ) 6 end
The core ingredient of proximal algorithms is the proximal operator defined as:

(∀x ∈ H) prox g (x) = arg min y∈H 1 2 y -x 2 2 + g(y)
which is an explicit subgradient descent step.

Several properties of the proximity operator have been established in the literature (see [START_REF] Combettes | Proximal splitting methods in signal processing[END_REF] and reference therein). Among them, the Moreau identity allows us to provide a relation between a function g and its conjugate g * : prox σg * (x) = x -σprox g/σ (x/σ) for σ > 0.

The convergence of the sequence (x [k+1] ) k∈N to a minimizer of (4) is insured under technical assumptions involving the step-size parameters τ , σ, A 2 and L 2 :

1 τ -σ L 2 ≥ A 2 2 . ( 5 
)

Deep Primal Dual Network

Deep networks are composed of a stack of layers. Each layer takes the output of the preceeding layer as input and obtain the feature maps after convolutions and nonlinear activation functions. Formally, a network with K layers can be written as K] . . . η [1] (D [1] u [1] + b [1] ) . . .

u [K] = η [K] D [
+ b [K] (6) 
where, for every k ∈ {1, . . . , K}, D [k] is the weight matrix, b [k] is the bias and η [k] is the non-linear activation function. In the classical deep learning framework (e.g. CNNs), D [k] is regarded as the convolution operation with a collection of small filters and each filter is associated with a bias b [k] , η [k] is a nonlinear activation function such as tanh, sigmoid or ReLU function, followed by a pooling layer (e.g max pooling, average pooling, etc.) that is acted to increase local receptive fields and to decrease the parameter number of the network as well.

Proposition 1 expresses the iterations of Condat-Vũ primal-dual algorithm into the deep neural network formalism [START_REF] Lecun | Deep learning[END_REF].

Proposition 1. Algorithm 1 fits the network (6) when considering, for every k ∈ {1, . . . , K}, D

[k] ∈ R (N +P )×(N +P ) , b [k] ∈ R N +P and η [k] : R N +P → R N +P such that                      D [k] = Id -τ A * A -τ L * σL(Id -2τ A * A) Id -2τ σLL * b [k] = τ A * z 2τ σLA * z η [k] = Id prox σg * (7)
where Id denotes the identity matrix.

Proof. The result is straightforward setting

u [k] = x [k] y [k] ∈ R N +P
and from the rewriting of primal-dual updates as

     x [k+1] = (Id -τ A * A)x [k] -τ L * y [k] + τ A * z y [k+1] = prox σg * σL(Id -2τ A * A)x [k] + (Id -2τ σLL * )y [k] + 2τ σLA * z .
Proposition 1 presents how to unfold the specific instance of Condat-Vũ primal-dual algorithm described in Algorithm 1 into a network with multiple layers. This network is built in an unsupervised fashion, when the number of layers K → +∞, it will output the solution of Eq. (4). Practically, K needs to be set sufficiently large and its value is either set manually (e.g. K > 10 5 ) or based on a stopping criterion (e.g. based on residual of the iterates or on the duality gap).

When being reformulated into a network, extremely large number of K becomes impractical and deep network with a medium depth (e.g. ten or hundred layers) would not approximate the solution well. So we make several modifications in the network presented in Proposition 1. 9), D

[k] 1 = Id -τ [k] A * A, k = 1, K, D [1] 2 = σ [1] L [1] (Id -2τ [1] A * A), D [K] 2 = -τ [K] (L [K] ) * , and for every k = {2, . . . K -1}, D [k] 11 = Id -τ [k] A * A, D [k] 12 = -τ [K] (L [K] ) * , D [k] 21 = σ [k] L [k] (Id -2τ [k] A * A), D [k] 22 = Id -2τ [k] σ [k] L [k] (L [k] ) * .

Choice of L

Given Problem 1, the linear operator L is regarded as a prior knowledge (e.g. horizontal/vertical finite difference operator, frame transform, . . . ). Although the merit of the primal-dual splitting algorithm is capable of converging to a fix-point solution, two issues are worthy to be taken into account: on one hand, L is manually set according to prior knowledge, and it is not suitable for different types of datasets, and this may result to poor performance; on the other hand, for each new data, the inference of (4) will take many iterations to insure the solution to be achieved, which may become impractical for large data.

In next section, we deal with these two issues by reformulating the primal-dual algorithm into a deep network framework aiming to learn both the algorithmic parameters σ, τ and also the linear operator L for a fixed number of layers K.

3 DeepPDNet : Deep primal dual network

Proposed supervised DeepPDNet

In a context of restoration where A is known, the degrees of freedom in the proposed network (cf. Proposition 1) may only come from σ, τ , L and g.

In this work, the penalization g is fixed but we let the freedom on L, including on its norm, leading to an implicit freedom on the regularization parameter trade-off. The step-size of the algorithm σ and τ are also learned. Additionnally, it is assumed that the parameters may be different from a layer to another one, leading to Θ = {σ [k] , τ [k] , L [k] }. The proposed supervised learning strategy, named DeepPDNet, is summarized in Proposition 2 and its architecture is illustrated in Figure 1.

Proposition 2. Given the training set S = {(x s , z s )|s = 1, . . . , I} where x s is the undegraded image and z s is its degraded counterpart following degradation model [START_REF] Tikhonov | Tikhonov regularization of incorrectly posed problems[END_REF]. We build an inverse problem solver f Θ relying on the estimation of

Θ = { σ [k] , τ [k] , L [k] } 1≤k≤K : Θ ∈ Argmin Θ E(Θ) := 1 I I s=1 x s -f Θ (z s ) 2 2 ( 8 
)
where [1] (D [1] u [1] s + b [1] ) . . .

f Θ (z s ) = η [K] D [K] (. . . η
+ b [K] with                                                    u [1] s = A * z s D [1] = Id -τ [1] A * A σ [1] L [1] (Id -2τ [1] A * A) D [k] = Id -τ [k] A * A -τ [k] (L [k] ) * σ [k] L [k] (Id -2τ [k] A * A) Id -2τ [k] σ [k] L [k] (L [k] ) * b [k] = τ [k] A * z 2τ [k] σ [k] L [k] A * z η [k] = Id prox σ [k] g * D [K] = Id -τ [K] A * A τ [K] (L [K] ) * b [K] = τ [K] A * z η [K] = Id. (9)
The learning function f Θ is related to the b [k] , D [k] , and η [k] defined in Proposition 1. However a particular attention needed to be paid due to the primal and dual input and output involved in the Condat-Vũ scheme. Indeed, the primal-dual algorithm outputs both a primal and a dual solution, while for the output of the network, we do not know the target solution for the dual variable, then we cannot handle the dual solution in the objective function. Thus, if a standard choice for the primal and dual variables setting is x [1] = A * z and y [1] = LA * z, in order to be able to fit [START_REF] Rudin | Nonlinear total variation based noise removal algorithms[END_REF], the initialization of dual variable is set to y [1] = 0. The last layer also need to be modified in order to only extract the primal variable as described in Proposition 2.

Backpropagation procedure

The most standard strategy to estimate the parameters in a neural network relies on stochastic gradient descent algorithm where the objective function is E(Θ) defined in [START_REF] Rudin | Nonlinear total variation based noise removal algorithms[END_REF]. The increments of the parameters are computed from the data (mini-batch strategy is adopted in practice) after forwarding the data through the network. The increments at iteration + 1 consist in

Θ [ +1] = Θ [ ] -γ∇E(Θ [ ] ),
relying on the updates of each parameter, for every k ∈ {1, . . . , K}, ) where γ is learning step. In order to obtain the gradients in the different layers, we employ a backpropagation procedure, i.e. the errors are backpropagated from last layer to the first layer.

           τ [k] [ +1] = τ [k] [ ] -γ ∂E ∂τ [k] [ ] σ [k] [ +1] = σ [k] [ ] -γ ∂E ∂σ [k] [ ] L [k] [ +1] = L [k] [ ] -γ ∂E ∂L [k] [ ] (10 
To make clear the presentation of the estimation of Θ, we first rewrite the network forward procedure from the layer k to layer k + 1 as follows:

c [k] s = D [k] u [k] s + b [k] ; (11) u [k+1] s = η [k] (c [k] s ). ( 12 
)
For input data z s , the forward procedure to obtain u

[K] s = f Θ (z s ) of the network is described in Algorithm 2.
Algorithm 2: Forward procedure

Input: Set D [k] , b [k] , η [k] , k = {1, . . . K} according to (9). Data: Set u [1] s = A * z s , s = {1, . . . , I} 1 for k = 1, . . . , K do 2
Perform linear transformation by Eq. ( 11): c

[k] s = D [k] u [k] s + b [k] ;
3 Perform nonlinear activation function by Eq. ( 12): u

[k+1] s = η [k] (c [k] s ); 4 end
Since τ [k] , σ [k] and L [k] are jointly involved in D [k] , b [k] and η [k] , so their gradients at iteration read:

∂E ∂τ [k] [ ] = ∂E ∂b [k] [ ] ∂b [k] [ ] ∂τ [k] [ ] + ∂E ∂D [k] [ ] ∂D [k] [ ] ∂τ [k] [ ] (13) 
∂E ∂σ

[k] [ ] = ∂E ∂u [k+1] s ∂u [k+1] s ∂σ [k] [ ] + ∂E ∂b [k] [ ] ∂b [k] [ ] ∂σ [k] [ ] + ∂E ∂D [k] [ ] ∂D [k] [ ] ∂σ [k] [ ] (14) 
∂E ∂L

[k] [ ] = ∂E ∂b [k] [ ] ∂b [k] [ ] ∂L [k] [ ] + ∂E ∂D [k] [ ] ∂D [k] [ ] ∂L [k] [ ] (15) 
where the gradients of E w.r.t. D

[k]

[ ] and b

[k]

[ ] are then computed as:

∂E ∂D [k] [ ] = ∂E ∂c [k] s ∂c [k] s ∂D [k] [ ] = ∂E ∂c [k] s (u [k] s ) (16) ∂E ∂b [k] [ ] = ∂E ∂c [k] s . ( 17 
)
where the errors for the variable c

[k]
s and u

[k]
s at layer [k] are obtained according to Eq. ( 12) and Eq. ( 11) by chain rule:

∂E ∂c [k] s = ∂E ∂u [k+1] s ∂u [k+1] s ∂c [k] s (18) ∂E ∂u [k] s = D [k] [ ] ∂E ∂c [k] s , (19) 
relying on the error of loss E w.r.t. u ) that is already known starting from the error of loss E w.r.t. u

[K] s : ∂E ∂u [K] s = x s -u [K] s . (20) 
The closed form expression of the gradients are provided in Appendix 6, we derive the step of the gradients for the parameters by error backprogation scheme. The backward procedure is shown in Algorithm 3.

Full versus Partial learning

The convergence of Algorithm 1 is insured when condition [START_REF] Combettes | Proximal splitting methods in signal processing[END_REF], imposing a constraint between σ, τ and L , is fullfilled. In the proposed supervised strategy described in Proposition 2 Algorithm 3: Backward procedure of "Full learning"

Input: Set D [k] , b [k]
, η [k] , k = {1, . . . K} according to [START_REF] Rudin | Total variation based image restoration with free local constraints[END_REF] and set γ > 0 Data: Set u s in the [k] layer according to Eq. ( 18) and ( 19); 5 Calculate the gradients of the loss w.r.t. D [k] and b [k] according to Eq. ( 16) and ( 17);

6
Calculate the gradients of the loss w.r.t. τ [k] , σ [k] and L [k] according to Eq. ( 13), ( 14) and [START_REF] Li | Regularized non-local total variation and application in image restoration[END_REF].

7 end 8 Update τ [k] [ +1] , σ [k]
[ +1] and L

[k]

[ +1] for layers k ∈ {1, . . . K} by Eq. ( 10). 9 end we explore two different settings, one without constraint between the estimated parameters (refered as "Full learning" ) and a second setting where the constraint is imposed for every layer k. For this second configuration, we modify the "Full learning" procedure (cf. section 3.2). Instead of learning three sets of parameters, we only learn two of them: τ [k] and L [k] , for the K layers, and σ [k] is calculated as:

σ [k] = 1/τ [k] -A 2 /2 L [k] 2 . ( 21 
)
This procedure will be refered as "Partial learning".

In the experimental section, we perform extensive experiments to investigate the performance of both learning strategies (please refer to Section 5). Numerically, we observe that Full learning achieve better numerical performance, but stability to a perturbation is more probably satisfied in the partial learning configuration following [START_REF] Combettes | Deep neural network structures solving variational inequalities[END_REF].

Global vs local structured L

The penalization term g(Lx) in Eq. ( 4) is regarded as a prior inforcing some smoothness on the solution. In most of the recent inverse problem literature, g denotes a 1 -norm or a 1,2 -norm in order to obtain sparse features. In the scenario of image restoration, L usually models the discrete horizontal and vertical difference or other linear operator allowing to capture discontinuities. From other published research, it is well known that the structure of L has a crucial impact on the performance of image restoration. In the proposed DeepPDNet, each layer involves a linear transform L [k] , where each row corresponds to a pattern in the image. More complex patterns can be learned through stack of layers. In this work, we study two classes of L for the problem: global and local sparse L [k] , respectively describing the global and local patterns in the image.

1. Global features: L [k] is built without any prior knowledge. It can be interpreted as a projection matrix from the image space R N to a feature space R P . Each row attempts to learn one type of global structure occurred in the image. In practice, L [k] is initialized by random values following a normal distribution.

2. Local features: Instead of global relationship, we can construct another class of matrix L [k] with local structures, which is inspired from local patch dictionary [START_REF] Boulanger | Nonsmooth convex optimization for structured illumination microscopy image reconstruction[END_REF]. For one row in L [k] , Q × Q non-zero coefficients are locating according to the region illustrated in Fig. 2. The location of the window, and thus of the non-zero coefficients, is slided through the image. In our experiments, the values of the non-zero coefficients are randomly initialized according to a normal distribution. In the learning procedure, the elements with non-zeros in L are updated, the other ones remains zero.

Figure 2: Sliding window modelling the location of the non-zero coefficients for each row of L [k] in the local features setting.

Experiments

Network

A deep primal dual network with K layers has been built according to Section 3 with g = • 1 and the weights in each layer are initialized by Eq. ( 9) such that τ

[k] ≡ 1, L [k]
is randomly initialized in normal distribution with a standard deviation set to 10 -2 , and

σ [k] = (1/τ [k] -A 2 /2) L [k] 2 .

Dataset

We consider a training set S = {(x s , z s )|s = 1, . . . , I} and an evaluation set T = {(x s , z s )|s = 1, . . . , J} respectively containing I images and J images, where x s is the original image and z s is its degraded counterpart obtained by the degradation model [START_REF] Tikhonov | Tikhonov regularization of incorrectly posed problems[END_REF]. In our experiments A models a uniform blur and it is assumed to be known.

We evaluate the performance of the proposed network for an image restoration task on MNIST dataset [START_REF] Lecun | Gradient-based learning applied to document recognition[END_REF] and BSD68 dataset [START_REF] Roth | Fields of experts[END_REF].

Performance evaluation

The restoration performance are evaluated in terms of PSNR (i.e. Peak Signal-to-Noise Ratio) and SSIM (i.e. Structural SIMilarity), where higher values stands for better performance.

The convergence of the primal-dual scheme on which relies the deep learning procedure is insured when condition ( 5) is satisfied. To estimate the distance to this constraint we compute:

d C (τ [k] , σ [k] , L [k] ) = max 0, A 2 2 - 1 τ [k] + σ [k] L [k] 2 2 (22) 
The simulations have been performed by a workstation with 4 cores and each is 3.20GHz (Intel Xeon(R) W-2104 CPU) and 64G memory. The computational time reported in Table 2 are obtained with a laptop Intel(R) i7-8550U with 4 cores and each is 1.8GHz.

The code is implemented in MATLAB. A toolbox will be made available at the time of publication.

Performance on MNIST dataset

The MNIST dataset is a widely used handwritten benchmark for classification, containing 60000 training images and 10000 test images and each has a dimensionality of 28×28. Instead of classification task, in this work it is used for image restoration task. In the training procedure, the training set is further split into two subsets: 50000 for training and the rest for validation. Hold-out validation scheme is applied to estimate the network architecture.

The instances of clean images and their respective degraded ones are shown in Fig. 3. In the following experiments, we adopt mini-batch stochastic gradient descent algorithm to Figure 3: Visual comparisons on MNIST dataset for different methods. The first row corresponds to the MNIST data with a uniform 3 × 3 blur and a Gaussian noise with α = 20, the second row is with a uniform 5 × 5 blur and a Gaussian noise with α = 20, the third row is with a uniform 7 × 7 blur and a Gaussian noise with α = 20. For each instance, the images from the first to the seventh column respectively correspond to the original one x, the degraded one z, the restored ones by EPLL, TV, NLTV, IRCNN and the proposed full DeepPDNet (K = 6).

Setting "f28s28n10" "f14s14n10" "f14s7n10" "f9s9n10" "f9s4n10" "f7s7n10" "f7s3n10" "f5s5n10" "f5s2n10" "f3s3n10" P 10 [k] . The smaller is the sparsity rate, the denser is L [k] .

update the parameters with a batch size of 200 for the network learning. The maximum iteration is set to 3 × 10 4 .

Impact of network depth (i.e. K) -To study the impact of the architecture depth of the network, we conduct the experiments for partial and full learning described in Section 3.3 on 2-layer, 4-layer, 6-layer and 8-layer networks with P = 100. The simulations are performed with a uniform 3 × 3 blur and an additive Gaussian noise with standard deviation α = 20.

The learning curves of the training loss, PSNR, SSIM and the distance to convex constraint in the last layer w.r.t. the iterations on the validation set for "Full learning" and "Partial learning" are shown in Fig. 4. It can be seen that: i) "Full learning" gives better results than "partial learning"; ii) Deeper architecture generally produce better results due to more meaningful feature learning; iii) the 8-layer network obtain a marginal gain compared to its 6-layer counterpart. The average cost time of forward process for one mini-batch for different networks are shown in Tab. 2. Considering that the gain of the performance are marginal for the 8-layer network and also the computation cost of learning a 8-layer network is much higher, we adopt the architecture of 6-layer network in the following experiments. It can be seen that: i) Full learning also gives more gain than Partial learning for similar P ; ii) Larger P leads to better results due to more feature embedding. However, when P = 800, the performance are close to the ones of P = 600, which demonstrates that as P becomes large, the capacity of improvement is very limited, one possible reason is overfitting. [k] according to Tab. 1 on the validation set of MNIST dataset from data degraded by a uniform 3 × 3 blur and a Gaussian noise with α = 20. P = 90 corresponds to the setting of "f14s7n10" showing better performance than "f9s9n10" and p = 160 corresponds to the setting of "f7s7n10".

Full versus

Partial learning guarantees the constraint for the parameters τ [k] , σ [k] and L [k] , k ∈ [1, . . . , K] to be satisfied, its performance are worse than with Full learning. The feasible parameter space being enlarged, the learning capacity with finite layers becomes more powerful.

Distance to the constraint -Here, we investigate the distance to the convex set for the full learning in two different viewpoints: the distance for different depth and also different P in last layer of the networks. The distances to the constraint ( 22) w.r.t. the iterations for different depth and different P are shown in the last column of Fig. 4 and Fig. 5 respectively. It can be seen that the distance in the last layer decreases as the network becomes deep and also as P value becomes large, which reflects the learning ability of large network. From these results, although full learning relax the convex constraint between the parameters, it has the ability to make the violation distance smaller when making the network deeper or larger. Obviously, the constraint is always satisfied for Partial learning.

Local sparse vs global projection -Next we investigate the performance of global projection and local sparse projection described in Section 4. We consider ten types of Figure 6: Visualization of L [6] in a learned 6-layer network in full learning strategy with global (left, with P = 100) and local (right, with local L [k] of "f9s9n10") from data degraded by a uniform 3 × 3 blur and an additive Gaussian noise with α = 20. Fusion P PSNR/SSIM "f5s2n10" 1210 24.80/0.9278 "f5s2n10"+"f7s3n10" 1700 25.04/0.9317 "f5s2n10"+"f7s3n10"+"f14s7n10" 1790 25.06/0.9301 "f5s2n10"+"f7s3n10"+"f14s7n10"+"f28s28n10" 1800 25.33/0.9335 Table 5: Performance of combination of multiple local sparse filters on the validation MNIST dataset with uniform blur filter 3 × 3 and Gaussian noise α = 20. local sparse projection in L for the 6-layer network: "f28s28n10", "f14s14n10", "f14s7n10", "f9s9n10", "f9s4n10", "f7s7n10", "f7s3n10", "f5s5n10", "f5s2n10" and "f3s3n10", which is named as the format of "fMsNnS" such that "M" stands for the size of local square filter,"N" means the strip length between two neighboring filters and "S" means the number of filters at the same location. The corresponding P number for each type is respectively shown in Tab. 1, at the same time, we also give the sparsity rate of L. To provide fair comparisons of the performance between global projection and local sparse projection, for each type of local sparse projection, we create a global projection with the same value for P . Their performance on the validation set are shown in Table . 4. From the results, it is seen that: i) when P becomes larger, the performance of global projection slightly increase and remain stable when P = 810; ii) The performance of local sparse projection obtain significant improvement compared to global projection when the same P is adopted, especially for large P .

Multiple local sparse filters fusion: Previously, we observe that local sparse L [k] has better performance than global ones. Since local sparse configuration is able to learn meaningful local patterns (as shown in Fig. 6) and each type corresponds to one filter, then we propose to investigate the performance of fusion of multiple of local sparse filters, i.e. the L [k] from different types of local sparse filters are simply concatenated together. It is noted that local filter "f28s28n10" corresponds to global one with P = 10. The performance of combination of local projections on the validation set are shown in Tab. 5. We can conclude that the performance are further boosted when multiple local sparse filters are combined.

Evaluation and comparison -From the previous set of experiments, we choose to train a 6-layer network by full learning strategy according to the trade-off between computation complexity and performance, and the local projections of "f5s2n10", "f7s3n10" and "f14s7n10" as well as global projection "f28s28n10" are combined in the final L [k] . We evaluate the performance on the test set for five simulations considering different size of uniform blur (i.e. 3 × 3, 5 × 5 and 7 × 7) with Gaussian noises of different standard deviation level (i.e α = 10, 20, 30).

Our method is compared to unsupervised strategy when g(L•) models either a TV penalization or a NLTV penalization [START_REF] Chierchia | A nonlocal structure tensor-based approach for multicomponent image recovery problems[END_REF]. The algorithmic procedure to estimate x λ relies on the iterations described in Algorithm 1 when the distance of two successive updates are less than 10 -5 . We also compare to EPLL [START_REF] Zoran | From learning models of natural image patches to whole image restoration[END_REF] which makes use of Gaussian mixture model to learn the prior for image deblurring. A comparison to a supervised CNN-based procedure IRCNN [START_REF] Zhang | Learning deep cnn denoiser prior for image restoration[END_REF] is also provided1 . IRCNN employ a denoiser prior based on CNNs as a modular in the half quadratic splitting method for image restoration. The results on the test set are shown in Tab. 3. From the table, it is seen that the proposed DeepPDNet with Partial learning shows poor performance because of expressive ability limitation while full learning outperforms other methods significantly. The instances of restored images by different methods are shown in Fig. 3.

To interpret the learned L, we visualize the learned L in the last layer from the learned 6-layer network for global projection and local sparse projection. L [k] is regarded as the feature embedding matrix and each column correspond to one learned pattern. As shown in Fig. 6, for global projection, we reshape each column to the image size and re-scale it to a gray image, and for local sparse projection, we only show the filter area and the other areas are ignored. From the results, it is seen that for local sparse projection, the learned patterns are sparse and most of them are meaningful, corresponding to Gaussian filters with different orientations. 

The performance on BSD68 dataset

In this section, we evaluate the performance of the proposed network on the BSD68 dataset containing 68 natural images from Berkeley segmentation dataset with 500 images [START_REF] Roth | Fields of experts[END_REF]. We follow [START_REF] Chen | Trainable nonlinear reaction diffusion: A flexible framework for fast and effective image restoration[END_REF] to use 400 images from BSD dataset of size 180×180 to train the network, and the 68 images are chosen from the BSD data for evaluation without the overlaps with the training set. In this work, we focus on the gray version of the BSD68 dataset for restoration task. In the experiments, we take into account two different blur sizes (3 × 3 and 5 × 5) and three Gaussian noise levels (σ = 15, 25, 50). The instances of the test images are show in Fig. 8.

Considering that test images in BSD68 dataset are of size 321×481, it is particularly difficulty to make z be the whole image due to the huge memory demanding. We adopt a patch-based strategy that we train a affordable network by full learning from a collection of the patches of size Q × Q randomly extracted from training images with a number of about 200K, and then the learned network is traversed over a test image to obtain the deblurred image.

The comparison results with other methods are shown in Tab. 6. From the table, we can see that: i) because the content of the image in BSD dataset is more complex, the performance of different methods are worse than the ones on the MNIST dataset; ii) We first train a network of the same architecture with the one used on the MNIST dataset, i.e. Q = 28, it is observed that the results are poor, especially for SSIM. We conjecture that the 6-layer network is not sufficient to express the complexity contents of the BSD dataset, therefore, we adopt a more deeper network with 20 layer when Q = 10 which is easily affordable on the experimental platform. We clearly observe that with deeper architecture, the performance are able to be further improved, especially for SSIM. Our proposed methods obtain comparable results compared to IRCNN, which is based on powerful deep convolutional network, allowing to capture the statistical property of the image; iii) the gap between different methods become less as the noise level becomes large. The instances of the deblurred images are shown in Fig. 8. The learned filters are shown in Fig. 7, we can see that the learned filters are meaningful to capture the local property.

Conclusion

This work aims to design a flexible network using prior knowledge on inverse problems both in terms of penalized likelihood design and optimization schemes. Our contribution is first to unfold the PDHG iterations and to establish connexion with standard neural network with K layers. From this preliminary network we design DeepPDNet that allows us to learn both the algorithmic step-size and the analysis linear operator (including implicitely the regularization parameter) involved in each layer. A full and a partial DeepPDNet are provided, one considering the learning of all the parameters without constraints leading to better numerical performance, and a second one allowing to provide a framework more adapted to theoretical stability analysis. Global and Local sparse analysis prior operators are considered. The backpropagation procedure is detailled. Our experiments illustrate that for image with small complexity such as MNIST, a network with few layers allows us to outperforms state-of-the-art methods while for more complex dataset, the proposed method outperforms standard unsupervised approaches such as TV, NLTV or EPLL and achieves comparable results with state-of-the-art CNN based methods. Moreover, we observed that the more complex is the dataset, the deeper needs to be the network.

Such a procedure can be extended to other type of degradation model and other standard proximal schemes by considering the well-documented literature on inverse problems relying on non-smooth optimization. s,2 ) accoring to [START_REF] Osher | An iterative regularization method for total variation-based image restoration[END_REF]. Since identity acts on c 

Appendix: Computation of derivatives

where u 1 is equal to the gradients of u 

u 2,p =      0 if |c [k] s,2,p | > 1 1 if |c [k] s,2,p | < 1 [0, 1] if c [k]
s,2,p = ±1.

(24) 2. For the middle layers except the first and last layer, the derivative of the elementary of the network parameters (D [k] , b [k] ) w.r.t. τ [k] , σ [k] , L [k] (i.e.

∂b [k] [ ] ∂τ [k] [ ] , ∂D [k] [ ] ∂τ [k] [ ] , ∂b [k] [ ] ∂σ [k] [ ] , ∂D [k] [ ] ∂σ [k] [ ] , ∂b [k] [ ] ∂L [k] [ ] and ∂D [k] [ ] ∂L [k] [ ]
) can be easily obtained from Eq. ( 7):

                                                   ∂b [k] [ ] ∂τ [k] [ ] = A * z 2σ [k] [ ] L [k] [ ] A * z ∂D [k] [ ] ∂τ [k] [ ] = -A * A -L [k] * [ ] -2σ [k] [ ] L [k] [ ] A * A -2σL [k] [ ] L [k] * [ ] ∂b [k] [ ] ∂σ [k] [ ] = 0 N ×1 2τ [k] [ ] L [k] [ ] A * z ∂D [k] [ ] ∂σ [k] [ ] = 0 N ×N 0 N ×P L [k] [ ] (Id -2τ [k] [ ] A * A) -2τ [k] [ ] L [k] [ ] L [k] * [ ] ∂b [k] [ ] ∂L [k] [ ] = 0 N ×1 2τ [k] [ ] σ [k] [ ] A * z ∂D [k] [ ] ∂L [k] [ ] = 0 N ×N -τ [k] [ ] σ [k] [ ] (Id -2τ [k] [ ] A * A) -4τ [k] [ ] σ [k] [ ] L * (25) 
and then the respective gradients are accumulated from all the elementary of the D [k] , b [k] . Similarly, the corresponding derivatives in the first and last layer are similarly calculated according to Eq. ( 9) and Eq. (25).

3

.

∂u [k] s+1 ∂σ [k] [ ]
is the sub-gradient of conjugate of proximity operator 1 -norm w.r.t. σ [k] at iteration : ∂u

[k+1] s ∂σ [k] [ ] = 0. (26) 
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 1 Figure 1: The illustration of the proposed DeepPDNet with K layers. In the figure, according to Eq. (9), D

  at the layer k + 1 (denoted as ∂E ∂u [k+1] s

[ 1 ]

 1 s , s = {1, . . . , I} 1 for = 1, . . . , T do 2 Select one training sample u[START_REF] Tikhonov | Tikhonov regularization of incorrectly posed problems[END_REF] s , calculate the gradient of loss w.r.t. u

Figure 4 :Figure 5 :

 45 Figure 4: The loss curves on the training set and the performance on the validation set of MNIST dataset set on a 2-layer, 4-layer, 6-layer and 8-layer network for full and partial learning. The results are obtained from data degraded with a uniform 3 × 3 blur and a Gaussian noise with α = 20. (Best viewed in color)

Figure 7 :

 7 Figure7: Visualization of L[6] in a learned 6-layer network in full learning strategy with from BSD data degraded by a uniform 3 × 3 blur and an additive Gaussian noise with α = 20. Left: filters of size 5 × 5; Right: filters of size 7 × 7.

Figure 8 :

 8 Figure8: Visual comparisons on BSD68 dataset for different methods. The first row corresponds to the BSD68 data with a uniform 3 × 3 blur and a Gaussian noise with α = 15, the second row is the zoomed regions of the red rectangle in the first row; the third row is with a uniform 5 × 5 blur and a Gaussian noise with α = 15, the fourth row is the zoomed regions of the red rectangle in the third row; the fifth row is with a uniform 5 × 5 blur and a Gaussian noise with α = 50, the sixth row is the zoomed regions of the red rectangle in the fifth row. For each instance, the images from the first to the seventh column respectively correspond to the original image x, the degraded one z, the restored ones by TV, NLTV, EPLL, IRCNN and the proposed full DeepPDNet (Q = 10, K = 20).

  1 , u 2 ) ∈ R N × R P

  s at the same location, and the derivative of u 2,p when g = • 1 is:

  

Table 1 :

 1 Value of P and sparsity rate for different choices of local sparse L

			40	90	90	160	160	490	250	1210	810
	Sparsity rate	0%	75%	75%	89.67%	89.67%	93.75%	93.75%	96.81%	96.81%	98.85%

Table 2 :

 2 Partial learning -From the above results, we can conclude that, although the

	Architecture Time (s)
	2-layer	0.3460
	4-layer	0.8368
	6-layer	1.2767
	8-layer	1.6084

Average cost time (in s) for one learning iteration (including forward and backward) of one mini-batch of MNIST dataset for different networks .

Table 3 :

 3 Comparison results of different methods on the MNIST dataset from different degradation configurations.

			PSNR		SSIM
	P	Global Local sparse Global Local sparse
	10	21.64	21.61	0.7846	0.7831
	40	22.23	22.22	0.8033	0.8041
	90	22.35	23.06	0.8052	0.8287
	160	22.35	23.06	0.8052	0.8370
	250	22.40	22.72	0.8059	0.8466
	490	22.49	24.48	0.8076	0.9122
	810	22.50	24.37	0.8113	0.9202
	1210 22.49	24.90	0.8112	0.9335

Table 4 :

 4 Comparison results of global and local sparse L

Table 6 :

 6 Comparison results of different methods on the BSD68 dataset from different degradation configurations.

				Blur filter 3 × 3			Blur filter 5 × 5	
	Data	Method	α = 15	α = 25	α = 50	α = 15	α = 25	α = 50
			PSNR/SSIM	PSNR/SSIM	PSNR/SSIM	PSNR/SSIM PSNR/SSIM	PSNR/SSIM
		TV [8]	25.52/0.6746	25.16/0.6634	23.27/0.5836	24.04/0.6141 23.83/0.6047	22.77/0.5622
		NLTV [53]	25.86/0.6875	25.49/0.6780	23.52/0.5932	24.22/0.6238 24.02/0.6165	22.88/0.5711
	BSD68	EPLL [18]	27.01/0.7450	25.60/0.6785 23.72/0.6137 25.32/0.6674 24.38/0.6198	22.99/0.5715
		IRCNN [54]	26.78/0.7840 26.13/0.7203 23.63/0.5981 24.66/0.6947 24.64/0.6555 22.96/0.5651
		Full DeepPDNet (Q=28, K=6) 25.83/0.6628	24.63/0.6042	23.37/0.5789	24.44/0.6086 23.62/0.5612	22.27/0.5026
		Full DeepPDNet (Q=10, K=20) 27.33/0.7637 25.95/0.7055	23.69/0.6052 25.48/0.6819 24.66/0.6430 23.04/0.5717

We download the source codes from the authors' websites.